Properties

Label 675.3.j.e.251.4
Level $675$
Weight $3$
Character 675.251
Analytic conductor $18.392$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(251,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,18,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 3 x^{18} - 19 x^{16} - 66 x^{14} + 109 x^{12} + 813 x^{10} + 981 x^{8} - 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.4
Root \(0.185238 + 1.72212i\) of defining polynomial
Character \(\chi\) \(=\) 675.251
Dual form 675.3.j.e.476.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15863 - 0.668935i) q^{2} +(-1.10505 - 1.91401i) q^{4} +(4.10376 - 7.10792i) q^{7} +8.30831i q^{8} +(5.67242 + 3.27497i) q^{11} +(0.749233 + 1.29771i) q^{13} +(-9.50946 + 5.49029i) q^{14} +(1.13750 - 1.97021i) q^{16} -15.1237i q^{17} +25.9980 q^{19} +(-4.38149 - 7.58896i) q^{22} +(20.1010 - 11.6053i) q^{23} -2.00475i q^{26} -18.1395 q^{28} +(6.96344 + 4.02034i) q^{29} +(22.5107 + 38.9897i) q^{31} +(26.1449 - 15.0948i) q^{32} +(-10.1168 + 17.5228i) q^{34} -62.8487 q^{37} +(-30.1220 - 17.3909i) q^{38} +(-9.97361 + 5.75827i) q^{41} +(21.3253 - 36.9366i) q^{43} -14.4761i q^{44} -31.0528 q^{46} +(-14.2898 - 8.25020i) q^{47} +(-9.18167 - 15.9031i) q^{49} +(1.65588 - 2.86808i) q^{52} -66.0119i q^{53} +(59.0548 + 34.0953i) q^{56} +(-5.37870 - 9.31617i) q^{58} +(0.373843 - 0.215838i) q^{59} +(15.7923 - 27.3530i) q^{61} -60.2328i q^{62} -49.4897 q^{64} +(-47.9785 - 83.1011i) q^{67} +(-28.9469 + 16.7125i) q^{68} -84.2523i q^{71} -63.5769 q^{73} +(72.8183 + 42.0417i) q^{74} +(-28.7292 - 49.7604i) q^{76} +(46.5565 - 26.8794i) q^{77} +(-9.06687 + 15.7043i) q^{79} +15.4076 q^{82} +(87.4333 + 50.4796i) q^{83} +(-49.4163 + 28.5305i) q^{86} +(-27.2095 + 47.1282i) q^{88} -86.3067i q^{89} +12.2987 q^{91} +(-44.4254 - 25.6490i) q^{92} +(11.0377 + 19.1178i) q^{94} +(34.5230 - 59.7956i) q^{97} +24.5677i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 18 q^{4} + 24 q^{11} + 30 q^{14} - 26 q^{16} + 8 q^{19} - 114 q^{29} + 28 q^{31} + 4 q^{34} - 102 q^{41} + 116 q^{46} + 40 q^{49} + 618 q^{56} + 120 q^{59} - 50 q^{61} - 140 q^{64} + 504 q^{74} - 96 q^{76}+ \cdots - 218 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15863 0.668935i −0.579314 0.334467i 0.181547 0.983382i \(-0.441890\pi\)
−0.760861 + 0.648915i \(0.775223\pi\)
\(3\) 0 0
\(4\) −1.10505 1.91401i −0.276263 0.478502i
\(5\) 0 0
\(6\) 0 0
\(7\) 4.10376 7.10792i 0.586251 1.01542i −0.408467 0.912773i \(-0.633936\pi\)
0.994718 0.102644i \(-0.0327302\pi\)
\(8\) 8.30831i 1.03854i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.67242 + 3.27497i 0.515675 + 0.297725i 0.735163 0.677890i \(-0.237106\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(12\) 0 0
\(13\) 0.749233 + 1.29771i 0.0576333 + 0.0998238i 0.893403 0.449257i \(-0.148311\pi\)
−0.835769 + 0.549081i \(0.814978\pi\)
\(14\) −9.50946 + 5.49029i −0.679247 + 0.392164i
\(15\) 0 0
\(16\) 1.13750 1.97021i 0.0710939 0.123138i
\(17\) 15.1237i 0.889630i −0.895622 0.444815i \(-0.853269\pi\)
0.895622 0.444815i \(-0.146731\pi\)
\(18\) 0 0
\(19\) 25.9980 1.36831 0.684157 0.729334i \(-0.260170\pi\)
0.684157 + 0.729334i \(0.260170\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.38149 7.58896i −0.199158 0.344953i
\(23\) 20.1010 11.6053i 0.873958 0.504580i 0.00529637 0.999986i \(-0.498314\pi\)
0.868661 + 0.495406i \(0.164981\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00475i 0.0771058i
\(27\) 0 0
\(28\) −18.1395 −0.647839
\(29\) 6.96344 + 4.02034i 0.240119 + 0.138633i 0.615231 0.788347i \(-0.289063\pi\)
−0.375113 + 0.926979i \(0.622396\pi\)
\(30\) 0 0
\(31\) 22.5107 + 38.9897i 0.726152 + 1.25773i 0.958498 + 0.285099i \(0.0920264\pi\)
−0.232346 + 0.972633i \(0.574640\pi\)
\(32\) 26.1449 15.0948i 0.817029 0.471712i
\(33\) 0 0
\(34\) −10.1168 + 17.5228i −0.297552 + 0.515375i
\(35\) 0 0
\(36\) 0 0
\(37\) −62.8487 −1.69861 −0.849307 0.527900i \(-0.822980\pi\)
−0.849307 + 0.527900i \(0.822980\pi\)
\(38\) −30.1220 17.3909i −0.792684 0.457657i
\(39\) 0 0
\(40\) 0 0
\(41\) −9.97361 + 5.75827i −0.243259 + 0.140446i −0.616674 0.787219i \(-0.711520\pi\)
0.373415 + 0.927664i \(0.378187\pi\)
\(42\) 0 0
\(43\) 21.3253 36.9366i 0.495938 0.858990i −0.504051 0.863674i \(-0.668158\pi\)
0.999989 + 0.00468401i \(0.00149097\pi\)
\(44\) 14.4761i 0.329002i
\(45\) 0 0
\(46\) −31.0528 −0.675062
\(47\) −14.2898 8.25020i −0.304037 0.175536i 0.340218 0.940347i \(-0.389499\pi\)
−0.644255 + 0.764811i \(0.722833\pi\)
\(48\) 0 0
\(49\) −9.18167 15.9031i −0.187381 0.324553i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.65588 2.86808i 0.0318439 0.0551553i
\(53\) 66.0119i 1.24551i −0.782418 0.622754i \(-0.786014\pi\)
0.782418 0.622754i \(-0.213986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 59.0548 + 34.0953i 1.05455 + 0.608845i
\(57\) 0 0
\(58\) −5.37870 9.31617i −0.0927361 0.160624i
\(59\) 0.373843 0.215838i 0.00633632 0.00365828i −0.496828 0.867849i \(-0.665502\pi\)
0.503165 + 0.864190i \(0.332169\pi\)
\(60\) 0 0
\(61\) 15.7923 27.3530i 0.258890 0.448410i −0.707055 0.707158i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833101\pi\)
\(62\) 60.2328i 0.971496i
\(63\) 0 0
\(64\) −49.4897 −0.773277
\(65\) 0 0
\(66\) 0 0
\(67\) −47.9785 83.1011i −0.716096 1.24032i −0.962535 0.271157i \(-0.912594\pi\)
0.246439 0.969158i \(-0.420740\pi\)
\(68\) −28.9469 + 16.7125i −0.425690 + 0.245772i
\(69\) 0 0
\(70\) 0 0
\(71\) 84.2523i 1.18665i −0.804962 0.593326i \(-0.797814\pi\)
0.804962 0.593326i \(-0.202186\pi\)
\(72\) 0 0
\(73\) −63.5769 −0.870916 −0.435458 0.900209i \(-0.643414\pi\)
−0.435458 + 0.900209i \(0.643414\pi\)
\(74\) 72.8183 + 42.0417i 0.984031 + 0.568131i
\(75\) 0 0
\(76\) −28.7292 49.7604i −0.378015 0.654741i
\(77\) 46.5565 26.8794i 0.604630 0.349083i
\(78\) 0 0
\(79\) −9.06687 + 15.7043i −0.114771 + 0.198788i −0.917688 0.397302i \(-0.869947\pi\)
0.802917 + 0.596090i \(0.203280\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 15.4076 0.187898
\(83\) 87.4333 + 50.4796i 1.05341 + 0.608188i 0.923603 0.383351i \(-0.125230\pi\)
0.129810 + 0.991539i \(0.458563\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −49.4163 + 28.5305i −0.574608 + 0.331750i
\(87\) 0 0
\(88\) −27.2095 + 47.1282i −0.309199 + 0.535548i
\(89\) 86.3067i 0.969738i −0.874587 0.484869i \(-0.838867\pi\)
0.874587 0.484869i \(-0.161133\pi\)
\(90\) 0 0
\(91\) 12.2987 0.135150
\(92\) −44.4254 25.6490i −0.482885 0.278794i
\(93\) 0 0
\(94\) 11.0377 + 19.1178i 0.117422 + 0.203381i
\(95\) 0 0
\(96\) 0 0
\(97\) 34.5230 59.7956i 0.355907 0.616450i −0.631365 0.775485i \(-0.717505\pi\)
0.987273 + 0.159036i \(0.0508385\pi\)
\(98\) 24.5677i 0.250691i
\(99\) 0 0
\(100\) 0 0
\(101\) −30.1891 17.4297i −0.298902 0.172571i 0.343048 0.939318i \(-0.388541\pi\)
−0.641949 + 0.766747i \(0.721874\pi\)
\(102\) 0 0
\(103\) 11.0058 + 19.0625i 0.106852 + 0.185073i 0.914493 0.404601i \(-0.132590\pi\)
−0.807641 + 0.589674i \(0.799256\pi\)
\(104\) −10.7818 + 6.22486i −0.103671 + 0.0598544i
\(105\) 0 0
\(106\) −44.1576 + 76.4833i −0.416582 + 0.721540i
\(107\) 99.8598i 0.933269i −0.884450 0.466635i \(-0.845466\pi\)
0.884450 0.466635i \(-0.154534\pi\)
\(108\) 0 0
\(109\) 11.7865 0.108133 0.0540664 0.998537i \(-0.482782\pi\)
0.0540664 + 0.998537i \(0.482782\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −9.33607 16.1706i −0.0833578 0.144380i
\(113\) 11.7278 6.77103i 0.103786 0.0599206i −0.447209 0.894430i \(-0.647582\pi\)
0.550994 + 0.834509i \(0.314249\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 17.7708i 0.153196i
\(117\) 0 0
\(118\) −0.577527 −0.00489430
\(119\) −107.498 62.0640i −0.903345 0.521547i
\(120\) 0 0
\(121\) −39.0491 67.6350i −0.322720 0.558967i
\(122\) −36.5947 + 21.1280i −0.299957 + 0.173180i
\(123\) 0 0
\(124\) 49.7511 86.1714i 0.401218 0.694930i
\(125\) 0 0
\(126\) 0 0
\(127\) −13.1983 −0.103924 −0.0519620 0.998649i \(-0.516547\pi\)
−0.0519620 + 0.998649i \(0.516547\pi\)
\(128\) −47.2396 27.2738i −0.369059 0.213076i
\(129\) 0 0
\(130\) 0 0
\(131\) −184.044 + 106.258i −1.40491 + 0.811127i −0.994892 0.100949i \(-0.967812\pi\)
−0.410022 + 0.912076i \(0.634479\pi\)
\(132\) 0 0
\(133\) 106.689 184.792i 0.802176 1.38941i
\(134\) 128.378i 0.958043i
\(135\) 0 0
\(136\) 125.652 0.923915
\(137\) 129.866 + 74.9783i 0.947929 + 0.547287i 0.892437 0.451172i \(-0.148994\pi\)
0.0554918 + 0.998459i \(0.482327\pi\)
\(138\) 0 0
\(139\) 2.80453 + 4.85759i 0.0201765 + 0.0349467i 0.875937 0.482425i \(-0.160244\pi\)
−0.855761 + 0.517372i \(0.826911\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −56.3593 + 97.6171i −0.396896 + 0.687445i
\(143\) 9.81487i 0.0686355i
\(144\) 0 0
\(145\) 0 0
\(146\) 73.6620 + 42.5288i 0.504534 + 0.291293i
\(147\) 0 0
\(148\) 69.4512 + 120.293i 0.469265 + 0.812790i
\(149\) −97.4936 + 56.2879i −0.654319 + 0.377771i −0.790109 0.612966i \(-0.789976\pi\)
0.135790 + 0.990738i \(0.456643\pi\)
\(150\) 0 0
\(151\) 30.3786 52.6172i 0.201183 0.348458i −0.747727 0.664006i \(-0.768855\pi\)
0.948910 + 0.315548i \(0.102188\pi\)
\(152\) 215.999i 1.42105i
\(153\) 0 0
\(154\) −71.9222 −0.467028
\(155\) 0 0
\(156\) 0 0
\(157\) 147.499 + 255.475i 0.939482 + 1.62723i 0.766439 + 0.642317i \(0.222027\pi\)
0.173043 + 0.984914i \(0.444640\pi\)
\(158\) 21.0103 12.1303i 0.132976 0.0767740i
\(159\) 0 0
\(160\) 0 0
\(161\) 190.502i 1.18324i
\(162\) 0 0
\(163\) 19.8284 0.121647 0.0608235 0.998149i \(-0.480627\pi\)
0.0608235 + 0.998149i \(0.480627\pi\)
\(164\) 22.0427 + 12.7264i 0.134407 + 0.0775999i
\(165\) 0 0
\(166\) −67.5351 116.974i −0.406838 0.704664i
\(167\) −87.7198 + 50.6451i −0.525268 + 0.303264i −0.739087 0.673609i \(-0.764743\pi\)
0.213819 + 0.976873i \(0.431410\pi\)
\(168\) 0 0
\(169\) 83.3773 144.414i 0.493357 0.854519i
\(170\) 0 0
\(171\) 0 0
\(172\) −94.2625 −0.548038
\(173\) −95.8461 55.3368i −0.554024 0.319866i 0.196720 0.980460i \(-0.436971\pi\)
−0.750743 + 0.660594i \(0.770304\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.9048 7.45058i 0.0733226 0.0423328i
\(177\) 0 0
\(178\) −57.7335 + 99.9974i −0.324346 + 0.561783i
\(179\) 55.1312i 0.307995i −0.988071 0.153998i \(-0.950785\pi\)
0.988071 0.153998i \(-0.0492148\pi\)
\(180\) 0 0
\(181\) −27.6183 −0.152587 −0.0762935 0.997085i \(-0.524309\pi\)
−0.0762935 + 0.997085i \(0.524309\pi\)
\(182\) −14.2496 8.22702i −0.0782946 0.0452034i
\(183\) 0 0
\(184\) 96.4207 + 167.006i 0.524026 + 0.907639i
\(185\) 0 0
\(186\) 0 0
\(187\) 49.5297 85.7880i 0.264865 0.458760i
\(188\) 36.4676i 0.193977i
\(189\) 0 0
\(190\) 0 0
\(191\) 225.953 + 130.454i 1.18300 + 0.683004i 0.956706 0.291055i \(-0.0940064\pi\)
0.226292 + 0.974060i \(0.427340\pi\)
\(192\) 0 0
\(193\) −57.8659 100.227i −0.299823 0.519309i 0.676272 0.736652i \(-0.263594\pi\)
−0.976095 + 0.217343i \(0.930261\pi\)
\(194\) −79.9987 + 46.1873i −0.412365 + 0.238079i
\(195\) 0 0
\(196\) −20.2925 + 35.1476i −0.103533 + 0.179324i
\(197\) 179.618i 0.911768i 0.890039 + 0.455884i \(0.150677\pi\)
−0.890039 + 0.455884i \(0.849323\pi\)
\(198\) 0 0
\(199\) 132.649 0.666577 0.333289 0.942825i \(-0.391842\pi\)
0.333289 + 0.942825i \(0.391842\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 23.3186 + 40.3890i 0.115439 + 0.199946i
\(203\) 57.1526 32.9970i 0.281540 0.162547i
\(204\) 0 0
\(205\) 0 0
\(206\) 29.4485i 0.142954i
\(207\) 0 0
\(208\) 3.40902 0.0163895
\(209\) 147.471 + 85.1427i 0.705605 + 0.407381i
\(210\) 0 0
\(211\) 174.674 + 302.545i 0.827841 + 1.43386i 0.899729 + 0.436450i \(0.143764\pi\)
−0.0718877 + 0.997413i \(0.522902\pi\)
\(212\) −126.347 + 72.9467i −0.595978 + 0.344088i
\(213\) 0 0
\(214\) −66.7997 + 115.700i −0.312148 + 0.540656i
\(215\) 0 0
\(216\) 0 0
\(217\) 369.514 1.70283
\(218\) −13.6562 7.88438i −0.0626429 0.0361669i
\(219\) 0 0
\(220\) 0 0
\(221\) 19.6262 11.3312i 0.0888063 0.0512723i
\(222\) 0 0
\(223\) −70.9086 + 122.817i −0.317976 + 0.550750i −0.980066 0.198674i \(-0.936336\pi\)
0.662090 + 0.749424i \(0.269670\pi\)
\(224\) 247.781i 1.10617i
\(225\) 0 0
\(226\) −18.1175 −0.0801660
\(227\) −117.695 67.9512i −0.518480 0.299344i 0.217833 0.975986i \(-0.430101\pi\)
−0.736312 + 0.676642i \(0.763435\pi\)
\(228\) 0 0
\(229\) −102.326 177.233i −0.446837 0.773944i 0.551342 0.834280i \(-0.314116\pi\)
−0.998178 + 0.0603360i \(0.980783\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −33.4023 + 57.8544i −0.143975 + 0.249373i
\(233\) 270.050i 1.15901i 0.814967 + 0.579507i \(0.196755\pi\)
−0.814967 + 0.579507i \(0.803245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.826233 0.477026i −0.00350099 0.00202130i
\(237\) 0 0
\(238\) 83.0336 + 143.818i 0.348881 + 0.604279i
\(239\) 318.573 183.928i 1.33294 0.769575i 0.347193 0.937794i \(-0.387135\pi\)
0.985750 + 0.168219i \(0.0538016\pi\)
\(240\) 0 0
\(241\) −19.7054 + 34.1307i −0.0817650 + 0.141621i −0.904008 0.427515i \(-0.859389\pi\)
0.822243 + 0.569136i \(0.192722\pi\)
\(242\) 104.485i 0.431757i
\(243\) 0 0
\(244\) −69.8052 −0.286087
\(245\) 0 0
\(246\) 0 0
\(247\) 19.4785 + 33.7378i 0.0788605 + 0.136590i
\(248\) −323.938 + 187.026i −1.30620 + 0.754137i
\(249\) 0 0
\(250\) 0 0
\(251\) 80.2388i 0.319677i 0.987143 + 0.159838i \(0.0510973\pi\)
−0.987143 + 0.159838i \(0.948903\pi\)
\(252\) 0 0
\(253\) 152.029 0.600904
\(254\) 15.2920 + 8.82883i 0.0602046 + 0.0347592i
\(255\) 0 0
\(256\) 135.468 + 234.638i 0.529173 + 0.916554i
\(257\) 112.839 65.1474i 0.439061 0.253492i −0.264138 0.964485i \(-0.585088\pi\)
0.703199 + 0.710993i \(0.251754\pi\)
\(258\) 0 0
\(259\) −257.916 + 446.723i −0.995814 + 1.72480i
\(260\) 0 0
\(261\) 0 0
\(262\) 284.318 1.08518
\(263\) 281.249 + 162.379i 1.06939 + 0.617411i 0.928014 0.372545i \(-0.121515\pi\)
0.141374 + 0.989956i \(0.454848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −247.227 + 142.737i −0.929424 + 0.536603i
\(267\) 0 0
\(268\) −106.037 + 183.662i −0.395662 + 0.685307i
\(269\) 353.608i 1.31453i 0.753660 + 0.657264i \(0.228286\pi\)
−0.753660 + 0.657264i \(0.771714\pi\)
\(270\) 0 0
\(271\) −332.793 −1.22802 −0.614010 0.789298i \(-0.710444\pi\)
−0.614010 + 0.789298i \(0.710444\pi\)
\(272\) −29.7969 17.2033i −0.109547 0.0632473i
\(273\) 0 0
\(274\) −100.311 173.744i −0.366099 0.634102i
\(275\) 0 0
\(276\) 0 0
\(277\) −42.0119 + 72.7668i −0.151668 + 0.262696i −0.931841 0.362868i \(-0.881798\pi\)
0.780173 + 0.625564i \(0.215131\pi\)
\(278\) 7.50419i 0.0269935i
\(279\) 0 0
\(280\) 0 0
\(281\) 322.954 + 186.458i 1.14930 + 0.663551i 0.948718 0.316125i \(-0.102382\pi\)
0.200586 + 0.979676i \(0.435715\pi\)
\(282\) 0 0
\(283\) −80.2796 139.048i −0.283674 0.491337i 0.688613 0.725129i \(-0.258220\pi\)
−0.972287 + 0.233792i \(0.924887\pi\)
\(284\) −161.260 + 93.1033i −0.567816 + 0.327828i
\(285\) 0 0
\(286\) 6.56551 11.3718i 0.0229563 0.0397615i
\(287\) 94.5221i 0.329345i
\(288\) 0 0
\(289\) 60.2734 0.208559
\(290\) 0 0
\(291\) 0 0
\(292\) 70.2558 + 121.687i 0.240602 + 0.416735i
\(293\) 276.729 159.770i 0.944467 0.545288i 0.0531095 0.998589i \(-0.483087\pi\)
0.891358 + 0.453300i \(0.149753\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 522.166i 1.76408i
\(297\) 0 0
\(298\) 150.612 0.505409
\(299\) 30.1207 + 17.3902i 0.100738 + 0.0581612i
\(300\) 0 0
\(301\) −175.028 303.157i −0.581489 1.00717i
\(302\) −70.3949 + 40.6425i −0.233096 + 0.134578i
\(303\) 0 0
\(304\) 29.5728 51.2215i 0.0972789 0.168492i
\(305\) 0 0
\(306\) 0 0
\(307\) −336.649 −1.09658 −0.548288 0.836289i \(-0.684720\pi\)
−0.548288 + 0.836289i \(0.684720\pi\)
\(308\) −102.895 59.4063i −0.334074 0.192878i
\(309\) 0 0
\(310\) 0 0
\(311\) 263.046 151.869i 0.845806 0.488326i −0.0134276 0.999910i \(-0.504274\pi\)
0.859234 + 0.511584i \(0.170941\pi\)
\(312\) 0 0
\(313\) 114.618 198.525i 0.366193 0.634265i −0.622774 0.782402i \(-0.713994\pi\)
0.988967 + 0.148137i \(0.0473277\pi\)
\(314\) 394.668i 1.25690i
\(315\) 0 0
\(316\) 40.0775 0.126828
\(317\) 372.001 + 214.775i 1.17351 + 0.677524i 0.954503 0.298201i \(-0.0963865\pi\)
0.219002 + 0.975724i \(0.429720\pi\)
\(318\) 0 0
\(319\) 26.3330 + 45.6102i 0.0825487 + 0.142979i
\(320\) 0 0
\(321\) 0 0
\(322\) −127.433 + 220.721i −0.395756 + 0.685469i
\(323\) 393.186i 1.21729i
\(324\) 0 0
\(325\) 0 0
\(326\) −22.9738 13.2639i −0.0704718 0.0406869i
\(327\) 0 0
\(328\) −47.8415 82.8638i −0.145858 0.252634i
\(329\) −117.283 + 67.7136i −0.356485 + 0.205816i
\(330\) 0 0
\(331\) 137.447 238.065i 0.415248 0.719230i −0.580207 0.814469i \(-0.697028\pi\)
0.995454 + 0.0952390i \(0.0303615\pi\)
\(332\) 223.131i 0.672080i
\(333\) 0 0
\(334\) 135.513 0.405727
\(335\) 0 0
\(336\) 0 0
\(337\) −128.494 222.557i −0.381287 0.660408i 0.609960 0.792432i \(-0.291186\pi\)
−0.991246 + 0.132024i \(0.957852\pi\)
\(338\) −193.207 + 111.548i −0.571617 + 0.330023i
\(339\) 0 0
\(340\) 0 0
\(341\) 294.888i 0.864774i
\(342\) 0 0
\(343\) 251.451 0.733093
\(344\) 306.880 + 177.177i 0.892094 + 0.515051i
\(345\) 0 0
\(346\) 74.0333 + 128.229i 0.213969 + 0.370605i
\(347\) −221.381 + 127.814i −0.637986 + 0.368341i −0.783838 0.620965i \(-0.786741\pi\)
0.145853 + 0.989306i \(0.453407\pi\)
\(348\) 0 0
\(349\) 146.497 253.740i 0.419761 0.727048i −0.576154 0.817341i \(-0.695447\pi\)
0.995915 + 0.0902933i \(0.0287804\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 197.740 0.561762
\(353\) 33.2985 + 19.2249i 0.0943301 + 0.0544615i 0.546423 0.837509i \(-0.315989\pi\)
−0.452093 + 0.891971i \(0.649322\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −165.192 + 95.3734i −0.464022 + 0.267903i
\(357\) 0 0
\(358\) −36.8792 + 63.8766i −0.103014 + 0.178426i
\(359\) 168.269i 0.468716i −0.972150 0.234358i \(-0.924701\pi\)
0.972150 0.234358i \(-0.0752988\pi\)
\(360\) 0 0
\(361\) 314.895 0.872286
\(362\) 31.9993 + 18.4748i 0.0883959 + 0.0510354i
\(363\) 0 0
\(364\) −13.5907 23.5398i −0.0373371 0.0646698i
\(365\) 0 0
\(366\) 0 0
\(367\) 23.5376 40.7684i 0.0641353 0.111086i −0.832175 0.554513i \(-0.812904\pi\)
0.896310 + 0.443428i \(0.146238\pi\)
\(368\) 52.8044i 0.143490i
\(369\) 0 0
\(370\) 0 0
\(371\) −469.207 270.897i −1.26471 0.730180i
\(372\) 0 0
\(373\) −128.563 222.678i −0.344674 0.596993i 0.640621 0.767858i \(-0.278677\pi\)
−0.985294 + 0.170865i \(0.945344\pi\)
\(374\) −114.773 + 66.2643i −0.306880 + 0.177177i
\(375\) 0 0
\(376\) 68.5452 118.724i 0.182301 0.315755i
\(377\) 12.0487i 0.0319594i
\(378\) 0 0
\(379\) −194.506 −0.513210 −0.256605 0.966516i \(-0.582604\pi\)
−0.256605 + 0.966516i \(0.582604\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −174.530 302.295i −0.456885 0.791348i
\(383\) 178.271 102.925i 0.465460 0.268733i −0.248877 0.968535i \(-0.580062\pi\)
0.714337 + 0.699802i \(0.246728\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 154.834i 0.401124i
\(387\) 0 0
\(388\) −152.599 −0.393297
\(389\) −296.754 171.331i −0.762863 0.440439i 0.0674597 0.997722i \(-0.478511\pi\)
−0.830323 + 0.557283i \(0.811844\pi\)
\(390\) 0 0
\(391\) −175.516 304.002i −0.448889 0.777499i
\(392\) 132.128 76.2842i 0.337061 0.194602i
\(393\) 0 0
\(394\) 120.153 208.111i 0.304957 0.528201i
\(395\) 0 0
\(396\) 0 0
\(397\) −332.225 −0.836838 −0.418419 0.908254i \(-0.637416\pi\)
−0.418419 + 0.908254i \(0.637416\pi\)
\(398\) −153.691 88.7334i −0.386158 0.222948i
\(399\) 0 0
\(400\) 0 0
\(401\) −414.101 + 239.081i −1.03267 + 0.596213i −0.917749 0.397161i \(-0.869995\pi\)
−0.114923 + 0.993374i \(0.536662\pi\)
\(402\) 0 0
\(403\) −33.7315 + 58.4247i −0.0837011 + 0.144975i
\(404\) 77.0429i 0.190700i
\(405\) 0 0
\(406\) −88.2915 −0.217467
\(407\) −356.504 205.828i −0.875932 0.505719i
\(408\) 0 0
\(409\) 91.4354 + 158.371i 0.223559 + 0.387215i 0.955886 0.293738i \(-0.0948993\pi\)
−0.732327 + 0.680953i \(0.761566\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 24.3239 42.1302i 0.0590386 0.102258i
\(413\) 3.54299i 0.00857868i
\(414\) 0 0
\(415\) 0 0
\(416\) 39.1773 + 22.6190i 0.0941762 + 0.0543727i
\(417\) 0 0
\(418\) −113.910 197.298i −0.272511 0.472004i
\(419\) −352.311 + 203.407i −0.840839 + 0.485459i −0.857549 0.514402i \(-0.828014\pi\)
0.0167104 + 0.999860i \(0.494681\pi\)
\(420\) 0 0
\(421\) −224.098 + 388.148i −0.532298 + 0.921968i 0.466991 + 0.884262i \(0.345338\pi\)
−0.999289 + 0.0377055i \(0.987995\pi\)
\(422\) 467.383i 1.10754i
\(423\) 0 0
\(424\) 548.447 1.29351
\(425\) 0 0
\(426\) 0 0
\(427\) −129.615 224.500i −0.303549 0.525762i
\(428\) −191.132 + 110.350i −0.446571 + 0.257828i
\(429\) 0 0
\(430\) 0 0
\(431\) 254.466i 0.590409i −0.955434 0.295204i \(-0.904612\pi\)
0.955434 0.295204i \(-0.0953877\pi\)
\(432\) 0 0
\(433\) −82.9913 −0.191666 −0.0958329 0.995397i \(-0.530551\pi\)
−0.0958329 + 0.995397i \(0.530551\pi\)
\(434\) −428.130 247.181i −0.986474 0.569541i
\(435\) 0 0
\(436\) −13.0247 22.5594i −0.0298731 0.0517418i
\(437\) 522.586 301.715i 1.19585 0.690424i
\(438\) 0 0
\(439\) 129.457 224.226i 0.294891 0.510765i −0.680069 0.733148i \(-0.738050\pi\)
0.974959 + 0.222383i \(0.0713835\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −30.3193 −0.0685957
\(443\) −142.835 82.4657i −0.322426 0.186153i 0.330047 0.943964i \(-0.392935\pi\)
−0.652473 + 0.757812i \(0.726269\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 164.313 94.8664i 0.368416 0.212705i
\(447\) 0 0
\(448\) −203.094 + 351.769i −0.453335 + 0.785198i
\(449\) 628.421i 1.39960i 0.714338 + 0.699800i \(0.246728\pi\)
−0.714338 + 0.699800i \(0.753272\pi\)
\(450\) 0 0
\(451\) −75.4327 −0.167256
\(452\) −25.9196 14.9647i −0.0573443 0.0331077i
\(453\) 0 0
\(454\) 90.9097 + 157.460i 0.200242 + 0.346829i
\(455\) 0 0
\(456\) 0 0
\(457\) 374.823 649.213i 0.820183 1.42060i −0.0853634 0.996350i \(-0.527205\pi\)
0.905546 0.424248i \(-0.139462\pi\)
\(458\) 273.796i 0.597809i
\(459\) 0 0
\(460\) 0 0
\(461\) −325.037 187.660i −0.705069 0.407072i 0.104163 0.994560i \(-0.466784\pi\)
−0.809233 + 0.587488i \(0.800117\pi\)
\(462\) 0 0
\(463\) 82.4936 + 142.883i 0.178172 + 0.308603i 0.941254 0.337698i \(-0.109648\pi\)
−0.763082 + 0.646301i \(0.776315\pi\)
\(464\) 15.8419 9.14630i 0.0341420 0.0197119i
\(465\) 0 0
\(466\) 180.646 312.888i 0.387652 0.671434i
\(467\) 751.743i 1.60973i −0.593460 0.804864i \(-0.702238\pi\)
0.593460 0.804864i \(-0.297762\pi\)
\(468\) 0 0
\(469\) −787.568 −1.67925
\(470\) 0 0
\(471\) 0 0
\(472\) 1.79325 + 3.10600i 0.00379926 + 0.00658052i
\(473\) 241.933 139.680i 0.511485 0.295306i
\(474\) 0 0
\(475\) 0 0
\(476\) 274.336i 0.576337i
\(477\) 0 0
\(478\) −492.144 −1.02959
\(479\) −23.9669 13.8373i −0.0500352 0.0288879i 0.474774 0.880108i \(-0.342530\pi\)
−0.524809 + 0.851220i \(0.675863\pi\)
\(480\) 0 0
\(481\) −47.0883 81.5594i −0.0978967 0.169562i
\(482\) 45.6624 26.3632i 0.0947353 0.0546955i
\(483\) 0 0
\(484\) −86.3027 + 149.481i −0.178311 + 0.308844i
\(485\) 0 0
\(486\) 0 0
\(487\) −690.293 −1.41744 −0.708720 0.705490i \(-0.750727\pi\)
−0.708720 + 0.705490i \(0.750727\pi\)
\(488\) 227.257 + 131.207i 0.465691 + 0.268867i
\(489\) 0 0
\(490\) 0 0
\(491\) 308.987 178.394i 0.629302 0.363328i −0.151180 0.988506i \(-0.548307\pi\)
0.780482 + 0.625179i \(0.214974\pi\)
\(492\) 0 0
\(493\) 60.8025 105.313i 0.123332 0.213617i
\(494\) 52.1195i 0.105505i
\(495\) 0 0
\(496\) 102.424 0.206500
\(497\) −598.859 345.751i −1.20495 0.695676i
\(498\) 0 0
\(499\) 18.4485 + 31.9538i 0.0369710 + 0.0640356i 0.883919 0.467640i \(-0.154896\pi\)
−0.846948 + 0.531676i \(0.821562\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 53.6745 92.9670i 0.106921 0.185193i
\(503\) 283.649i 0.563914i −0.959427 0.281957i \(-0.909016\pi\)
0.959427 0.281957i \(-0.0909836\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −176.145 101.697i −0.348112 0.200983i
\(507\) 0 0
\(508\) 14.5849 + 25.2617i 0.0287104 + 0.0497278i
\(509\) 833.302 481.107i 1.63714 0.945201i 0.655324 0.755348i \(-0.272532\pi\)
0.981813 0.189853i \(-0.0608012\pi\)
\(510\) 0 0
\(511\) −260.904 + 451.899i −0.510576 + 0.884343i
\(512\) 144.287i 0.281811i
\(513\) 0 0
\(514\) −174.318 −0.339139
\(515\) 0 0
\(516\) 0 0
\(517\) −54.0383 93.5971i −0.104523 0.181039i
\(518\) 597.658 345.058i 1.15378 0.666135i
\(519\) 0 0
\(520\) 0 0
\(521\) 643.651i 1.23541i 0.786408 + 0.617707i \(0.211938\pi\)
−0.786408 + 0.617707i \(0.788062\pi\)
\(522\) 0 0
\(523\) −539.982 −1.03247 −0.516235 0.856447i \(-0.672667\pi\)
−0.516235 + 0.856447i \(0.672667\pi\)
\(524\) 406.756 + 234.841i 0.776252 + 0.448169i
\(525\) 0 0
\(526\) −217.242 376.274i −0.413008 0.715350i
\(527\) 589.669 340.445i 1.11892 0.646006i
\(528\) 0 0
\(529\) 4.86759 8.43092i 0.00920150 0.0159375i
\(530\) 0 0
\(531\) 0 0
\(532\) −471.590 −0.886447
\(533\) −14.9451 8.62857i −0.0280396 0.0161887i
\(534\) 0 0
\(535\) 0 0
\(536\) 690.430 398.620i 1.28812 0.743694i
\(537\) 0 0
\(538\) 236.541 409.700i 0.439667 0.761525i
\(539\) 120.279i 0.223152i
\(540\) 0 0
\(541\) 726.214 1.34235 0.671177 0.741297i \(-0.265789\pi\)
0.671177 + 0.741297i \(0.265789\pi\)
\(542\) 385.584 + 222.617i 0.711409 + 0.410732i
\(543\) 0 0
\(544\) −228.289 395.408i −0.419649 0.726854i
\(545\) 0 0
\(546\) 0 0
\(547\) −314.233 + 544.268i −0.574467 + 0.995006i 0.421632 + 0.906767i \(0.361457\pi\)
−0.996099 + 0.0882392i \(0.971876\pi\)
\(548\) 331.420i 0.604781i
\(549\) 0 0
\(550\) 0 0
\(551\) 181.035 + 104.521i 0.328558 + 0.189693i
\(552\) 0 0
\(553\) 74.4165 + 128.893i 0.134569 + 0.233080i
\(554\) 97.3525 56.2065i 0.175726 0.101456i
\(555\) 0 0
\(556\) 6.19831 10.7358i 0.0111480 0.0193090i
\(557\) 821.989i 1.47574i 0.674941 + 0.737872i \(0.264169\pi\)
−0.674941 + 0.737872i \(0.735831\pi\)
\(558\) 0 0
\(559\) 63.9106 0.114330
\(560\) 0 0
\(561\) 0 0
\(562\) −249.456 432.071i −0.443872 0.768809i
\(563\) −763.584 + 440.856i −1.35628 + 0.783047i −0.989120 0.147111i \(-0.953002\pi\)
−0.367158 + 0.930159i \(0.619669\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 214.807i 0.379518i
\(567\) 0 0
\(568\) 699.994 1.23238
\(569\) −238.573 137.740i −0.419284 0.242074i 0.275487 0.961305i \(-0.411161\pi\)
−0.694771 + 0.719231i \(0.744494\pi\)
\(570\) 0 0
\(571\) 216.022 + 374.161i 0.378322 + 0.655273i 0.990818 0.135200i \(-0.0431678\pi\)
−0.612496 + 0.790474i \(0.709834\pi\)
\(572\) 18.7857 10.8460i 0.0328422 0.0189615i
\(573\) 0 0
\(574\) 63.2291 109.516i 0.110155 0.190794i
\(575\) 0 0
\(576\) 0 0
\(577\) 1060.42 1.83782 0.918911 0.394466i \(-0.129070\pi\)
0.918911 + 0.394466i \(0.129070\pi\)
\(578\) −69.8345 40.3190i −0.120821 0.0697560i
\(579\) 0 0
\(580\) 0 0
\(581\) 717.610 414.312i 1.23513 0.713102i
\(582\) 0 0
\(583\) 216.187 374.447i 0.370819 0.642277i
\(584\) 528.216i 0.904480i
\(585\) 0 0
\(586\) −427.501 −0.729525
\(587\) 149.127 + 86.0987i 0.254050 + 0.146676i 0.621617 0.783321i \(-0.286476\pi\)
−0.367567 + 0.929997i \(0.619809\pi\)
\(588\) 0 0
\(589\) 585.233 + 1013.65i 0.993604 + 1.72097i
\(590\) 0 0
\(591\) 0 0
\(592\) −71.4906 + 123.825i −0.120761 + 0.209164i
\(593\) 534.948i 0.902104i 0.892498 + 0.451052i \(0.148951\pi\)
−0.892498 + 0.451052i \(0.851049\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 215.471 + 124.402i 0.361529 + 0.208729i
\(597\) 0 0
\(598\) −23.2658 40.2976i −0.0389060 0.0673872i
\(599\) 646.293 373.137i 1.07895 0.622934i 0.148339 0.988937i \(-0.452607\pi\)
0.930614 + 0.366003i \(0.119274\pi\)
\(600\) 0 0
\(601\) −134.353 + 232.706i −0.223549 + 0.387199i −0.955883 0.293747i \(-0.905098\pi\)
0.732334 + 0.680946i \(0.238431\pi\)
\(602\) 468.329i 0.777956i
\(603\) 0 0
\(604\) −134.280 −0.222317
\(605\) 0 0
\(606\) 0 0
\(607\) 255.867 + 443.175i 0.421527 + 0.730107i 0.996089 0.0883543i \(-0.0281608\pi\)
−0.574562 + 0.818461i \(0.694827\pi\)
\(608\) 679.716 392.434i 1.11795 0.645451i
\(609\) 0 0
\(610\) 0 0
\(611\) 24.7253i 0.0404669i
\(612\) 0 0
\(613\) 606.924 0.990088 0.495044 0.868868i \(-0.335152\pi\)
0.495044 + 0.868868i \(0.335152\pi\)
\(614\) 390.051 + 225.196i 0.635263 + 0.366769i
\(615\) 0 0
\(616\) 223.322 + 386.806i 0.362536 + 0.627931i
\(617\) −710.901 + 410.439i −1.15219 + 0.665217i −0.949420 0.314010i \(-0.898327\pi\)
−0.202769 + 0.979227i \(0.564994\pi\)
\(618\) 0 0
\(619\) −292.071 + 505.881i −0.471843 + 0.817256i −0.999481 0.0322136i \(-0.989744\pi\)
0.527638 + 0.849469i \(0.323078\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −406.363 −0.653317
\(623\) −613.461 354.182i −0.984688 0.568510i
\(624\) 0 0
\(625\) 0 0
\(626\) −265.600 + 153.344i −0.424282 + 0.244959i
\(627\) 0 0
\(628\) 325.988 564.628i 0.519089 0.899088i
\(629\) 950.505i 1.51114i
\(630\) 0 0
\(631\) −273.744 −0.433825 −0.216913 0.976191i \(-0.569599\pi\)
−0.216913 + 0.976191i \(0.569599\pi\)
\(632\) −130.476 75.3304i −0.206449 0.119194i
\(633\) 0 0
\(634\) −287.341 497.689i −0.453219 0.784998i
\(635\) 0 0
\(636\) 0 0
\(637\) 13.7584 23.8303i 0.0215988 0.0374102i
\(638\) 70.4603i 0.110439i
\(639\) 0 0
\(640\) 0 0
\(641\) −641.498 370.369i −1.00078 0.577799i −0.0922990 0.995731i \(-0.529422\pi\)
−0.908478 + 0.417932i \(0.862755\pi\)
\(642\) 0 0
\(643\) −35.2027 60.9729i −0.0547476 0.0948256i 0.837353 0.546663i \(-0.184102\pi\)
−0.892100 + 0.451837i \(0.850769\pi\)
\(644\) −364.622 + 210.515i −0.566184 + 0.326886i
\(645\) 0 0
\(646\) −263.016 + 455.556i −0.407145 + 0.705196i
\(647\) 470.408i 0.727060i −0.931582 0.363530i \(-0.881571\pi\)
0.931582 0.363530i \(-0.118429\pi\)
\(648\) 0 0
\(649\) 2.82746 0.00435664
\(650\) 0 0
\(651\) 0 0
\(652\) −21.9115 37.9518i −0.0336066 0.0582083i
\(653\) −208.519 + 120.389i −0.319325 + 0.184362i −0.651092 0.758999i \(-0.725689\pi\)
0.331767 + 0.943362i \(0.392355\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 26.2002i 0.0399393i
\(657\) 0 0
\(658\) 181.184 0.275355
\(659\) −616.489 355.930i −0.935491 0.540106i −0.0469470 0.998897i \(-0.514949\pi\)
−0.888544 + 0.458791i \(0.848283\pi\)
\(660\) 0 0
\(661\) 216.848 + 375.592i 0.328060 + 0.568217i 0.982127 0.188220i \(-0.0602717\pi\)
−0.654067 + 0.756437i \(0.726938\pi\)
\(662\) −318.500 + 183.886i −0.481118 + 0.277774i
\(663\) 0 0
\(664\) −419.400 + 726.422i −0.631627 + 1.09401i
\(665\) 0 0
\(666\) 0 0
\(667\) 186.630 0.279805
\(668\) 193.870 + 111.931i 0.290225 + 0.167561i
\(669\) 0 0
\(670\) 0 0
\(671\) 179.161 103.438i 0.267006 0.154156i
\(672\) 0 0
\(673\) −543.562 + 941.477i −0.807671 + 1.39893i 0.106803 + 0.994280i \(0.465939\pi\)
−0.914473 + 0.404646i \(0.867395\pi\)
\(674\) 343.815i 0.510112i
\(675\) 0 0
\(676\) −368.545 −0.545185
\(677\) 740.549 + 427.556i 1.09387 + 0.631545i 0.934604 0.355691i \(-0.115754\pi\)
0.159265 + 0.987236i \(0.449088\pi\)
\(678\) 0 0
\(679\) −283.348 490.774i −0.417302 0.722789i
\(680\) 0 0
\(681\) 0 0
\(682\) 197.261 341.666i 0.289239 0.500976i
\(683\) 96.8904i 0.141860i −0.997481 0.0709300i \(-0.977403\pi\)
0.997481 0.0709300i \(-0.0225967\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −291.338 168.204i −0.424691 0.245196i
\(687\) 0 0
\(688\) −48.5152 84.0309i −0.0705163 0.122138i
\(689\) 85.6643 49.4583i 0.124331 0.0717827i
\(690\) 0 0
\(691\) 410.189 710.468i 0.593616 1.02817i −0.400125 0.916461i \(-0.631033\pi\)
0.993741 0.111712i \(-0.0356335\pi\)
\(692\) 244.600i 0.353469i
\(693\) 0 0
\(694\) 341.998 0.492792
\(695\) 0 0
\(696\) 0 0
\(697\) 87.0863 + 150.838i 0.124945 + 0.216410i
\(698\) −339.471 + 195.993i −0.486347 + 0.280793i
\(699\) 0 0
\(700\) 0 0
\(701\) 1180.09i 1.68343i 0.539919 + 0.841717i \(0.318455\pi\)
−0.539919 + 0.841717i \(0.681545\pi\)
\(702\) 0 0
\(703\) −1633.94 −2.32424
\(704\) −280.727 162.078i −0.398759 0.230224i
\(705\) 0 0
\(706\) −25.7204 44.5491i −0.0364312 0.0631007i
\(707\) −247.777 + 143.054i −0.350463 + 0.202340i
\(708\) 0 0
\(709\) 450.319 779.975i 0.635146 1.10011i −0.351338 0.936249i \(-0.614273\pi\)
0.986484 0.163857i \(-0.0523936\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 717.062 1.00711
\(713\) 904.977 + 522.489i 1.26925 + 0.732803i
\(714\) 0 0
\(715\) 0 0
\(716\) −105.522 + 60.9229i −0.147376 + 0.0850878i
\(717\) 0 0
\(718\) −112.561 + 194.961i −0.156770 + 0.271534i
\(719\) 710.264i 0.987850i 0.869505 + 0.493925i \(0.164438\pi\)
−0.869505 + 0.493925i \(0.835562\pi\)
\(720\) 0 0
\(721\) 180.660 0.250569
\(722\) −364.846 210.644i −0.505327 0.291751i
\(723\) 0 0
\(724\) 30.5196 + 52.8616i 0.0421542 + 0.0730132i
\(725\) 0 0
\(726\) 0 0
\(727\) −177.728 + 307.833i −0.244467 + 0.423429i −0.961982 0.273114i \(-0.911946\pi\)
0.717515 + 0.696543i \(0.245280\pi\)
\(728\) 102.181i 0.140359i
\(729\) 0 0
\(730\) 0 0
\(731\) −558.618 322.518i −0.764183 0.441201i
\(732\) 0 0
\(733\) 661.951 + 1146.53i 0.903071 + 1.56416i 0.823486 + 0.567337i \(0.192026\pi\)
0.0795852 + 0.996828i \(0.474640\pi\)
\(734\) −54.5428 + 31.4903i −0.0743089 + 0.0429023i
\(735\) 0 0
\(736\) 350.360 606.842i 0.476033 0.824513i
\(737\) 628.513i 0.852799i
\(738\) 0 0
\(739\) 1145.75 1.55040 0.775202 0.631713i \(-0.217648\pi\)
0.775202 + 0.631713i \(0.217648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 362.425 + 627.738i 0.488443 + 0.846008i
\(743\) −686.107 + 396.124i −0.923428 + 0.533141i −0.884727 0.466110i \(-0.845655\pi\)
−0.0387008 + 0.999251i \(0.512322\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 344.002i 0.461129i
\(747\) 0 0
\(748\) −218.932 −0.292690
\(749\) −709.795 409.801i −0.947657 0.547130i
\(750\) 0 0
\(751\) 159.251 + 275.830i 0.212051 + 0.367284i 0.952356 0.304987i \(-0.0986523\pi\)
−0.740305 + 0.672271i \(0.765319\pi\)
\(752\) −32.5093 + 18.7692i −0.0432304 + 0.0249591i
\(753\) 0 0
\(754\) 8.05979 13.9600i 0.0106894 0.0185146i
\(755\) 0 0
\(756\) 0 0
\(757\) −174.964 −0.231128 −0.115564 0.993300i \(-0.536868\pi\)
−0.115564 + 0.993300i \(0.536868\pi\)
\(758\) 225.361 + 130.112i 0.297310 + 0.171652i
\(759\) 0 0
\(760\) 0 0
\(761\) 1032.43 596.072i 1.35667 0.783275i 0.367498 0.930024i \(-0.380214\pi\)
0.989174 + 0.146749i \(0.0468810\pi\)
\(762\) 0 0
\(763\) 48.3689 83.7773i 0.0633930 0.109800i
\(764\) 576.634i 0.754756i
\(765\) 0 0
\(766\) −275.400 −0.359530
\(767\) 0.560191 + 0.323427i 0.000730367 + 0.000421677i
\(768\) 0 0
\(769\) −424.901 735.950i −0.552537 0.957022i −0.998091 0.0617670i \(-0.980326\pi\)
0.445553 0.895255i \(-0.353007\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −127.890 + 221.511i −0.165660 + 0.286932i
\(773\) 344.791i 0.446042i 0.974814 + 0.223021i \(0.0715919\pi\)
−0.974814 + 0.223021i \(0.928408\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 496.801 + 286.828i 0.640207 + 0.369624i
\(777\) 0 0
\(778\) 229.218 + 397.018i 0.294625 + 0.510305i
\(779\) −259.294 + 149.703i −0.332855 + 0.192174i
\(780\) 0 0
\(781\) 275.924 477.915i 0.353296 0.611926i
\(782\) 469.634i 0.600555i
\(783\) 0 0
\(784\) −41.7767 −0.0532866
\(785\) 0 0
\(786\) 0 0
\(787\) 625.961 + 1084.20i 0.795376 + 1.37763i 0.922600 + 0.385758i \(0.126060\pi\)
−0.127224 + 0.991874i \(0.540607\pi\)
\(788\) 343.791 198.488i 0.436283 0.251888i
\(789\) 0 0
\(790\) 0 0
\(791\) 111.147i 0.140514i
\(792\) 0 0
\(793\) 47.3284 0.0596827
\(794\) 384.925 + 222.237i 0.484792 + 0.279895i
\(795\) 0 0
\(796\) −146.584 253.891i −0.184151 0.318959i
\(797\) −375.640 + 216.876i −0.471318 + 0.272115i −0.716791 0.697288i \(-0.754390\pi\)
0.245473 + 0.969403i \(0.421057\pi\)
\(798\) 0 0
\(799\) −124.774 + 216.114i −0.156162 + 0.270481i
\(800\) 0 0
\(801\) 0 0
\(802\) 639.719 0.797655
\(803\) −360.635 208.213i −0.449109 0.259293i
\(804\) 0 0
\(805\) 0 0
\(806\) 78.1647 45.1284i 0.0969785 0.0559905i
\(807\) 0 0
\(808\) 144.811 250.820i 0.179222 0.310421i
\(809\) 900.166i 1.11269i −0.830951 0.556345i \(-0.812203\pi\)
0.830951 0.556345i \(-0.187797\pi\)
\(810\) 0 0
\(811\) −112.379 −0.138569 −0.0692844 0.997597i \(-0.522072\pi\)
−0.0692844 + 0.997597i \(0.522072\pi\)
\(812\) −126.313 72.9270i −0.155558 0.0898116i
\(813\) 0 0
\(814\) 275.371 + 476.956i 0.338293 + 0.585941i
\(815\) 0 0
\(816\) 0 0
\(817\) 554.416 960.276i 0.678599 1.17537i
\(818\) 244.657i 0.299092i
\(819\) 0 0
\(820\) 0 0
\(821\) −1244.40 718.457i −1.51572 0.875100i −0.999830 0.0184448i \(-0.994128\pi\)
−0.515889 0.856656i \(-0.672538\pi\)
\(822\) 0 0
\(823\) 35.2627 + 61.0768i 0.0428465 + 0.0742123i 0.886653 0.462435i \(-0.153024\pi\)
−0.843807 + 0.536647i \(0.819691\pi\)
\(824\) −158.377 + 91.4393i −0.192206 + 0.110970i
\(825\) 0 0
\(826\) −2.37003 + 4.10501i −0.00286929 + 0.00496975i
\(827\) 1406.58i 1.70082i 0.526122 + 0.850409i \(0.323646\pi\)
−0.526122 + 0.850409i \(0.676354\pi\)
\(828\) 0 0
\(829\) 771.482 0.930618 0.465309 0.885148i \(-0.345943\pi\)
0.465309 + 0.885148i \(0.345943\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −37.0793 64.2233i −0.0445665 0.0771915i
\(833\) −240.514 + 138.861i −0.288732 + 0.166700i
\(834\) 0 0
\(835\) 0 0
\(836\) 376.349i 0.450178i
\(837\) 0 0
\(838\) 544.264 0.649480
\(839\) 552.639 + 319.066i 0.658687 + 0.380293i 0.791777 0.610811i \(-0.209156\pi\)
−0.133089 + 0.991104i \(0.542490\pi\)
\(840\) 0 0
\(841\) −388.174 672.336i −0.461562 0.799449i
\(842\) 519.292 299.813i 0.616736 0.356073i
\(843\) 0 0
\(844\) 386.049 668.657i 0.457404 0.792247i
\(845\) 0 0
\(846\) 0 0
\(847\) −640.992 −0.756780
\(848\) −130.057 75.0887i −0.153370 0.0885480i
\(849\) 0 0
\(850\) 0 0
\(851\) −1263.32 + 729.380i −1.48452 + 0.857086i
\(852\) 0 0
\(853\) 185.429 321.173i 0.217385 0.376521i −0.736623 0.676304i \(-0.763581\pi\)
0.954008 + 0.299782i \(0.0969141\pi\)
\(854\) 346.817i 0.406108i
\(855\) 0 0
\(856\) 829.666 0.969236
\(857\) 562.649 + 324.846i 0.656533 + 0.379050i 0.790955 0.611875i \(-0.209584\pi\)
−0.134421 + 0.990924i \(0.542918\pi\)
\(858\) 0 0
\(859\) 25.4224 + 44.0328i 0.0295953 + 0.0512606i 0.880444 0.474151i \(-0.157245\pi\)
−0.850848 + 0.525411i \(0.823911\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −170.221 + 294.832i −0.197472 + 0.342032i
\(863\) 254.583i 0.294997i 0.989062 + 0.147499i \(0.0471222\pi\)
−0.989062 + 0.147499i \(0.952878\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 96.1561 + 55.5157i 0.111035 + 0.0641059i
\(867\) 0 0
\(868\) −408.333 707.253i −0.470429 0.814808i
\(869\) −102.862 + 59.3875i −0.118369 + 0.0683401i
\(870\) 0 0
\(871\) 71.8941 124.524i 0.0825420 0.142967i
\(872\) 97.9257i 0.112300i
\(873\) 0 0
\(874\) −807.311 −0.923697
\(875\) 0 0
\(876\) 0 0
\(877\) 285.665 + 494.786i 0.325729 + 0.564180i 0.981660 0.190642i \(-0.0610568\pi\)
−0.655930 + 0.754821i \(0.727723\pi\)
\(878\) −299.985 + 173.196i −0.341669 + 0.197263i
\(879\) 0 0
\(880\) 0 0
\(881\) 671.733i 0.762466i −0.924479 0.381233i \(-0.875499\pi\)
0.924479 0.381233i \(-0.124501\pi\)
\(882\) 0 0
\(883\) 858.151 0.971858 0.485929 0.873998i \(-0.338481\pi\)
0.485929 + 0.873998i \(0.338481\pi\)
\(884\) −43.3760 25.0431i −0.0490678 0.0283293i
\(885\) 0 0
\(886\) 110.328 + 191.094i 0.124524 + 0.215682i
\(887\) −1364.45 + 787.767i −1.53828 + 0.888125i −0.539337 + 0.842090i \(0.681325\pi\)
−0.998940 + 0.0460349i \(0.985341\pi\)
\(888\) 0 0
\(889\) −54.1628 + 93.8127i −0.0609255 + 0.105526i
\(890\) 0 0
\(891\) 0 0
\(892\) 313.431 0.351380
\(893\) −371.505 214.488i −0.416019 0.240189i
\(894\) 0 0
\(895\) 0 0
\(896\) −387.719 + 223.850i −0.432723 + 0.249833i
\(897\) 0 0
\(898\) 420.372 728.106i 0.468121 0.810809i
\(899\) 362.003i 0.402673i
\(900\) 0 0
\(901\) −998.345 −1.10804
\(902\) 87.3984 + 50.4595i 0.0968941 + 0.0559418i
\(903\) 0 0
\(904\) 56.2558 + 97.4379i 0.0622299 + 0.107785i
\(905\) 0 0
\(906\) 0 0
\(907\) −547.384 + 948.097i −0.603511 + 1.04531i 0.388774 + 0.921333i \(0.372899\pi\)
−0.992285 + 0.123978i \(0.960435\pi\)
\(908\) 300.359i 0.330791i
\(909\) 0 0
\(910\) 0 0
\(911\) 695.184 + 401.365i 0.763100 + 0.440576i 0.830408 0.557156i \(-0.188108\pi\)
−0.0673079 + 0.997732i \(0.521441\pi\)
\(912\) 0 0
\(913\) 330.639 + 572.683i 0.362145 + 0.627254i
\(914\) −868.562 + 501.465i −0.950287 + 0.548648i
\(915\) 0 0
\(916\) −226.150 + 391.704i −0.246889 + 0.427624i
\(917\) 1744.22i 1.90210i
\(918\) 0 0
\(919\) −1294.88 −1.40901 −0.704506 0.709698i \(-0.748831\pi\)
−0.704506 + 0.709698i \(0.748831\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 251.065 + 434.857i 0.272305 + 0.471645i
\(923\) 109.335 63.1246i 0.118456 0.0683907i
\(924\) 0 0
\(925\) 0 0
\(926\) 220.731i 0.238371i
\(927\) 0 0
\(928\) 242.745 0.261579
\(929\) −450.703 260.214i −0.485149 0.280101i 0.237411 0.971409i \(-0.423701\pi\)
−0.722560 + 0.691309i \(0.757035\pi\)
\(930\) 0 0
\(931\) −238.705 413.449i −0.256396 0.444091i
\(932\) 516.879 298.420i 0.554591 0.320193i
\(933\) 0 0
\(934\) −502.867 + 870.990i −0.538401 + 0.932538i
\(935\) 0 0
\(936\) 0 0
\(937\) 255.010 0.272155 0.136078 0.990698i \(-0.456550\pi\)
0.136078 + 0.990698i \(0.456550\pi\)
\(938\) 912.499 + 526.831i 0.972813 + 0.561654i
\(939\) 0 0
\(940\) 0 0
\(941\) 528.359 305.048i 0.561487 0.324175i −0.192255 0.981345i \(-0.561580\pi\)
0.753742 + 0.657170i \(0.228247\pi\)
\(942\) 0 0
\(943\) −133.653 + 231.494i −0.141732 + 0.245487i
\(944\) 0.982067i 0.00104033i
\(945\) 0 0
\(946\) −373.747 −0.395081
\(947\) −915.897 528.793i −0.967156 0.558388i −0.0687878 0.997631i \(-0.521913\pi\)
−0.898368 + 0.439244i \(0.855246\pi\)
\(948\) 0 0
\(949\) −47.6339 82.5043i −0.0501938 0.0869382i
\(950\) 0 0
\(951\) 0 0
\(952\) 515.647 893.127i 0.541646 0.938159i
\(953\) 605.977i 0.635862i −0.948114 0.317931i \(-0.897012\pi\)
0.948114 0.317931i \(-0.102988\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −704.081 406.501i −0.736486 0.425211i
\(957\) 0 0
\(958\) 18.5125 + 32.0645i 0.0193241 + 0.0334703i
\(959\) 1065.88 615.386i 1.11145 0.641695i
\(960\) 0 0
\(961\) −532.964 + 923.121i −0.554593 + 0.960584i
\(962\) 125.996i 0.130973i
\(963\) 0 0
\(964\) 87.1019 0.0903547
\(965\) 0 0
\(966\) 0 0
\(967\) −447.513 775.116i −0.462785 0.801567i 0.536313 0.844019i \(-0.319816\pi\)
−0.999099 + 0.0424516i \(0.986483\pi\)
\(968\) 561.933 324.432i 0.580509 0.335157i
\(969\) 0 0
\(970\) 0 0
\(971\) 1442.25i 1.48532i 0.669666 + 0.742662i \(0.266437\pi\)
−0.669666 + 0.742662i \(0.733563\pi\)
\(972\) 0 0
\(973\) 46.0364 0.0473139
\(974\) 799.794 + 461.761i 0.821143 + 0.474087i
\(975\) 0 0
\(976\) −35.9275 62.2282i −0.0368109 0.0637584i
\(977\) 316.520 182.743i 0.323972 0.187045i −0.329190 0.944264i \(-0.606776\pi\)
0.653161 + 0.757219i \(0.273442\pi\)
\(978\) 0 0
\(979\) 282.652 489.568i 0.288715 0.500069i
\(980\) 0 0
\(981\) 0 0
\(982\) −477.335 −0.486085
\(983\) −617.048 356.253i −0.627719 0.362414i 0.152149 0.988358i \(-0.451381\pi\)
−0.779868 + 0.625944i \(0.784714\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −140.895 + 81.3458i −0.142896 + 0.0825008i
\(987\) 0 0
\(988\) 43.0497 74.5642i 0.0435725 0.0754698i
\(989\) 989.951i 1.00096i
\(990\) 0 0
\(991\) 831.784 0.839338 0.419669 0.907677i \(-0.362146\pi\)
0.419669 + 0.907677i \(0.362146\pi\)
\(992\) 1177.08 + 679.589i 1.18657 + 0.685069i
\(993\) 0 0
\(994\) 462.570 + 801.194i 0.465362 + 0.806031i
\(995\) 0 0
\(996\) 0 0
\(997\) −439.170 + 760.664i −0.440491 + 0.762953i −0.997726 0.0674021i \(-0.978529\pi\)
0.557235 + 0.830355i \(0.311862\pi\)
\(998\) 49.3634i 0.0494623i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.j.e.251.4 20
3.2 odd 2 225.3.j.e.101.7 20
5.2 odd 4 135.3.h.a.89.7 20
5.3 odd 4 135.3.h.a.89.4 20
5.4 even 2 inner 675.3.j.e.251.7 20
9.4 even 3 225.3.j.e.176.7 20
9.5 odd 6 inner 675.3.j.e.476.4 20
15.2 even 4 45.3.h.a.29.4 yes 20
15.8 even 4 45.3.h.a.29.7 yes 20
15.14 odd 2 225.3.j.e.101.4 20
45.2 even 12 405.3.d.a.404.14 20
45.4 even 6 225.3.j.e.176.4 20
45.7 odd 12 405.3.d.a.404.7 20
45.13 odd 12 45.3.h.a.14.4 20
45.14 odd 6 inner 675.3.j.e.476.7 20
45.22 odd 12 45.3.h.a.14.7 yes 20
45.23 even 12 135.3.h.a.44.7 20
45.32 even 12 135.3.h.a.44.4 20
45.38 even 12 405.3.d.a.404.8 20
45.43 odd 12 405.3.d.a.404.13 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.4 20 45.13 odd 12
45.3.h.a.14.7 yes 20 45.22 odd 12
45.3.h.a.29.4 yes 20 15.2 even 4
45.3.h.a.29.7 yes 20 15.8 even 4
135.3.h.a.44.4 20 45.32 even 12
135.3.h.a.44.7 20 45.23 even 12
135.3.h.a.89.4 20 5.3 odd 4
135.3.h.a.89.7 20 5.2 odd 4
225.3.j.e.101.4 20 15.14 odd 2
225.3.j.e.101.7 20 3.2 odd 2
225.3.j.e.176.4 20 45.4 even 6
225.3.j.e.176.7 20 9.4 even 3
405.3.d.a.404.7 20 45.7 odd 12
405.3.d.a.404.8 20 45.38 even 12
405.3.d.a.404.13 20 45.43 odd 12
405.3.d.a.404.14 20 45.2 even 12
675.3.j.e.251.4 20 1.1 even 1 trivial
675.3.j.e.251.7 20 5.4 even 2 inner
675.3.j.e.476.4 20 9.5 odd 6 inner
675.3.j.e.476.7 20 45.14 odd 6 inner