Properties

Label 676.3
Level 676
Weight 3
Dimension 16162
Nonzero newspaces 12
Sturm bound 85176
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(85176\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(676))\).

Total New Old
Modular forms 28962 16572 12390
Cusp forms 27822 16162 11660
Eisenstein series 1140 410 730

Trace form

\( 16162 q - 66 q^{2} - 66 q^{4} - 132 q^{5} - 66 q^{6} - 20 q^{7} - 66 q^{8} - 180 q^{9} - 66 q^{10} - 12 q^{11} - 54 q^{12} - 132 q^{13} - 126 q^{14} + 72 q^{15} - 66 q^{16} - 24 q^{17} + 186 q^{18} + 256 q^{19}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(676))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
676.3.b \(\chi_{676}(675, \cdot)\) n/a 144 1
676.3.c \(\chi_{676}(339, \cdot)\) n/a 144 1
676.3.g \(\chi_{676}(437, \cdot)\) 676.3.g.a 4 2
676.3.g.b 6
676.3.g.c 8
676.3.g.d 8
676.3.g.e 24
676.3.i \(\chi_{676}(23, \cdot)\) n/a 288 2
676.3.j \(\chi_{676}(191, \cdot)\) n/a 288 2
676.3.k \(\chi_{676}(89, \cdot)\) n/a 104 4
676.3.o \(\chi_{676}(27, \cdot)\) n/a 2160 12
676.3.p \(\chi_{676}(51, \cdot)\) n/a 2160 12
676.3.r \(\chi_{676}(5, \cdot)\) n/a 744 24
676.3.t \(\chi_{676}(3, \cdot)\) n/a 4320 24
676.3.u \(\chi_{676}(43, \cdot)\) n/a 4320 24
676.3.x \(\chi_{676}(33, \cdot)\) n/a 1440 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(676))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(676)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)