Properties

Label 676.3.g.e
Level $676$
Weight $3$
Character orbit 676.g
Analytic conductor $18.420$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,3,Mod(437,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.437"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 676.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4196658708\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 4 q^{3} + 116 q^{9} - 100 q^{27} + 244 q^{29} - 464 q^{35} - 236 q^{53} - 192 q^{55} - 136 q^{61} + 20 q^{79} + 1488 q^{81} - 1240 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
437.1 0 −5.70706 0 −1.97948 1.97948i 0 −7.20460 + 7.20460i 0 23.5705 0
437.2 0 −5.70706 0 1.97948 + 1.97948i 0 7.20460 7.20460i 0 23.5705 0
437.3 0 −3.34471 0 −4.39937 4.39937i 0 9.83004 9.83004i 0 2.18709 0
437.4 0 −3.34471 0 4.39937 + 4.39937i 0 −9.83004 + 9.83004i 0 2.18709 0
437.5 0 −1.17343 0 1.94562 + 1.94562i 0 −1.43565 + 1.43565i 0 −7.62305 0
437.6 0 −1.17343 0 −1.94562 1.94562i 0 1.43565 1.43565i 0 −7.62305 0
437.7 0 1.20765 0 1.36878 + 1.36878i 0 −7.24814 + 7.24814i 0 −7.54159 0
437.8 0 1.20765 0 −1.36878 1.36878i 0 7.24814 7.24814i 0 −7.54159 0
437.9 0 2.54823 0 1.24009 + 1.24009i 0 1.62745 1.62745i 0 −2.50654 0
437.10 0 2.54823 0 −1.24009 1.24009i 0 −1.62745 + 1.62745i 0 −2.50654 0
437.11 0 5.46933 0 −5.87625 5.87625i 0 3.11750 3.11750i 0 20.9136 0
437.12 0 5.46933 0 5.87625 + 5.87625i 0 −3.11750 + 3.11750i 0 20.9136 0
577.1 0 −5.70706 0 −1.97948 + 1.97948i 0 −7.20460 7.20460i 0 23.5705 0
577.2 0 −5.70706 0 1.97948 1.97948i 0 7.20460 + 7.20460i 0 23.5705 0
577.3 0 −3.34471 0 −4.39937 + 4.39937i 0 9.83004 + 9.83004i 0 2.18709 0
577.4 0 −3.34471 0 4.39937 4.39937i 0 −9.83004 9.83004i 0 2.18709 0
577.5 0 −1.17343 0 1.94562 1.94562i 0 −1.43565 1.43565i 0 −7.62305 0
577.6 0 −1.17343 0 −1.94562 + 1.94562i 0 1.43565 + 1.43565i 0 −7.62305 0
577.7 0 1.20765 0 1.36878 1.36878i 0 −7.24814 7.24814i 0 −7.54159 0
577.8 0 1.20765 0 −1.36878 + 1.36878i 0 7.24814 + 7.24814i 0 −7.54159 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 437.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.d odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 676.3.g.e 24
13.b even 2 1 inner 676.3.g.e 24
13.d odd 4 2 inner 676.3.g.e 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
676.3.g.e 24 1.a even 1 1 trivial
676.3.g.e 24 13.b even 2 1 inner
676.3.g.e 24 13.d odd 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(676, [\chi])\):

\( T_{3}^{6} + T_{3}^{5} - 41T_{3}^{4} - 27T_{3}^{3} + 323T_{3}^{2} + 29T_{3} - 377 \) Copy content Toggle raw display
\( T_{5}^{24} + 6410 T_{5}^{20} + 8044285 T_{5}^{16} + 1056926737 T_{5}^{12} + 46663196960 T_{5}^{8} + \cdots + 3341233033216 \) Copy content Toggle raw display