Newspace parameters
| Level: | \( N \) | \(=\) | \( 676 = 2^{2} \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 676.g (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(18.4196658708\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 437.1 | 0 | −5.70706 | 0 | −1.97948 | − | 1.97948i | 0 | −7.20460 | + | 7.20460i | 0 | 23.5705 | 0 | ||||||||||||||
| 437.2 | 0 | −5.70706 | 0 | 1.97948 | + | 1.97948i | 0 | 7.20460 | − | 7.20460i | 0 | 23.5705 | 0 | ||||||||||||||
| 437.3 | 0 | −3.34471 | 0 | −4.39937 | − | 4.39937i | 0 | 9.83004 | − | 9.83004i | 0 | 2.18709 | 0 | ||||||||||||||
| 437.4 | 0 | −3.34471 | 0 | 4.39937 | + | 4.39937i | 0 | −9.83004 | + | 9.83004i | 0 | 2.18709 | 0 | ||||||||||||||
| 437.5 | 0 | −1.17343 | 0 | 1.94562 | + | 1.94562i | 0 | −1.43565 | + | 1.43565i | 0 | −7.62305 | 0 | ||||||||||||||
| 437.6 | 0 | −1.17343 | 0 | −1.94562 | − | 1.94562i | 0 | 1.43565 | − | 1.43565i | 0 | −7.62305 | 0 | ||||||||||||||
| 437.7 | 0 | 1.20765 | 0 | 1.36878 | + | 1.36878i | 0 | −7.24814 | + | 7.24814i | 0 | −7.54159 | 0 | ||||||||||||||
| 437.8 | 0 | 1.20765 | 0 | −1.36878 | − | 1.36878i | 0 | 7.24814 | − | 7.24814i | 0 | −7.54159 | 0 | ||||||||||||||
| 437.9 | 0 | 2.54823 | 0 | 1.24009 | + | 1.24009i | 0 | 1.62745 | − | 1.62745i | 0 | −2.50654 | 0 | ||||||||||||||
| 437.10 | 0 | 2.54823 | 0 | −1.24009 | − | 1.24009i | 0 | −1.62745 | + | 1.62745i | 0 | −2.50654 | 0 | ||||||||||||||
| 437.11 | 0 | 5.46933 | 0 | −5.87625 | − | 5.87625i | 0 | 3.11750 | − | 3.11750i | 0 | 20.9136 | 0 | ||||||||||||||
| 437.12 | 0 | 5.46933 | 0 | 5.87625 | + | 5.87625i | 0 | −3.11750 | + | 3.11750i | 0 | 20.9136 | 0 | ||||||||||||||
| 577.1 | 0 | −5.70706 | 0 | −1.97948 | + | 1.97948i | 0 | −7.20460 | − | 7.20460i | 0 | 23.5705 | 0 | ||||||||||||||
| 577.2 | 0 | −5.70706 | 0 | 1.97948 | − | 1.97948i | 0 | 7.20460 | + | 7.20460i | 0 | 23.5705 | 0 | ||||||||||||||
| 577.3 | 0 | −3.34471 | 0 | −4.39937 | + | 4.39937i | 0 | 9.83004 | + | 9.83004i | 0 | 2.18709 | 0 | ||||||||||||||
| 577.4 | 0 | −3.34471 | 0 | 4.39937 | − | 4.39937i | 0 | −9.83004 | − | 9.83004i | 0 | 2.18709 | 0 | ||||||||||||||
| 577.5 | 0 | −1.17343 | 0 | 1.94562 | − | 1.94562i | 0 | −1.43565 | − | 1.43565i | 0 | −7.62305 | 0 | ||||||||||||||
| 577.6 | 0 | −1.17343 | 0 | −1.94562 | + | 1.94562i | 0 | 1.43565 | + | 1.43565i | 0 | −7.62305 | 0 | ||||||||||||||
| 577.7 | 0 | 1.20765 | 0 | 1.36878 | − | 1.36878i | 0 | −7.24814 | − | 7.24814i | 0 | −7.54159 | 0 | ||||||||||||||
| 577.8 | 0 | 1.20765 | 0 | −1.36878 | + | 1.36878i | 0 | 7.24814 | + | 7.24814i | 0 | −7.54159 | 0 | ||||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 13.b | even | 2 | 1 | inner |
| 13.d | odd | 4 | 2 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 676.3.g.e | ✓ | 24 |
| 13.b | even | 2 | 1 | inner | 676.3.g.e | ✓ | 24 |
| 13.d | odd | 4 | 2 | inner | 676.3.g.e | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 676.3.g.e | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 676.3.g.e | ✓ | 24 | 13.b | even | 2 | 1 | inner |
| 676.3.g.e | ✓ | 24 | 13.d | odd | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(676, [\chi])\):
|
\( T_{3}^{6} + T_{3}^{5} - 41T_{3}^{4} - 27T_{3}^{3} + 323T_{3}^{2} + 29T_{3} - 377 \)
|
|
\( T_{5}^{24} + 6410 T_{5}^{20} + 8044285 T_{5}^{16} + 1056926737 T_{5}^{12} + 46663196960 T_{5}^{8} + \cdots + 3341233033216 \)
|