Properties

Label 676.3.g.b
Level $676$
Weight $3$
Character orbit 676.g
Analytic conductor $18.420$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,3,Mod(437,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.437"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 676.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4196658708\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.20819026944.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 42x^{4} + 441x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + (\beta_{5} - \beta_{2} + 1) q^{5} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots - 1) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + 5) q^{9} + ( - 2 \beta_{3} + 3 \beta_{2} + \cdots + 3) q^{11}+ \cdots + ( - 6 \beta_{4} - 21 \beta_{3} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{5} - 6 q^{7} + 30 q^{9} + 18 q^{11} - 24 q^{15} + 78 q^{19} + 60 q^{21} + 36 q^{27} + 60 q^{29} + 6 q^{31} - 168 q^{33} + 240 q^{35} + 54 q^{37} - 66 q^{41} + 306 q^{45} + 114 q^{47} + 228 q^{53}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 42x^{4} + 441x^{2} + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 21\nu ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 21\nu^{2} ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + \nu^{4} + 35\nu^{3} + 27\nu^{2} + 288\nu + 84 ) / 12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - \nu^{4} + 35\nu^{3} - 27\nu^{2} + 288\nu - 84 ) / 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} - \beta_{3} - 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{2} - 21\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 21\beta_{5} - 21\beta_{4} + 27\beta_{3} + 294 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{5} + 6\beta_{4} - 210\beta_{2} + 447\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
437.1
4.43242i
0.286838i
4.71926i
4.43242i
0.286838i
4.71926i
0 −4.43242 0 6.03938 + 6.03938i 0 −0.393041 + 0.393041i 0 10.6463 0
437.2 0 −0.286838 0 −5.81544 5.81544i 0 −8.10228 + 8.10228i 0 −8.91772 0
437.3 0 4.71926 0 2.77606 + 2.77606i 0 5.49532 5.49532i 0 13.2714 0
577.1 0 −4.43242 0 6.03938 6.03938i 0 −0.393041 0.393041i 0 10.6463 0
577.2 0 −0.286838 0 −5.81544 + 5.81544i 0 −8.10228 8.10228i 0 −8.91772 0
577.3 0 4.71926 0 2.77606 2.77606i 0 5.49532 + 5.49532i 0 13.2714 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 437.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 676.3.g.b 6
13.b even 2 1 52.3.g.a 6
13.d odd 4 1 52.3.g.a 6
13.d odd 4 1 inner 676.3.g.b 6
39.d odd 2 1 468.3.m.c 6
39.f even 4 1 468.3.m.c 6
52.b odd 2 1 208.3.t.d 6
52.f even 4 1 208.3.t.d 6
65.d even 2 1 1300.3.t.a 6
65.f even 4 1 1300.3.k.a 6
65.g odd 4 1 1300.3.t.a 6
65.h odd 4 1 1300.3.k.a 6
65.h odd 4 1 1300.3.k.b 6
65.k even 4 1 1300.3.k.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.3.g.a 6 13.b even 2 1
52.3.g.a 6 13.d odd 4 1
208.3.t.d 6 52.b odd 2 1
208.3.t.d 6 52.f even 4 1
468.3.m.c 6 39.d odd 2 1
468.3.m.c 6 39.f even 4 1
676.3.g.b 6 1.a even 1 1 trivial
676.3.g.b 6 13.d odd 4 1 inner
1300.3.k.a 6 65.f even 4 1
1300.3.k.a 6 65.h odd 4 1
1300.3.k.b 6 65.h odd 4 1
1300.3.k.b 6 65.k even 4 1
1300.3.t.a 6 65.d even 2 1
1300.3.t.a 6 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(676, [\chi])\):

\( T_{3}^{3} - 21T_{3} - 6 \) Copy content Toggle raw display
\( T_{5}^{6} - 6T_{5}^{5} + 18T_{5}^{4} + 24T_{5}^{3} + 4761T_{5}^{2} - 26910T_{5} + 76050 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{3} - 21 T - 6)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + \cdots + 76050 \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + \cdots + 2450 \) Copy content Toggle raw display
$11$ \( T^{6} - 18 T^{5} + \cdots + 596232 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 1122 T^{4} + \cdots + 14745600 \) Copy content Toggle raw display
$19$ \( T^{6} - 78 T^{5} + \cdots + 29799200 \) Copy content Toggle raw display
$23$ \( T^{6} + 1500 T^{4} + \cdots + 20358144 \) Copy content Toggle raw display
$29$ \( (T^{3} - 30 T^{2} + \cdots + 20316)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 6 T^{5} + \cdots + 56180000 \) Copy content Toggle raw display
$37$ \( T^{6} - 54 T^{5} + \cdots + 873842 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 1839089952 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 4493289024 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 7858818450 \) Copy content Toggle raw display
$53$ \( (T^{3} - 114 T^{2} + \cdots - 38076)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 1542123648 \) Copy content Toggle raw display
$61$ \( (T^{3} - 102 T^{2} + \cdots - 2712)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 78 T^{5} + \cdots + 30952712 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 2561418738 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 2377740800 \) Copy content Toggle raw display
$79$ \( (T^{3} + 30 T^{2} + \cdots - 37452)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 73972426248 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 2347495200 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 52696863368 \) Copy content Toggle raw display
show more
show less