Defining parameters
| Level: | \( N \) | = | \( 676 = 2^{2} \cdot 13^{2} \) |
| Weight: | \( k \) | = | \( 3 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Sturm bound: | \(85176\) | ||
| Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(676))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 28962 | 16572 | 12390 |
| Cusp forms | 27822 | 16162 | 11660 |
| Eisenstein series | 1140 | 410 | 730 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(676))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 676.3.b | \(\chi_{676}(675, \cdot)\) | n/a | 144 | 1 |
| 676.3.c | \(\chi_{676}(339, \cdot)\) | n/a | 144 | 1 |
| 676.3.g | \(\chi_{676}(437, \cdot)\) | 676.3.g.a | 4 | 2 |
| 676.3.g.b | 6 | |||
| 676.3.g.c | 8 | |||
| 676.3.g.d | 8 | |||
| 676.3.g.e | 24 | |||
| 676.3.i | \(\chi_{676}(23, \cdot)\) | n/a | 288 | 2 |
| 676.3.j | \(\chi_{676}(191, \cdot)\) | n/a | 288 | 2 |
| 676.3.k | \(\chi_{676}(89, \cdot)\) | n/a | 104 | 4 |
| 676.3.o | \(\chi_{676}(27, \cdot)\) | n/a | 2160 | 12 |
| 676.3.p | \(\chi_{676}(51, \cdot)\) | n/a | 2160 | 12 |
| 676.3.r | \(\chi_{676}(5, \cdot)\) | n/a | 744 | 24 |
| 676.3.t | \(\chi_{676}(3, \cdot)\) | n/a | 4320 | 24 |
| 676.3.u | \(\chi_{676}(43, \cdot)\) | n/a | 4320 | 24 |
| 676.3.x | \(\chi_{676}(33, \cdot)\) | n/a | 1440 | 48 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(676))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(676)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)