Properties

Label 468.4.t.g.361.3
Level $468$
Weight $4$
Character 468.361
Analytic conductor $27.613$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,4,Mod(361,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 468.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6128938827\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 51x^{6} - 224x^{5} + 2520x^{4} - 5712x^{3} + 16675x^{2} + 9072x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(-0.287051 - 0.497187i\) of defining polynomial
Character \(\chi\) \(=\) 468.361
Dual form 468.4.t.g.433.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49640i q^{5} +(-15.5619 - 8.98467i) q^{7} +(-49.6032 + 28.6384i) q^{11} +(46.6395 + 4.66469i) q^{13} +(8.75292 - 15.1605i) q^{17} +(19.1586 + 11.0612i) q^{19} +(65.5963 + 113.616i) q^{23} +118.768 q^{25} +(37.1264 + 64.3048i) q^{29} -110.463i q^{31} +(-22.4294 + 38.8488i) q^{35} +(209.104 - 120.726i) q^{37} +(369.537 - 213.352i) q^{41} +(-104.148 + 180.390i) q^{43} +158.624i q^{47} +(-10.0516 - 17.4098i) q^{49} -47.9103 q^{53} +(71.4931 + 123.830i) q^{55} +(382.291 + 220.716i) q^{59} +(-434.699 + 752.921i) q^{61} +(11.6449 - 116.431i) q^{65} +(693.726 - 400.523i) q^{67} +(773.901 + 446.812i) q^{71} +413.180i q^{73} +1029.23 q^{77} -246.527 q^{79} -333.857i q^{83} +(-37.8467 - 21.8508i) q^{85} +(328.376 - 189.588i) q^{89} +(-683.888 - 491.632i) q^{91} +(27.6133 - 47.8276i) q^{95} +(815.158 + 470.632i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{7} - 72 q^{11} + 62 q^{13} - 88 q^{17} - 144 q^{19} + 20 q^{23} - 84 q^{25} + 484 q^{29} - 40 q^{35} + 996 q^{37} - 156 q^{41} + 504 q^{43} + 922 q^{49} + 1164 q^{53} - 1128 q^{55} - 600 q^{59}+ \cdots - 3042 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.49640i 0.223285i −0.993748 0.111643i \(-0.964389\pi\)
0.993748 0.111643i \(-0.0356112\pi\)
\(6\) 0 0
\(7\) −15.5619 8.98467i −0.840264 0.485126i 0.0170903 0.999854i \(-0.494560\pi\)
−0.857354 + 0.514728i \(0.827893\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −49.6032 + 28.6384i −1.35963 + 0.784983i −0.989574 0.144026i \(-0.953995\pi\)
−0.370057 + 0.929009i \(0.620662\pi\)
\(12\) 0 0
\(13\) 46.6395 + 4.66469i 0.995036 + 0.0995194i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 8.75292 15.1605i 0.124876 0.216292i −0.796808 0.604232i \(-0.793480\pi\)
0.921685 + 0.387940i \(0.126813\pi\)
\(18\) 0 0
\(19\) 19.1586 + 11.0612i 0.231331 + 0.133559i 0.611186 0.791487i \(-0.290693\pi\)
−0.379855 + 0.925046i \(0.624026\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 65.5963 + 113.616i 0.594686 + 1.03003i 0.993591 + 0.113034i \(0.0360570\pi\)
−0.398905 + 0.916992i \(0.630610\pi\)
\(24\) 0 0
\(25\) 118.768 0.950144
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 37.1264 + 64.3048i 0.237731 + 0.411762i 0.960063 0.279785i \(-0.0902631\pi\)
−0.722332 + 0.691546i \(0.756930\pi\)
\(30\) 0 0
\(31\) 110.463i 0.639994i −0.947419 0.319997i \(-0.896318\pi\)
0.947419 0.319997i \(-0.103682\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −22.4294 + 38.8488i −0.108322 + 0.187618i
\(36\) 0 0
\(37\) 209.104 120.726i 0.929093 0.536412i 0.0425684 0.999094i \(-0.486446\pi\)
0.886525 + 0.462681i \(0.153113\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 369.537 213.352i 1.40761 0.812683i 0.412451 0.910980i \(-0.364673\pi\)
0.995157 + 0.0982971i \(0.0313395\pi\)
\(42\) 0 0
\(43\) −104.148 + 180.390i −0.369359 + 0.639749i −0.989465 0.144769i \(-0.953756\pi\)
0.620106 + 0.784518i \(0.287089\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 158.624i 0.492292i 0.969233 + 0.246146i \(0.0791642\pi\)
−0.969233 + 0.246146i \(0.920836\pi\)
\(48\) 0 0
\(49\) −10.0516 17.4098i −0.0293048 0.0507574i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −47.9103 −0.124170 −0.0620848 0.998071i \(-0.519775\pi\)
−0.0620848 + 0.998071i \(0.519775\pi\)
\(54\) 0 0
\(55\) 71.4931 + 123.830i 0.175275 + 0.303585i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 382.291 + 220.716i 0.843561 + 0.487030i 0.858473 0.512859i \(-0.171414\pi\)
−0.0149121 + 0.999889i \(0.504747\pi\)
\(60\) 0 0
\(61\) −434.699 + 752.921i −0.912419 + 1.58036i −0.101781 + 0.994807i \(0.532454\pi\)
−0.810637 + 0.585549i \(0.800879\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.6449 116.431i 0.0222212 0.222177i
\(66\) 0 0
\(67\) 693.726 400.523i 1.26496 0.730323i 0.290927 0.956745i \(-0.406036\pi\)
0.974029 + 0.226422i \(0.0727029\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 773.901 + 446.812i 1.29359 + 0.746857i 0.979289 0.202465i \(-0.0648954\pi\)
0.314305 + 0.949322i \(0.398229\pi\)
\(72\) 0 0
\(73\) 413.180i 0.662452i 0.943551 + 0.331226i \(0.107462\pi\)
−0.943551 + 0.331226i \(0.892538\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1029.23 1.52326
\(78\) 0 0
\(79\) −246.527 −0.351094 −0.175547 0.984471i \(-0.556169\pi\)
−0.175547 + 0.984471i \(0.556169\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 333.857i 0.441513i −0.975329 0.220756i \(-0.929147\pi\)
0.975329 0.220756i \(-0.0708526\pi\)
\(84\) 0 0
\(85\) −37.8467 21.8508i −0.0482947 0.0278830i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 328.376 189.588i 0.391098 0.225801i −0.291538 0.956559i \(-0.594167\pi\)
0.682636 + 0.730759i \(0.260834\pi\)
\(90\) 0 0
\(91\) −683.888 491.632i −0.787813 0.566341i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 27.6133 47.8276i 0.0298217 0.0516527i
\(96\) 0 0
\(97\) 815.158 + 470.632i 0.853265 + 0.492633i 0.861751 0.507331i \(-0.169368\pi\)
−0.00848590 + 0.999964i \(0.502701\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −192.975 334.242i −0.190116 0.329290i 0.755173 0.655526i \(-0.227553\pi\)
−0.945288 + 0.326236i \(0.894220\pi\)
\(102\) 0 0
\(103\) 395.674 0.378514 0.189257 0.981928i \(-0.439392\pi\)
0.189257 + 0.981928i \(0.439392\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 614.070 + 1063.60i 0.554807 + 0.960955i 0.997918 + 0.0644880i \(0.0205414\pi\)
−0.443111 + 0.896467i \(0.646125\pi\)
\(108\) 0 0
\(109\) 542.176i 0.476431i 0.971212 + 0.238216i \(0.0765625\pi\)
−0.971212 + 0.238216i \(0.923438\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −338.706 + 586.655i −0.281971 + 0.488388i −0.971870 0.235517i \(-0.924322\pi\)
0.689899 + 0.723906i \(0.257655\pi\)
\(114\) 0 0
\(115\) 283.632 163.755i 0.229990 0.132785i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −272.424 + 157.284i −0.209858 + 0.121161i
\(120\) 0 0
\(121\) 974.820 1688.44i 0.732397 1.26855i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 608.543i 0.435438i
\(126\) 0 0
\(127\) 635.930 + 1101.46i 0.444328 + 0.769599i 0.998005 0.0631327i \(-0.0201091\pi\)
−0.553677 + 0.832731i \(0.686776\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1249.24 −0.833179 −0.416589 0.909095i \(-0.636775\pi\)
−0.416589 + 0.909095i \(0.636775\pi\)
\(132\) 0 0
\(133\) −198.763 344.267i −0.129586 0.224449i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1509.40 + 871.453i 0.941290 + 0.543454i 0.890365 0.455248i \(-0.150450\pi\)
0.0509257 + 0.998702i \(0.483783\pi\)
\(138\) 0 0
\(139\) −494.442 + 856.398i −0.301712 + 0.522581i −0.976524 0.215409i \(-0.930891\pi\)
0.674812 + 0.737990i \(0.264225\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2447.06 + 1104.30i −1.43100 + 0.645776i
\(144\) 0 0
\(145\) 160.531 92.6824i 0.0919403 0.0530818i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1469.28 848.291i −0.807842 0.466408i 0.0383642 0.999264i \(-0.487785\pi\)
−0.846206 + 0.532856i \(0.821119\pi\)
\(150\) 0 0
\(151\) 2603.11i 1.40290i −0.712719 0.701449i \(-0.752537\pi\)
0.712719 0.701449i \(-0.247463\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −275.761 −0.142901
\(156\) 0 0
\(157\) −178.988 −0.0909859 −0.0454930 0.998965i \(-0.514486\pi\)
−0.0454930 + 0.998965i \(0.514486\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2357.44i 1.15399i
\(162\) 0 0
\(163\) −1801.51 1040.10i −0.865678 0.499799i 0.000231624 1.00000i \(-0.499926\pi\)
−0.865910 + 0.500201i \(0.833260\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2632.63 + 1519.95i −1.21987 + 0.704295i −0.964891 0.262650i \(-0.915403\pi\)
−0.254984 + 0.966945i \(0.582070\pi\)
\(168\) 0 0
\(169\) 2153.48 + 435.117i 0.980192 + 0.198051i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −25.8677 + 44.8042i −0.0113681 + 0.0196902i −0.871654 0.490123i \(-0.836952\pi\)
0.860285 + 0.509813i \(0.170285\pi\)
\(174\) 0 0
\(175\) −1848.26 1067.09i −0.798371 0.460940i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −314.447 544.638i −0.131301 0.227420i 0.792877 0.609381i \(-0.208582\pi\)
−0.924178 + 0.381961i \(0.875249\pi\)
\(180\) 0 0
\(181\) −1661.09 −0.682145 −0.341072 0.940037i \(-0.610790\pi\)
−0.341072 + 0.940037i \(0.610790\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −301.381 522.007i −0.119773 0.207453i
\(186\) 0 0
\(187\) 1002.68i 0.392103i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 958.968 1660.98i 0.363291 0.629238i −0.625210 0.780457i \(-0.714987\pi\)
0.988500 + 0.151219i \(0.0483199\pi\)
\(192\) 0 0
\(193\) 200.131 115.546i 0.0746413 0.0430942i −0.462215 0.886768i \(-0.652945\pi\)
0.536856 + 0.843674i \(0.319612\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1411.98 815.208i 0.510657 0.294828i −0.222447 0.974945i \(-0.571404\pi\)
0.733104 + 0.680117i \(0.238071\pi\)
\(198\) 0 0
\(199\) −1532.79 + 2654.86i −0.546011 + 0.945720i 0.452531 + 0.891749i \(0.350521\pi\)
−0.998543 + 0.0539709i \(0.982812\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1334.27i 0.461318i
\(204\) 0 0
\(205\) −532.613 922.513i −0.181460 0.314298i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1267.11 −0.419366
\(210\) 0 0
\(211\) 1724.90 + 2987.61i 0.562780 + 0.974764i 0.997252 + 0.0740789i \(0.0236017\pi\)
−0.434472 + 0.900685i \(0.643065\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 450.326 + 259.996i 0.142846 + 0.0824724i
\(216\) 0 0
\(217\) −992.476 + 1719.02i −0.310478 + 0.537763i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 478.950 666.248i 0.145781 0.202790i
\(222\) 0 0
\(223\) −2186.26 + 1262.24i −0.656516 + 0.379040i −0.790948 0.611883i \(-0.790412\pi\)
0.134432 + 0.990923i \(0.457079\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −998.580 576.530i −0.291974 0.168571i 0.346858 0.937918i \(-0.387249\pi\)
−0.638832 + 0.769347i \(0.720582\pi\)
\(228\) 0 0
\(229\) 3857.53i 1.11316i −0.830795 0.556578i \(-0.812114\pi\)
0.830795 0.556578i \(-0.187886\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1018.55 −0.286385 −0.143192 0.989695i \(-0.545737\pi\)
−0.143192 + 0.989695i \(0.545737\pi\)
\(234\) 0 0
\(235\) 395.990 0.109921
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1263.24i 0.341893i −0.985280 0.170947i \(-0.945317\pi\)
0.985280 0.170947i \(-0.0546825\pi\)
\(240\) 0 0
\(241\) −1790.89 1033.97i −0.478677 0.276365i 0.241188 0.970478i \(-0.422463\pi\)
−0.719865 + 0.694114i \(0.755796\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −43.4619 + 25.0927i −0.0113334 + 0.00654333i
\(246\) 0 0
\(247\) 841.950 + 605.259i 0.216891 + 0.155918i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2563.19 + 4439.58i −0.644570 + 1.11643i 0.339830 + 0.940487i \(0.389630\pi\)
−0.984401 + 0.175942i \(0.943703\pi\)
\(252\) 0 0
\(253\) −6507.58 3757.15i −1.61711 0.933637i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1980.76 3430.77i −0.480764 0.832707i 0.518993 0.854779i \(-0.326307\pi\)
−0.999756 + 0.0220714i \(0.992974\pi\)
\(258\) 0 0
\(259\) −4338.73 −1.04091
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3552.31 6152.79i −0.832871 1.44257i −0.895752 0.444553i \(-0.853362\pi\)
0.0628817 0.998021i \(-0.479971\pi\)
\(264\) 0 0
\(265\) 119.604i 0.0277252i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2806.94 4861.76i 0.636216 1.10196i −0.350040 0.936735i \(-0.613832\pi\)
0.986256 0.165223i \(-0.0528345\pi\)
\(270\) 0 0
\(271\) 382.095 220.603i 0.0856480 0.0494489i −0.456564 0.889690i \(-0.650920\pi\)
0.542212 + 0.840242i \(0.317587\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5891.27 + 3401.33i −1.29184 + 0.745847i
\(276\) 0 0
\(277\) 2338.44 4050.29i 0.507231 0.878550i −0.492734 0.870180i \(-0.664002\pi\)
0.999965 0.00837023i \(-0.00266436\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1253.34i 0.266079i 0.991111 + 0.133040i \(0.0424737\pi\)
−0.991111 + 0.133040i \(0.957526\pi\)
\(282\) 0 0
\(283\) 2086.08 + 3613.19i 0.438178 + 0.758947i 0.997549 0.0699707i \(-0.0222906\pi\)
−0.559371 + 0.828917i \(0.688957\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7667.59 −1.57702
\(288\) 0 0
\(289\) 2303.27 + 3989.39i 0.468812 + 0.812006i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8468.92 + 4889.53i 1.68860 + 0.974913i 0.955592 + 0.294692i \(0.0952171\pi\)
0.733007 + 0.680221i \(0.238116\pi\)
\(294\) 0 0
\(295\) 550.996 954.354i 0.108747 0.188355i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2529.39 + 5604.99i 0.489226 + 1.08410i
\(300\) 0 0
\(301\) 3241.48 1871.47i 0.620718 0.358372i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1879.60 + 1085.18i 0.352870 + 0.203729i
\(306\) 0 0
\(307\) 1641.63i 0.305187i −0.988289 0.152594i \(-0.951237\pi\)
0.988289 0.152594i \(-0.0487626\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5900.48 1.07584 0.537919 0.842996i \(-0.319211\pi\)
0.537919 + 0.842996i \(0.319211\pi\)
\(312\) 0 0
\(313\) 5268.10 0.951344 0.475672 0.879623i \(-0.342205\pi\)
0.475672 + 0.879623i \(0.342205\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.4536i 0.00362395i −0.999998 0.00181197i \(-0.999423\pi\)
0.999998 0.00181197i \(-0.000576769\pi\)
\(318\) 0 0
\(319\) −3683.18 2126.48i −0.646452 0.373229i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 335.387 193.636i 0.0577754 0.0333566i
\(324\) 0 0
\(325\) 5539.28 + 554.016i 0.945427 + 0.0945577i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1425.19 2468.49i 0.238824 0.413655i
\(330\) 0 0
\(331\) 5458.06 + 3151.21i 0.906351 + 0.523282i 0.879255 0.476351i \(-0.158041\pi\)
0.0270955 + 0.999633i \(0.491374\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −999.866 1731.82i −0.163070 0.282446i
\(336\) 0 0
\(337\) 3060.14 0.494648 0.247324 0.968933i \(-0.420449\pi\)
0.247324 + 0.968933i \(0.420449\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3163.50 + 5479.34i 0.502384 + 0.870155i
\(342\) 0 0
\(343\) 6524.72i 1.02712i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −101.809 + 176.338i −0.0157504 + 0.0272805i −0.873793 0.486298i \(-0.838347\pi\)
0.858043 + 0.513578i \(0.171680\pi\)
\(348\) 0 0
\(349\) 1303.90 752.806i 0.199989 0.115464i −0.396661 0.917965i \(-0.629831\pi\)
0.596650 + 0.802501i \(0.296498\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9641.82 + 5566.71i −1.45377 + 0.839337i −0.998693 0.0511134i \(-0.983723\pi\)
−0.455081 + 0.890450i \(0.650390\pi\)
\(354\) 0 0
\(355\) 1115.42 1931.97i 0.166762 0.288840i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4176.37i 0.613985i −0.951712 0.306992i \(-0.900677\pi\)
0.951712 0.306992i \(-0.0993226\pi\)
\(360\) 0 0
\(361\) −3184.80 5516.23i −0.464324 0.804233i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1031.46 0.147916
\(366\) 0 0
\(367\) −2240.40 3880.49i −0.318659 0.551934i 0.661549 0.749902i \(-0.269899\pi\)
−0.980209 + 0.197968i \(0.936566\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 745.576 + 430.458i 0.104335 + 0.0602380i
\(372\) 0 0
\(373\) 181.930 315.111i 0.0252546 0.0437422i −0.853122 0.521712i \(-0.825294\pi\)
0.878376 + 0.477969i \(0.158627\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1431.59 + 3172.32i 0.195572 + 0.433377i
\(378\) 0 0
\(379\) −8448.46 + 4877.72i −1.14503 + 0.661086i −0.947672 0.319245i \(-0.896571\pi\)
−0.197362 + 0.980331i \(0.563238\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4548.66 + 2626.17i 0.606856 + 0.350368i 0.771734 0.635946i \(-0.219390\pi\)
−0.164878 + 0.986314i \(0.552723\pi\)
\(384\) 0 0
\(385\) 2569.37i 0.340122i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11266.0 1.46841 0.734205 0.678928i \(-0.237555\pi\)
0.734205 + 0.678928i \(0.237555\pi\)
\(390\) 0 0
\(391\) 2296.64 0.297048
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 615.431i 0.0783941i
\(396\) 0 0
\(397\) −2599.10 1500.59i −0.328576 0.189704i 0.326632 0.945151i \(-0.394086\pi\)
−0.655209 + 0.755448i \(0.727419\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6927.02 3999.31i 0.862640 0.498045i −0.00225548 0.999997i \(-0.500718\pi\)
0.864895 + 0.501952i \(0.167385\pi\)
\(402\) 0 0
\(403\) 515.277 5151.95i 0.0636918 0.636817i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6914.81 + 11976.8i −0.842149 + 1.45864i
\(408\) 0 0
\(409\) 9207.67 + 5316.05i 1.11318 + 0.642694i 0.939651 0.342135i \(-0.111150\pi\)
0.173528 + 0.984829i \(0.444483\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3966.12 6869.52i −0.472542 0.818467i
\(414\) 0 0
\(415\) −833.442 −0.0985833
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −164.769 285.389i −0.0192112 0.0332748i 0.856260 0.516545i \(-0.172782\pi\)
−0.875471 + 0.483270i \(0.839449\pi\)
\(420\) 0 0
\(421\) 10594.7i 1.22649i 0.789891 + 0.613247i \(0.210137\pi\)
−0.789891 + 0.613247i \(0.789863\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1039.57 1800.58i 0.118650 0.205508i
\(426\) 0 0
\(427\) 13529.5 7811.25i 1.53334 0.885277i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11044.8 6376.69i 1.23436 0.712655i 0.266421 0.963857i \(-0.414159\pi\)
0.967935 + 0.251202i \(0.0808257\pi\)
\(432\) 0 0
\(433\) −7004.92 + 12132.9i −0.777448 + 1.34658i 0.155961 + 0.987763i \(0.450153\pi\)
−0.933408 + 0.358816i \(0.883181\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2902.30i 0.317703i
\(438\) 0 0
\(439\) 3648.09 + 6318.68i 0.396615 + 0.686957i 0.993306 0.115514i \(-0.0368515\pi\)
−0.596691 + 0.802471i \(0.703518\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6098.72 0.654084 0.327042 0.945010i \(-0.393948\pi\)
0.327042 + 0.945010i \(0.393948\pi\)
\(444\) 0 0
\(445\) −473.288 819.758i −0.0504179 0.0873265i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9393.12 + 5423.12i 0.987280 + 0.570006i 0.904460 0.426558i \(-0.140274\pi\)
0.0828196 + 0.996565i \(0.473607\pi\)
\(450\) 0 0
\(451\) −12220.1 + 21165.9i −1.27588 + 2.20990i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1227.31 + 1707.26i −0.126455 + 0.175907i
\(456\) 0 0
\(457\) 4636.57 2676.92i 0.474594 0.274007i −0.243567 0.969884i \(-0.578317\pi\)
0.718161 + 0.695877i \(0.244984\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13074.6 + 7548.65i 1.32093 + 0.762637i 0.983876 0.178850i \(-0.0572376\pi\)
0.337050 + 0.941487i \(0.390571\pi\)
\(462\) 0 0
\(463\) 9543.47i 0.957932i −0.877833 0.478966i \(-0.841012\pi\)
0.877833 0.478966i \(-0.158988\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4319.08 0.427972 0.213986 0.976837i \(-0.431355\pi\)
0.213986 + 0.976837i \(0.431355\pi\)
\(468\) 0 0
\(469\) −14394.3 −1.41720
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11930.6i 1.15976i
\(474\) 0 0
\(475\) 2275.43 + 1313.72i 0.219798 + 0.126900i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11469.8 6622.10i 1.09409 0.631673i 0.159428 0.987210i \(-0.449035\pi\)
0.934662 + 0.355536i \(0.115702\pi\)
\(480\) 0 0
\(481\) 10315.6 4655.20i 0.977864 0.441286i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1174.89 2034.96i 0.109998 0.190521i
\(486\) 0 0
\(487\) 536.591 + 309.801i 0.0499286 + 0.0288263i 0.524757 0.851252i \(-0.324156\pi\)
−0.474828 + 0.880079i \(0.657490\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2731.07 + 4730.35i 0.251021 + 0.434781i 0.963807 0.266600i \(-0.0859003\pi\)
−0.712786 + 0.701382i \(0.752567\pi\)
\(492\) 0 0
\(493\) 1299.86 0.118748
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8028.91 13906.5i −0.724640 1.25511i
\(498\) 0 0
\(499\) 16005.2i 1.43585i −0.696119 0.717926i \(-0.745092\pi\)
0.696119 0.717926i \(-0.254908\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5027.91 + 8708.60i −0.445693 + 0.771963i −0.998100 0.0616117i \(-0.980376\pi\)
0.552407 + 0.833574i \(0.313709\pi\)
\(504\) 0 0
\(505\) −834.403 + 481.743i −0.0735256 + 0.0424500i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12620.1 + 7286.21i −1.09897 + 0.634490i −0.935950 0.352133i \(-0.885457\pi\)
−0.163019 + 0.986623i \(0.552123\pi\)
\(510\) 0 0
\(511\) 3712.28 6429.86i 0.321373 0.556635i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 987.763i 0.0845166i
\(516\) 0 0
\(517\) −4542.75 7868.27i −0.386441 0.669335i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14409.9 −1.21172 −0.605862 0.795570i \(-0.707172\pi\)
−0.605862 + 0.795570i \(0.707172\pi\)
\(522\) 0 0
\(523\) 2124.16 + 3679.15i 0.177597 + 0.307606i 0.941057 0.338249i \(-0.109834\pi\)
−0.763460 + 0.645855i \(0.776501\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1674.68 966.877i −0.138425 0.0799199i
\(528\) 0 0
\(529\) −2522.26 + 4368.68i −0.207303 + 0.359060i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18230.2 8226.86i 1.48150 0.668564i
\(534\) 0 0
\(535\) 2655.18 1532.97i 0.214567 0.123880i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 997.179 + 575.721i 0.0796874 + 0.0460076i
\(540\) 0 0
\(541\) 14369.4i 1.14194i 0.820970 + 0.570971i \(0.193433\pi\)
−0.820970 + 0.570971i \(0.806567\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1353.49 0.106380
\(546\) 0 0
\(547\) −18950.8 −1.48131 −0.740657 0.671884i \(-0.765485\pi\)
−0.740657 + 0.671884i \(0.765485\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1642.65i 0.127004i
\(552\) 0 0
\(553\) 3836.43 + 2214.96i 0.295012 + 0.170325i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10264.9 + 5926.42i −0.780855 + 0.450827i −0.836733 0.547611i \(-0.815538\pi\)
0.0558780 + 0.998438i \(0.482204\pi\)
\(558\) 0 0
\(559\) −5698.88 + 7927.47i −0.431193 + 0.599814i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5792.65 + 10033.2i −0.433625 + 0.751061i −0.997182 0.0750161i \(-0.976099\pi\)
0.563557 + 0.826077i \(0.309433\pi\)
\(564\) 0 0
\(565\) 1464.53 + 845.546i 0.109050 + 0.0629600i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4621.17 8004.10i −0.340474 0.589718i 0.644047 0.764986i \(-0.277254\pi\)
−0.984521 + 0.175268i \(0.943921\pi\)
\(570\) 0 0
\(571\) 20877.1 1.53009 0.765043 0.643979i \(-0.222718\pi\)
0.765043 + 0.643979i \(0.222718\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7790.74 + 13494.0i 0.565037 + 0.978673i
\(576\) 0 0
\(577\) 19966.8i 1.44060i −0.693661 0.720302i \(-0.744003\pi\)
0.693661 0.720302i \(-0.255997\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2999.59 + 5195.45i −0.214190 + 0.370987i
\(582\) 0 0
\(583\) 2376.51 1372.08i 0.168825 0.0974711i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16811.2 + 9705.96i −1.18207 + 0.682466i −0.956492 0.291760i \(-0.905759\pi\)
−0.225575 + 0.974226i \(0.572426\pi\)
\(588\) 0 0
\(589\) 1221.86 2116.32i 0.0854769 0.148050i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19259.0i 1.33368i −0.745200 0.666841i \(-0.767646\pi\)
0.745200 0.666841i \(-0.232354\pi\)
\(594\) 0 0
\(595\) 392.645 + 680.080i 0.0270535 + 0.0468581i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27804.6 −1.89660 −0.948301 0.317372i \(-0.897200\pi\)
−0.948301 + 0.317372i \(0.897200\pi\)
\(600\) 0 0
\(601\) 4963.55 + 8597.12i 0.336884 + 0.583501i 0.983845 0.179023i \(-0.0572935\pi\)
−0.646961 + 0.762523i \(0.723960\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4215.02 2433.54i −0.283248 0.163533i
\(606\) 0 0
\(607\) 7201.01 12472.5i 0.481516 0.834010i −0.518259 0.855224i \(-0.673420\pi\)
0.999775 + 0.0212137i \(0.00675305\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −739.932 + 7398.15i −0.0489926 + 0.489848i
\(612\) 0 0
\(613\) −12798.3 + 7389.10i −0.843260 + 0.486856i −0.858371 0.513029i \(-0.828523\pi\)
0.0151111 + 0.999886i \(0.495190\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14862.7 8580.96i −0.969770 0.559897i −0.0706037 0.997504i \(-0.522493\pi\)
−0.899166 + 0.437608i \(0.855826\pi\)
\(618\) 0 0
\(619\) 7592.09i 0.492975i −0.969146 0.246488i \(-0.920724\pi\)
0.969146 0.246488i \(-0.0792765\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6813.53 −0.438168
\(624\) 0 0
\(625\) 13326.8 0.852917
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4226.82i 0.267940i
\(630\) 0 0
\(631\) −5852.36 3378.86i −0.369222 0.213170i 0.303897 0.952705i \(-0.401712\pi\)
−0.673118 + 0.739535i \(0.735046\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2749.70 1587.54i 0.171840 0.0992118i
\(636\) 0 0
\(637\) −387.588 858.871i −0.0241080 0.0534218i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7126.36 + 12343.2i −0.439117 + 0.760574i −0.997622 0.0689281i \(-0.978042\pi\)
0.558504 + 0.829502i \(0.311375\pi\)
\(642\) 0 0
\(643\) −11160.5 6443.54i −0.684492 0.395192i 0.117053 0.993126i \(-0.462655\pi\)
−0.801545 + 0.597934i \(0.795988\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14176.2 24553.9i −0.861398 1.49199i −0.870580 0.492027i \(-0.836256\pi\)
0.00918183 0.999958i \(-0.497077\pi\)
\(648\) 0 0
\(649\) −25283.8 −1.52924
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12008.1 + 20798.7i 0.719623 + 1.24642i 0.961149 + 0.276030i \(0.0890188\pi\)
−0.241526 + 0.970394i \(0.577648\pi\)
\(654\) 0 0
\(655\) 3118.60i 0.186036i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −183.020 + 317.000i −0.0108186 + 0.0187383i −0.871384 0.490602i \(-0.836777\pi\)
0.860565 + 0.509340i \(0.170110\pi\)
\(660\) 0 0
\(661\) 6329.00 3654.05i 0.372420 0.215017i −0.302095 0.953278i \(-0.597686\pi\)
0.674515 + 0.738261i \(0.264353\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −859.430 + 496.192i −0.0501162 + 0.0289346i
\(666\) 0 0
\(667\) −4870.71 + 8436.31i −0.282750 + 0.489738i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 49796.4i 2.86493i
\(672\) 0 0
\(673\) −6947.01 12032.6i −0.397901 0.689186i 0.595565 0.803307i \(-0.296928\pi\)
−0.993467 + 0.114121i \(0.963595\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23804.6 −1.35138 −0.675691 0.737185i \(-0.736155\pi\)
−0.675691 + 0.737185i \(0.736155\pi\)
\(678\) 0 0
\(679\) −8456.94 14647.8i −0.477979 0.827883i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18071.0 + 10433.3i 1.01240 + 0.584508i 0.911893 0.410429i \(-0.134621\pi\)
0.100505 + 0.994937i \(0.467954\pi\)
\(684\) 0 0
\(685\) 2175.50 3768.07i 0.121345 0.210176i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2234.51 223.487i −0.123553 0.0123573i
\(690\) 0 0
\(691\) −4453.31 + 2571.12i −0.245169 + 0.141549i −0.617550 0.786531i \(-0.711875\pi\)
0.372381 + 0.928080i \(0.378541\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2137.91 + 1234.33i 0.116685 + 0.0673678i
\(696\) 0 0
\(697\) 7469.81i 0.405939i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8584.99 −0.462554 −0.231277 0.972888i \(-0.574290\pi\)
−0.231277 + 0.972888i \(0.574290\pi\)
\(702\) 0 0
\(703\) 5341.52 0.286571
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6935.25i 0.368921i
\(708\) 0 0
\(709\) 18679.2 + 10784.4i 0.989437 + 0.571252i 0.905106 0.425186i \(-0.139791\pi\)
0.0843311 + 0.996438i \(0.473125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12550.4 7245.99i 0.659211 0.380595i
\(714\) 0 0
\(715\) 2756.77 + 6108.84i 0.144192 + 0.319521i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16317.7 28263.0i 0.846379 1.46597i −0.0380391 0.999276i \(-0.512111\pi\)
0.884418 0.466695i \(-0.154556\pi\)
\(720\) 0 0
\(721\) −6157.44 3555.00i −0.318052 0.183627i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4409.42 + 7637.35i 0.225878 + 0.391233i
\(726\) 0 0
\(727\) 6636.77 0.338575 0.169288 0.985567i \(-0.445853\pi\)
0.169288 + 0.985567i \(0.445853\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1823.20 + 3157.87i 0.0922482 + 0.159779i
\(732\) 0 0
\(733\) 18221.6i 0.918188i 0.888388 + 0.459094i \(0.151826\pi\)
−0.888388 + 0.459094i \(0.848174\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22940.7 + 39734.4i −1.14658 + 1.98594i
\(738\) 0 0
\(739\) −22048.9 + 12729.9i −1.09754 + 0.633665i −0.935574 0.353131i \(-0.885117\pi\)
−0.161967 + 0.986796i \(0.551784\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19536.8 11279.6i 0.964651 0.556942i 0.0670498 0.997750i \(-0.478641\pi\)
0.897601 + 0.440808i \(0.145308\pi\)
\(744\) 0 0
\(745\) −2117.68 + 3667.92i −0.104142 + 0.180379i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22068.9i 1.07661i
\(750\) 0 0
\(751\) −10904.3 18886.8i −0.529830 0.917693i −0.999394 0.0347948i \(-0.988922\pi\)
0.469564 0.882898i \(-0.344411\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6498.40 −0.313246
\(756\) 0 0
\(757\) 6401.86 + 11088.4i 0.307371 + 0.532382i 0.977786 0.209604i \(-0.0672175\pi\)
−0.670416 + 0.741986i \(0.733884\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3597.82 2077.20i −0.171381 0.0989467i 0.411856 0.911249i \(-0.364881\pi\)
−0.583237 + 0.812302i \(0.698214\pi\)
\(762\) 0 0
\(763\) 4871.27 8437.28i 0.231129 0.400328i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16800.3 + 12077.3i 0.790904 + 0.568563i
\(768\) 0 0
\(769\) −3570.43 + 2061.39i −0.167429 + 0.0966652i −0.581373 0.813637i \(-0.697484\pi\)
0.413944 + 0.910302i \(0.364151\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −29533.8 17051.3i −1.37420 0.793394i −0.382745 0.923854i \(-0.625021\pi\)
−0.991454 + 0.130460i \(0.958355\pi\)
\(774\) 0 0
\(775\) 13119.5i 0.608086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9439.74 0.434164
\(780\) 0 0
\(781\) −51184.0 −2.34508
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 446.826i 0.0203158i
\(786\) 0 0
\(787\) 36869.4 + 21286.6i 1.66995 + 0.964147i 0.967660 + 0.252258i \(0.0811732\pi\)
0.702292 + 0.711889i \(0.252160\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10541.8 6086.31i 0.473860 0.273583i
\(792\) 0 0
\(793\) −23786.3 + 33088.1i −1.06516 + 1.48171i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3027.38 5243.57i 0.134549 0.233045i −0.790876 0.611976i \(-0.790375\pi\)
0.925425 + 0.378931i \(0.123708\pi\)
\(798\) 0 0
\(799\) 2404.82 + 1388.42i 0.106479 + 0.0614755i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11832.8 20495.0i −0.520014 0.900690i
\(804\) 0 0
\(805\) −5885.13 −0.257669
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18951.3 + 32824.7i 0.823601 + 1.42652i 0.902984 + 0.429675i \(0.141372\pi\)
−0.0793826 + 0.996844i \(0.525295\pi\)
\(810\) 0 0
\(811\) 2418.43i 0.104714i −0.998628 0.0523568i \(-0.983327\pi\)
0.998628 0.0523568i \(-0.0166733\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2596.52 + 4497.31i −0.111598 + 0.193293i
\(816\) 0 0
\(817\) −3990.67 + 2304.01i −0.170888 + 0.0986624i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −35364.7 + 20417.8i −1.50333 + 0.867950i −0.503340 + 0.864088i \(0.667896\pi\)
−0.999993 + 0.00386148i \(0.998771\pi\)
\(822\) 0 0
\(823\) 849.678 1471.69i 0.0359877 0.0623326i −0.847471 0.530842i \(-0.821876\pi\)
0.883458 + 0.468510i \(0.155209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28148.2i 1.18357i −0.806097 0.591784i \(-0.798424\pi\)
0.806097 0.591784i \(-0.201576\pi\)
\(828\) 0 0
\(829\) 889.754 + 1541.10i 0.0372768 + 0.0645653i 0.884062 0.467370i \(-0.154798\pi\)
−0.846785 + 0.531935i \(0.821465\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −351.922 −0.0146379
\(834\) 0 0
\(835\) 3794.41 + 6572.11i 0.157259 + 0.272380i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −23734.4 13703.1i −0.976643 0.563865i −0.0753879 0.997154i \(-0.524020\pi\)
−0.901255 + 0.433289i \(0.857353\pi\)
\(840\) 0 0
\(841\) 9437.77 16346.7i 0.386968 0.670248i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1086.23 5375.96i 0.0442218 0.218862i
\(846\) 0 0
\(847\) −30340.1 + 17516.9i −1.23081 + 0.710610i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27432.9 + 15838.4i 1.10504 + 0.637994i
\(852\) 0 0
\(853\) 49349.2i 1.98087i −0.137964 0.990437i \(-0.544056\pi\)
0.137964 0.990437i \(-0.455944\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −657.558 −0.0262098 −0.0131049 0.999914i \(-0.504172\pi\)
−0.0131049 + 0.999914i \(0.504172\pi\)
\(858\) 0 0
\(859\) 2866.78 0.113869 0.0569343 0.998378i \(-0.481867\pi\)
0.0569343 + 0.998378i \(0.481867\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18625.8i 0.734683i −0.930086 0.367341i \(-0.880268\pi\)
0.930086 0.367341i \(-0.119732\pi\)
\(864\) 0 0
\(865\) 111.849 + 64.5763i 0.00439652 + 0.00253833i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12228.5 7060.14i 0.477358 0.275603i
\(870\) 0 0
\(871\) 34223.3 15444.2i 1.33136 0.600810i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5467.56 + 9470.09i −0.211242 + 0.365883i
\(876\) 0 0
\(877\) 17084.9 + 9863.97i 0.657829 + 0.379798i 0.791449 0.611235i \(-0.209327\pi\)
−0.133620 + 0.991033i \(0.542660\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 25212.2 + 43668.8i 0.964156 + 1.66997i 0.711866 + 0.702315i \(0.247850\pi\)
0.252290 + 0.967652i \(0.418816\pi\)
\(882\) 0 0
\(883\) 27255.8 1.03877 0.519384 0.854541i \(-0.326162\pi\)
0.519384 + 0.854541i \(0.326162\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5869.03 + 10165.5i 0.222168 + 0.384806i 0.955466 0.295101i \(-0.0953534\pi\)
−0.733298 + 0.679907i \(0.762020\pi\)
\(888\) 0 0
\(889\) 22854.5i 0.862221i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1754.58 + 3039.02i −0.0657500 + 0.113882i
\(894\) 0 0
\(895\) −1359.64 + 784.986i −0.0507795 + 0.0293175i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7103.32 4101.10i 0.263525 0.152146i
\(900\) 0 0
\(901\) −419.355 + 726.345i −0.0155058 + 0.0268569i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4146.76i 0.152313i
\(906\) 0 0
\(907\) 7717.36 + 13366.9i 0.282526 + 0.489349i 0.972006 0.234956i \(-0.0754945\pi\)
−0.689481 + 0.724304i \(0.742161\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24957.2 0.907649 0.453825 0.891091i \(-0.350059\pi\)
0.453825 + 0.891091i \(0.350059\pi\)
\(912\) 0 0
\(913\) 9561.14 + 16560.4i 0.346580 + 0.600294i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19440.5 + 11224.0i 0.700090 + 0.404197i
\(918\) 0 0
\(919\) −8291.17 + 14360.7i −0.297606 + 0.515469i −0.975588 0.219610i \(-0.929522\pi\)
0.677981 + 0.735079i \(0.262855\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 34010.1 + 24449.1i 1.21285 + 0.871887i
\(924\) 0 0
\(925\) 24834.8 14338.4i 0.882772 0.509669i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5118.69 + 2955.28i 0.180774 + 0.104370i 0.587656 0.809111i \(-0.300051\pi\)
−0.406882 + 0.913481i \(0.633384\pi\)
\(930\) 0 0
\(931\) 444.730i 0.0156557i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2503.09 0.0875507
\(936\) 0 0
\(937\) −7798.93 −0.271910 −0.135955 0.990715i \(-0.543410\pi\)
−0.135955 + 0.990715i \(0.543410\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9738.22i 0.337361i 0.985671 + 0.168681i \(0.0539507\pi\)
−0.985671 + 0.168681i \(0.946049\pi\)
\(942\) 0 0
\(943\) 48480.5 + 27990.2i 1.67417 + 0.966582i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11928.9 6887.17i 0.409332 0.236328i −0.281170 0.959658i \(-0.590723\pi\)
0.690503 + 0.723330i \(0.257389\pi\)
\(948\) 0 0
\(949\) −1927.35 + 19270.5i −0.0659268 + 0.659164i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15302.3 + 26504.3i −0.520135 + 0.900901i 0.479591 + 0.877492i \(0.340785\pi\)
−0.999726 + 0.0234084i \(0.992548\pi\)
\(954\) 0 0
\(955\) −4146.48 2393.97i −0.140499 0.0811174i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15659.4 27122.9i −0.527288 0.913289i
\(960\) 0 0
\(961\) 17588.8 0.590408
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −288.449 499.608i −0.00962228 0.0166663i
\(966\) 0 0
\(967\) 48790.3i 1.62253i −0.584677 0.811266i \(-0.698779\pi\)
0.584677 0.811266i \(-0.301221\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16538.8 + 28646.0i −0.546607 + 0.946751i 0.451897 + 0.892070i \(0.350747\pi\)
−0.998504 + 0.0546805i \(0.982586\pi\)
\(972\) 0 0
\(973\) 15388.9 8884.79i 0.507035 0.292737i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11795.8 + 6810.30i −0.386265 + 0.223010i −0.680540 0.732711i \(-0.738255\pi\)
0.294276 + 0.955721i \(0.404922\pi\)
\(978\) 0 0
\(979\) −10859.0 + 18808.3i −0.354499 + 0.614011i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23886.5i 0.775037i −0.921862 0.387519i \(-0.873332\pi\)
0.921862 0.387519i \(-0.126668\pi\)
\(984\) 0 0
\(985\) −2035.09 3524.87i −0.0658307 0.114022i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27326.9 −0.878611
\(990\) 0 0
\(991\) 1590.09 + 2754.11i 0.0509695 + 0.0882818i 0.890385 0.455209i \(-0.150436\pi\)
−0.839415 + 0.543491i \(0.817102\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6627.61 + 3826.45i 0.211165 + 0.121916i
\(996\) 0 0
\(997\) 26513.7 45923.0i 0.842223 1.45877i −0.0457876 0.998951i \(-0.514580\pi\)
0.888011 0.459822i \(-0.152087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.4.t.g.361.3 8
3.2 odd 2 52.4.h.a.49.4 yes 8
12.11 even 2 208.4.w.c.49.1 8
13.4 even 6 inner 468.4.t.g.433.2 8
39.2 even 12 676.4.a.g.1.2 8
39.5 even 4 676.4.e.h.653.8 16
39.8 even 4 676.4.e.h.653.7 16
39.11 even 12 676.4.a.g.1.1 8
39.17 odd 6 52.4.h.a.17.4 8
39.20 even 12 676.4.e.h.529.7 16
39.23 odd 6 676.4.d.d.337.1 8
39.29 odd 6 676.4.d.d.337.2 8
39.32 even 12 676.4.e.h.529.8 16
39.35 odd 6 676.4.h.e.485.4 8
39.38 odd 2 676.4.h.e.361.4 8
156.95 even 6 208.4.w.c.17.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.4 8 39.17 odd 6
52.4.h.a.49.4 yes 8 3.2 odd 2
208.4.w.c.17.1 8 156.95 even 6
208.4.w.c.49.1 8 12.11 even 2
468.4.t.g.361.3 8 1.1 even 1 trivial
468.4.t.g.433.2 8 13.4 even 6 inner
676.4.a.g.1.1 8 39.11 even 12
676.4.a.g.1.2 8 39.2 even 12
676.4.d.d.337.1 8 39.23 odd 6
676.4.d.d.337.2 8 39.29 odd 6
676.4.e.h.529.7 16 39.20 even 12
676.4.e.h.529.8 16 39.32 even 12
676.4.e.h.653.7 16 39.8 even 4
676.4.e.h.653.8 16 39.5 even 4
676.4.h.e.361.4 8 39.38 odd 2
676.4.h.e.485.4 8 39.35 odd 6