Properties

Label 675.3.g.j.82.5
Level $675$
Weight $3$
Character 675.82
Analytic conductor $18.392$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(82,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-16,0,0,0,0,0,-40,0,0,-152,0,0,0,0,0,136,0,0,0, 0,0,112,0,0,200] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 286x^{12} + 16269x^{8} + 85684x^{4} + 62500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.5
Root \(0.683187 + 0.683187i\) of defining polynomial
Character \(\chi\) \(=\) 675.82
Dual form 675.3.g.j.568.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.683187 + 0.683187i) q^{2} -3.06651i q^{4} +(-1.91393 - 1.91393i) q^{7} +(4.82775 - 4.82775i) q^{8} -16.0422 q^{11} +(-0.607722 + 0.607722i) q^{13} -2.61514i q^{14} -5.66955 q^{16} +(7.56049 + 7.56049i) q^{17} -21.0707i q^{19} +(-10.9598 - 10.9598i) q^{22} +(-25.2822 + 25.2822i) q^{23} -0.830376 q^{26} +(-5.86908 + 5.86908i) q^{28} +13.4595i q^{29} -39.2058 q^{31} +(-23.1843 - 23.1843i) q^{32} +10.3305i q^{34} +(-5.47784 - 5.47784i) q^{37} +(14.3952 - 14.3952i) q^{38} +69.4260 q^{41} +(-55.6177 + 55.6177i) q^{43} +49.1937i q^{44} -34.5449 q^{46} +(-13.7120 - 13.7120i) q^{47} -41.6738i q^{49} +(1.86359 + 1.86359i) q^{52} +(-34.8894 + 34.8894i) q^{53} -18.4799 q^{56} +(-9.19538 + 9.19538i) q^{58} -62.0004i q^{59} -67.2121 q^{61} +(-26.7849 - 26.7849i) q^{62} -9.00028i q^{64} +(-29.2919 - 29.2919i) q^{67} +(23.1843 - 23.1843i) q^{68} -71.3882 q^{71} +(23.5751 - 23.5751i) q^{73} -7.48478i q^{74} -64.6135 q^{76} +(30.7037 + 30.7037i) q^{77} -5.61768i q^{79} +(47.4309 + 47.4309i) q^{82} +(26.0960 - 26.0960i) q^{83} -75.9945 q^{86} +(-77.4479 + 77.4479i) q^{88} -23.2369i q^{89} +2.32627 q^{91} +(77.5282 + 77.5282i) q^{92} -18.7357i q^{94} +(-97.3193 - 97.3193i) q^{97} +(28.4710 - 28.4710i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{7} - 40 q^{13} - 152 q^{16} + 136 q^{22} + 112 q^{28} + 200 q^{31} - 16 q^{37} - 136 q^{43} + 152 q^{46} - 640 q^{52} - 48 q^{58} - 280 q^{61} + 344 q^{67} + 776 q^{73} + 144 q^{76} + 880 q^{82}+ \cdots - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.683187 + 0.683187i 0.341593 + 0.341593i 0.856966 0.515373i \(-0.172347\pi\)
−0.515373 + 0.856966i \(0.672347\pi\)
\(3\) 0 0
\(4\) 3.06651i 0.766628i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.91393 1.91393i −0.273418 0.273418i 0.557056 0.830475i \(-0.311931\pi\)
−0.830475 + 0.557056i \(0.811931\pi\)
\(8\) 4.82775 4.82775i 0.603468 0.603468i
\(9\) 0 0
\(10\) 0 0
\(11\) −16.0422 −1.45839 −0.729193 0.684308i \(-0.760104\pi\)
−0.729193 + 0.684308i \(0.760104\pi\)
\(12\) 0 0
\(13\) −0.607722 + 0.607722i −0.0467479 + 0.0467479i −0.730094 0.683346i \(-0.760524\pi\)
0.683346 + 0.730094i \(0.260524\pi\)
\(14\) 2.61514i 0.186796i
\(15\) 0 0
\(16\) −5.66955 −0.354347
\(17\) 7.56049 + 7.56049i 0.444735 + 0.444735i 0.893600 0.448865i \(-0.148172\pi\)
−0.448865 + 0.893600i \(0.648172\pi\)
\(18\) 0 0
\(19\) 21.0707i 1.10898i −0.832189 0.554492i \(-0.812913\pi\)
0.832189 0.554492i \(-0.187087\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −10.9598 10.9598i −0.498175 0.498175i
\(23\) −25.2822 + 25.2822i −1.09923 + 1.09923i −0.104725 + 0.994501i \(0.533396\pi\)
−0.994501 + 0.104725i \(0.966604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.830376 −0.0319375
\(27\) 0 0
\(28\) −5.86908 + 5.86908i −0.209610 + 0.209610i
\(29\) 13.4595i 0.464122i 0.972701 + 0.232061i \(0.0745469\pi\)
−0.972701 + 0.232061i \(0.925453\pi\)
\(30\) 0 0
\(31\) −39.2058 −1.26470 −0.632352 0.774681i \(-0.717910\pi\)
−0.632352 + 0.774681i \(0.717910\pi\)
\(32\) −23.1843 23.1843i −0.724511 0.724511i
\(33\) 0 0
\(34\) 10.3305i 0.303837i
\(35\) 0 0
\(36\) 0 0
\(37\) −5.47784 5.47784i −0.148050 0.148050i 0.629196 0.777246i \(-0.283384\pi\)
−0.777246 + 0.629196i \(0.783384\pi\)
\(38\) 14.3952 14.3952i 0.378821 0.378821i
\(39\) 0 0
\(40\) 0 0
\(41\) 69.4260 1.69332 0.846658 0.532137i \(-0.178611\pi\)
0.846658 + 0.532137i \(0.178611\pi\)
\(42\) 0 0
\(43\) −55.6177 + 55.6177i −1.29343 + 1.29343i −0.360785 + 0.932649i \(0.617491\pi\)
−0.932649 + 0.360785i \(0.882509\pi\)
\(44\) 49.1937i 1.11804i
\(45\) 0 0
\(46\) −34.5449 −0.750976
\(47\) −13.7120 13.7120i −0.291745 0.291745i 0.546024 0.837769i \(-0.316141\pi\)
−0.837769 + 0.546024i \(0.816141\pi\)
\(48\) 0 0
\(49\) 41.6738i 0.850485i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.86359 + 1.86359i 0.0358382 + 0.0358382i
\(53\) −34.8894 + 34.8894i −0.658290 + 0.658290i −0.954975 0.296685i \(-0.904119\pi\)
0.296685 + 0.954975i \(0.404119\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −18.4799 −0.329998
\(57\) 0 0
\(58\) −9.19538 + 9.19538i −0.158541 + 0.158541i
\(59\) 62.0004i 1.05085i −0.850839 0.525427i \(-0.823906\pi\)
0.850839 0.525427i \(-0.176094\pi\)
\(60\) 0 0
\(61\) −67.2121 −1.10184 −0.550919 0.834559i \(-0.685723\pi\)
−0.550919 + 0.834559i \(0.685723\pi\)
\(62\) −26.7849 26.7849i −0.432014 0.432014i
\(63\) 0 0
\(64\) 9.00028i 0.140629i
\(65\) 0 0
\(66\) 0 0
\(67\) −29.2919 29.2919i −0.437192 0.437192i 0.453874 0.891066i \(-0.350042\pi\)
−0.891066 + 0.453874i \(0.850042\pi\)
\(68\) 23.1843 23.1843i 0.340946 0.340946i
\(69\) 0 0
\(70\) 0 0
\(71\) −71.3882 −1.00547 −0.502734 0.864441i \(-0.667672\pi\)
−0.502734 + 0.864441i \(0.667672\pi\)
\(72\) 0 0
\(73\) 23.5751 23.5751i 0.322947 0.322947i −0.526950 0.849896i \(-0.676664\pi\)
0.849896 + 0.526950i \(0.176664\pi\)
\(74\) 7.48478i 0.101146i
\(75\) 0 0
\(76\) −64.6135 −0.850178
\(77\) 30.7037 + 30.7037i 0.398749 + 0.398749i
\(78\) 0 0
\(79\) 5.61768i 0.0711099i −0.999368 0.0355550i \(-0.988680\pi\)
0.999368 0.0355550i \(-0.0113199\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 47.4309 + 47.4309i 0.578425 + 0.578425i
\(83\) 26.0960 26.0960i 0.314410 0.314410i −0.532206 0.846615i \(-0.678637\pi\)
0.846615 + 0.532206i \(0.178637\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −75.9945 −0.883657
\(87\) 0 0
\(88\) −77.4479 + 77.4479i −0.880089 + 0.880089i
\(89\) 23.2369i 0.261089i −0.991442 0.130545i \(-0.958327\pi\)
0.991442 0.130545i \(-0.0416726\pi\)
\(90\) 0 0
\(91\) 2.32627 0.0255634
\(92\) 77.5282 + 77.5282i 0.842698 + 0.842698i
\(93\) 0 0
\(94\) 18.7357i 0.199316i
\(95\) 0 0
\(96\) 0 0
\(97\) −97.3193 97.3193i −1.00329 1.00329i −0.999995 0.00329707i \(-0.998951\pi\)
−0.00329707 0.999995i \(-0.501049\pi\)
\(98\) 28.4710 28.4710i 0.290520 0.290520i
\(99\) 0 0
\(100\) 0 0
\(101\) 122.375 1.21163 0.605815 0.795606i \(-0.292847\pi\)
0.605815 + 0.795606i \(0.292847\pi\)
\(102\) 0 0
\(103\) 14.4661 14.4661i 0.140447 0.140447i −0.633387 0.773835i \(-0.718336\pi\)
0.773835 + 0.633387i \(0.218336\pi\)
\(104\) 5.86786i 0.0564217i
\(105\) 0 0
\(106\) −47.6719 −0.449735
\(107\) 133.967 + 133.967i 1.25203 + 1.25203i 0.954809 + 0.297221i \(0.0960599\pi\)
0.297221 + 0.954809i \(0.403940\pi\)
\(108\) 0 0
\(109\) 162.075i 1.48692i −0.668778 0.743462i \(-0.733183\pi\)
0.668778 0.743462i \(-0.266817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.8511 + 10.8511i 0.0968848 + 0.0968848i
\(113\) 93.7017 93.7017i 0.829219 0.829219i −0.158190 0.987409i \(-0.550566\pi\)
0.987409 + 0.158190i \(0.0505658\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 41.2738 0.355809
\(117\) 0 0
\(118\) 42.3578 42.3578i 0.358965 0.358965i
\(119\) 28.9405i 0.243197i
\(120\) 0 0
\(121\) 136.353 1.12689
\(122\) −45.9184 45.9184i −0.376380 0.376380i
\(123\) 0 0
\(124\) 120.225i 0.969558i
\(125\) 0 0
\(126\) 0 0
\(127\) −24.9948 24.9948i −0.196810 0.196810i 0.601821 0.798631i \(-0.294442\pi\)
−0.798631 + 0.601821i \(0.794442\pi\)
\(128\) −86.5885 + 86.5885i −0.676473 + 0.676473i
\(129\) 0 0
\(130\) 0 0
\(131\) −80.1902 −0.612139 −0.306069 0.952009i \(-0.599014\pi\)
−0.306069 + 0.952009i \(0.599014\pi\)
\(132\) 0 0
\(133\) −40.3278 + 40.3278i −0.303216 + 0.303216i
\(134\) 40.0237i 0.298684i
\(135\) 0 0
\(136\) 73.0003 0.536767
\(137\) −156.457 156.457i −1.14202 1.14202i −0.988080 0.153940i \(-0.950804\pi\)
−0.153940 0.988080i \(-0.549196\pi\)
\(138\) 0 0
\(139\) 63.5449i 0.457158i −0.973525 0.228579i \(-0.926592\pi\)
0.973525 0.228579i \(-0.0734079\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −48.7715 48.7715i −0.343461 0.343461i
\(143\) 9.74923 9.74923i 0.0681764 0.0681764i
\(144\) 0 0
\(145\) 0 0
\(146\) 32.2124 0.220633
\(147\) 0 0
\(148\) −16.7979 + 16.7979i −0.113499 + 0.113499i
\(149\) 148.160i 0.994360i 0.867647 + 0.497180i \(0.165631\pi\)
−0.867647 + 0.497180i \(0.834369\pi\)
\(150\) 0 0
\(151\) −37.1721 −0.246173 −0.123086 0.992396i \(-0.539279\pi\)
−0.123086 + 0.992396i \(0.539279\pi\)
\(152\) −101.724 101.724i −0.669237 0.669237i
\(153\) 0 0
\(154\) 41.9527i 0.272420i
\(155\) 0 0
\(156\) 0 0
\(157\) 135.379 + 135.379i 0.862285 + 0.862285i 0.991603 0.129318i \(-0.0412788\pi\)
−0.129318 + 0.991603i \(0.541279\pi\)
\(158\) 3.83793 3.83793i 0.0242907 0.0242907i
\(159\) 0 0
\(160\) 0 0
\(161\) 96.7766 0.601097
\(162\) 0 0
\(163\) 202.426 202.426i 1.24188 1.24188i 0.282654 0.959222i \(-0.408785\pi\)
0.959222 0.282654i \(-0.0912147\pi\)
\(164\) 212.896i 1.29814i
\(165\) 0 0
\(166\) 35.6569 0.214800
\(167\) 15.4478 + 15.4478i 0.0925018 + 0.0925018i 0.751843 0.659342i \(-0.229165\pi\)
−0.659342 + 0.751843i \(0.729165\pi\)
\(168\) 0 0
\(169\) 168.261i 0.995629i
\(170\) 0 0
\(171\) 0 0
\(172\) 170.552 + 170.552i 0.991583 + 0.991583i
\(173\) −102.849 + 102.849i −0.594501 + 0.594501i −0.938844 0.344343i \(-0.888102\pi\)
0.344343 + 0.938844i \(0.388102\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 90.9522 0.516774
\(177\) 0 0
\(178\) 15.8752 15.8752i 0.0891863 0.0891863i
\(179\) 159.775i 0.892599i 0.894884 + 0.446299i \(0.147258\pi\)
−0.894884 + 0.446299i \(0.852742\pi\)
\(180\) 0 0
\(181\) 204.918 1.13214 0.566070 0.824357i \(-0.308463\pi\)
0.566070 + 0.824357i \(0.308463\pi\)
\(182\) 1.58928 + 1.58928i 0.00873230 + 0.00873230i
\(183\) 0 0
\(184\) 244.112i 1.32670i
\(185\) 0 0
\(186\) 0 0
\(187\) −121.287 121.287i −0.648595 0.648595i
\(188\) −42.0481 + 42.0481i −0.223660 + 0.223660i
\(189\) 0 0
\(190\) 0 0
\(191\) −57.2319 −0.299644 −0.149822 0.988713i \(-0.547870\pi\)
−0.149822 + 0.988713i \(0.547870\pi\)
\(192\) 0 0
\(193\) 94.2729 94.2729i 0.488461 0.488461i −0.419359 0.907820i \(-0.637745\pi\)
0.907820 + 0.419359i \(0.137745\pi\)
\(194\) 132.974i 0.685435i
\(195\) 0 0
\(196\) −127.793 −0.652006
\(197\) −45.0889 45.0889i −0.228878 0.228878i 0.583346 0.812224i \(-0.301743\pi\)
−0.812224 + 0.583346i \(0.801743\pi\)
\(198\) 0 0
\(199\) 158.275i 0.795352i −0.917526 0.397676i \(-0.869817\pi\)
0.917526 0.397676i \(-0.130183\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 83.6047 + 83.6047i 0.413885 + 0.413885i
\(203\) 25.7606 25.7606i 0.126899 0.126899i
\(204\) 0 0
\(205\) 0 0
\(206\) 19.7661 0.0959518
\(207\) 0 0
\(208\) 3.44551 3.44551i 0.0165650 0.0165650i
\(209\) 338.021i 1.61733i
\(210\) 0 0
\(211\) 261.703 1.24030 0.620150 0.784484i \(-0.287072\pi\)
0.620150 + 0.784484i \(0.287072\pi\)
\(212\) 106.989 + 106.989i 0.504664 + 0.504664i
\(213\) 0 0
\(214\) 183.049i 0.855370i
\(215\) 0 0
\(216\) 0 0
\(217\) 75.0371 + 75.0371i 0.345793 + 0.345793i
\(218\) 110.727 110.727i 0.507923 0.507923i
\(219\) 0 0
\(220\) 0 0
\(221\) −9.18936 −0.0415808
\(222\) 0 0
\(223\) −180.063 + 180.063i −0.807458 + 0.807458i −0.984249 0.176790i \(-0.943428\pi\)
0.176790 + 0.984249i \(0.443428\pi\)
\(224\) 88.7463i 0.396189i
\(225\) 0 0
\(226\) 128.032 0.566511
\(227\) 187.888 + 187.888i 0.827699 + 0.827699i 0.987198 0.159499i \(-0.0509880\pi\)
−0.159499 + 0.987198i \(0.550988\pi\)
\(228\) 0 0
\(229\) 132.747i 0.579679i 0.957075 + 0.289840i \(0.0936020\pi\)
−0.957075 + 0.289840i \(0.906398\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 64.9792 + 64.9792i 0.280083 + 0.280083i
\(233\) −53.9875 + 53.9875i −0.231706 + 0.231706i −0.813404 0.581699i \(-0.802388\pi\)
0.581699 + 0.813404i \(0.302388\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −190.125 −0.805614
\(237\) 0 0
\(238\) 19.7717 19.7717i 0.0830745 0.0830745i
\(239\) 103.767i 0.434171i −0.976153 0.217085i \(-0.930345\pi\)
0.976153 0.217085i \(-0.0696550\pi\)
\(240\) 0 0
\(241\) 281.196 1.16679 0.583395 0.812188i \(-0.301724\pi\)
0.583395 + 0.812188i \(0.301724\pi\)
\(242\) 93.1549 + 93.1549i 0.384938 + 0.384938i
\(243\) 0 0
\(244\) 206.107i 0.844699i
\(245\) 0 0
\(246\) 0 0
\(247\) 12.8051 + 12.8051i 0.0518426 + 0.0518426i
\(248\) −189.276 + 189.276i −0.763209 + 0.763209i
\(249\) 0 0
\(250\) 0 0
\(251\) −313.354 −1.24842 −0.624212 0.781255i \(-0.714580\pi\)
−0.624212 + 0.781255i \(0.714580\pi\)
\(252\) 0 0
\(253\) 405.583 405.583i 1.60310 1.60310i
\(254\) 34.1523i 0.134458i
\(255\) 0 0
\(256\) −154.313 −0.602786
\(257\) −141.763 141.763i −0.551609 0.551609i 0.375296 0.926905i \(-0.377541\pi\)
−0.926905 + 0.375296i \(0.877541\pi\)
\(258\) 0 0
\(259\) 20.9684i 0.0809590i
\(260\) 0 0
\(261\) 0 0
\(262\) −54.7849 54.7849i −0.209103 0.209103i
\(263\) 170.260 170.260i 0.647375 0.647375i −0.304983 0.952358i \(-0.598651\pi\)
0.952358 + 0.304983i \(0.0986507\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −55.1028 −0.207153
\(267\) 0 0
\(268\) −89.8240 + 89.8240i −0.335164 + 0.335164i
\(269\) 476.960i 1.77309i −0.462646 0.886543i \(-0.653100\pi\)
0.462646 0.886543i \(-0.346900\pi\)
\(270\) 0 0
\(271\) 105.987 0.391095 0.195548 0.980694i \(-0.437352\pi\)
0.195548 + 0.980694i \(0.437352\pi\)
\(272\) −42.8646 42.8646i −0.157590 0.157590i
\(273\) 0 0
\(274\) 213.778i 0.780213i
\(275\) 0 0
\(276\) 0 0
\(277\) −2.45621 2.45621i −0.00886718 0.00886718i 0.702659 0.711526i \(-0.251996\pi\)
−0.711526 + 0.702659i \(0.751996\pi\)
\(278\) 43.4130 43.4130i 0.156162 0.156162i
\(279\) 0 0
\(280\) 0 0
\(281\) −206.625 −0.735321 −0.367660 0.929960i \(-0.619841\pi\)
−0.367660 + 0.929960i \(0.619841\pi\)
\(282\) 0 0
\(283\) 40.8251 40.8251i 0.144258 0.144258i −0.631289 0.775547i \(-0.717474\pi\)
0.775547 + 0.631289i \(0.217474\pi\)
\(284\) 218.913i 0.770820i
\(285\) 0 0
\(286\) 13.3211 0.0465772
\(287\) −132.876 132.876i −0.462984 0.462984i
\(288\) 0 0
\(289\) 174.678i 0.604422i
\(290\) 0 0
\(291\) 0 0
\(292\) −72.2934 72.2934i −0.247580 0.247580i
\(293\) −212.663 + 212.663i −0.725811 + 0.725811i −0.969782 0.243971i \(-0.921550\pi\)
0.243971 + 0.969782i \(0.421550\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −52.8913 −0.178687
\(297\) 0 0
\(298\) −101.221 + 101.221i −0.339667 + 0.339667i
\(299\) 30.7291i 0.102773i
\(300\) 0 0
\(301\) 212.896 0.707297
\(302\) −25.3955 25.3955i −0.0840910 0.0840910i
\(303\) 0 0
\(304\) 119.461i 0.392965i
\(305\) 0 0
\(306\) 0 0
\(307\) −6.45878 6.45878i −0.0210384 0.0210384i 0.696509 0.717548i \(-0.254735\pi\)
−0.717548 + 0.696509i \(0.754735\pi\)
\(308\) 94.1532 94.1532i 0.305692 0.305692i
\(309\) 0 0
\(310\) 0 0
\(311\) 429.168 1.37996 0.689980 0.723828i \(-0.257619\pi\)
0.689980 + 0.723828i \(0.257619\pi\)
\(312\) 0 0
\(313\) 91.6067 91.6067i 0.292673 0.292673i −0.545462 0.838135i \(-0.683646\pi\)
0.838135 + 0.545462i \(0.183646\pi\)
\(314\) 184.978i 0.589102i
\(315\) 0 0
\(316\) −17.2267 −0.0545148
\(317\) −101.368 101.368i −0.319771 0.319771i 0.528908 0.848679i \(-0.322602\pi\)
−0.848679 + 0.528908i \(0.822602\pi\)
\(318\) 0 0
\(319\) 215.921i 0.676869i
\(320\) 0 0
\(321\) 0 0
\(322\) 66.1165 + 66.1165i 0.205331 + 0.205331i
\(323\) 159.305 159.305i 0.493204 0.493204i
\(324\) 0 0
\(325\) 0 0
\(326\) 276.589 0.848433
\(327\) 0 0
\(328\) 335.171 335.171i 1.02186 1.02186i
\(329\) 52.4877i 0.159537i
\(330\) 0 0
\(331\) −40.7620 −0.123148 −0.0615741 0.998103i \(-0.519612\pi\)
−0.0615741 + 0.998103i \(0.519612\pi\)
\(332\) −80.0237 80.0237i −0.241035 0.241035i
\(333\) 0 0
\(334\) 21.1075i 0.0631960i
\(335\) 0 0
\(336\) 0 0
\(337\) −251.752 251.752i −0.747038 0.747038i 0.226884 0.973922i \(-0.427146\pi\)
−0.973922 + 0.226884i \(0.927146\pi\)
\(338\) −114.954 + 114.954i −0.340100 + 0.340100i
\(339\) 0 0
\(340\) 0 0
\(341\) 628.949 1.84443
\(342\) 0 0
\(343\) −173.543 + 173.543i −0.505956 + 0.505956i
\(344\) 537.016i 1.56109i
\(345\) 0 0
\(346\) −140.530 −0.406155
\(347\) 119.157 + 119.157i 0.343392 + 0.343392i 0.857641 0.514249i \(-0.171929\pi\)
−0.514249 + 0.857641i \(0.671929\pi\)
\(348\) 0 0
\(349\) 16.0231i 0.0459116i 0.999736 + 0.0229558i \(0.00730770\pi\)
−0.999736 + 0.0229558i \(0.992692\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 371.929 + 371.929i 1.05662 + 1.05662i
\(353\) −147.916 + 147.916i −0.419025 + 0.419025i −0.884868 0.465842i \(-0.845751\pi\)
0.465842 + 0.884868i \(0.345751\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −71.2563 −0.200158
\(357\) 0 0
\(358\) −109.156 + 109.156i −0.304906 + 0.304906i
\(359\) 160.120i 0.446018i −0.974816 0.223009i \(-0.928412\pi\)
0.974816 0.223009i \(-0.0715879\pi\)
\(360\) 0 0
\(361\) −82.9741 −0.229845
\(362\) 139.997 + 139.997i 0.386732 + 0.386732i
\(363\) 0 0
\(364\) 7.13355i 0.0195977i
\(365\) 0 0
\(366\) 0 0
\(367\) −146.732 146.732i −0.399814 0.399814i 0.478353 0.878168i \(-0.341234\pi\)
−0.878168 + 0.478353i \(0.841234\pi\)
\(368\) 143.339 143.339i 0.389507 0.389507i
\(369\) 0 0
\(370\) 0 0
\(371\) 133.552 0.359977
\(372\) 0 0
\(373\) −275.593 + 275.593i −0.738854 + 0.738854i −0.972356 0.233502i \(-0.924981\pi\)
0.233502 + 0.972356i \(0.424981\pi\)
\(374\) 165.724i 0.443111i
\(375\) 0 0
\(376\) −132.396 −0.352118
\(377\) −8.17966 8.17966i −0.0216967 0.0216967i
\(378\) 0 0
\(379\) 276.991i 0.730846i −0.930842 0.365423i \(-0.880924\pi\)
0.930842 0.365423i \(-0.119076\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −39.1001 39.1001i −0.102356 0.102356i
\(383\) −29.6395 + 29.6395i −0.0773876 + 0.0773876i −0.744741 0.667353i \(-0.767427\pi\)
0.667353 + 0.744741i \(0.267427\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 128.812 0.333710
\(387\) 0 0
\(388\) −298.431 + 298.431i −0.769152 + 0.769152i
\(389\) 609.728i 1.56742i −0.621124 0.783712i \(-0.713324\pi\)
0.621124 0.783712i \(-0.286676\pi\)
\(390\) 0 0
\(391\) −382.292 −0.977728
\(392\) −201.190 201.190i −0.513241 0.513241i
\(393\) 0 0
\(394\) 61.6083i 0.156366i
\(395\) 0 0
\(396\) 0 0
\(397\) −353.820 353.820i −0.891235 0.891235i 0.103404 0.994639i \(-0.467026\pi\)
−0.994639 + 0.103404i \(0.967026\pi\)
\(398\) 108.131 108.131i 0.271687 0.271687i
\(399\) 0 0
\(400\) 0 0
\(401\) −510.979 −1.27426 −0.637131 0.770756i \(-0.719879\pi\)
−0.637131 + 0.770756i \(0.719879\pi\)
\(402\) 0 0
\(403\) 23.8263 23.8263i 0.0591222 0.0591222i
\(404\) 375.263i 0.928869i
\(405\) 0 0
\(406\) 35.1986 0.0866960
\(407\) 87.8769 + 87.8769i 0.215914 + 0.215914i
\(408\) 0 0
\(409\) 129.175i 0.315831i −0.987453 0.157916i \(-0.949523\pi\)
0.987453 0.157916i \(-0.0504774\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −44.3604 44.3604i −0.107671 0.107671i
\(413\) −118.664 + 118.664i −0.287323 + 0.287323i
\(414\) 0 0
\(415\) 0 0
\(416\) 28.1793 0.0677387
\(417\) 0 0
\(418\) −230.931 + 230.931i −0.552468 + 0.552468i
\(419\) 359.249i 0.857396i 0.903448 + 0.428698i \(0.141028\pi\)
−0.903448 + 0.428698i \(0.858972\pi\)
\(420\) 0 0
\(421\) −105.532 −0.250669 −0.125335 0.992115i \(-0.540000\pi\)
−0.125335 + 0.992115i \(0.540000\pi\)
\(422\) 178.792 + 178.792i 0.423678 + 0.423678i
\(423\) 0 0
\(424\) 336.874i 0.794515i
\(425\) 0 0
\(426\) 0 0
\(427\) 128.639 + 128.639i 0.301262 + 0.301262i
\(428\) 410.812 410.812i 0.959841 0.959841i
\(429\) 0 0
\(430\) 0 0
\(431\) −402.361 −0.933551 −0.466776 0.884376i \(-0.654584\pi\)
−0.466776 + 0.884376i \(0.654584\pi\)
\(432\) 0 0
\(433\) −36.1598 + 36.1598i −0.0835098 + 0.0835098i −0.747628 0.664118i \(-0.768807\pi\)
0.664118 + 0.747628i \(0.268807\pi\)
\(434\) 102.529i 0.236241i
\(435\) 0 0
\(436\) −497.004 −1.13992
\(437\) 532.713 + 532.713i 1.21902 + 1.21902i
\(438\) 0 0
\(439\) 172.795i 0.393611i −0.980443 0.196805i \(-0.936943\pi\)
0.980443 0.196805i \(-0.0630567\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.27805 6.27805i −0.0142037 0.0142037i
\(443\) −238.409 + 238.409i −0.538170 + 0.538170i −0.922991 0.384821i \(-0.874263\pi\)
0.384821 + 0.922991i \(0.374263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −246.033 −0.551644
\(447\) 0 0
\(448\) −17.2259 + 17.2259i −0.0384506 + 0.0384506i
\(449\) 272.621i 0.607174i 0.952804 + 0.303587i \(0.0981843\pi\)
−0.952804 + 0.303587i \(0.901816\pi\)
\(450\) 0 0
\(451\) −1113.75 −2.46951
\(452\) −287.338 287.338i −0.635703 0.635703i
\(453\) 0 0
\(454\) 256.725i 0.565473i
\(455\) 0 0
\(456\) 0 0
\(457\) 583.277 + 583.277i 1.27632 + 1.27632i 0.942713 + 0.333605i \(0.108265\pi\)
0.333605 + 0.942713i \(0.391735\pi\)
\(458\) −90.6907 + 90.6907i −0.198015 + 0.198015i
\(459\) 0 0
\(460\) 0 0
\(461\) −506.067 −1.09776 −0.548879 0.835902i \(-0.684945\pi\)
−0.548879 + 0.835902i \(0.684945\pi\)
\(462\) 0 0
\(463\) −129.301 + 129.301i −0.279267 + 0.279267i −0.832816 0.553549i \(-0.813273\pi\)
0.553549 + 0.832816i \(0.313273\pi\)
\(464\) 76.3095i 0.164460i
\(465\) 0 0
\(466\) −73.7670 −0.158298
\(467\) −160.498 160.498i −0.343679 0.343679i 0.514070 0.857748i \(-0.328137\pi\)
−0.857748 + 0.514070i \(0.828137\pi\)
\(468\) 0 0
\(469\) 112.125i 0.239073i
\(470\) 0 0
\(471\) 0 0
\(472\) −299.322 299.322i −0.634157 0.634157i
\(473\) 892.232 892.232i 1.88633 1.88633i
\(474\) 0 0
\(475\) 0 0
\(476\) −88.7463 −0.186442
\(477\) 0 0
\(478\) 70.8921 70.8921i 0.148310 0.148310i
\(479\) 779.221i 1.62677i −0.581729 0.813383i \(-0.697624\pi\)
0.581729 0.813383i \(-0.302376\pi\)
\(480\) 0 0
\(481\) 6.65801 0.0138420
\(482\) 192.110 + 192.110i 0.398568 + 0.398568i
\(483\) 0 0
\(484\) 418.130i 0.863904i
\(485\) 0 0
\(486\) 0 0
\(487\) −523.288 523.288i −1.07451 1.07451i −0.996991 0.0775227i \(-0.975299\pi\)
−0.0775227 0.996991i \(-0.524701\pi\)
\(488\) −324.483 + 324.483i −0.664924 + 0.664924i
\(489\) 0 0
\(490\) 0 0
\(491\) 160.638 0.327166 0.163583 0.986530i \(-0.447695\pi\)
0.163583 + 0.986530i \(0.447695\pi\)
\(492\) 0 0
\(493\) −101.761 + 101.761i −0.206411 + 0.206411i
\(494\) 17.4966i 0.0354182i
\(495\) 0 0
\(496\) 222.279 0.448144
\(497\) 136.632 + 136.632i 0.274913 + 0.274913i
\(498\) 0 0
\(499\) 192.018i 0.384806i −0.981316 0.192403i \(-0.938372\pi\)
0.981316 0.192403i \(-0.0616280\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −214.079 214.079i −0.426453 0.426453i
\(503\) 179.873 179.873i 0.357600 0.357600i −0.505328 0.862928i \(-0.668628\pi\)
0.862928 + 0.505328i \(0.168628\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 554.178 1.09521
\(507\) 0 0
\(508\) −76.6470 + 76.6470i −0.150880 + 0.150880i
\(509\) 45.1629i 0.0887286i 0.999015 + 0.0443643i \(0.0141262\pi\)
−0.999015 + 0.0443643i \(0.985874\pi\)
\(510\) 0 0
\(511\) −90.2421 −0.176599
\(512\) 240.929 + 240.929i 0.470565 + 0.470565i
\(513\) 0 0
\(514\) 193.702i 0.376852i
\(515\) 0 0
\(516\) 0 0
\(517\) 219.972 + 219.972i 0.425477 + 0.425477i
\(518\) −14.3253 + 14.3253i −0.0276551 + 0.0276551i
\(519\) 0 0
\(520\) 0 0
\(521\) 284.623 0.546301 0.273150 0.961971i \(-0.411934\pi\)
0.273150 + 0.961971i \(0.411934\pi\)
\(522\) 0 0
\(523\) −451.674 + 451.674i −0.863621 + 0.863621i −0.991757 0.128135i \(-0.959101\pi\)
0.128135 + 0.991757i \(0.459101\pi\)
\(524\) 245.904i 0.469283i
\(525\) 0 0
\(526\) 232.638 0.442278
\(527\) −296.415 296.415i −0.562458 0.562458i
\(528\) 0 0
\(529\) 749.379i 1.41660i
\(530\) 0 0
\(531\) 0 0
\(532\) 123.666 + 123.666i 0.232454 + 0.232454i
\(533\) −42.1917 + 42.1917i −0.0791589 + 0.0791589i
\(534\) 0 0
\(535\) 0 0
\(536\) −282.828 −0.527664
\(537\) 0 0
\(538\) 325.853 325.853i 0.605674 0.605674i
\(539\) 668.541i 1.24033i
\(540\) 0 0
\(541\) 88.5229 0.163628 0.0818142 0.996648i \(-0.473929\pi\)
0.0818142 + 0.996648i \(0.473929\pi\)
\(542\) 72.4088 + 72.4088i 0.133595 + 0.133595i
\(543\) 0 0
\(544\) 350.570i 0.644430i
\(545\) 0 0
\(546\) 0 0
\(547\) −183.312 183.312i −0.335123 0.335123i 0.519405 0.854528i \(-0.326154\pi\)
−0.854528 + 0.519405i \(0.826154\pi\)
\(548\) −479.776 + 479.776i −0.875505 + 0.875505i
\(549\) 0 0
\(550\) 0 0
\(551\) 283.602 0.514704
\(552\) 0 0
\(553\) −10.7518 + 10.7518i −0.0194427 + 0.0194427i
\(554\) 3.35610i 0.00605794i
\(555\) 0 0
\(556\) −194.861 −0.350470
\(557\) −372.533 372.533i −0.668821 0.668821i 0.288622 0.957443i \(-0.406803\pi\)
−0.957443 + 0.288622i \(0.906803\pi\)
\(558\) 0 0
\(559\) 67.6002i 0.120931i
\(560\) 0 0
\(561\) 0 0
\(562\) −141.163 141.163i −0.251181 0.251181i
\(563\) −727.111 + 727.111i −1.29149 + 1.29149i −0.357630 + 0.933863i \(0.616415\pi\)
−0.933863 + 0.357630i \(0.883585\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 55.7823 0.0985553
\(567\) 0 0
\(568\) −344.644 + 344.644i −0.606768 + 0.606768i
\(569\) 407.776i 0.716653i 0.933596 + 0.358327i \(0.116653\pi\)
−0.933596 + 0.358327i \(0.883347\pi\)
\(570\) 0 0
\(571\) −107.205 −0.187750 −0.0938748 0.995584i \(-0.529925\pi\)
−0.0938748 + 0.995584i \(0.529925\pi\)
\(572\) −29.8961 29.8961i −0.0522660 0.0522660i
\(573\) 0 0
\(574\) 181.559i 0.316304i
\(575\) 0 0
\(576\) 0 0
\(577\) −539.921 539.921i −0.935738 0.935738i 0.0623179 0.998056i \(-0.480151\pi\)
−0.998056 + 0.0623179i \(0.980151\pi\)
\(578\) 119.338 119.338i 0.206466 0.206466i
\(579\) 0 0
\(580\) 0 0
\(581\) −99.8917 −0.171931
\(582\) 0 0
\(583\) 559.704 559.704i 0.960041 0.960041i
\(584\) 227.629i 0.389776i
\(585\) 0 0
\(586\) −290.577 −0.495864
\(587\) −523.572 523.572i −0.891946 0.891946i 0.102760 0.994706i \(-0.467233\pi\)
−0.994706 + 0.102760i \(0.967233\pi\)
\(588\) 0 0
\(589\) 826.094i 1.40254i
\(590\) 0 0
\(591\) 0 0
\(592\) 31.0569 + 31.0569i 0.0524609 + 0.0524609i
\(593\) −43.9329 + 43.9329i −0.0740858 + 0.0740858i −0.743179 0.669093i \(-0.766683\pi\)
0.669093 + 0.743179i \(0.266683\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 454.333 0.762304
\(597\) 0 0
\(598\) 20.9937 20.9937i 0.0351066 0.0351066i
\(599\) 110.244i 0.184047i 0.995757 + 0.0920237i \(0.0293336\pi\)
−0.995757 + 0.0920237i \(0.970666\pi\)
\(600\) 0 0
\(601\) 614.730 1.02284 0.511422 0.859329i \(-0.329119\pi\)
0.511422 + 0.859329i \(0.329119\pi\)
\(602\) 145.448 + 145.448i 0.241608 + 0.241608i
\(603\) 0 0
\(604\) 113.989i 0.188723i
\(605\) 0 0
\(606\) 0 0
\(607\) 643.427 + 643.427i 1.06001 + 1.06001i 0.998080 + 0.0619314i \(0.0197260\pi\)
0.0619314 + 0.998080i \(0.480274\pi\)
\(608\) −488.510 + 488.510i −0.803471 + 0.803471i
\(609\) 0 0
\(610\) 0 0
\(611\) 16.6662 0.0272769
\(612\) 0 0
\(613\) −60.7205 + 60.7205i −0.0990546 + 0.0990546i −0.754897 0.655843i \(-0.772313\pi\)
0.655843 + 0.754897i \(0.272313\pi\)
\(614\) 8.82511i 0.0143731i
\(615\) 0 0
\(616\) 296.459 0.481265
\(617\) −627.123 627.123i −1.01641 1.01641i −0.999863 0.0165444i \(-0.994734\pi\)
−0.0165444 0.999863i \(-0.505266\pi\)
\(618\) 0 0
\(619\) 587.816i 0.949622i −0.880088 0.474811i \(-0.842516\pi\)
0.880088 0.474811i \(-0.157484\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 293.201 + 293.201i 0.471385 + 0.471385i
\(623\) −44.4738 + 44.4738i −0.0713865 + 0.0713865i
\(624\) 0 0
\(625\) 0 0
\(626\) 125.169 0.199950
\(627\) 0 0
\(628\) 415.141 415.141i 0.661052 0.661052i
\(629\) 82.8304i 0.131686i
\(630\) 0 0
\(631\) −347.806 −0.551197 −0.275599 0.961273i \(-0.588876\pi\)
−0.275599 + 0.961273i \(0.588876\pi\)
\(632\) −27.1207 27.1207i −0.0429126 0.0429126i
\(633\) 0 0
\(634\) 138.506i 0.218464i
\(635\) 0 0
\(636\) 0 0
\(637\) 25.3261 + 25.3261i 0.0397584 + 0.0397584i
\(638\) 147.514 147.514i 0.231214 0.231214i
\(639\) 0 0
\(640\) 0 0
\(641\) −532.992 −0.831500 −0.415750 0.909479i \(-0.636481\pi\)
−0.415750 + 0.909479i \(0.636481\pi\)
\(642\) 0 0
\(643\) −717.465 + 717.465i −1.11581 + 1.11581i −0.123460 + 0.992350i \(0.539399\pi\)
−0.992350 + 0.123460i \(0.960601\pi\)
\(644\) 296.767i 0.460818i
\(645\) 0 0
\(646\) 217.670 0.336950
\(647\) −28.7251 28.7251i −0.0443973 0.0443973i 0.684560 0.728957i \(-0.259995\pi\)
−0.728957 + 0.684560i \(0.759995\pi\)
\(648\) 0 0
\(649\) 994.625i 1.53255i
\(650\) 0 0
\(651\) 0 0
\(652\) −620.741 620.741i −0.952057 0.952057i
\(653\) 18.3291 18.3291i 0.0280690 0.0280690i −0.692933 0.721002i \(-0.743682\pi\)
0.721002 + 0.692933i \(0.243682\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −393.614 −0.600021
\(657\) 0 0
\(658\) −35.8589 + 35.8589i −0.0544968 + 0.0544968i
\(659\) 698.827i 1.06043i 0.847862 + 0.530217i \(0.177890\pi\)
−0.847862 + 0.530217i \(0.822110\pi\)
\(660\) 0 0
\(661\) 229.808 0.347667 0.173833 0.984775i \(-0.444385\pi\)
0.173833 + 0.984775i \(0.444385\pi\)
\(662\) −27.8481 27.8481i −0.0420666 0.0420666i
\(663\) 0 0
\(664\) 251.970i 0.379472i
\(665\) 0 0
\(666\) 0 0
\(667\) −340.287 340.287i −0.510175 0.510175i
\(668\) 47.3709 47.3709i 0.0709145 0.0709145i
\(669\) 0 0
\(670\) 0 0
\(671\) 1078.23 1.60690
\(672\) 0 0
\(673\) 739.046 739.046i 1.09814 1.09814i 0.103509 0.994629i \(-0.466993\pi\)
0.994629 0.103509i \(-0.0330069\pi\)
\(674\) 343.987i 0.510366i
\(675\) 0 0
\(676\) 515.975 0.763277
\(677\) 671.650 + 671.650i 0.992098 + 0.992098i 0.999969 0.00787098i \(-0.00250544\pi\)
−0.00787098 + 0.999969i \(0.502505\pi\)
\(678\) 0 0
\(679\) 372.524i 0.548636i
\(680\) 0 0
\(681\) 0 0
\(682\) 429.690 + 429.690i 0.630044 + 0.630044i
\(683\) 293.612 293.612i 0.429885 0.429885i −0.458704 0.888589i \(-0.651686\pi\)
0.888589 + 0.458704i \(0.151686\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −237.125 −0.345663
\(687\) 0 0
\(688\) 315.327 315.327i 0.458324 0.458324i
\(689\) 42.4061i 0.0615474i
\(690\) 0 0
\(691\) −566.147 −0.819316 −0.409658 0.912239i \(-0.634352\pi\)
−0.409658 + 0.912239i \(0.634352\pi\)
\(692\) 315.387 + 315.387i 0.455761 + 0.455761i
\(693\) 0 0
\(694\) 162.813i 0.234601i
\(695\) 0 0
\(696\) 0 0
\(697\) 524.895 + 524.895i 0.753077 + 0.753077i
\(698\) −10.9468 + 10.9468i −0.0156831 + 0.0156831i
\(699\) 0 0
\(700\) 0 0
\(701\) −660.345 −0.942004 −0.471002 0.882132i \(-0.656108\pi\)
−0.471002 + 0.882132i \(0.656108\pi\)
\(702\) 0 0
\(703\) −115.422 + 115.422i −0.164185 + 0.164185i
\(704\) 144.385i 0.205092i
\(705\) 0 0
\(706\) −202.108 −0.286272
\(707\) −234.216 234.216i −0.331282 0.331282i
\(708\) 0 0
\(709\) 1216.32i 1.71554i 0.514034 + 0.857770i \(0.328151\pi\)
−0.514034 + 0.857770i \(0.671849\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −112.182 112.182i −0.157559 0.157559i
\(713\) 991.209 991.209i 1.39020 1.39020i
\(714\) 0 0
\(715\) 0 0
\(716\) 489.953 0.684291
\(717\) 0 0
\(718\) 109.392 109.392i 0.152357 0.152357i
\(719\) 376.633i 0.523829i 0.965091 + 0.261914i \(0.0843538\pi\)
−0.965091 + 0.261914i \(0.915646\pi\)
\(720\) 0 0
\(721\) −55.3741 −0.0768018
\(722\) −56.6868 56.6868i −0.0785135 0.0785135i
\(723\) 0 0
\(724\) 628.382i 0.867931i
\(725\) 0 0
\(726\) 0 0
\(727\) 562.754 + 562.754i 0.774077 + 0.774077i 0.978816 0.204740i \(-0.0656348\pi\)
−0.204740 + 0.978816i \(0.565635\pi\)
\(728\) 11.2307 11.2307i 0.0154267 0.0154267i
\(729\) 0 0
\(730\) 0 0
\(731\) −840.994 −1.15047
\(732\) 0 0
\(733\) 316.775 316.775i 0.432163 0.432163i −0.457201 0.889364i \(-0.651148\pi\)
0.889364 + 0.457201i \(0.151148\pi\)
\(734\) 200.491i 0.273148i
\(735\) 0 0
\(736\) 1172.30 1.59280
\(737\) 469.908 + 469.908i 0.637595 + 0.637595i
\(738\) 0 0
\(739\) 322.406i 0.436273i 0.975918 + 0.218137i \(0.0699979\pi\)
−0.975918 + 0.218137i \(0.930002\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 91.2406 + 91.2406i 0.122966 + 0.122966i
\(743\) 33.6619 33.6619i 0.0453054 0.0453054i −0.684091 0.729397i \(-0.739801\pi\)
0.729397 + 0.684091i \(0.239801\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −376.562 −0.504775
\(747\) 0 0
\(748\) −371.929 + 371.929i −0.497231 + 0.497231i
\(749\) 512.807i 0.684656i
\(750\) 0 0
\(751\) 1008.00 1.34221 0.671106 0.741362i \(-0.265820\pi\)
0.671106 + 0.741362i \(0.265820\pi\)
\(752\) 77.7410 + 77.7410i 0.103379 + 0.103379i
\(753\) 0 0
\(754\) 11.1765i 0.0148229i
\(755\) 0 0
\(756\) 0 0
\(757\) 839.534 + 839.534i 1.10903 + 1.10903i 0.993278 + 0.115750i \(0.0369272\pi\)
0.115750 + 0.993278i \(0.463073\pi\)
\(758\) 189.236 189.236i 0.249652 0.249652i
\(759\) 0 0
\(760\) 0 0
\(761\) −233.272 −0.306534 −0.153267 0.988185i \(-0.548979\pi\)
−0.153267 + 0.988185i \(0.548979\pi\)
\(762\) 0 0
\(763\) −310.199 + 310.199i −0.406552 + 0.406552i
\(764\) 175.502i 0.229715i
\(765\) 0 0
\(766\) −40.4986 −0.0528702
\(767\) 37.6790 + 37.6790i 0.0491252 + 0.0491252i
\(768\) 0 0
\(769\) 1059.42i 1.37766i 0.724922 + 0.688831i \(0.241876\pi\)
−0.724922 + 0.688831i \(0.758124\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −289.089 289.089i −0.374468 0.374468i
\(773\) −672.938 + 672.938i −0.870554 + 0.870554i −0.992533 0.121979i \(-0.961076\pi\)
0.121979 + 0.992533i \(0.461076\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −939.666 −1.21091
\(777\) 0 0
\(778\) 416.558 416.558i 0.535421 0.535421i
\(779\) 1462.85i 1.87786i
\(780\) 0 0
\(781\) 1145.23 1.46636
\(782\) −261.177 261.177i −0.333985 0.333985i
\(783\) 0 0
\(784\) 236.271i 0.301366i
\(785\) 0 0
\(786\) 0 0
\(787\) −441.897 441.897i −0.561496 0.561496i 0.368236 0.929732i \(-0.379962\pi\)
−0.929732 + 0.368236i \(0.879962\pi\)
\(788\) −138.266 + 138.266i −0.175464 + 0.175464i
\(789\) 0 0
\(790\) 0 0
\(791\) −358.677 −0.453447
\(792\) 0 0
\(793\) 40.8463 40.8463i 0.0515086 0.0515086i
\(794\) 483.451i 0.608880i
\(795\) 0 0
\(796\) −485.352 −0.609739
\(797\) 880.801 + 880.801i 1.10515 + 1.10515i 0.993779 + 0.111366i \(0.0355227\pi\)
0.111366 + 0.993779i \(0.464477\pi\)
\(798\) 0 0
\(799\) 207.339i 0.259499i
\(800\) 0 0
\(801\) 0 0
\(802\) −349.094 349.094i −0.435279 0.435279i
\(803\) −378.198 + 378.198i −0.470981 + 0.470981i
\(804\) 0 0
\(805\) 0 0
\(806\) 32.5556 0.0403915
\(807\) 0 0
\(808\) 590.793 590.793i 0.731180 0.731180i
\(809\) 1201.69i 1.48540i 0.669623 + 0.742701i \(0.266456\pi\)
−0.669623 + 0.742701i \(0.733544\pi\)
\(810\) 0 0
\(811\) −214.518 −0.264511 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(812\) −78.9952 78.9952i −0.0972847 0.0972847i
\(813\) 0 0
\(814\) 120.073i 0.147509i
\(815\) 0 0
\(816\) 0 0
\(817\) 1171.90 + 1171.90i 1.43440 + 1.43440i
\(818\) 88.2506 88.2506i 0.107886 0.107886i
\(819\) 0 0
\(820\) 0 0
\(821\) 1242.79 1.51375 0.756877 0.653557i \(-0.226724\pi\)
0.756877 + 0.653557i \(0.226724\pi\)
\(822\) 0 0
\(823\) 76.3353 76.3353i 0.0927525 0.0927525i −0.659208 0.751961i \(-0.729108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(824\) 139.677i 0.169511i
\(825\) 0 0
\(826\) −162.140 −0.196295
\(827\) 323.536 + 323.536i 0.391216 + 0.391216i 0.875121 0.483905i \(-0.160782\pi\)
−0.483905 + 0.875121i \(0.660782\pi\)
\(828\) 0 0
\(829\) 361.865i 0.436507i 0.975892 + 0.218254i \(0.0700360\pi\)
−0.975892 + 0.218254i \(0.929964\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.46967 + 5.46967i 0.00657412 + 0.00657412i
\(833\) 315.074 315.074i 0.378240 0.378240i
\(834\) 0 0
\(835\) 0 0
\(836\) 1036.55 1.23989
\(837\) 0 0
\(838\) −245.434 + 245.434i −0.292881 + 0.292881i
\(839\) 35.4295i 0.0422283i −0.999777 0.0211141i \(-0.993279\pi\)
0.999777 0.0211141i \(-0.00672134\pi\)
\(840\) 0 0
\(841\) 659.841 0.784591
\(842\) −72.0979 72.0979i −0.0856270 0.0856270i
\(843\) 0 0
\(844\) 802.516i 0.950848i
\(845\) 0 0
\(846\) 0 0
\(847\) −260.971 260.971i −0.308112 0.308112i
\(848\) 197.807 197.807i 0.233263 0.233263i
\(849\) 0 0
\(850\) 0 0
\(851\) 276.984 0.325480
\(852\) 0 0
\(853\) 996.367 996.367i 1.16807 1.16807i 0.185414 0.982661i \(-0.440638\pi\)
0.982661 0.185414i \(-0.0593625\pi\)
\(854\) 175.769i 0.205818i
\(855\) 0 0
\(856\) 1293.52 1.51112
\(857\) 613.451 + 613.451i 0.715812 + 0.715812i 0.967745 0.251932i \(-0.0810661\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(858\) 0 0
\(859\) 199.954i 0.232776i 0.993204 + 0.116388i \(0.0371316\pi\)
−0.993204 + 0.116388i \(0.962868\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −274.887 274.887i −0.318895 0.318895i
\(863\) 290.842 290.842i 0.337013 0.337013i −0.518229 0.855242i \(-0.673409\pi\)
0.855242 + 0.518229i \(0.173409\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −49.4077 −0.0570528
\(867\) 0 0
\(868\) 230.102 230.102i 0.265095 0.265095i
\(869\) 90.1202i 0.103706i
\(870\) 0 0
\(871\) 35.6027 0.0408756
\(872\) −782.455 782.455i −0.897311 0.897311i
\(873\) 0 0
\(874\) 727.885i 0.832821i
\(875\) 0 0
\(876\) 0 0
\(877\) −57.7576 57.7576i −0.0658582 0.0658582i 0.673411 0.739269i \(-0.264829\pi\)
−0.739269 + 0.673411i \(0.764829\pi\)
\(878\) 118.051 118.051i 0.134455 0.134455i
\(879\) 0 0
\(880\) 0 0
\(881\) 673.852 0.764872 0.382436 0.923982i \(-0.375085\pi\)
0.382436 + 0.923982i \(0.375085\pi\)
\(882\) 0 0
\(883\) 701.206 701.206i 0.794118 0.794118i −0.188043 0.982161i \(-0.560214\pi\)
0.982161 + 0.188043i \(0.0602144\pi\)
\(884\) 28.1793i 0.0318770i
\(885\) 0 0
\(886\) −325.756 −0.367671
\(887\) −713.261 713.261i −0.804128 0.804128i 0.179610 0.983738i \(-0.442516\pi\)
−0.983738 + 0.179610i \(0.942516\pi\)
\(888\) 0 0
\(889\) 95.6766i 0.107623i
\(890\) 0 0
\(891\) 0 0
\(892\) 552.166 + 552.166i 0.619020 + 0.619020i
\(893\) −288.922 + 288.922i −0.323541 + 0.323541i
\(894\) 0 0
\(895\) 0 0
\(896\) 331.448 0.369920
\(897\) 0 0
\(898\) −186.251 + 186.251i −0.207407 + 0.207407i
\(899\) 527.692i 0.586977i
\(900\) 0 0
\(901\) −527.562 −0.585529
\(902\) −760.898 760.898i −0.843567 0.843567i
\(903\) 0 0
\(904\) 904.736i 1.00081i
\(905\) 0 0
\(906\) 0 0
\(907\) −10.7160 10.7160i −0.0118148 0.0118148i 0.701175 0.712990i \(-0.252659\pi\)
−0.712990 + 0.701175i \(0.752659\pi\)
\(908\) 576.160 576.160i 0.634537 0.634537i
\(909\) 0 0
\(910\) 0 0
\(911\) 952.181 1.04520 0.522602 0.852577i \(-0.324961\pi\)
0.522602 + 0.852577i \(0.324961\pi\)
\(912\) 0 0
\(913\) −418.638 + 418.638i −0.458530 + 0.458530i
\(914\) 796.975i 0.871963i
\(915\) 0 0
\(916\) 407.069 0.444398
\(917\) 153.478 + 153.478i 0.167370 + 0.167370i
\(918\) 0 0
\(919\) 605.183i 0.658523i 0.944239 + 0.329262i \(0.106800\pi\)
−0.944239 + 0.329262i \(0.893200\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −345.738 345.738i −0.374987 0.374987i
\(923\) 43.3842 43.3842i 0.0470035 0.0470035i
\(924\) 0 0
\(925\) 0 0
\(926\) −176.673 −0.190791
\(927\) 0 0
\(928\) 312.051 312.051i 0.336261 0.336261i
\(929\) 278.073i 0.299325i 0.988737 + 0.149663i \(0.0478188\pi\)
−0.988737 + 0.149663i \(0.952181\pi\)
\(930\) 0 0
\(931\) −878.095 −0.943174
\(932\) 165.553 + 165.553i 0.177632 + 0.177632i
\(933\) 0 0
\(934\) 219.300i 0.234797i
\(935\) 0 0
\(936\) 0 0
\(937\) −896.938 896.938i −0.957244 0.957244i 0.0418787 0.999123i \(-0.486666\pi\)
−0.999123 + 0.0418787i \(0.986666\pi\)
\(938\) −76.6024 + 76.6024i −0.0816657 + 0.0816657i
\(939\) 0 0
\(940\) 0 0
\(941\) −360.668 −0.383282 −0.191641 0.981465i \(-0.561381\pi\)
−0.191641 + 0.981465i \(0.561381\pi\)
\(942\) 0 0
\(943\) −1755.24 + 1755.24i −1.86134 + 1.86134i
\(944\) 351.514i 0.372366i
\(945\) 0 0
\(946\) 1219.12 1.28871
\(947\) −934.038 934.038i −0.986313 0.986313i 0.0135946 0.999908i \(-0.495673\pi\)
−0.999908 + 0.0135946i \(0.995673\pi\)
\(948\) 0 0
\(949\) 28.6542i 0.0301941i
\(950\) 0 0
\(951\) 0 0
\(952\) −139.717 139.717i −0.146762 0.146762i
\(953\) −546.187 + 546.187i −0.573124 + 0.573124i −0.933000 0.359876i \(-0.882819\pi\)
0.359876 + 0.933000i \(0.382819\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −318.202 −0.332847
\(957\) 0 0
\(958\) 532.353 532.353i 0.555692 0.555692i
\(959\) 598.894i 0.624498i
\(960\) 0 0
\(961\) 576.097 0.599476
\(962\) 4.54867 + 4.54867i 0.00472834 + 0.00472834i
\(963\) 0 0
\(964\) 862.292i 0.894494i
\(965\) 0 0
\(966\) 0 0
\(967\) 760.948 + 760.948i 0.786916 + 0.786916i 0.980987 0.194072i \(-0.0621694\pi\)
−0.194072 + 0.980987i \(0.562169\pi\)
\(968\) 658.280 658.280i 0.680041 0.680041i
\(969\) 0 0
\(970\) 0 0
\(971\) 892.281 0.918930 0.459465 0.888196i \(-0.348041\pi\)
0.459465 + 0.888196i \(0.348041\pi\)
\(972\) 0 0
\(973\) −121.620 + 121.620i −0.124995 + 0.124995i
\(974\) 715.007i 0.734093i
\(975\) 0 0
\(976\) 381.062 0.390432
\(977\) −263.487 263.487i −0.269690 0.269690i 0.559285 0.828975i \(-0.311076\pi\)
−0.828975 + 0.559285i \(0.811076\pi\)
\(978\) 0 0
\(979\) 372.773i 0.380769i
\(980\) 0 0
\(981\) 0 0
\(982\) 109.746 + 109.746i 0.111758 + 0.111758i
\(983\) −917.630 + 917.630i −0.933499 + 0.933499i −0.997923 0.0644232i \(-0.979479\pi\)
0.0644232 + 0.997923i \(0.479479\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −139.043 −0.141017
\(987\) 0 0
\(988\) 39.2671 39.2671i 0.0397440 0.0397440i
\(989\) 2812.27i 2.84355i
\(990\) 0 0
\(991\) −1393.97 −1.40663 −0.703315 0.710878i \(-0.748298\pi\)
−0.703315 + 0.710878i \(0.748298\pi\)
\(992\) 908.961 + 908.961i 0.916292 + 0.916292i
\(993\) 0 0
\(994\) 186.690i 0.187817i
\(995\) 0 0
\(996\) 0 0
\(997\) 243.100 + 243.100i 0.243831 + 0.243831i 0.818433 0.574602i \(-0.194843\pi\)
−0.574602 + 0.818433i \(0.694843\pi\)
\(998\) 131.184 131.184i 0.131447 0.131447i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.g.j.82.5 16
3.2 odd 2 inner 675.3.g.j.82.4 16
5.2 odd 4 135.3.g.b.28.4 16
5.3 odd 4 inner 675.3.g.j.568.5 16
5.4 even 2 135.3.g.b.82.4 yes 16
15.2 even 4 135.3.g.b.28.5 yes 16
15.8 even 4 inner 675.3.g.j.568.4 16
15.14 odd 2 135.3.g.b.82.5 yes 16
45.2 even 12 405.3.l.n.28.4 32
45.4 even 6 405.3.l.n.217.5 32
45.7 odd 12 405.3.l.n.28.5 32
45.14 odd 6 405.3.l.n.217.4 32
45.22 odd 12 405.3.l.n.298.4 32
45.29 odd 6 405.3.l.n.352.5 32
45.32 even 12 405.3.l.n.298.5 32
45.34 even 6 405.3.l.n.352.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.4 16 5.2 odd 4
135.3.g.b.28.5 yes 16 15.2 even 4
135.3.g.b.82.4 yes 16 5.4 even 2
135.3.g.b.82.5 yes 16 15.14 odd 2
405.3.l.n.28.4 32 45.2 even 12
405.3.l.n.28.5 32 45.7 odd 12
405.3.l.n.217.4 32 45.14 odd 6
405.3.l.n.217.5 32 45.4 even 6
405.3.l.n.298.4 32 45.22 odd 12
405.3.l.n.298.5 32 45.32 even 12
405.3.l.n.352.4 32 45.34 even 6
405.3.l.n.352.5 32 45.29 odd 6
675.3.g.j.82.4 16 3.2 odd 2 inner
675.3.g.j.82.5 16 1.1 even 1 trivial
675.3.g.j.568.4 16 15.8 even 4 inner
675.3.g.j.568.5 16 5.3 odd 4 inner