Properties

Label 676.4.a.g.1.2
Level $676$
Weight $4$
Character 676.1
Self dual yes
Analytic conductor $39.885$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,4,Mod(1,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 676.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8852911639\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 114x^{6} - 224x^{5} + 3123x^{4} + 10080x^{3} - 7598x^{2} - 46368x - 33663 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30615\) of defining polynomial
Character \(\chi\) \(=\) 676.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.78841 q^{3} +2.49640 q^{5} -17.9693 q^{7} +68.8129 q^{9} -57.2769 q^{11} -24.4358 q^{15} -17.5058 q^{17} -22.1225 q^{19} +175.891 q^{21} -131.193 q^{23} -118.768 q^{25} -409.282 q^{27} +74.2527 q^{29} -110.463 q^{31} +560.649 q^{33} -44.8587 q^{35} -241.452 q^{37} -426.704 q^{41} -208.296 q^{43} +171.785 q^{45} +158.624 q^{47} -20.1031 q^{49} +171.354 q^{51} +47.9103 q^{53} -142.986 q^{55} +216.544 q^{57} -441.432 q^{59} +869.398 q^{61} -1236.52 q^{63} +801.045 q^{67} +1284.17 q^{69} +893.624 q^{71} -413.180 q^{73} +1162.55 q^{75} +1029.23 q^{77} -246.527 q^{79} +2148.27 q^{81} +333.857 q^{83} -43.7016 q^{85} -726.816 q^{87} +379.176 q^{89} +1081.26 q^{93} -55.2266 q^{95} -941.263 q^{97} -3941.39 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 140 q^{9} + 176 q^{17} - 40 q^{23} + 84 q^{25} - 432 q^{27} + 968 q^{29} - 80 q^{35} + 1008 q^{43} + 1844 q^{49} + 1808 q^{51} - 1164 q^{53} + 2256 q^{55} + 2448 q^{61} + 3476 q^{69} + 2896 q^{75}+ \cdots + 4800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.78841 −1.88378 −0.941890 0.335922i \(-0.890952\pi\)
−0.941890 + 0.335922i \(0.890952\pi\)
\(4\) 0 0
\(5\) 2.49640 0.223285 0.111643 0.993748i \(-0.464389\pi\)
0.111643 + 0.993748i \(0.464389\pi\)
\(6\) 0 0
\(7\) −17.9693 −0.970253 −0.485126 0.874444i \(-0.661226\pi\)
−0.485126 + 0.874444i \(0.661226\pi\)
\(8\) 0 0
\(9\) 68.8129 2.54863
\(10\) 0 0
\(11\) −57.2769 −1.56997 −0.784983 0.619517i \(-0.787328\pi\)
−0.784983 + 0.619517i \(0.787328\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −24.4358 −0.420620
\(16\) 0 0
\(17\) −17.5058 −0.249752 −0.124876 0.992172i \(-0.539853\pi\)
−0.124876 + 0.992172i \(0.539853\pi\)
\(18\) 0 0
\(19\) −22.1225 −0.267118 −0.133559 0.991041i \(-0.542641\pi\)
−0.133559 + 0.991041i \(0.542641\pi\)
\(20\) 0 0
\(21\) 175.891 1.82774
\(22\) 0 0
\(23\) −131.193 −1.18937 −0.594686 0.803958i \(-0.702724\pi\)
−0.594686 + 0.803958i \(0.702724\pi\)
\(24\) 0 0
\(25\) −118.768 −0.950144
\(26\) 0 0
\(27\) −409.282 −2.91727
\(28\) 0 0
\(29\) 74.2527 0.475462 0.237731 0.971331i \(-0.423596\pi\)
0.237731 + 0.971331i \(0.423596\pi\)
\(30\) 0 0
\(31\) −110.463 −0.639994 −0.319997 0.947419i \(-0.603682\pi\)
−0.319997 + 0.947419i \(0.603682\pi\)
\(32\) 0 0
\(33\) 560.649 2.95747
\(34\) 0 0
\(35\) −44.8587 −0.216643
\(36\) 0 0
\(37\) −241.452 −1.07282 −0.536412 0.843956i \(-0.680221\pi\)
−0.536412 + 0.843956i \(0.680221\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −426.704 −1.62537 −0.812683 0.582706i \(-0.801994\pi\)
−0.812683 + 0.582706i \(0.801994\pi\)
\(42\) 0 0
\(43\) −208.296 −0.738718 −0.369359 0.929287i \(-0.620423\pi\)
−0.369359 + 0.929287i \(0.620423\pi\)
\(44\) 0 0
\(45\) 171.785 0.569070
\(46\) 0 0
\(47\) 158.624 0.492292 0.246146 0.969233i \(-0.420836\pi\)
0.246146 + 0.969233i \(0.420836\pi\)
\(48\) 0 0
\(49\) −20.1031 −0.0586096
\(50\) 0 0
\(51\) 171.354 0.470478
\(52\) 0 0
\(53\) 47.9103 0.124170 0.0620848 0.998071i \(-0.480225\pi\)
0.0620848 + 0.998071i \(0.480225\pi\)
\(54\) 0 0
\(55\) −142.986 −0.350550
\(56\) 0 0
\(57\) 216.544 0.503191
\(58\) 0 0
\(59\) −441.432 −0.974060 −0.487030 0.873385i \(-0.661920\pi\)
−0.487030 + 0.873385i \(0.661920\pi\)
\(60\) 0 0
\(61\) 869.398 1.82484 0.912419 0.409258i \(-0.134213\pi\)
0.912419 + 0.409258i \(0.134213\pi\)
\(62\) 0 0
\(63\) −1236.52 −2.47281
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 801.045 1.46065 0.730323 0.683102i \(-0.239370\pi\)
0.730323 + 0.683102i \(0.239370\pi\)
\(68\) 0 0
\(69\) 1284.17 2.24052
\(70\) 0 0
\(71\) 893.624 1.49371 0.746857 0.664985i \(-0.231562\pi\)
0.746857 + 0.664985i \(0.231562\pi\)
\(72\) 0 0
\(73\) −413.180 −0.662452 −0.331226 0.943551i \(-0.607462\pi\)
−0.331226 + 0.943551i \(0.607462\pi\)
\(74\) 0 0
\(75\) 1162.55 1.78986
\(76\) 0 0
\(77\) 1029.23 1.52326
\(78\) 0 0
\(79\) −246.527 −0.351094 −0.175547 0.984471i \(-0.556169\pi\)
−0.175547 + 0.984471i \(0.556169\pi\)
\(80\) 0 0
\(81\) 2148.27 2.94687
\(82\) 0 0
\(83\) 333.857 0.441513 0.220756 0.975329i \(-0.429147\pi\)
0.220756 + 0.975329i \(0.429147\pi\)
\(84\) 0 0
\(85\) −43.7016 −0.0557660
\(86\) 0 0
\(87\) −726.816 −0.895665
\(88\) 0 0
\(89\) 379.176 0.451602 0.225801 0.974174i \(-0.427500\pi\)
0.225801 + 0.974174i \(0.427500\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1081.26 1.20561
\(94\) 0 0
\(95\) −55.2266 −0.0596435
\(96\) 0 0
\(97\) −941.263 −0.985266 −0.492633 0.870237i \(-0.663965\pi\)
−0.492633 + 0.870237i \(0.663965\pi\)
\(98\) 0 0
\(99\) −3941.39 −4.00126
\(100\) 0 0
\(101\) 385.949 0.380232 0.190116 0.981762i \(-0.439114\pi\)
0.190116 + 0.981762i \(0.439114\pi\)
\(102\) 0 0
\(103\) −395.674 −0.378514 −0.189257 0.981928i \(-0.560608\pi\)
−0.189257 + 0.981928i \(0.560608\pi\)
\(104\) 0 0
\(105\) 439.095 0.408108
\(106\) 0 0
\(107\) 1228.14 1.10961 0.554807 0.831979i \(-0.312792\pi\)
0.554807 + 0.831979i \(0.312792\pi\)
\(108\) 0 0
\(109\) 542.176 0.476431 0.238216 0.971212i \(-0.423438\pi\)
0.238216 + 0.971212i \(0.423438\pi\)
\(110\) 0 0
\(111\) 2363.43 2.02096
\(112\) 0 0
\(113\) −677.411 −0.563942 −0.281971 0.959423i \(-0.590988\pi\)
−0.281971 + 0.959423i \(0.590988\pi\)
\(114\) 0 0
\(115\) −327.510 −0.265569
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 314.568 0.242323
\(120\) 0 0
\(121\) 1949.64 1.46479
\(122\) 0 0
\(123\) 4176.75 3.06183
\(124\) 0 0
\(125\) −608.543 −0.435438
\(126\) 0 0
\(127\) 1271.86 0.888656 0.444328 0.895864i \(-0.353442\pi\)
0.444328 + 0.895864i \(0.353442\pi\)
\(128\) 0 0
\(129\) 2038.89 1.39158
\(130\) 0 0
\(131\) 1249.24 0.833179 0.416589 0.909095i \(-0.363225\pi\)
0.416589 + 0.909095i \(0.363225\pi\)
\(132\) 0 0
\(133\) 397.526 0.259172
\(134\) 0 0
\(135\) −1021.73 −0.651383
\(136\) 0 0
\(137\) −1742.91 −1.08691 −0.543454 0.839439i \(-0.682884\pi\)
−0.543454 + 0.839439i \(0.682884\pi\)
\(138\) 0 0
\(139\) 988.883 0.603424 0.301712 0.953399i \(-0.402442\pi\)
0.301712 + 0.953399i \(0.402442\pi\)
\(140\) 0 0
\(141\) −1552.68 −0.927369
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 185.365 0.106164
\(146\) 0 0
\(147\) 196.777 0.110408
\(148\) 0 0
\(149\) −1696.58 −0.932815 −0.466408 0.884570i \(-0.654452\pi\)
−0.466408 + 0.884570i \(0.654452\pi\)
\(150\) 0 0
\(151\) 2603.11 1.40290 0.701449 0.712719i \(-0.252537\pi\)
0.701449 + 0.712719i \(0.252537\pi\)
\(152\) 0 0
\(153\) −1204.63 −0.636525
\(154\) 0 0
\(155\) −275.761 −0.142901
\(156\) 0 0
\(157\) −178.988 −0.0909859 −0.0454930 0.998965i \(-0.514486\pi\)
−0.0454930 + 0.998965i \(0.514486\pi\)
\(158\) 0 0
\(159\) −468.966 −0.233908
\(160\) 0 0
\(161\) 2357.44 1.15399
\(162\) 0 0
\(163\) −2080.21 −0.999599 −0.499799 0.866141i \(-0.666593\pi\)
−0.499799 + 0.866141i \(0.666593\pi\)
\(164\) 0 0
\(165\) 1399.61 0.660359
\(166\) 0 0
\(167\) −3039.90 −1.40859 −0.704295 0.709907i \(-0.748737\pi\)
−0.704295 + 0.709907i \(0.748737\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −1522.31 −0.680784
\(172\) 0 0
\(173\) 51.7355 0.0227363 0.0113681 0.999935i \(-0.496381\pi\)
0.0113681 + 0.999935i \(0.496381\pi\)
\(174\) 0 0
\(175\) 2134.18 0.921880
\(176\) 0 0
\(177\) 4320.92 1.83492
\(178\) 0 0
\(179\) 628.894 0.262602 0.131301 0.991343i \(-0.458085\pi\)
0.131301 + 0.991343i \(0.458085\pi\)
\(180\) 0 0
\(181\) 1661.09 0.682145 0.341072 0.940037i \(-0.389210\pi\)
0.341072 + 0.940037i \(0.389210\pi\)
\(182\) 0 0
\(183\) −8510.03 −3.43759
\(184\) 0 0
\(185\) −602.762 −0.239546
\(186\) 0 0
\(187\) 1002.68 0.392103
\(188\) 0 0
\(189\) 7354.52 2.83049
\(190\) 0 0
\(191\) 1917.94 0.726581 0.363291 0.931676i \(-0.381653\pi\)
0.363291 + 0.931676i \(0.381653\pi\)
\(192\) 0 0
\(193\) −231.092 −0.0861883 −0.0430942 0.999071i \(-0.513722\pi\)
−0.0430942 + 0.999071i \(0.513722\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1630.42 −0.589656 −0.294828 0.955550i \(-0.595262\pi\)
−0.294828 + 0.955550i \(0.595262\pi\)
\(198\) 0 0
\(199\) −3065.57 −1.09202 −0.546011 0.837778i \(-0.683854\pi\)
−0.546011 + 0.837778i \(0.683854\pi\)
\(200\) 0 0
\(201\) −7840.96 −2.75154
\(202\) 0 0
\(203\) −1334.27 −0.461318
\(204\) 0 0
\(205\) −1065.23 −0.362920
\(206\) 0 0
\(207\) −9027.75 −3.03127
\(208\) 0 0
\(209\) 1267.11 0.419366
\(210\) 0 0
\(211\) −3449.79 −1.12556 −0.562780 0.826606i \(-0.690268\pi\)
−0.562780 + 0.826606i \(0.690268\pi\)
\(212\) 0 0
\(213\) −8747.16 −2.81383
\(214\) 0 0
\(215\) −519.991 −0.164945
\(216\) 0 0
\(217\) 1984.95 0.620956
\(218\) 0 0
\(219\) 4044.37 1.24791
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2524.48 −0.758080 −0.379040 0.925380i \(-0.623746\pi\)
−0.379040 + 0.925380i \(0.623746\pi\)
\(224\) 0 0
\(225\) −8172.77 −2.42156
\(226\) 0 0
\(227\) −1153.06 −0.337142 −0.168571 0.985689i \(-0.553915\pi\)
−0.168571 + 0.985689i \(0.553915\pi\)
\(228\) 0 0
\(229\) 3857.53 1.11316 0.556578 0.830795i \(-0.312114\pi\)
0.556578 + 0.830795i \(0.312114\pi\)
\(230\) 0 0
\(231\) −10074.5 −2.86949
\(232\) 0 0
\(233\) −1018.55 −0.286385 −0.143192 0.989695i \(-0.545737\pi\)
−0.143192 + 0.989695i \(0.545737\pi\)
\(234\) 0 0
\(235\) 395.990 0.109921
\(236\) 0 0
\(237\) 2413.11 0.661384
\(238\) 0 0
\(239\) 1263.24 0.341893 0.170947 0.985280i \(-0.445317\pi\)
0.170947 + 0.985280i \(0.445317\pi\)
\(240\) 0 0
\(241\) −2067.94 −0.552729 −0.276365 0.961053i \(-0.589130\pi\)
−0.276365 + 0.961053i \(0.589130\pi\)
\(242\) 0 0
\(243\) −9977.52 −2.63398
\(244\) 0 0
\(245\) −50.1855 −0.0130867
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3267.93 −0.831713
\(250\) 0 0
\(251\) 5126.38 1.28914 0.644570 0.764545i \(-0.277036\pi\)
0.644570 + 0.764545i \(0.277036\pi\)
\(252\) 0 0
\(253\) 7514.31 1.86727
\(254\) 0 0
\(255\) 427.769 0.105051
\(256\) 0 0
\(257\) 3961.52 0.961528 0.480764 0.876850i \(-0.340359\pi\)
0.480764 + 0.876850i \(0.340359\pi\)
\(258\) 0 0
\(259\) 4338.73 1.04091
\(260\) 0 0
\(261\) 5109.55 1.21177
\(262\) 0 0
\(263\) −7104.63 −1.66574 −0.832871 0.553468i \(-0.813304\pi\)
−0.832871 + 0.553468i \(0.813304\pi\)
\(264\) 0 0
\(265\) 119.604 0.0277252
\(266\) 0 0
\(267\) −3711.53 −0.850718
\(268\) 0 0
\(269\) 5613.88 1.27243 0.636216 0.771511i \(-0.280499\pi\)
0.636216 + 0.771511i \(0.280499\pi\)
\(270\) 0 0
\(271\) −441.205 −0.0988978 −0.0494489 0.998777i \(-0.515746\pi\)
−0.0494489 + 0.998777i \(0.515746\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6802.66 1.49169
\(276\) 0 0
\(277\) 4676.87 1.01446 0.507231 0.861810i \(-0.330669\pi\)
0.507231 + 0.861810i \(0.330669\pi\)
\(278\) 0 0
\(279\) −7601.31 −1.63110
\(280\) 0 0
\(281\) 1253.34 0.266079 0.133040 0.991111i \(-0.457526\pi\)
0.133040 + 0.991111i \(0.457526\pi\)
\(282\) 0 0
\(283\) 4172.15 0.876356 0.438178 0.898888i \(-0.355624\pi\)
0.438178 + 0.898888i \(0.355624\pi\)
\(284\) 0 0
\(285\) 540.580 0.112355
\(286\) 0 0
\(287\) 7667.59 1.57702
\(288\) 0 0
\(289\) −4606.55 −0.937624
\(290\) 0 0
\(291\) 9213.47 1.85602
\(292\) 0 0
\(293\) −9779.07 −1.94983 −0.974913 0.222585i \(-0.928550\pi\)
−0.974913 + 0.222585i \(0.928550\pi\)
\(294\) 0 0
\(295\) −1101.99 −0.217493
\(296\) 0 0
\(297\) 23442.4 4.58002
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3742.94 0.716743
\(302\) 0 0
\(303\) −3777.83 −0.716273
\(304\) 0 0
\(305\) 2170.37 0.407459
\(306\) 0 0
\(307\) 1641.63 0.305187 0.152594 0.988289i \(-0.451237\pi\)
0.152594 + 0.988289i \(0.451237\pi\)
\(308\) 0 0
\(309\) 3873.02 0.713037
\(310\) 0 0
\(311\) 5900.48 1.07584 0.537919 0.842996i \(-0.319211\pi\)
0.537919 + 0.842996i \(0.319211\pi\)
\(312\) 0 0
\(313\) 5268.10 0.951344 0.475672 0.879623i \(-0.342205\pi\)
0.475672 + 0.879623i \(0.342205\pi\)
\(314\) 0 0
\(315\) −3086.86 −0.552142
\(316\) 0 0
\(317\) 20.4536 0.00362395 0.00181197 0.999998i \(-0.499423\pi\)
0.00181197 + 0.999998i \(0.499423\pi\)
\(318\) 0 0
\(319\) −4252.96 −0.746459
\(320\) 0 0
\(321\) −12021.5 −2.09027
\(322\) 0 0
\(323\) 387.272 0.0667133
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5307.03 −0.897491
\(328\) 0 0
\(329\) −2850.37 −0.477647
\(330\) 0 0
\(331\) −6302.42 −1.04656 −0.523282 0.852160i \(-0.675292\pi\)
−0.523282 + 0.852160i \(0.675292\pi\)
\(332\) 0 0
\(333\) −16615.0 −2.73423
\(334\) 0 0
\(335\) 1999.73 0.326141
\(336\) 0 0
\(337\) −3060.14 −0.494648 −0.247324 0.968933i \(-0.579551\pi\)
−0.247324 + 0.968933i \(0.579551\pi\)
\(338\) 0 0
\(339\) 6630.78 1.06234
\(340\) 0 0
\(341\) 6326.99 1.00477
\(342\) 0 0
\(343\) 6524.72 1.02712
\(344\) 0 0
\(345\) 3205.80 0.500274
\(346\) 0 0
\(347\) −203.618 −0.0315008 −0.0157504 0.999876i \(-0.505014\pi\)
−0.0157504 + 0.999876i \(0.505014\pi\)
\(348\) 0 0
\(349\) −1505.61 −0.230927 −0.115464 0.993312i \(-0.536835\pi\)
−0.115464 + 0.993312i \(0.536835\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11133.4 1.67867 0.839337 0.543612i \(-0.182944\pi\)
0.839337 + 0.543612i \(0.182944\pi\)
\(354\) 0 0
\(355\) 2230.85 0.333524
\(356\) 0 0
\(357\) −3079.12 −0.456483
\(358\) 0 0
\(359\) −4176.37 −0.613985 −0.306992 0.951712i \(-0.599323\pi\)
−0.306992 + 0.951712i \(0.599323\pi\)
\(360\) 0 0
\(361\) −6369.60 −0.928648
\(362\) 0 0
\(363\) −19083.9 −2.75935
\(364\) 0 0
\(365\) −1031.46 −0.147916
\(366\) 0 0
\(367\) 4480.80 0.637319 0.318659 0.947869i \(-0.396767\pi\)
0.318659 + 0.947869i \(0.396767\pi\)
\(368\) 0 0
\(369\) −29362.8 −4.14245
\(370\) 0 0
\(371\) −860.917 −0.120476
\(372\) 0 0
\(373\) −363.859 −0.0505092 −0.0252546 0.999681i \(-0.508040\pi\)
−0.0252546 + 0.999681i \(0.508040\pi\)
\(374\) 0 0
\(375\) 5956.67 0.820270
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9755.44 −1.32217 −0.661086 0.750310i \(-0.729904\pi\)
−0.661086 + 0.750310i \(0.729904\pi\)
\(380\) 0 0
\(381\) −12449.5 −1.67403
\(382\) 0 0
\(383\) 5252.34 0.700737 0.350368 0.936612i \(-0.386056\pi\)
0.350368 + 0.936612i \(0.386056\pi\)
\(384\) 0 0
\(385\) 2569.37 0.340122
\(386\) 0 0
\(387\) −14333.5 −1.88272
\(388\) 0 0
\(389\) 11266.0 1.46841 0.734205 0.678928i \(-0.237555\pi\)
0.734205 + 0.678928i \(0.237555\pi\)
\(390\) 0 0
\(391\) 2296.64 0.297048
\(392\) 0 0
\(393\) −12228.1 −1.56953
\(394\) 0 0
\(395\) −615.431 −0.0783941
\(396\) 0 0
\(397\) −3001.18 −0.379407 −0.189704 0.981841i \(-0.560753\pi\)
−0.189704 + 0.981841i \(0.560753\pi\)
\(398\) 0 0
\(399\) −3891.14 −0.488223
\(400\) 0 0
\(401\) 7998.63 0.996091 0.498045 0.867151i \(-0.334051\pi\)
0.498045 + 0.867151i \(0.334051\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 5362.95 0.657992
\(406\) 0 0
\(407\) 13829.6 1.68430
\(408\) 0 0
\(409\) −10632.1 −1.28539 −0.642694 0.766123i \(-0.722183\pi\)
−0.642694 + 0.766123i \(0.722183\pi\)
\(410\) 0 0
\(411\) 17060.3 2.04750
\(412\) 0 0
\(413\) 7932.24 0.945085
\(414\) 0 0
\(415\) 833.442 0.0985833
\(416\) 0 0
\(417\) −9679.59 −1.13672
\(418\) 0 0
\(419\) −329.538 −0.0384224 −0.0192112 0.999815i \(-0.506115\pi\)
−0.0192112 + 0.999815i \(0.506115\pi\)
\(420\) 0 0
\(421\) 10594.7 1.22649 0.613247 0.789891i \(-0.289863\pi\)
0.613247 + 0.789891i \(0.289863\pi\)
\(422\) 0 0
\(423\) 10915.4 1.25467
\(424\) 0 0
\(425\) 2079.13 0.237301
\(426\) 0 0
\(427\) −15622.5 −1.77055
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12753.4 −1.42531 −0.712655 0.701514i \(-0.752508\pi\)
−0.712655 + 0.701514i \(0.752508\pi\)
\(432\) 0 0
\(433\) −14009.8 −1.55490 −0.777448 0.628947i \(-0.783486\pi\)
−0.777448 + 0.628947i \(0.783486\pi\)
\(434\) 0 0
\(435\) −1814.43 −0.199989
\(436\) 0 0
\(437\) 2902.30 0.317703
\(438\) 0 0
\(439\) 7296.19 0.793230 0.396615 0.917985i \(-0.370185\pi\)
0.396615 + 0.917985i \(0.370185\pi\)
\(440\) 0 0
\(441\) −1383.35 −0.149374
\(442\) 0 0
\(443\) −6098.72 −0.654084 −0.327042 0.945010i \(-0.606052\pi\)
−0.327042 + 0.945010i \(0.606052\pi\)
\(444\) 0 0
\(445\) 946.575 0.100836
\(446\) 0 0
\(447\) 16606.8 1.75722
\(448\) 0 0
\(449\) −10846.2 −1.14001 −0.570006 0.821640i \(-0.693059\pi\)
−0.570006 + 0.821640i \(0.693059\pi\)
\(450\) 0 0
\(451\) 24440.3 2.55177
\(452\) 0 0
\(453\) −25480.3 −2.64275
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5353.85 0.548014 0.274007 0.961728i \(-0.411651\pi\)
0.274007 + 0.961728i \(0.411651\pi\)
\(458\) 0 0
\(459\) 7164.82 0.728595
\(460\) 0 0
\(461\) 15097.3 1.52527 0.762637 0.646827i \(-0.223904\pi\)
0.762637 + 0.646827i \(0.223904\pi\)
\(462\) 0 0
\(463\) 9543.47 0.957932 0.478966 0.877833i \(-0.341012\pi\)
0.478966 + 0.877833i \(0.341012\pi\)
\(464\) 0 0
\(465\) 2699.26 0.269194
\(466\) 0 0
\(467\) 4319.08 0.427972 0.213986 0.976837i \(-0.431355\pi\)
0.213986 + 0.976837i \(0.431355\pi\)
\(468\) 0 0
\(469\) −14394.3 −1.41720
\(470\) 0 0
\(471\) 1752.01 0.171397
\(472\) 0 0
\(473\) 11930.6 1.15976
\(474\) 0 0
\(475\) 2627.44 0.253800
\(476\) 0 0
\(477\) 3296.85 0.316462
\(478\) 0 0
\(479\) 13244.2 1.26335 0.631673 0.775235i \(-0.282368\pi\)
0.631673 + 0.775235i \(0.282368\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −23075.6 −2.17387
\(484\) 0 0
\(485\) −2349.77 −0.219995
\(486\) 0 0
\(487\) −619.602 −0.0576526 −0.0288263 0.999584i \(-0.509177\pi\)
−0.0288263 + 0.999584i \(0.509177\pi\)
\(488\) 0 0
\(489\) 20361.9 1.88302
\(490\) 0 0
\(491\) −5462.14 −0.502042 −0.251021 0.967982i \(-0.580766\pi\)
−0.251021 + 0.967982i \(0.580766\pi\)
\(492\) 0 0
\(493\) −1299.86 −0.118748
\(494\) 0 0
\(495\) −9839.30 −0.893421
\(496\) 0 0
\(497\) −16057.8 −1.44928
\(498\) 0 0
\(499\) −16005.2 −1.43585 −0.717926 0.696119i \(-0.754908\pi\)
−0.717926 + 0.696119i \(0.754908\pi\)
\(500\) 0 0
\(501\) 29755.8 2.65347
\(502\) 0 0
\(503\) −10055.8 −0.891386 −0.445693 0.895186i \(-0.647043\pi\)
−0.445693 + 0.895186i \(0.647043\pi\)
\(504\) 0 0
\(505\) 963.485 0.0849001
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14572.4 1.26898 0.634490 0.772931i \(-0.281210\pi\)
0.634490 + 0.772931i \(0.281210\pi\)
\(510\) 0 0
\(511\) 7424.56 0.642746
\(512\) 0 0
\(513\) 9054.32 0.779255
\(514\) 0 0
\(515\) −987.763 −0.0845166
\(516\) 0 0
\(517\) −9085.49 −0.772881
\(518\) 0 0
\(519\) −506.408 −0.0428301
\(520\) 0 0
\(521\) 14409.9 1.21172 0.605862 0.795570i \(-0.292828\pi\)
0.605862 + 0.795570i \(0.292828\pi\)
\(522\) 0 0
\(523\) −4248.32 −0.355193 −0.177597 0.984103i \(-0.556832\pi\)
−0.177597 + 0.984103i \(0.556832\pi\)
\(524\) 0 0
\(525\) −20890.2 −1.73662
\(526\) 0 0
\(527\) 1933.75 0.159840
\(528\) 0 0
\(529\) 5044.52 0.414607
\(530\) 0 0
\(531\) −30376.2 −2.48252
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 3065.93 0.247761
\(536\) 0 0
\(537\) −6155.87 −0.494684
\(538\) 0 0
\(539\) 1151.44 0.0920151
\(540\) 0 0
\(541\) −14369.4 −1.14194 −0.570971 0.820970i \(-0.693433\pi\)
−0.570971 + 0.820970i \(0.693433\pi\)
\(542\) 0 0
\(543\) −16259.5 −1.28501
\(544\) 0 0
\(545\) 1353.49 0.106380
\(546\) 0 0
\(547\) −18950.8 −1.48131 −0.740657 0.671884i \(-0.765485\pi\)
−0.740657 + 0.671884i \(0.765485\pi\)
\(548\) 0 0
\(549\) 59825.8 4.65083
\(550\) 0 0
\(551\) −1642.65 −0.127004
\(552\) 0 0
\(553\) 4429.92 0.340650
\(554\) 0 0
\(555\) 5900.08 0.451251
\(556\) 0 0
\(557\) −11852.8 −0.901654 −0.450827 0.892611i \(-0.648871\pi\)
−0.450827 + 0.892611i \(0.648871\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −9814.63 −0.738635
\(562\) 0 0
\(563\) 11585.3 0.867251 0.433625 0.901093i \(-0.357234\pi\)
0.433625 + 0.901093i \(0.357234\pi\)
\(564\) 0 0
\(565\) −1691.09 −0.125920
\(566\) 0 0
\(567\) −38603.0 −2.85921
\(568\) 0 0
\(569\) 9242.34 0.680948 0.340474 0.940254i \(-0.389413\pi\)
0.340474 + 0.940254i \(0.389413\pi\)
\(570\) 0 0
\(571\) −20877.1 −1.53009 −0.765043 0.643979i \(-0.777282\pi\)
−0.765043 + 0.643979i \(0.777282\pi\)
\(572\) 0 0
\(573\) −18773.5 −1.36872
\(574\) 0 0
\(575\) 15581.5 1.13007
\(576\) 0 0
\(577\) −19966.8 −1.44060 −0.720302 0.693661i \(-0.755997\pi\)
−0.720302 + 0.693661i \(0.755997\pi\)
\(578\) 0 0
\(579\) 2262.02 0.162360
\(580\) 0 0
\(581\) −5999.19 −0.428379
\(582\) 0 0
\(583\) −2744.15 −0.194942
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19411.9 1.36493 0.682466 0.730917i \(-0.260907\pi\)
0.682466 + 0.730917i \(0.260907\pi\)
\(588\) 0 0
\(589\) 2443.72 0.170954
\(590\) 0 0
\(591\) 15959.2 1.11078
\(592\) 0 0
\(593\) −19259.0 −1.33368 −0.666841 0.745200i \(-0.732354\pi\)
−0.666841 + 0.745200i \(0.732354\pi\)
\(594\) 0 0
\(595\) 785.289 0.0541071
\(596\) 0 0
\(597\) 30007.1 2.05713
\(598\) 0 0
\(599\) 27804.6 1.89660 0.948301 0.317372i \(-0.102800\pi\)
0.948301 + 0.317372i \(0.102800\pi\)
\(600\) 0 0
\(601\) −9927.10 −0.673769 −0.336884 0.941546i \(-0.609373\pi\)
−0.336884 + 0.941546i \(0.609373\pi\)
\(602\) 0 0
\(603\) 55122.3 3.72264
\(604\) 0 0
\(605\) 4867.09 0.327066
\(606\) 0 0
\(607\) −14402.0 −0.963032 −0.481516 0.876437i \(-0.659914\pi\)
−0.481516 + 0.876437i \(0.659914\pi\)
\(608\) 0 0
\(609\) 13060.4 0.869021
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14778.2 −0.973713 −0.486856 0.873482i \(-0.661856\pi\)
−0.486856 + 0.873482i \(0.661856\pi\)
\(614\) 0 0
\(615\) 10426.9 0.683661
\(616\) 0 0
\(617\) −17161.9 −1.11979 −0.559897 0.828562i \(-0.689159\pi\)
−0.559897 + 0.828562i \(0.689159\pi\)
\(618\) 0 0
\(619\) 7592.09 0.492975 0.246488 0.969146i \(-0.420724\pi\)
0.246488 + 0.969146i \(0.420724\pi\)
\(620\) 0 0
\(621\) 53694.8 3.46972
\(622\) 0 0
\(623\) −6813.53 −0.438168
\(624\) 0 0
\(625\) 13326.8 0.852917
\(626\) 0 0
\(627\) −12402.9 −0.789993
\(628\) 0 0
\(629\) 4226.82 0.267940
\(630\) 0 0
\(631\) −6757.72 −0.426340 −0.213170 0.977015i \(-0.568379\pi\)
−0.213170 + 0.977015i \(0.568379\pi\)
\(632\) 0 0
\(633\) 33767.9 2.12031
\(634\) 0 0
\(635\) 3175.08 0.198424
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 61492.9 3.80692
\(640\) 0 0
\(641\) 14252.7 0.878235 0.439117 0.898430i \(-0.355291\pi\)
0.439117 + 0.898430i \(0.355291\pi\)
\(642\) 0 0
\(643\) 12887.1 0.790383 0.395192 0.918599i \(-0.370678\pi\)
0.395192 + 0.918599i \(0.370678\pi\)
\(644\) 0 0
\(645\) 5089.89 0.310720
\(646\) 0 0
\(647\) 28352.4 1.72280 0.861398 0.507931i \(-0.169589\pi\)
0.861398 + 0.507931i \(0.169589\pi\)
\(648\) 0 0
\(649\) 25283.8 1.52924
\(650\) 0 0
\(651\) −19429.5 −1.16974
\(652\) 0 0
\(653\) 24016.2 1.43925 0.719623 0.694365i \(-0.244315\pi\)
0.719623 + 0.694365i \(0.244315\pi\)
\(654\) 0 0
\(655\) 3118.60 0.186036
\(656\) 0 0
\(657\) −28432.1 −1.68834
\(658\) 0 0
\(659\) −366.040 −0.0216371 −0.0108186 0.999941i \(-0.503444\pi\)
−0.0108186 + 0.999941i \(0.503444\pi\)
\(660\) 0 0
\(661\) −7308.10 −0.430033 −0.215017 0.976610i \(-0.568981\pi\)
−0.215017 + 0.976610i \(0.568981\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 992.385 0.0578692
\(666\) 0 0
\(667\) −9741.42 −0.565501
\(668\) 0 0
\(669\) 24710.6 1.42806
\(670\) 0 0
\(671\) −49796.4 −2.86493
\(672\) 0 0
\(673\) −13894.0 −0.795803 −0.397901 0.917428i \(-0.630261\pi\)
−0.397901 + 0.917428i \(0.630261\pi\)
\(674\) 0 0
\(675\) 48609.6 2.77183
\(676\) 0 0
\(677\) 23804.6 1.35138 0.675691 0.737185i \(-0.263845\pi\)
0.675691 + 0.737185i \(0.263845\pi\)
\(678\) 0 0
\(679\) 16913.9 0.955957
\(680\) 0 0
\(681\) 11286.6 0.635102
\(682\) 0 0
\(683\) −20866.6 −1.16902 −0.584508 0.811388i \(-0.698712\pi\)
−0.584508 + 0.811388i \(0.698712\pi\)
\(684\) 0 0
\(685\) −4350.99 −0.242690
\(686\) 0 0
\(687\) −37759.1 −2.09694
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −5142.24 −0.283097 −0.141549 0.989931i \(-0.545208\pi\)
−0.141549 + 0.989931i \(0.545208\pi\)
\(692\) 0 0
\(693\) 70824.1 3.88223
\(694\) 0 0
\(695\) 2468.65 0.134736
\(696\) 0 0
\(697\) 7469.81 0.405939
\(698\) 0 0
\(699\) 9970.02 0.539486
\(700\) 0 0
\(701\) −8584.99 −0.462554 −0.231277 0.972888i \(-0.574290\pi\)
−0.231277 + 0.972888i \(0.574290\pi\)
\(702\) 0 0
\(703\) 5341.52 0.286571
\(704\) 0 0
\(705\) −3876.11 −0.207068
\(706\) 0 0
\(707\) −6935.25 −0.368921
\(708\) 0 0
\(709\) 21568.8 1.14250 0.571252 0.820775i \(-0.306458\pi\)
0.571252 + 0.820775i \(0.306458\pi\)
\(710\) 0 0
\(711\) −16964.2 −0.894808
\(712\) 0 0
\(713\) 14492.0 0.761191
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12365.1 −0.644051
\(718\) 0 0
\(719\) −32635.3 −1.69276 −0.846379 0.532581i \(-0.821222\pi\)
−0.846379 + 0.532581i \(0.821222\pi\)
\(720\) 0 0
\(721\) 7110.00 0.367254
\(722\) 0 0
\(723\) 20241.8 1.04122
\(724\) 0 0
\(725\) −8818.85 −0.451757
\(726\) 0 0
\(727\) −6636.77 −0.338575 −0.169288 0.985567i \(-0.554147\pi\)
−0.169288 + 0.985567i \(0.554147\pi\)
\(728\) 0 0
\(729\) 39660.8 2.01498
\(730\) 0 0
\(731\) 3646.40 0.184496
\(732\) 0 0
\(733\) 18221.6 0.918188 0.459094 0.888388i \(-0.348174\pi\)
0.459094 + 0.888388i \(0.348174\pi\)
\(734\) 0 0
\(735\) 491.236 0.0246524
\(736\) 0 0
\(737\) −45881.4 −2.29316
\(738\) 0 0
\(739\) 25459.9 1.26733 0.633665 0.773607i \(-0.281550\pi\)
0.633665 + 0.773607i \(0.281550\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22559.2 −1.11388 −0.556942 0.830552i \(-0.688025\pi\)
−0.556942 + 0.830552i \(0.688025\pi\)
\(744\) 0 0
\(745\) −4235.35 −0.208284
\(746\) 0 0
\(747\) 22973.7 1.12525
\(748\) 0 0
\(749\) −22068.9 −1.07661
\(750\) 0 0
\(751\) −21808.6 −1.05966 −0.529830 0.848104i \(-0.677744\pi\)
−0.529830 + 0.848104i \(0.677744\pi\)
\(752\) 0 0
\(753\) −50179.1 −2.42846
\(754\) 0 0
\(755\) 6498.40 0.313246
\(756\) 0 0
\(757\) −12803.7 −0.614742 −0.307371 0.951590i \(-0.599449\pi\)
−0.307371 + 0.951590i \(0.599449\pi\)
\(758\) 0 0
\(759\) −73553.1 −3.51753
\(760\) 0 0
\(761\) 4154.40 0.197893 0.0989467 0.995093i \(-0.468453\pi\)
0.0989467 + 0.995093i \(0.468453\pi\)
\(762\) 0 0
\(763\) −9742.53 −0.462259
\(764\) 0 0
\(765\) −3007.24 −0.142127
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4122.77 −0.193330 −0.0966652 0.995317i \(-0.530818\pi\)
−0.0966652 + 0.995317i \(0.530818\pi\)
\(770\) 0 0
\(771\) −38776.9 −1.81131
\(772\) 0 0
\(773\) −34102.7 −1.58679 −0.793394 0.608708i \(-0.791688\pi\)
−0.793394 + 0.608708i \(0.791688\pi\)
\(774\) 0 0
\(775\) 13119.5 0.608086
\(776\) 0 0
\(777\) −42469.3 −1.96085
\(778\) 0 0
\(779\) 9439.74 0.434164
\(780\) 0 0
\(781\) −51184.0 −2.34508
\(782\) 0 0
\(783\) −30390.3 −1.38705
\(784\) 0 0
\(785\) −446.826 −0.0203158
\(786\) 0 0
\(787\) 42573.1 1.92829 0.964147 0.265368i \(-0.0854935\pi\)
0.964147 + 0.265368i \(0.0854935\pi\)
\(788\) 0 0
\(789\) 69543.0 3.13789
\(790\) 0 0
\(791\) 12172.6 0.547166
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1170.73 −0.0522282
\(796\) 0 0
\(797\) −6054.75 −0.269097 −0.134549 0.990907i \(-0.542958\pi\)
−0.134549 + 0.990907i \(0.542958\pi\)
\(798\) 0 0
\(799\) −2776.85 −0.122951
\(800\) 0 0
\(801\) 26092.2 1.15096
\(802\) 0 0
\(803\) 23665.6 1.04003
\(804\) 0 0
\(805\) 5885.13 0.257669
\(806\) 0 0
\(807\) −54950.9 −2.39698
\(808\) 0 0
\(809\) 37902.7 1.64720 0.823601 0.567169i \(-0.191962\pi\)
0.823601 + 0.567169i \(0.191962\pi\)
\(810\) 0 0
\(811\) −2418.43 −0.104714 −0.0523568 0.998628i \(-0.516673\pi\)
−0.0523568 + 0.998628i \(0.516673\pi\)
\(812\) 0 0
\(813\) 4318.69 0.186302
\(814\) 0 0
\(815\) −5193.04 −0.223196
\(816\) 0 0
\(817\) 4608.02 0.197325
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40835.6 1.73590 0.867950 0.496652i \(-0.165438\pi\)
0.867950 + 0.496652i \(0.165438\pi\)
\(822\) 0 0
\(823\) 1699.36 0.0719755 0.0359877 0.999352i \(-0.488542\pi\)
0.0359877 + 0.999352i \(0.488542\pi\)
\(824\) 0 0
\(825\) −66587.2 −2.81002
\(826\) 0 0
\(827\) −28148.2 −1.18357 −0.591784 0.806097i \(-0.701576\pi\)
−0.591784 + 0.806097i \(0.701576\pi\)
\(828\) 0 0
\(829\) 1779.51 0.0745535 0.0372768 0.999305i \(-0.488132\pi\)
0.0372768 + 0.999305i \(0.488132\pi\)
\(830\) 0 0
\(831\) −45779.2 −1.91102
\(832\) 0 0
\(833\) 351.922 0.0146379
\(834\) 0 0
\(835\) −7588.82 −0.314517
\(836\) 0 0
\(837\) 45210.6 1.86704
\(838\) 0 0
\(839\) 27406.2 1.12773 0.563865 0.825867i \(-0.309314\pi\)
0.563865 + 0.825867i \(0.309314\pi\)
\(840\) 0 0
\(841\) −18875.5 −0.773936
\(842\) 0 0
\(843\) −12268.2 −0.501234
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −35033.7 −1.42122
\(848\) 0 0
\(849\) −40838.7 −1.65086
\(850\) 0 0
\(851\) 31676.8 1.27599
\(852\) 0 0
\(853\) 49349.2 1.98087 0.990437 0.137964i \(-0.0440557\pi\)
0.990437 + 0.137964i \(0.0440557\pi\)
\(854\) 0 0
\(855\) −3800.30 −0.152009
\(856\) 0 0
\(857\) −657.558 −0.0262098 −0.0131049 0.999914i \(-0.504172\pi\)
−0.0131049 + 0.999914i \(0.504172\pi\)
\(858\) 0 0
\(859\) 2866.78 0.113869 0.0569343 0.998378i \(-0.481867\pi\)
0.0569343 + 0.998378i \(0.481867\pi\)
\(860\) 0 0
\(861\) −75053.5 −2.97075
\(862\) 0 0
\(863\) 18625.8 0.734683 0.367341 0.930086i \(-0.380268\pi\)
0.367341 + 0.930086i \(0.380268\pi\)
\(864\) 0 0
\(865\) 129.153 0.00507667
\(866\) 0 0
\(867\) 45090.7 1.76628
\(868\) 0 0
\(869\) 14120.3 0.551206
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −64771.1 −2.51107
\(874\) 0 0
\(875\) 10935.1 0.422485
\(876\) 0 0
\(877\) −19727.9 −0.759596 −0.379798 0.925069i \(-0.624006\pi\)
−0.379798 + 0.925069i \(0.624006\pi\)
\(878\) 0 0
\(879\) 95721.5 3.67304
\(880\) 0 0
\(881\) −50424.4 −1.92831 −0.964156 0.265337i \(-0.914517\pi\)
−0.964156 + 0.265337i \(0.914517\pi\)
\(882\) 0 0
\(883\) −27255.8 −1.03877 −0.519384 0.854541i \(-0.673838\pi\)
−0.519384 + 0.854541i \(0.673838\pi\)
\(884\) 0 0
\(885\) 10786.8 0.409709
\(886\) 0 0
\(887\) 11738.1 0.444336 0.222168 0.975008i \(-0.428687\pi\)
0.222168 + 0.975008i \(0.428687\pi\)
\(888\) 0 0
\(889\) −22854.5 −0.862221
\(890\) 0 0
\(891\) −123046. −4.62649
\(892\) 0 0
\(893\) −3509.16 −0.131500
\(894\) 0 0
\(895\) 1569.97 0.0586351
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8202.21 −0.304292
\(900\) 0 0
\(901\) −838.710 −0.0310117
\(902\) 0 0
\(903\) −36637.5 −1.35019
\(904\) 0 0
\(905\) 4146.76 0.152313
\(906\) 0 0
\(907\) 15434.7 0.565051 0.282526 0.959260i \(-0.408828\pi\)
0.282526 + 0.959260i \(0.408828\pi\)
\(908\) 0 0
\(909\) 26558.3 0.969069
\(910\) 0 0
\(911\) −24957.2 −0.907649 −0.453825 0.891091i \(-0.649941\pi\)
−0.453825 + 0.891091i \(0.649941\pi\)
\(912\) 0 0
\(913\) −19122.3 −0.693160
\(914\) 0 0
\(915\) −21244.5 −0.767563
\(916\) 0 0
\(917\) −22448.0 −0.808394
\(918\) 0 0
\(919\) 16582.3 0.595213 0.297606 0.954689i \(-0.403812\pi\)
0.297606 + 0.954689i \(0.403812\pi\)
\(920\) 0 0
\(921\) −16068.9 −0.574906
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 28676.8 1.01934
\(926\) 0 0
\(927\) −27227.5 −0.964691
\(928\) 0 0
\(929\) 5910.56 0.208740 0.104370 0.994539i \(-0.466717\pi\)
0.104370 + 0.994539i \(0.466717\pi\)
\(930\) 0 0
\(931\) 444.730 0.0156557
\(932\) 0 0
\(933\) −57756.3 −2.02664
\(934\) 0 0
\(935\) 2503.09 0.0875507
\(936\) 0 0
\(937\) −7798.93 −0.271910 −0.135955 0.990715i \(-0.543410\pi\)
−0.135955 + 0.990715i \(0.543410\pi\)
\(938\) 0 0
\(939\) −51566.3 −1.79212
\(940\) 0 0
\(941\) −9738.22 −0.337361 −0.168681 0.985671i \(-0.553951\pi\)
−0.168681 + 0.985671i \(0.553951\pi\)
\(942\) 0 0
\(943\) 55980.5 1.93316
\(944\) 0 0
\(945\) 18359.9 0.632006
\(946\) 0 0
\(947\) 13774.3 0.472656 0.236328 0.971673i \(-0.424056\pi\)
0.236328 + 0.971673i \(0.424056\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −200.209 −0.00682672
\(952\) 0 0
\(953\) 30604.5 1.04027 0.520135 0.854084i \(-0.325882\pi\)
0.520135 + 0.854084i \(0.325882\pi\)
\(954\) 0 0
\(955\) 4787.94 0.162235
\(956\) 0 0
\(957\) 41629.7 1.40616
\(958\) 0 0
\(959\) 31318.8 1.05458
\(960\) 0 0
\(961\) −17588.8 −0.590408
\(962\) 0 0
\(963\) 84511.9 2.82799
\(964\) 0 0
\(965\) −576.898 −0.0192446
\(966\) 0 0
\(967\) −48790.3 −1.62253 −0.811266 0.584677i \(-0.801221\pi\)
−0.811266 + 0.584677i \(0.801221\pi\)
\(968\) 0 0
\(969\) −3790.78 −0.125673
\(970\) 0 0
\(971\) −33077.6 −1.09321 −0.546607 0.837389i \(-0.684081\pi\)
−0.546607 + 0.837389i \(0.684081\pi\)
\(972\) 0 0
\(973\) −17769.6 −0.585474
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13620.6 0.446020 0.223010 0.974816i \(-0.428412\pi\)
0.223010 + 0.974816i \(0.428412\pi\)
\(978\) 0 0
\(979\) −21718.0 −0.708999
\(980\) 0 0
\(981\) 37308.7 1.21425
\(982\) 0 0
\(983\) −23886.5 −0.775037 −0.387519 0.921862i \(-0.626668\pi\)
−0.387519 + 0.921862i \(0.626668\pi\)
\(984\) 0 0
\(985\) −4070.17 −0.131661
\(986\) 0 0
\(987\) 27900.6 0.899783
\(988\) 0 0
\(989\) 27326.9 0.878611
\(990\) 0 0
\(991\) −3180.18 −0.101939 −0.0509695 0.998700i \(-0.516231\pi\)
−0.0509695 + 0.998700i \(0.516231\pi\)
\(992\) 0 0
\(993\) 61690.7 1.97150
\(994\) 0 0
\(995\) −7652.90 −0.243832
\(996\) 0 0
\(997\) −53027.4 −1.68445 −0.842223 0.539129i \(-0.818754\pi\)
−0.842223 + 0.539129i \(0.818754\pi\)
\(998\) 0 0
\(999\) 98822.0 3.12972
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.4.a.g.1.2 8
13.2 odd 12 52.4.h.a.17.4 8
13.3 even 3 676.4.e.h.529.8 16
13.4 even 6 676.4.e.h.653.7 16
13.5 odd 4 676.4.d.d.337.1 8
13.6 odd 12 676.4.h.e.361.4 8
13.7 odd 12 52.4.h.a.49.4 yes 8
13.8 odd 4 676.4.d.d.337.2 8
13.9 even 3 676.4.e.h.653.8 16
13.10 even 6 676.4.e.h.529.7 16
13.11 odd 12 676.4.h.e.485.4 8
13.12 even 2 inner 676.4.a.g.1.1 8
39.2 even 12 468.4.t.g.433.2 8
39.20 even 12 468.4.t.g.361.3 8
52.7 even 12 208.4.w.c.49.1 8
52.15 even 12 208.4.w.c.17.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.4 8 13.2 odd 12
52.4.h.a.49.4 yes 8 13.7 odd 12
208.4.w.c.17.1 8 52.15 even 12
208.4.w.c.49.1 8 52.7 even 12
468.4.t.g.361.3 8 39.20 even 12
468.4.t.g.433.2 8 39.2 even 12
676.4.a.g.1.1 8 13.12 even 2 inner
676.4.a.g.1.2 8 1.1 even 1 trivial
676.4.d.d.337.1 8 13.5 odd 4
676.4.d.d.337.2 8 13.8 odd 4
676.4.e.h.529.7 16 13.10 even 6
676.4.e.h.529.8 16 13.3 even 3
676.4.e.h.653.7 16 13.4 even 6
676.4.e.h.653.8 16 13.9 even 3
676.4.h.e.361.4 8 13.6 odd 12
676.4.h.e.485.4 8 13.11 odd 12