Properties

Label 675.2.l.h.151.7
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.7
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.h.76.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.232949 - 0.195467i) q^{2} +(0.722492 + 1.57417i) q^{3} +(-0.331239 - 1.87855i) q^{4} +(0.139394 - 0.507924i) q^{6} +(0.592777 - 3.36181i) q^{7} +(-0.594126 + 1.02906i) q^{8} +(-1.95601 + 2.27465i) q^{9} +(-2.75854 + 1.00403i) q^{11} +(2.71783 - 1.87866i) q^{12} +(4.21142 - 3.53380i) q^{13} +(-0.795210 + 0.667260i) q^{14} +(-3.24543 + 1.18124i) q^{16} +(-1.05942 - 1.83496i) q^{17} +(0.900269 - 0.147541i) q^{18} +(2.20534 - 3.81976i) q^{19} +(5.72033 - 1.49575i) q^{21} +(0.838853 + 0.305317i) q^{22} +(-0.804944 - 4.56507i) q^{23} +(-2.04916 - 0.191769i) q^{24} -1.67179 q^{26} +(-4.99388 - 1.43567i) q^{27} -6.51167 q^{28} +(-0.308828 - 0.259138i) q^{29} +(-0.573021 - 3.24976i) q^{31} +(3.22009 + 1.17202i) q^{32} +(-3.57353 - 3.61701i) q^{33} +(-0.111885 + 0.634533i) q^{34} +(4.92094 + 2.92101i) q^{36} +(2.03269 + 3.52072i) q^{37} +(-1.26037 + 0.458737i) q^{38} +(8.60551 + 4.07634i) q^{39} +(-3.73852 + 3.13699i) q^{41} +(-1.62491 - 0.769703i) q^{42} +(0.0992511 - 0.0361245i) q^{43} +(2.79985 + 4.84948i) q^{44} +(-0.704810 + 1.22077i) q^{46} +(2.00126 - 11.3497i) q^{47} +(-4.20427 - 4.25542i) q^{48} +(-4.37252 - 1.59147i) q^{49} +(2.12312 - 2.99344i) q^{51} +(-8.03340 - 6.74082i) q^{52} +11.5814 q^{53} +(0.882691 + 1.31058i) q^{54} +(3.10730 + 2.60734i) q^{56} +(7.60629 + 0.711828i) q^{57} +(0.0212882 + 0.120732i) q^{58} +(-5.15923 - 1.87781i) q^{59} +(1.18992 - 6.74834i) q^{61} +(-0.501737 + 0.869034i) q^{62} +(6.48745 + 7.92409i) q^{63} +(2.93269 + 5.07957i) q^{64} +(0.125444 + 1.54108i) q^{66} +(2.92531 - 2.45463i) q^{67} +(-3.09614 + 2.59797i) q^{68} +(6.60462 - 4.56534i) q^{69} +(6.75694 + 11.7034i) q^{71} +(-1.17862 - 3.36427i) q^{72} +(-3.86382 + 6.69232i) q^{73} +(0.214673 - 1.21747i) q^{74} +(-7.90610 - 2.87758i) q^{76} +(1.74014 + 9.86885i) q^{77} +(-1.20785 - 2.63167i) q^{78} +(1.80591 + 1.51534i) q^{79} +(-1.34805 - 8.89847i) q^{81} +1.48406 q^{82} +(5.21978 + 4.37992i) q^{83} +(-4.70463 - 10.2505i) q^{84} +(-0.0301816 - 0.0109852i) q^{86} +(0.184800 - 0.673373i) q^{87} +(0.605720 - 3.43521i) q^{88} +(-0.870723 + 1.50814i) q^{89} +(-9.38352 - 16.2527i) q^{91} +(-8.30907 + 3.02425i) q^{92} +(4.70167 - 3.24996i) q^{93} +(-2.68468 + 2.25271i) q^{94} +(0.481539 + 5.91574i) q^{96} +(0.417944 - 0.152119i) q^{97} +(0.707493 + 1.22541i) q^{98} +(3.11193 - 8.23860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.232949 0.195467i −0.164720 0.138216i 0.556702 0.830712i \(-0.312067\pi\)
−0.721422 + 0.692496i \(0.756511\pi\)
\(3\) 0.722492 + 1.57417i 0.417131 + 0.908846i
\(4\) −0.331239 1.87855i −0.165619 0.939274i
\(5\) 0 0
\(6\) 0.139394 0.507924i 0.0569076 0.207359i
\(7\) 0.592777 3.36181i 0.224049 1.27064i −0.640446 0.768003i \(-0.721251\pi\)
0.864495 0.502641i \(-0.167638\pi\)
\(8\) −0.594126 + 1.02906i −0.210055 + 0.363826i
\(9\) −1.95601 + 2.27465i −0.652003 + 0.758216i
\(10\) 0 0
\(11\) −2.75854 + 1.00403i −0.831732 + 0.302726i −0.722569 0.691298i \(-0.757039\pi\)
−0.109162 + 0.994024i \(0.534817\pi\)
\(12\) 2.71783 1.87866i 0.784571 0.542323i
\(13\) 4.21142 3.53380i 1.16804 0.980100i 0.168053 0.985778i \(-0.446252\pi\)
0.999984 + 0.00567819i \(0.00180744\pi\)
\(14\) −0.795210 + 0.667260i −0.212529 + 0.178333i
\(15\) 0 0
\(16\) −3.24543 + 1.18124i −0.811358 + 0.295310i
\(17\) −1.05942 1.83496i −0.256946 0.445044i 0.708476 0.705735i \(-0.249383\pi\)
−0.965422 + 0.260691i \(0.916050\pi\)
\(18\) 0.900269 0.147541i 0.212195 0.0347757i
\(19\) 2.20534 3.81976i 0.505940 0.876313i −0.494037 0.869441i \(-0.664479\pi\)
0.999976 0.00687212i \(-0.00218748\pi\)
\(20\) 0 0
\(21\) 5.72033 1.49575i 1.24828 0.326399i
\(22\) 0.838853 + 0.305317i 0.178844 + 0.0650939i
\(23\) −0.804944 4.56507i −0.167843 0.951882i −0.946085 0.323918i \(-0.895000\pi\)
0.778243 0.627964i \(-0.216111\pi\)
\(24\) −2.04916 0.191769i −0.418283 0.0391446i
\(25\) 0 0
\(26\) −1.67179 −0.327864
\(27\) −4.99388 1.43567i −0.961073 0.276295i
\(28\) −6.51167 −1.23059
\(29\) −0.308828 0.259138i −0.0573480 0.0481207i 0.613663 0.789568i \(-0.289695\pi\)
−0.671011 + 0.741447i \(0.734140\pi\)
\(30\) 0 0
\(31\) −0.573021 3.24976i −0.102918 0.583674i −0.992032 0.125989i \(-0.959790\pi\)
0.889114 0.457686i \(-0.151321\pi\)
\(32\) 3.22009 + 1.17202i 0.569238 + 0.207186i
\(33\) −3.57353 3.61701i −0.622072 0.629640i
\(34\) −0.111885 + 0.634533i −0.0191882 + 0.108821i
\(35\) 0 0
\(36\) 4.92094 + 2.92101i 0.820157 + 0.486834i
\(37\) 2.03269 + 3.52072i 0.334172 + 0.578803i 0.983325 0.181854i \(-0.0582100\pi\)
−0.649153 + 0.760658i \(0.724877\pi\)
\(38\) −1.26037 + 0.458737i −0.204459 + 0.0744169i
\(39\) 8.60551 + 4.07634i 1.37798 + 0.652736i
\(40\) 0 0
\(41\) −3.73852 + 3.13699i −0.583859 + 0.489916i −0.886212 0.463280i \(-0.846672\pi\)
0.302353 + 0.953196i \(0.402228\pi\)
\(42\) −1.62491 0.769703i −0.250729 0.118768i
\(43\) 0.0992511 0.0361245i 0.0151357 0.00550893i −0.334441 0.942417i \(-0.608548\pi\)
0.349577 + 0.936908i \(0.386325\pi\)
\(44\) 2.79985 + 4.84948i 0.422093 + 0.731087i
\(45\) 0 0
\(46\) −0.704810 + 1.22077i −0.103919 + 0.179992i
\(47\) 2.00126 11.3497i 0.291913 1.65552i −0.387577 0.921837i \(-0.626688\pi\)
0.679490 0.733684i \(-0.262201\pi\)
\(48\) −4.20427 4.25542i −0.606834 0.614217i
\(49\) −4.37252 1.59147i −0.624646 0.227352i
\(50\) 0 0
\(51\) 2.12312 2.99344i 0.297296 0.419166i
\(52\) −8.03340 6.74082i −1.11403 0.934784i
\(53\) 11.5814 1.59083 0.795413 0.606068i \(-0.207254\pi\)
0.795413 + 0.606068i \(0.207254\pi\)
\(54\) 0.882691 + 1.31058i 0.120119 + 0.178347i
\(55\) 0 0
\(56\) 3.10730 + 2.60734i 0.415231 + 0.348420i
\(57\) 7.60629 + 0.711828i 1.00748 + 0.0942839i
\(58\) 0.0212882 + 0.120732i 0.00279528 + 0.0158528i
\(59\) −5.15923 1.87781i −0.671674 0.244469i −0.0164056 0.999865i \(-0.505222\pi\)
−0.655269 + 0.755396i \(0.727445\pi\)
\(60\) 0 0
\(61\) 1.18992 6.74834i 0.152353 0.864037i −0.808813 0.588066i \(-0.799890\pi\)
0.961166 0.275971i \(-0.0889993\pi\)
\(62\) −0.501737 + 0.869034i −0.0637207 + 0.110367i
\(63\) 6.48745 + 7.92409i 0.817342 + 0.998341i
\(64\) 2.93269 + 5.07957i 0.366586 + 0.634946i
\(65\) 0 0
\(66\) 0.125444 + 1.54108i 0.0154411 + 0.189694i
\(67\) 2.92531 2.45463i 0.357384 0.299881i −0.446363 0.894852i \(-0.647281\pi\)
0.803747 + 0.594971i \(0.202837\pi\)
\(68\) −3.09614 + 2.59797i −0.375463 + 0.315051i
\(69\) 6.60462 4.56534i 0.795102 0.549603i
\(70\) 0 0
\(71\) 6.75694 + 11.7034i 0.801901 + 1.38893i 0.918363 + 0.395738i \(0.129511\pi\)
−0.116462 + 0.993195i \(0.537155\pi\)
\(72\) −1.17862 3.36427i −0.138902 0.396483i
\(73\) −3.86382 + 6.69232i −0.452225 + 0.783277i −0.998524 0.0543132i \(-0.982703\pi\)
0.546299 + 0.837591i \(0.316036\pi\)
\(74\) 0.214673 1.21747i 0.0249552 0.141528i
\(75\) 0 0
\(76\) −7.90610 2.87758i −0.906891 0.330082i
\(77\) 1.74014 + 9.86885i 0.198308 + 1.12466i
\(78\) −1.20785 2.63167i −0.136762 0.297978i
\(79\) 1.80591 + 1.51534i 0.203181 + 0.170489i 0.738701 0.674034i \(-0.235440\pi\)
−0.535520 + 0.844523i \(0.679884\pi\)
\(80\) 0 0
\(81\) −1.34805 8.89847i −0.149784 0.988719i
\(82\) 1.48406 0.163887
\(83\) 5.21978 + 4.37992i 0.572946 + 0.480758i 0.882622 0.470084i \(-0.155776\pi\)
−0.309676 + 0.950842i \(0.600221\pi\)
\(84\) −4.70463 10.2505i −0.513317 1.11842i
\(85\) 0 0
\(86\) −0.0301816 0.0109852i −0.00325456 0.00118456i
\(87\) 0.184800 0.673373i 0.0198127 0.0721931i
\(88\) 0.605720 3.43521i 0.0645700 0.366195i
\(89\) −0.870723 + 1.50814i −0.0922964 + 0.159862i −0.908477 0.417935i \(-0.862754\pi\)
0.816181 + 0.577797i \(0.196087\pi\)
\(90\) 0 0
\(91\) −9.38352 16.2527i −0.983660 1.70375i
\(92\) −8.30907 + 3.02425i −0.866280 + 0.315300i
\(93\) 4.70167 3.24996i 0.487540 0.337005i
\(94\) −2.68468 + 2.25271i −0.276904 + 0.232350i
\(95\) 0 0
\(96\) 0.481539 + 5.91574i 0.0491469 + 0.603773i
\(97\) 0.417944 0.152119i 0.0424358 0.0154454i −0.320715 0.947176i \(-0.603923\pi\)
0.363151 + 0.931730i \(0.381701\pi\)
\(98\) 0.707493 + 1.22541i 0.0714676 + 0.123785i
\(99\) 3.11193 8.23860i 0.312760 0.828010i
\(100\) 0 0
\(101\) −1.10822 + 6.28500i −0.110272 + 0.625381i 0.878712 + 0.477353i \(0.158404\pi\)
−0.988983 + 0.148028i \(0.952707\pi\)
\(102\) −1.07970 + 0.282319i −0.106906 + 0.0279537i
\(103\) 11.4695 + 4.17454i 1.13012 + 0.411330i 0.838335 0.545155i \(-0.183529\pi\)
0.291783 + 0.956484i \(0.405751\pi\)
\(104\) 1.13437 + 6.43330i 0.111234 + 0.630837i
\(105\) 0 0
\(106\) −2.69787 2.26378i −0.262040 0.219878i
\(107\) 1.69143 0.163517 0.0817585 0.996652i \(-0.473946\pi\)
0.0817585 + 0.996652i \(0.473946\pi\)
\(108\) −1.04281 + 9.85679i −0.100345 + 0.948471i
\(109\) −15.3531 −1.47056 −0.735279 0.677765i \(-0.762949\pi\)
−0.735279 + 0.677765i \(0.762949\pi\)
\(110\) 0 0
\(111\) −4.07361 + 5.74349i −0.386650 + 0.545148i
\(112\) 2.04729 + 11.6107i 0.193450 + 1.09711i
\(113\) −14.7288 5.36085i −1.38557 0.504307i −0.461709 0.887031i \(-0.652764\pi\)
−0.923862 + 0.382725i \(0.874986\pi\)
\(114\) −1.63273 1.65260i −0.152920 0.154780i
\(115\) 0 0
\(116\) −0.384507 + 0.665985i −0.0357005 + 0.0618352i
\(117\) −0.199423 + 16.4916i −0.0184366 + 1.52465i
\(118\) 0.834786 + 1.44589i 0.0768483 + 0.133105i
\(119\) −6.79679 + 2.47383i −0.623060 + 0.226775i
\(120\) 0 0
\(121\) −1.82501 + 1.53136i −0.165910 + 0.139215i
\(122\) −1.59627 + 1.33943i −0.144519 + 0.121266i
\(123\) −7.63921 3.61861i −0.688804 0.326279i
\(124\) −5.91503 + 2.15289i −0.531185 + 0.193336i
\(125\) 0 0
\(126\) 0.0376555 3.11399i 0.00335462 0.277416i
\(127\) −6.46736 + 11.2018i −0.573885 + 0.993998i 0.422277 + 0.906467i \(0.361231\pi\)
−0.996162 + 0.0875312i \(0.972102\pi\)
\(128\) 1.49982 8.50591i 0.132567 0.751823i
\(129\) 0.128574 + 0.130138i 0.0113203 + 0.0114580i
\(130\) 0 0
\(131\) 1.99841 + 11.3335i 0.174602 + 0.990215i 0.938603 + 0.345000i \(0.112121\pi\)
−0.764001 + 0.645215i \(0.776768\pi\)
\(132\) −5.61103 + 7.91114i −0.488377 + 0.688577i
\(133\) −11.5340 9.67820i −1.00013 0.839206i
\(134\) −1.16125 −0.100316
\(135\) 0 0
\(136\) 2.51770 0.215891
\(137\) 9.34126 + 7.83825i 0.798078 + 0.669667i 0.947731 0.319072i \(-0.103371\pi\)
−0.149653 + 0.988739i \(0.547816\pi\)
\(138\) −2.43091 0.227495i −0.206933 0.0193656i
\(139\) 0.0420242 + 0.238331i 0.00356445 + 0.0202150i 0.986538 0.163532i \(-0.0522886\pi\)
−0.982974 + 0.183747i \(0.941177\pi\)
\(140\) 0 0
\(141\) 19.3122 5.04975i 1.62638 0.425265i
\(142\) 0.713602 4.04704i 0.0598842 0.339620i
\(143\) −8.06934 + 13.9765i −0.674792 + 1.16877i
\(144\) 3.66119 9.69273i 0.305099 0.807728i
\(145\) 0 0
\(146\) 2.20820 0.803719i 0.182752 0.0665163i
\(147\) −0.653875 8.03290i −0.0539307 0.662543i
\(148\) 5.94054 4.98470i 0.488309 0.409740i
\(149\) 9.73479 8.16846i 0.797505 0.669186i −0.150086 0.988673i \(-0.547955\pi\)
0.947591 + 0.319487i \(0.103511\pi\)
\(150\) 0 0
\(151\) 4.13101 1.50356i 0.336177 0.122358i −0.168416 0.985716i \(-0.553865\pi\)
0.504592 + 0.863358i \(0.331643\pi\)
\(152\) 2.62050 + 4.53883i 0.212550 + 0.368148i
\(153\) 6.24612 + 1.17940i 0.504969 + 0.0953492i
\(154\) 1.52367 2.63908i 0.122781 0.212663i
\(155\) 0 0
\(156\) 4.80712 17.5161i 0.384877 1.40241i
\(157\) 4.64345 + 1.69008i 0.370587 + 0.134883i 0.520599 0.853802i \(-0.325709\pi\)
−0.150011 + 0.988684i \(0.547931\pi\)
\(158\) −0.124486 0.705992i −0.00990353 0.0561657i
\(159\) 8.36746 + 18.2310i 0.663583 + 1.44582i
\(160\) 0 0
\(161\) −15.8240 −1.24711
\(162\) −1.42533 + 2.33639i −0.111985 + 0.183564i
\(163\) 0.134430 0.0105294 0.00526468 0.999986i \(-0.498324\pi\)
0.00526468 + 0.999986i \(0.498324\pi\)
\(164\) 7.13134 + 5.98390i 0.556864 + 0.467264i
\(165\) 0 0
\(166\) −0.359811 2.04059i −0.0279268 0.158381i
\(167\) −14.3623 5.22746i −1.11139 0.404513i −0.279887 0.960033i \(-0.590297\pi\)
−0.831503 + 0.555520i \(0.812519\pi\)
\(168\) −1.85938 + 6.77520i −0.143455 + 0.522718i
\(169\) 2.99088 16.9621i 0.230068 1.30478i
\(170\) 0 0
\(171\) 4.37495 + 12.4879i 0.334561 + 0.954971i
\(172\) −0.100737 0.174482i −0.00768115 0.0133041i
\(173\) 14.2120 5.17275i 1.08052 0.393277i 0.260419 0.965496i \(-0.416139\pi\)
0.820101 + 0.572218i \(0.193917\pi\)
\(174\) −0.174671 + 0.120739i −0.0132418 + 0.00915319i
\(175\) 0 0
\(176\) 7.76666 6.51700i 0.585434 0.491238i
\(177\) −0.771521 9.47819i −0.0579911 0.712424i
\(178\) 0.497625 0.181121i 0.0372985 0.0135756i
\(179\) −0.794987 1.37696i −0.0594201 0.102919i 0.834785 0.550576i \(-0.185592\pi\)
−0.894205 + 0.447657i \(0.852258\pi\)
\(180\) 0 0
\(181\) −10.8756 + 18.8371i −0.808375 + 1.40015i 0.105613 + 0.994407i \(0.466319\pi\)
−0.913989 + 0.405740i \(0.867014\pi\)
\(182\) −0.990997 + 5.62022i −0.0734576 + 0.416599i
\(183\) 11.4827 3.00250i 0.848828 0.221951i
\(184\) 5.17595 + 1.88389i 0.381576 + 0.138882i
\(185\) 0 0
\(186\) −1.73051 0.161948i −0.126887 0.0118746i
\(187\) 4.76479 + 3.99814i 0.348436 + 0.292373i
\(188\) −21.9838 −1.60333
\(189\) −7.78671 + 15.9374i −0.566400 + 1.15928i
\(190\) 0 0
\(191\) −6.03626 5.06502i −0.436768 0.366492i 0.397730 0.917502i \(-0.369798\pi\)
−0.834498 + 0.551010i \(0.814242\pi\)
\(192\) −5.87725 + 8.28650i −0.424154 + 0.598026i
\(193\) 3.10054 + 17.5840i 0.223182 + 1.26573i 0.866131 + 0.499817i \(0.166599\pi\)
−0.642950 + 0.765909i \(0.722290\pi\)
\(194\) −0.127094 0.0462583i −0.00912480 0.00332115i
\(195\) 0 0
\(196\) −1.54130 + 8.74114i −0.110093 + 0.624367i
\(197\) −4.75730 + 8.23989i −0.338944 + 0.587068i −0.984234 0.176870i \(-0.943403\pi\)
0.645291 + 0.763937i \(0.276736\pi\)
\(198\) −2.33529 + 1.31089i −0.165962 + 0.0931610i
\(199\) 5.46922 + 9.47297i 0.387703 + 0.671521i 0.992140 0.125132i \(-0.0399353\pi\)
−0.604437 + 0.796653i \(0.706602\pi\)
\(200\) 0 0
\(201\) 5.97751 + 2.83148i 0.421621 + 0.199717i
\(202\) 1.48667 1.24746i 0.104602 0.0877712i
\(203\) −1.05424 + 0.884610i −0.0739930 + 0.0620875i
\(204\) −6.32659 2.99684i −0.442950 0.209820i
\(205\) 0 0
\(206\) −1.85581 3.21435i −0.129300 0.223955i
\(207\) 11.9584 + 7.09835i 0.831166 + 0.493369i
\(208\) −9.49360 + 16.4434i −0.658263 + 1.14014i
\(209\) −2.24838 + 12.7512i −0.155524 + 0.882018i
\(210\) 0 0
\(211\) 9.58727 + 3.48948i 0.660015 + 0.240226i 0.650243 0.759727i \(-0.274667\pi\)
0.00977203 + 0.999952i \(0.496889\pi\)
\(212\) −3.83620 21.7562i −0.263471 1.49422i
\(213\) −13.5412 + 19.0921i −0.927829 + 1.30817i
\(214\) −0.394017 0.330619i −0.0269344 0.0226007i
\(215\) 0 0
\(216\) 4.44438 4.28601i 0.302402 0.291626i
\(217\) −11.2647 −0.764701
\(218\) 3.57648 + 3.00102i 0.242230 + 0.203255i
\(219\) −13.3264 1.24714i −0.900516 0.0842740i
\(220\) 0 0
\(221\) −10.9460 3.98403i −0.736310 0.267995i
\(222\) 2.07160 0.541682i 0.139037 0.0363553i
\(223\) 3.98483 22.5991i 0.266844 1.51335i −0.496888 0.867815i \(-0.665524\pi\)
0.763732 0.645534i \(-0.223365\pi\)
\(224\) 5.84890 10.1306i 0.390796 0.676879i
\(225\) 0 0
\(226\) 2.38319 + 4.12780i 0.158527 + 0.274577i
\(227\) 6.71417 2.44376i 0.445635 0.162198i −0.109448 0.993992i \(-0.534908\pi\)
0.555084 + 0.831794i \(0.312686\pi\)
\(228\) −1.18229 14.5246i −0.0782993 0.961912i
\(229\) 14.3264 12.0213i 0.946713 0.794387i −0.0320278 0.999487i \(-0.510197\pi\)
0.978741 + 0.205100i \(0.0657521\pi\)
\(230\) 0 0
\(231\) −14.2780 + 9.86945i −0.939423 + 0.649362i
\(232\) 0.450150 0.163841i 0.0295538 0.0107567i
\(233\) 12.3190 + 21.3371i 0.807043 + 1.39784i 0.914903 + 0.403673i \(0.132267\pi\)
−0.107861 + 0.994166i \(0.534400\pi\)
\(234\) 3.27003 3.80273i 0.213768 0.248592i
\(235\) 0 0
\(236\) −1.81861 + 10.3139i −0.118382 + 0.671375i
\(237\) −1.08064 + 3.93763i −0.0701952 + 0.255776i
\(238\) 2.06685 + 0.752273i 0.133974 + 0.0487626i
\(239\) 3.02299 + 17.1443i 0.195541 + 1.10897i 0.911646 + 0.410977i \(0.134812\pi\)
−0.716105 + 0.697993i \(0.754077\pi\)
\(240\) 0 0
\(241\) −5.58320 4.68486i −0.359646 0.301778i 0.445004 0.895529i \(-0.353202\pi\)
−0.804649 + 0.593750i \(0.797647\pi\)
\(242\) 0.724464 0.0465703
\(243\) 13.0337 8.55114i 0.836114 0.548556i
\(244\) −13.0712 −0.836800
\(245\) 0 0
\(246\) 1.07222 + 2.33616i 0.0683625 + 0.148948i
\(247\) −4.21066 23.8798i −0.267918 1.51944i
\(248\) 3.68463 + 1.34110i 0.233974 + 0.0851597i
\(249\) −3.12347 + 11.3813i −0.197942 + 0.721259i
\(250\) 0 0
\(251\) 11.4223 19.7840i 0.720971 1.24876i −0.239641 0.970862i \(-0.577030\pi\)
0.960611 0.277896i \(-0.0896371\pi\)
\(252\) 12.7369 14.8118i 0.802348 0.933053i
\(253\) 6.80392 + 11.7847i 0.427759 + 0.740900i
\(254\) 3.69614 1.34529i 0.231917 0.0844108i
\(255\) 0 0
\(256\) 6.97428 5.85212i 0.435892 0.365757i
\(257\) −1.12718 + 0.945818i −0.0703117 + 0.0589985i −0.677266 0.735738i \(-0.736835\pi\)
0.606955 + 0.794737i \(0.292391\pi\)
\(258\) −0.00451341 0.0554476i −0.000280993 0.00345201i
\(259\) 13.0409 4.74651i 0.810324 0.294934i
\(260\) 0 0
\(261\) 1.19352 0.195600i 0.0738769 0.0121073i
\(262\) 1.74981 3.03075i 0.108103 0.187241i
\(263\) 3.75201 21.2787i 0.231359 1.31210i −0.618790 0.785557i \(-0.712377\pi\)
0.850148 0.526543i \(-0.176512\pi\)
\(264\) 5.84523 1.52841i 0.359749 0.0940670i
\(265\) 0 0
\(266\) 0.795066 + 4.50905i 0.0487486 + 0.276467i
\(267\) −3.00315 0.281047i −0.183790 0.0171998i
\(268\) −5.58012 4.68227i −0.340860 0.286015i
\(269\) −13.3362 −0.813125 −0.406562 0.913623i \(-0.633273\pi\)
−0.406562 + 0.913623i \(0.633273\pi\)
\(270\) 0 0
\(271\) 19.7312 1.19859 0.599293 0.800530i \(-0.295448\pi\)
0.599293 + 0.800530i \(0.295448\pi\)
\(272\) 5.60579 + 4.70382i 0.339901 + 0.285211i
\(273\) 18.8050 26.5137i 1.13813 1.60468i
\(274\) −0.643914 3.65182i −0.0389003 0.220614i
\(275\) 0 0
\(276\) −10.7639 10.8949i −0.647912 0.655794i
\(277\) −4.60416 + 26.1115i −0.276637 + 1.56889i 0.457075 + 0.889428i \(0.348897\pi\)
−0.733712 + 0.679460i \(0.762214\pi\)
\(278\) 0.0367964 0.0637333i 0.00220690 0.00382247i
\(279\) 8.51290 + 5.05314i 0.509654 + 0.302524i
\(280\) 0 0
\(281\) −6.13842 + 2.23420i −0.366188 + 0.133281i −0.518559 0.855042i \(-0.673531\pi\)
0.152371 + 0.988323i \(0.451309\pi\)
\(282\) −5.48581 2.59857i −0.326675 0.154742i
\(283\) −4.92140 + 4.12955i −0.292547 + 0.245476i −0.777234 0.629212i \(-0.783378\pi\)
0.484687 + 0.874688i \(0.338933\pi\)
\(284\) 19.7472 16.5698i 1.17178 0.983239i
\(285\) 0 0
\(286\) 4.61169 1.67852i 0.272695 0.0992529i
\(287\) 8.32986 + 14.4277i 0.491696 + 0.851642i
\(288\) −8.96447 + 5.03210i −0.528236 + 0.296520i
\(289\) 6.25528 10.8345i 0.367957 0.637321i
\(290\) 0 0
\(291\) 0.541422 + 0.548009i 0.0317387 + 0.0321248i
\(292\) 13.8517 + 5.04161i 0.810609 + 0.295038i
\(293\) −2.42943 13.7780i −0.141929 0.804919i −0.969782 0.243974i \(-0.921549\pi\)
0.827853 0.560945i \(-0.189562\pi\)
\(294\) −1.41785 + 1.99906i −0.0826906 + 0.116588i
\(295\) 0 0
\(296\) −4.83069 −0.280778
\(297\) 15.2173 1.05363i 0.882996 0.0611379i
\(298\) −3.86437 −0.223857
\(299\) −19.5220 16.3809i −1.12899 0.947332i
\(300\) 0 0
\(301\) −0.0626096 0.355077i −0.00360876 0.0204663i
\(302\) −1.25621 0.457223i −0.0722868 0.0263102i
\(303\) −10.6943 + 2.79635i −0.614373 + 0.160646i
\(304\) −2.64522 + 15.0018i −0.151714 + 0.860413i
\(305\) 0 0
\(306\) −1.22449 1.49565i −0.0699995 0.0855007i
\(307\) −7.92646 13.7290i −0.452387 0.783557i 0.546147 0.837689i \(-0.316094\pi\)
−0.998534 + 0.0541324i \(0.982761\pi\)
\(308\) 17.9627 6.53789i 1.02352 0.372531i
\(309\) 1.71517 + 21.0709i 0.0975723 + 1.19868i
\(310\) 0 0
\(311\) 11.9922 10.0626i 0.680015 0.570600i −0.235996 0.971754i \(-0.575835\pi\)
0.916011 + 0.401154i \(0.131391\pi\)
\(312\) −9.30753 + 6.43369i −0.526935 + 0.364236i
\(313\) 0.953980 0.347220i 0.0539221 0.0196261i −0.314918 0.949119i \(-0.601977\pi\)
0.368840 + 0.929493i \(0.379755\pi\)
\(314\) −0.751330 1.30134i −0.0424000 0.0734390i
\(315\) 0 0
\(316\) 2.24845 3.89443i 0.126485 0.219079i
\(317\) 2.00474 11.3695i 0.112598 0.638573i −0.875314 0.483555i \(-0.839345\pi\)
0.987912 0.155018i \(-0.0495436\pi\)
\(318\) 1.61438 5.88246i 0.0905300 0.329872i
\(319\) 1.11210 + 0.404770i 0.0622655 + 0.0226628i
\(320\) 0 0
\(321\) 1.22205 + 2.66260i 0.0682080 + 0.148612i
\(322\) 3.68619 + 3.09308i 0.205423 + 0.172370i
\(323\) −9.34549 −0.519997
\(324\) −16.2697 + 5.47990i −0.903871 + 0.304439i
\(325\) 0 0
\(326\) −0.0313152 0.0262766i −0.00173439 0.00145533i
\(327\) −11.0925 24.1683i −0.613415 1.33651i
\(328\) −1.00699 5.71092i −0.0556017 0.315333i
\(329\) −36.9692 13.4557i −2.03818 0.741835i
\(330\) 0 0
\(331\) −0.601404 + 3.41073i −0.0330562 + 0.187471i −0.996865 0.0791244i \(-0.974788\pi\)
0.963809 + 0.266595i \(0.0858987\pi\)
\(332\) 6.49889 11.2564i 0.356673 0.617776i
\(333\) −11.9844 2.26291i −0.656739 0.124007i
\(334\) 2.32389 + 4.02509i 0.127157 + 0.220243i
\(335\) 0 0
\(336\) −16.7981 + 11.6114i −0.916411 + 0.633456i
\(337\) −0.116311 + 0.0975969i −0.00633589 + 0.00531644i −0.645950 0.763380i \(-0.723539\pi\)
0.639614 + 0.768696i \(0.279094\pi\)
\(338\) −4.01226 + 3.36668i −0.218238 + 0.183123i
\(339\) −2.20258 27.0588i −0.119628 1.46963i
\(340\) 0 0
\(341\) 4.84355 + 8.38927i 0.262293 + 0.454305i
\(342\) 1.42183 3.76419i 0.0768837 0.203544i
\(343\) 4.00571 6.93809i 0.216288 0.374622i
\(344\) −0.0217936 + 0.123597i −0.00117503 + 0.00666392i
\(345\) 0 0
\(346\) −4.32178 1.57300i −0.232340 0.0845649i
\(347\) −3.60850 20.4648i −0.193714 1.09861i −0.914238 0.405178i \(-0.867210\pi\)
0.720524 0.693430i \(-0.243901\pi\)
\(348\) −1.32618 0.124109i −0.0710905 0.00665294i
\(349\) −4.76037 3.99442i −0.254817 0.213816i 0.506427 0.862283i \(-0.330966\pi\)
−0.761243 + 0.648467i \(0.775411\pi\)
\(350\) 0 0
\(351\) −26.1047 + 11.6012i −1.39337 + 0.619224i
\(352\) −10.0595 −0.536173
\(353\) −4.58839 3.85011i −0.244215 0.204921i 0.512461 0.858710i \(-0.328734\pi\)
−0.756677 + 0.653789i \(0.773178\pi\)
\(354\) −1.67295 + 2.35874i −0.0889163 + 0.125366i
\(355\) 0 0
\(356\) 3.12152 + 1.13614i 0.165440 + 0.0602154i
\(357\) −8.80485 8.91196i −0.466002 0.471671i
\(358\) −0.0839588 + 0.476154i −0.00443736 + 0.0251655i
\(359\) 0.255829 0.443109i 0.0135022 0.0233864i −0.859195 0.511648i \(-0.829035\pi\)
0.872698 + 0.488261i \(0.162369\pi\)
\(360\) 0 0
\(361\) −0.227046 0.393256i −0.0119498 0.0206977i
\(362\) 6.21548 2.26225i 0.326678 0.118901i
\(363\) −3.72918 1.76647i −0.195731 0.0927157i
\(364\) −27.4234 + 23.0109i −1.43737 + 1.20610i
\(365\) 0 0
\(366\) −3.26178 1.54507i −0.170496 0.0807620i
\(367\) 19.2963 7.02326i 1.00726 0.366611i 0.214878 0.976641i \(-0.431065\pi\)
0.792378 + 0.610030i \(0.208843\pi\)
\(368\) 8.00483 + 13.8648i 0.417281 + 0.722752i
\(369\) 0.177030 14.6398i 0.00921581 0.762118i
\(370\) 0 0
\(371\) 6.86518 38.9344i 0.356423 2.02137i
\(372\) −7.66258 7.75580i −0.397286 0.402119i
\(373\) 11.7902 + 4.29128i 0.610472 + 0.222194i 0.628710 0.777640i \(-0.283583\pi\)
−0.0182375 + 0.999834i \(0.505805\pi\)
\(374\) −0.328448 1.86272i −0.0169836 0.0963190i
\(375\) 0 0
\(376\) 10.4905 + 8.80254i 0.541004 + 0.453956i
\(377\) −2.21635 −0.114148
\(378\) 4.92915 2.19056i 0.253528 0.112670i
\(379\) 29.8914 1.53542 0.767710 0.640798i \(-0.221396\pi\)
0.767710 + 0.640798i \(0.221396\pi\)
\(380\) 0 0
\(381\) −22.3061 2.08750i −1.14278 0.106946i
\(382\) 0.416093 + 2.35978i 0.0212892 + 0.120737i
\(383\) −20.4840 7.45556i −1.04668 0.380961i −0.239273 0.970952i \(-0.576909\pi\)
−0.807410 + 0.589991i \(0.799131\pi\)
\(384\) 14.4733 3.78448i 0.738589 0.193126i
\(385\) 0 0
\(386\) 2.71483 4.70223i 0.138181 0.239337i
\(387\) −0.111966 + 0.296421i −0.00569154 + 0.0150679i
\(388\) −0.424202 0.734740i −0.0215356 0.0373008i
\(389\) 9.78677 3.56209i 0.496209 0.180605i −0.0817791 0.996650i \(-0.526060\pi\)
0.577988 + 0.816045i \(0.303838\pi\)
\(390\) 0 0
\(391\) −7.52395 + 6.31335i −0.380503 + 0.319280i
\(392\) 4.23553 3.55403i 0.213927 0.179506i
\(393\) −16.3971 + 11.3342i −0.827122 + 0.571736i
\(394\) 2.71883 0.989574i 0.136973 0.0498540i
\(395\) 0 0
\(396\) −16.5074 3.11696i −0.829528 0.156633i
\(397\) 10.9269 18.9260i 0.548406 0.949866i −0.449978 0.893039i \(-0.648568\pi\)
0.998384 0.0568270i \(-0.0180983\pi\)
\(398\) 0.577606 3.27577i 0.0289528 0.164199i
\(399\) 6.90186 25.1489i 0.345525 1.25902i
\(400\) 0 0
\(401\) −3.50040 19.8518i −0.174802 0.991351i −0.938372 0.345626i \(-0.887667\pi\)
0.763570 0.645725i \(-0.223445\pi\)
\(402\) −0.838992 1.82800i −0.0418451 0.0911722i
\(403\) −13.8972 11.6612i −0.692271 0.580884i
\(404\) 12.1738 0.605667
\(405\) 0 0
\(406\) 0.418495 0.0207696
\(407\) −9.14216 7.67118i −0.453160 0.380246i
\(408\) 1.81902 + 3.96329i 0.0900550 + 0.196212i
\(409\) 2.34346 + 13.2904i 0.115876 + 0.657168i 0.986313 + 0.164887i \(0.0527258\pi\)
−0.870436 + 0.492282i \(0.836163\pi\)
\(410\) 0 0
\(411\) −5.58973 + 20.3678i −0.275721 + 1.00467i
\(412\) 4.04295 22.9287i 0.199182 1.12962i
\(413\) −9.37109 + 16.2312i −0.461121 + 0.798686i
\(414\) −1.39820 3.99102i −0.0687178 0.196148i
\(415\) 0 0
\(416\) 17.7028 6.44331i 0.867953 0.315909i
\(417\) −0.344811 + 0.238346i −0.0168855 + 0.0116718i
\(418\) 3.01619 2.53089i 0.147527 0.123790i
\(419\) −1.56378 + 1.31217i −0.0763959 + 0.0641037i −0.680186 0.733040i \(-0.738101\pi\)
0.603790 + 0.797143i \(0.293657\pi\)
\(420\) 0 0
\(421\) −2.58533 + 0.940984i −0.126001 + 0.0458608i −0.404251 0.914648i \(-0.632468\pi\)
0.278250 + 0.960509i \(0.410246\pi\)
\(422\) −1.55126 2.68687i −0.0755143 0.130795i
\(423\) 21.9021 + 26.7522i 1.06491 + 1.30074i
\(424\) −6.88080 + 11.9179i −0.334161 + 0.578784i
\(425\) 0 0
\(426\) 6.88629 1.80063i 0.333642 0.0872406i
\(427\) −21.9813 8.00053i −1.06375 0.387173i
\(428\) −0.560268 3.17744i −0.0270816 0.153587i
\(429\) −27.8314 2.60458i −1.34371 0.125750i
\(430\) 0 0
\(431\) 20.0948 0.967932 0.483966 0.875087i \(-0.339196\pi\)
0.483966 + 0.875087i \(0.339196\pi\)
\(432\) 17.9032 1.23960i 0.861367 0.0596403i
\(433\) −11.8614 −0.570023 −0.285011 0.958524i \(-0.591997\pi\)
−0.285011 + 0.958524i \(0.591997\pi\)
\(434\) 2.62411 + 2.20189i 0.125961 + 0.105694i
\(435\) 0 0
\(436\) 5.08553 + 28.8415i 0.243553 + 1.38126i
\(437\) −19.2126 6.99283i −0.919065 0.334512i
\(438\) 2.86060 + 2.89540i 0.136685 + 0.138347i
\(439\) −6.50324 + 36.8817i −0.310383 + 1.76027i 0.286636 + 0.958040i \(0.407463\pi\)
−0.597018 + 0.802228i \(0.703648\pi\)
\(440\) 0 0
\(441\) 12.1727 6.83302i 0.579653 0.325382i
\(442\) 1.77112 + 3.06766i 0.0842434 + 0.145914i
\(443\) 13.9500 5.07737i 0.662783 0.241233i 0.0113453 0.999936i \(-0.496389\pi\)
0.651437 + 0.758702i \(0.274166\pi\)
\(444\) 12.1388 + 5.75000i 0.576080 + 0.272883i
\(445\) 0 0
\(446\) −5.34565 + 4.48553i −0.253124 + 0.212396i
\(447\) 19.8918 + 9.42255i 0.940852 + 0.445671i
\(448\) 18.8150 6.84809i 0.888924 0.323542i
\(449\) 8.86789 + 15.3596i 0.418502 + 0.724866i 0.995789 0.0916751i \(-0.0292221\pi\)
−0.577287 + 0.816541i \(0.695889\pi\)
\(450\) 0 0
\(451\) 7.16325 12.4071i 0.337304 0.584228i
\(452\) −5.19186 + 29.4445i −0.244205 + 1.38495i
\(453\) 5.35149 + 5.41659i 0.251435 + 0.254494i
\(454\) −2.04173 0.743130i −0.0958232 0.0348768i
\(455\) 0 0
\(456\) −5.25160 + 7.40438i −0.245929 + 0.346742i
\(457\) −11.2544 9.44358i −0.526460 0.441752i 0.340417 0.940275i \(-0.389432\pi\)
−0.866877 + 0.498522i \(0.833876\pi\)
\(458\) −5.68707 −0.265739
\(459\) 2.65619 + 10.6846i 0.123980 + 0.498712i
\(460\) 0 0
\(461\) 11.0104 + 9.23885i 0.512807 + 0.430296i 0.862116 0.506711i \(-0.169139\pi\)
−0.349308 + 0.937008i \(0.613583\pi\)
\(462\) 5.25519 + 0.491802i 0.244494 + 0.0228807i
\(463\) −1.41229 8.00949i −0.0656346 0.372232i −0.999878 0.0155973i \(-0.995035\pi\)
0.934244 0.356635i \(-0.116076\pi\)
\(464\) 1.30838 + 0.476213i 0.0607402 + 0.0221076i
\(465\) 0 0
\(466\) 1.30101 7.37840i 0.0602681 0.341798i
\(467\) −10.7810 + 18.6732i −0.498883 + 0.864091i −0.999999 0.00128884i \(-0.999590\pi\)
0.501116 + 0.865380i \(0.332923\pi\)
\(468\) 31.0464 5.08804i 1.43512 0.235195i
\(469\) −6.51793 11.2894i −0.300970 0.521296i
\(470\) 0 0
\(471\) 0.694390 + 8.53063i 0.0319958 + 0.393071i
\(472\) 4.99759 4.19348i 0.230033 0.193021i
\(473\) −0.237518 + 0.199302i −0.0109211 + 0.00916390i
\(474\) 1.02141 0.706035i 0.0469149 0.0324293i
\(475\) 0 0
\(476\) 6.89856 + 11.9487i 0.316195 + 0.547666i
\(477\) −22.6533 + 26.3436i −1.03722 + 1.20619i
\(478\) 2.64694 4.58463i 0.121068 0.209696i
\(479\) 6.11802 34.6970i 0.279540 1.58535i −0.444622 0.895718i \(-0.646662\pi\)
0.724162 0.689630i \(-0.242227\pi\)
\(480\) 0 0
\(481\) 21.0020 + 7.64412i 0.957610 + 0.348542i
\(482\) 0.384863 + 2.18266i 0.0175300 + 0.0994176i
\(483\) −11.4327 24.9097i −0.520208 1.13343i
\(484\) 3.48125 + 2.92112i 0.158239 + 0.132778i
\(485\) 0 0
\(486\) −4.70766 0.555690i −0.213544 0.0252066i
\(487\) 21.9486 0.994588 0.497294 0.867582i \(-0.334327\pi\)
0.497294 + 0.867582i \(0.334327\pi\)
\(488\) 6.23746 + 5.23385i 0.282357 + 0.236925i
\(489\) 0.0971245 + 0.211615i 0.00439212 + 0.00956956i
\(490\) 0 0
\(491\) −19.2925 7.02190i −0.870659 0.316894i −0.132225 0.991220i \(-0.542212\pi\)
−0.738434 + 0.674326i \(0.764434\pi\)
\(492\) −4.26733 + 15.5492i −0.192386 + 0.701014i
\(493\) −0.148330 + 0.841223i −0.00668046 + 0.0378868i
\(494\) −3.68686 + 6.38582i −0.165879 + 0.287312i
\(495\) 0 0
\(496\) 5.69845 + 9.87000i 0.255868 + 0.443176i
\(497\) 43.3498 15.7780i 1.94450 0.707742i
\(498\) 2.95227 2.04072i 0.132295 0.0914466i
\(499\) 19.5778 16.4277i 0.876422 0.735405i −0.0890184 0.996030i \(-0.528373\pi\)
0.965440 + 0.260625i \(0.0839285\pi\)
\(500\) 0 0
\(501\) −2.14777 26.3855i −0.0959553 1.17882i
\(502\) −6.52794 + 2.37598i −0.291356 + 0.106045i
\(503\) −5.61411 9.72392i −0.250321 0.433568i 0.713293 0.700866i \(-0.247203\pi\)
−0.963614 + 0.267297i \(0.913869\pi\)
\(504\) −12.0087 + 1.96805i −0.534910 + 0.0876638i
\(505\) 0 0
\(506\) 0.718565 4.07518i 0.0319441 0.181164i
\(507\) 28.8621 7.54685i 1.28181 0.335168i
\(508\) 23.1853 + 8.43877i 1.02868 + 0.374410i
\(509\) 5.09372 + 28.8879i 0.225775 + 1.28043i 0.861198 + 0.508269i \(0.169715\pi\)
−0.635423 + 0.772164i \(0.719174\pi\)
\(510\) 0 0
\(511\) 20.2079 + 16.9565i 0.893946 + 0.750110i
\(512\) −20.0428 −0.885775
\(513\) −16.4971 + 15.9093i −0.728366 + 0.702412i
\(514\) 0.447452 0.0197362
\(515\) 0 0
\(516\) 0.201882 0.284639i 0.00888737 0.0125306i
\(517\) 5.87484 + 33.3179i 0.258375 + 1.46532i
\(518\) −3.96565 1.44338i −0.174241 0.0634184i
\(519\) 18.4109 + 18.6348i 0.808147 + 0.817979i
\(520\) 0 0
\(521\) −4.09744 + 7.09698i −0.179512 + 0.310924i −0.941714 0.336416i \(-0.890785\pi\)
0.762201 + 0.647340i \(0.224119\pi\)
\(522\) −0.316262 0.187729i −0.0138424 0.00821667i
\(523\) −4.79470 8.30466i −0.209657 0.363137i 0.741949 0.670456i \(-0.233902\pi\)
−0.951607 + 0.307319i \(0.900568\pi\)
\(524\) 20.6286 7.50821i 0.901166 0.327998i
\(525\) 0 0
\(526\) −5.03331 + 4.22345i −0.219463 + 0.184151i
\(527\) −5.35612 + 4.49432i −0.233316 + 0.195776i
\(528\) 15.8702 + 7.51754i 0.690662 + 0.327159i
\(529\) 1.42103 0.517213i 0.0617840 0.0224875i
\(530\) 0 0
\(531\) 14.3628 8.06242i 0.623294 0.349879i
\(532\) −14.3604 + 24.8730i −0.622604 + 1.07838i
\(533\) −4.65898 + 26.4224i −0.201803 + 1.14448i
\(534\) 0.644644 + 0.652487i 0.0278965 + 0.0282359i
\(535\) 0 0
\(536\) 0.787947 + 4.46867i 0.0340341 + 0.193017i
\(537\) 1.59319 2.24628i 0.0687513 0.0969343i
\(538\) 3.10666 + 2.60680i 0.133938 + 0.112387i
\(539\) 13.6596 0.588363
\(540\) 0 0
\(541\) −5.81809 −0.250139 −0.125070 0.992148i \(-0.539915\pi\)
−0.125070 + 0.992148i \(0.539915\pi\)
\(542\) −4.59636 3.85681i −0.197431 0.165664i
\(543\) −37.5102 3.51036i −1.60972 0.150644i
\(544\) −1.26081 7.15041i −0.0540568 0.306571i
\(545\) 0 0
\(546\) −9.56316 + 2.50057i −0.409266 + 0.107015i
\(547\) −0.104052 + 0.590106i −0.00444893 + 0.0252311i −0.986951 0.161018i \(-0.948522\pi\)
0.982502 + 0.186249i \(0.0596333\pi\)
\(548\) 11.6303 20.1443i 0.496824 0.860524i
\(549\) 13.0226 + 15.9065i 0.555792 + 0.678871i
\(550\) 0 0
\(551\) −1.67091 + 0.608163i −0.0711834 + 0.0259086i
\(552\) 0.774022 + 9.50890i 0.0329445 + 0.404726i
\(553\) 6.16478 5.17287i 0.262153 0.219973i
\(554\) 6.17648 5.18268i 0.262413 0.220191i
\(555\) 0 0
\(556\) 0.433796 0.157889i 0.0183971 0.00669598i
\(557\) 1.82184 + 3.15552i 0.0771940 + 0.133704i 0.902038 0.431656i \(-0.142071\pi\)
−0.824844 + 0.565360i \(0.808737\pi\)
\(558\) −0.995345 2.84111i −0.0421363 0.120274i
\(559\) 0.290331 0.502869i 0.0122797 0.0212691i
\(560\) 0 0
\(561\) −2.85121 + 10.3892i −0.120378 + 0.438633i
\(562\) 1.86665 + 0.679405i 0.0787399 + 0.0286590i
\(563\) −0.135667 0.769406i −0.00571768 0.0324266i 0.981815 0.189838i \(-0.0607963\pi\)
−0.987533 + 0.157411i \(0.949685\pi\)
\(564\) −15.8831 34.6062i −0.668801 1.45718i
\(565\) 0 0
\(566\) 1.95362 0.0821169
\(567\) −30.7140 0.742919i −1.28987 0.0311997i
\(568\) −16.0579 −0.673774
\(569\) 26.6979 + 22.4022i 1.11923 + 0.939149i 0.998566 0.0535433i \(-0.0170515\pi\)
0.120669 + 0.992693i \(0.461496\pi\)
\(570\) 0 0
\(571\) −2.28374 12.9518i −0.0955717 0.542014i −0.994571 0.104063i \(-0.966816\pi\)
0.898999 0.437951i \(-0.144296\pi\)
\(572\) 28.9284 + 10.5291i 1.20956 + 0.440243i
\(573\) 3.61204 13.1615i 0.150895 0.549830i
\(574\) 0.879719 4.98913i 0.0367188 0.208242i
\(575\) 0 0
\(576\) −17.2906 3.26485i −0.720442 0.136035i
\(577\) 12.8833 + 22.3145i 0.536338 + 0.928964i 0.999097 + 0.0424803i \(0.0135260\pi\)
−0.462760 + 0.886484i \(0.653141\pi\)
\(578\) −3.57494 + 1.30117i −0.148698 + 0.0541216i
\(579\) −25.4401 + 17.5851i −1.05725 + 0.730811i
\(580\) 0 0
\(581\) 17.8186 14.9516i 0.739241 0.620296i
\(582\) −0.0190058 0.233488i −0.000787818 0.00967839i
\(583\) −31.9477 + 11.6280i −1.32314 + 0.481584i
\(584\) −4.59118 7.95216i −0.189985 0.329063i
\(585\) 0 0
\(586\) −2.12721 + 3.68444i −0.0878743 + 0.152203i
\(587\) 1.15583 6.55502i 0.0477061 0.270555i −0.951619 0.307279i \(-0.900581\pi\)
0.999325 + 0.0367248i \(0.0116925\pi\)
\(588\) −14.8736 + 3.88914i −0.613377 + 0.160386i
\(589\) −13.6770 4.97803i −0.563552 0.205116i
\(590\) 0 0
\(591\) −16.4081 1.53554i −0.674938 0.0631635i
\(592\) −10.7558 9.02517i −0.442060 0.370932i
\(593\) 46.9838 1.92939 0.964697 0.263360i \(-0.0848309\pi\)
0.964697 + 0.263360i \(0.0848309\pi\)
\(594\) −3.75080 2.72904i −0.153897 0.111974i
\(595\) 0 0
\(596\) −18.5694 15.5816i −0.760631 0.638246i
\(597\) −10.9606 + 15.4536i −0.448587 + 0.632475i
\(598\) 1.34569 + 7.63181i 0.0550295 + 0.312088i
\(599\) −30.7181 11.1805i −1.25511 0.456821i −0.372982 0.927839i \(-0.621665\pi\)
−0.882124 + 0.471018i \(0.843887\pi\)
\(600\) 0 0
\(601\) −4.40564 + 24.9856i −0.179710 + 1.01918i 0.752856 + 0.658185i \(0.228676\pi\)
−0.932566 + 0.361000i \(0.882436\pi\)
\(602\) −0.0548210 + 0.0949528i −0.00223434 + 0.00386999i
\(603\) −0.138522 + 11.4553i −0.00564105 + 0.466497i
\(604\) −4.19287 7.26226i −0.170605 0.295497i
\(605\) 0 0
\(606\) 3.03782 + 1.43898i 0.123403 + 0.0584547i
\(607\) −12.3838 + 10.3912i −0.502641 + 0.421766i −0.858531 0.512762i \(-0.828622\pi\)
0.355890 + 0.934528i \(0.384178\pi\)
\(608\) 11.5782 9.71529i 0.469559 0.394007i
\(609\) −2.15420 1.02042i −0.0872927 0.0413496i
\(610\) 0 0
\(611\) −31.6794 54.8703i −1.28161 2.21981i
\(612\) 0.146611 12.1243i 0.00592641 0.490096i
\(613\) −20.5635 + 35.6170i −0.830551 + 1.43856i 0.0670516 + 0.997750i \(0.478641\pi\)
−0.897602 + 0.440806i \(0.854693\pi\)
\(614\) −0.837116 + 4.74752i −0.0337832 + 0.191594i
\(615\) 0 0
\(616\) −11.1895 4.07263i −0.450836 0.164091i
\(617\) 7.29783 + 41.3880i 0.293799 + 1.66622i 0.672042 + 0.740513i \(0.265417\pi\)
−0.378243 + 0.925706i \(0.623472\pi\)
\(618\) 3.71913 5.24370i 0.149605 0.210933i
\(619\) −8.65367 7.26129i −0.347821 0.291856i 0.452094 0.891970i \(-0.350677\pi\)
−0.799914 + 0.600114i \(0.795122\pi\)
\(620\) 0 0
\(621\) −2.53414 + 23.9530i −0.101692 + 0.961202i
\(622\) −4.76048 −0.190878
\(623\) 4.55392 + 3.82119i 0.182449 + 0.153093i
\(624\) −32.7437 3.06429i −1.31080 0.122670i
\(625\) 0 0
\(626\) −0.290099 0.105587i −0.0115947 0.00422011i
\(627\) −21.6969 + 5.67331i −0.866493 + 0.226570i
\(628\) 1.63680 9.28275i 0.0653154 0.370422i
\(629\) 4.30693 7.45982i 0.171728 0.297442i
\(630\) 0 0
\(631\) 22.9413 + 39.7354i 0.913278 + 1.58184i 0.809404 + 0.587253i \(0.199791\pi\)
0.103874 + 0.994590i \(0.466876\pi\)
\(632\) −2.63231 + 0.958081i −0.104708 + 0.0381104i
\(633\) 1.43370 + 17.6131i 0.0569844 + 0.700058i
\(634\) −2.68936 + 2.25664i −0.106808 + 0.0896227i
\(635\) 0 0
\(636\) 31.4763 21.7575i 1.24812 0.862741i
\(637\) −24.0384 + 8.74927i −0.952437 + 0.346659i
\(638\) −0.179942 0.311669i −0.00712398 0.0123391i
\(639\) −39.8377 7.52223i −1.57595 0.297575i
\(640\) 0 0
\(641\) −3.68466 + 20.8967i −0.145535 + 0.825372i 0.821401 + 0.570352i \(0.193193\pi\)
−0.966936 + 0.255020i \(0.917918\pi\)
\(642\) 0.235776 0.859119i 0.00930535 0.0339067i
\(643\) −15.0466 5.47651i −0.593379 0.215972i 0.0278358 0.999613i \(-0.491138\pi\)
−0.621215 + 0.783640i \(0.713361\pi\)
\(644\) 5.24153 + 29.7262i 0.206545 + 1.17138i
\(645\) 0 0
\(646\) 2.17702 + 1.82674i 0.0856536 + 0.0718719i
\(647\) 14.3391 0.563729 0.281864 0.959454i \(-0.409047\pi\)
0.281864 + 0.959454i \(0.409047\pi\)
\(648\) 9.95793 + 3.89959i 0.391185 + 0.153190i
\(649\) 16.1173 0.632660
\(650\) 0 0
\(651\) −8.13869 17.7326i −0.318981 0.694996i
\(652\) −0.0445283 0.252533i −0.00174386 0.00988995i
\(653\) −20.6408 7.51262i −0.807735 0.293992i −0.0950471 0.995473i \(-0.530300\pi\)
−0.712688 + 0.701481i \(0.752522\pi\)
\(654\) −2.14013 + 7.79819i −0.0836858 + 0.304933i
\(655\) 0 0
\(656\) 8.42758 14.5970i 0.329042 0.569917i
\(657\) −7.66503 21.8791i −0.299041 0.853584i
\(658\) 5.98177 + 10.3607i 0.233194 + 0.403904i
\(659\) −41.9142 + 15.2555i −1.63274 + 0.594270i −0.985749 0.168223i \(-0.946197\pi\)
−0.646996 + 0.762494i \(0.723975\pi\)
\(660\) 0 0
\(661\) 8.07733 6.77768i 0.314172 0.263621i −0.472042 0.881576i \(-0.656483\pi\)
0.786214 + 0.617955i \(0.212039\pi\)
\(662\) 0.806782 0.676971i 0.0313565 0.0263112i
\(663\) −1.63689 20.1093i −0.0635716 0.780981i
\(664\) −7.60839 + 2.76923i −0.295263 + 0.107467i
\(665\) 0 0
\(666\) 2.34942 + 2.86969i 0.0910381 + 0.111198i
\(667\) −0.934391 + 1.61841i −0.0361798 + 0.0626652i
\(668\) −5.06267 + 28.7118i −0.195881 + 1.11089i
\(669\) 38.4538 10.0549i 1.48671 0.388744i
\(670\) 0 0
\(671\) 3.49309 + 19.8103i 0.134849 + 0.764768i
\(672\) 20.1730 + 1.88788i 0.778192 + 0.0728264i
\(673\) 20.1564 + 16.9132i 0.776972 + 0.651957i 0.942484 0.334251i \(-0.108483\pi\)
−0.165513 + 0.986208i \(0.552928\pi\)
\(674\) 0.0461716 0.00177846
\(675\) 0 0
\(676\) −32.8548 −1.26365
\(677\) −32.3296 27.1278i −1.24253 1.04260i −0.997322 0.0731331i \(-0.976700\pi\)
−0.245205 0.969471i \(-0.578855\pi\)
\(678\) −4.77602 + 6.73385i −0.183422 + 0.258612i
\(679\) −0.263647 1.49522i −0.0101179 0.0573812i
\(680\) 0 0
\(681\) 8.69783 + 8.80364i 0.333301 + 0.337356i
\(682\) 0.511529 2.90102i 0.0195875 0.111086i
\(683\) −9.27055 + 16.0571i −0.354728 + 0.614407i −0.987071 0.160281i \(-0.948760\pi\)
0.632343 + 0.774688i \(0.282093\pi\)
\(684\) 22.0099 12.3550i 0.841569 0.472406i
\(685\) 0 0
\(686\) −2.28929 + 0.833234i −0.0874056 + 0.0318130i
\(687\) 29.2742 + 13.8669i 1.11688 + 0.529053i
\(688\) −0.279441 + 0.234479i −0.0106536 + 0.00893942i
\(689\) 48.7741 40.9263i 1.85814 1.55917i
\(690\) 0 0
\(691\) −9.82430 + 3.57575i −0.373734 + 0.136028i −0.522056 0.852911i \(-0.674835\pi\)
0.148322 + 0.988939i \(0.452613\pi\)
\(692\) −14.4248 24.9846i −0.548350 0.949770i
\(693\) −25.8519 15.3454i −0.982033 0.582922i
\(694\) −3.15960 + 5.47259i −0.119937 + 0.207737i
\(695\) 0 0
\(696\) 0.583143 + 0.590238i 0.0221040 + 0.0223729i
\(697\) 9.71691 + 3.53667i 0.368054 + 0.133961i
\(698\) 0.328143 + 1.86099i 0.0124204 + 0.0704395i
\(699\) −24.6878 + 34.8080i −0.933778 + 1.31656i
\(700\) 0 0
\(701\) −18.2363 −0.688774 −0.344387 0.938828i \(-0.611913\pi\)
−0.344387 + 0.938828i \(0.611913\pi\)
\(702\) 8.34870 + 2.40014i 0.315101 + 0.0905873i
\(703\) 17.9311 0.676284
\(704\) −13.1900 11.0677i −0.497116 0.417130i
\(705\) 0 0
\(706\) 0.316288 + 1.79376i 0.0119037 + 0.0675090i
\(707\) 20.4721 + 7.45122i 0.769931 + 0.280232i
\(708\) −17.5497 + 4.58888i −0.659557 + 0.172461i
\(709\) 7.63846 43.3199i 0.286869 1.62691i −0.411665 0.911335i \(-0.635053\pi\)
0.698534 0.715577i \(-0.253836\pi\)
\(710\) 0 0
\(711\) −6.97924 + 1.14379i −0.261742 + 0.0428956i
\(712\) −1.03464 1.79204i −0.0387747 0.0671597i
\(713\) −14.3741 + 5.23175i −0.538315 + 0.195931i
\(714\) 0.309082 + 3.79709i 0.0115671 + 0.142102i
\(715\) 0 0
\(716\) −2.32335 + 1.94952i −0.0868277 + 0.0728571i
\(717\) −24.8038 + 17.1453i −0.926316 + 0.640303i
\(718\) −0.146208 + 0.0532155i −0.00545645 + 0.00198598i
\(719\) −21.3751 37.0227i −0.797155 1.38071i −0.921462 0.388469i \(-0.873004\pi\)
0.124307 0.992244i \(-0.460329\pi\)
\(720\) 0 0
\(721\) 20.8328 36.0835i 0.775855 1.34382i
\(722\) −0.0239784 + 0.135988i −0.000892385 + 0.00506096i
\(723\) 3.34094 12.1737i 0.124251 0.452744i
\(724\) 38.9887 + 14.1907i 1.44900 + 0.527394i
\(725\) 0 0
\(726\) 0.523420 + 1.14043i 0.0194259 + 0.0423253i
\(727\) −7.97191 6.68922i −0.295662 0.248090i 0.482874 0.875690i \(-0.339593\pi\)
−0.778536 + 0.627600i \(0.784037\pi\)
\(728\) 22.3000 0.826492
\(729\) 22.8777 + 14.3391i 0.847322 + 0.531080i
\(730\) 0 0
\(731\) −0.171435 0.143851i −0.00634076 0.00532053i
\(732\) −9.44387 20.5763i −0.349055 0.760523i
\(733\) −5.72433 32.4643i −0.211433 1.19910i −0.886990 0.461788i \(-0.847208\pi\)
0.675557 0.737308i \(-0.263903\pi\)
\(734\) −5.86785 2.13572i −0.216586 0.0788310i
\(735\) 0 0
\(736\) 2.75835 15.6434i 0.101674 0.576622i
\(737\) −5.60508 + 9.70829i −0.206466 + 0.357609i
\(738\) −2.90284 + 3.37572i −0.106855 + 0.124262i
\(739\) −13.1005 22.6907i −0.481909 0.834690i 0.517876 0.855456i \(-0.326723\pi\)
−0.999784 + 0.0207656i \(0.993390\pi\)
\(740\) 0 0
\(741\) 34.5487 23.8813i 1.26918 0.877301i
\(742\) −9.20963 + 7.72780i −0.338096 + 0.283696i
\(743\) −12.4297 + 10.4298i −0.456002 + 0.382631i −0.841658 0.540012i \(-0.818420\pi\)
0.385655 + 0.922643i \(0.373975\pi\)
\(744\) 0.551007 + 6.76916i 0.0202009 + 0.248169i
\(745\) 0 0
\(746\) −1.90770 3.30424i −0.0698460 0.120977i
\(747\) −20.1727 + 3.30601i −0.738081 + 0.120961i
\(748\) 5.93241 10.2752i 0.216910 0.375700i
\(749\) 1.00264 5.68627i 0.0366358 0.207772i
\(750\) 0 0
\(751\) 7.02136 + 2.55556i 0.256213 + 0.0932539i 0.466933 0.884292i \(-0.345359\pi\)
−0.210720 + 0.977546i \(0.567581\pi\)
\(752\) 6.91177 + 39.1986i 0.252046 + 1.42943i
\(753\) 39.3959 + 3.68684i 1.43567 + 0.134356i
\(754\) 0.516295 + 0.433223i 0.0188023 + 0.0157770i
\(755\) 0 0
\(756\) 32.5185 + 9.34862i 1.18269 + 0.340006i
\(757\) 25.7164 0.934678 0.467339 0.884078i \(-0.345213\pi\)
0.467339 + 0.884078i \(0.345213\pi\)
\(758\) −6.96317 5.84279i −0.252914 0.212220i
\(759\) −13.6354 + 19.2249i −0.494933 + 0.697820i
\(760\) 0 0
\(761\) 19.3050 + 7.02645i 0.699807 + 0.254709i 0.667328 0.744764i \(-0.267438\pi\)
0.0324783 + 0.999472i \(0.489660\pi\)
\(762\) 4.78814 + 4.84639i 0.173456 + 0.175566i
\(763\) −9.10096 + 51.6141i −0.329477 + 1.86856i
\(764\) −7.51544 + 13.0171i −0.271899 + 0.470943i
\(765\) 0 0
\(766\) 3.31440 + 5.74070i 0.119754 + 0.207420i
\(767\) −28.3635 + 10.3235i −1.02414 + 0.372758i
\(768\) 14.2511 + 6.75058i 0.514241 + 0.243591i
\(769\) 1.56802 1.31573i 0.0565444 0.0474464i −0.614077 0.789246i \(-0.710472\pi\)
0.670622 + 0.741799i \(0.266027\pi\)
\(770\) 0 0
\(771\) −2.30326 1.09103i −0.0829497 0.0392924i
\(772\) 32.0054 11.6490i 1.15190 0.419257i
\(773\) −11.7703 20.3868i −0.423349 0.733262i 0.572916 0.819614i \(-0.305812\pi\)
−0.996265 + 0.0863523i \(0.972479\pi\)
\(774\) 0.0840229 0.0471653i 0.00302014 0.00169532i
\(775\) 0 0
\(776\) −0.0917721 + 0.520465i −0.00329442 + 0.0186836i
\(777\) 16.8938 + 17.0993i 0.606061 + 0.613434i
\(778\) −2.97609 1.08321i −0.106698 0.0388349i
\(779\) 3.73785 + 21.1984i 0.133922 + 0.759512i
\(780\) 0 0
\(781\) −30.3898 25.5001i −1.08743 0.912464i
\(782\) 2.98675 0.106806
\(783\) 1.17021 + 1.73748i 0.0418201 + 0.0620924i
\(784\) 16.0706 0.573951
\(785\) 0 0
\(786\) 6.03514 + 0.564793i 0.215266 + 0.0201455i
\(787\) −4.10976 23.3076i −0.146497 0.830826i −0.966153 0.257970i \(-0.916947\pi\)
0.819656 0.572856i \(-0.194165\pi\)
\(788\) 17.0548 + 6.20745i 0.607553 + 0.221131i
\(789\) 36.2070 9.46740i 1.28900 0.337048i
\(790\) 0 0
\(791\) −26.7531 + 46.3377i −0.951230 + 1.64758i
\(792\) 6.62910 + 8.09711i 0.235555 + 0.287718i
\(793\) −18.8361 32.6250i −0.668888 1.15855i
\(794\) −6.24481 + 2.27292i −0.221620 + 0.0806631i
\(795\) 0 0
\(796\) 15.9838 13.4120i 0.566531 0.475376i
\(797\) −22.1635 + 18.5974i −0.785073 + 0.658755i −0.944521 0.328452i \(-0.893473\pi\)
0.159448 + 0.987206i \(0.449029\pi\)
\(798\) −6.52357 + 4.50932i −0.230932 + 0.159628i
\(799\) −22.9464 + 8.35181i −0.811785 + 0.295466i
\(800\) 0 0
\(801\) −1.72734 4.93052i −0.0610325 0.174211i
\(802\) −3.06496 + 5.30866i −0.108227 + 0.187455i
\(803\) 3.93922 22.3404i 0.139012 0.788377i
\(804\) 3.33909 12.1669i 0.117761 0.429095i
\(805\) 0 0
\(806\) 0.957968 + 5.43290i 0.0337430 + 0.191366i
\(807\) −9.63533 20.9935i −0.339180 0.739005i
\(808\) −5.80920 4.87450i −0.204367 0.171484i
\(809\) −50.0898 −1.76106 −0.880532 0.473986i \(-0.842815\pi\)
−0.880532 + 0.473986i \(0.842815\pi\)
\(810\) 0 0
\(811\) −22.3607 −0.785192 −0.392596 0.919711i \(-0.628423\pi\)
−0.392596 + 0.919711i \(0.628423\pi\)
\(812\) 2.01099 + 1.68742i 0.0705718 + 0.0592168i
\(813\) 14.2557 + 31.0603i 0.499968 + 1.08933i
\(814\) 0.630190 + 3.57398i 0.0220881 + 0.125268i
\(815\) 0 0
\(816\) −3.35446 + 12.2229i −0.117430 + 0.427888i
\(817\) 0.0808957 0.458782i 0.00283018 0.0160508i
\(818\) 2.05193 3.55405i 0.0717441 0.124264i
\(819\) 55.3235 + 10.4463i 1.93316 + 0.365023i
\(820\) 0 0
\(821\) −12.3587 + 4.49819i −0.431321 + 0.156988i −0.548552 0.836117i \(-0.684821\pi\)
0.117230 + 0.993105i \(0.462598\pi\)
\(822\) 5.28335 3.65204i 0.184278 0.127380i
\(823\) 17.2863 14.5049i 0.602563 0.505611i −0.289705 0.957116i \(-0.593557\pi\)
0.892268 + 0.451505i \(0.149113\pi\)
\(824\) −11.1101 + 9.32250i −0.387040 + 0.324765i
\(825\) 0 0
\(826\) 5.35565 1.94930i 0.186347 0.0678247i
\(827\) −1.92094 3.32717i −0.0667978 0.115697i 0.830692 0.556732i \(-0.187945\pi\)
−0.897490 + 0.441035i \(0.854612\pi\)
\(828\) 9.37350 24.8157i 0.325752 0.862404i
\(829\) −22.2051 + 38.4603i −0.771214 + 1.33578i 0.165685 + 0.986179i \(0.447017\pi\)
−0.936898 + 0.349602i \(0.886317\pi\)
\(830\) 0 0
\(831\) −44.4304 + 11.6176i −1.54127 + 0.403011i
\(832\) 30.3010 + 11.0287i 1.05050 + 0.382350i
\(833\) 1.71203 + 9.70943i 0.0593185 + 0.336412i
\(834\) 0.126912 + 0.0118769i 0.00439460 + 0.000411265i
\(835\) 0 0
\(836\) 24.6985 0.854214
\(837\) −1.80399 + 17.0516i −0.0623551 + 0.589389i
\(838\) 0.620768 0.0214441
\(839\) 5.58926 + 4.68995i 0.192963 + 0.161915i 0.734150 0.678987i \(-0.237581\pi\)
−0.541188 + 0.840902i \(0.682025\pi\)
\(840\) 0 0
\(841\) −5.00757 28.3994i −0.172675 0.979289i
\(842\) 0.786181 + 0.286147i 0.0270936 + 0.00986126i
\(843\) −7.95198 8.04872i −0.273881 0.277213i
\(844\) 3.37948 19.1660i 0.116327 0.659721i
\(845\) 0 0
\(846\) 0.127127 10.5130i 0.00437073 0.361446i
\(847\) 4.06633 + 7.04308i 0.139721 + 0.242003i
\(848\) −37.5866 + 13.6804i −1.29073 + 0.469787i
\(849\) −10.0563 4.76355i −0.345130 0.163485i
\(850\) 0 0
\(851\) 14.4361 12.1134i 0.494864 0.415240i
\(852\) 40.3509 + 19.1138i 1.38240 + 0.654827i
\(853\) 51.6153 18.7864i 1.76727 0.643235i 0.767276 0.641317i \(-0.221612\pi\)
0.999998 0.00191802i \(-0.000610526\pi\)
\(854\) 3.55667 + 6.16033i 0.121707 + 0.210802i
\(855\) 0 0
\(856\) −1.00492 + 1.74058i −0.0343476 + 0.0594917i
\(857\) −1.54321 + 8.75197i −0.0527150 + 0.298961i −0.999755 0.0221554i \(-0.992947\pi\)
0.947040 + 0.321117i \(0.104058\pi\)
\(858\) 5.97418 + 6.04686i 0.203955 + 0.206436i
\(859\) −4.71452 1.71594i −0.160857 0.0585473i 0.260336 0.965518i \(-0.416167\pi\)
−0.421194 + 0.906971i \(0.638389\pi\)
\(860\) 0 0
\(861\) −16.6934 + 23.5365i −0.568910 + 0.802123i
\(862\) −4.68106 3.92787i −0.159437 0.133784i
\(863\) −15.4472 −0.525828 −0.262914 0.964819i \(-0.584684\pi\)
−0.262914 + 0.964819i \(0.584684\pi\)
\(864\) −14.3981 10.4759i −0.489834 0.356398i
\(865\) 0 0
\(866\) 2.76310 + 2.31851i 0.0938939 + 0.0787863i
\(867\) 21.5746 + 2.01904i 0.732713 + 0.0685703i
\(868\) 3.73132 + 21.1614i 0.126649 + 0.718264i
\(869\) −6.50312 2.36694i −0.220603 0.0802930i
\(870\) 0 0
\(871\) 3.64555 20.6749i 0.123525 0.700544i
\(872\) 9.12165 15.7992i 0.308898 0.535027i
\(873\) −0.471485 + 1.24822i −0.0159573 + 0.0422459i
\(874\) 3.10869 + 5.38441i 0.105153 + 0.182130i
\(875\) 0 0
\(876\) 2.07141 + 25.4474i 0.0699865 + 0.859789i
\(877\) 9.23051 7.74532i 0.311692 0.261541i −0.473499 0.880794i \(-0.657009\pi\)
0.785191 + 0.619254i \(0.212565\pi\)
\(878\) 8.72408 7.32037i 0.294423 0.247051i
\(879\) 19.9336 13.7788i 0.672344 0.464748i
\(880\) 0 0
\(881\) 17.1975 + 29.7869i 0.579398 + 1.00355i 0.995548 + 0.0942507i \(0.0300455\pi\)
−0.416151 + 0.909296i \(0.636621\pi\)
\(882\) −4.17125 0.787623i −0.140453 0.0265207i
\(883\) 13.5734 23.5099i 0.456783 0.791171i −0.542006 0.840375i \(-0.682335\pi\)
0.998789 + 0.0492038i \(0.0156684\pi\)
\(884\) −3.85844 + 21.8823i −0.129773 + 0.735982i
\(885\) 0 0
\(886\) −4.24208 1.54399i −0.142516 0.0518714i
\(887\) −8.56056 48.5493i −0.287435 1.63013i −0.696454 0.717601i \(-0.745240\pi\)
0.409019 0.912526i \(-0.365871\pi\)
\(888\) −3.49014 7.60432i −0.117121 0.255184i
\(889\) 33.8246 + 28.3822i 1.13444 + 0.951908i
\(890\) 0 0
\(891\) 12.6530 + 23.1933i 0.423890 + 0.777005i
\(892\) −43.7735 −1.46564
\(893\) −38.9396 32.6742i −1.30306 1.09340i
\(894\) −2.79198 6.08317i −0.0933777 0.203452i
\(895\) 0 0
\(896\) −27.7062 10.0842i −0.925598 0.336890i
\(897\) 11.6818 42.5660i 0.390044 1.42124i
\(898\) 0.936541 5.31139i 0.0312528 0.177243i
\(899\) −0.665171 + 1.15211i −0.0221847 + 0.0384250i
\(900\) 0 0
\(901\) −12.2695 21.2514i −0.408756 0.707987i
\(902\) −4.09385 + 1.49004i −0.136310 + 0.0496129i
\(903\) 0.513716 0.355098i 0.0170954 0.0118169i
\(904\) 14.2674 11.9718i 0.474526 0.398175i
\(905\) 0 0
\(906\) −0.187856 2.30783i −0.00624111 0.0766724i
\(907\) −12.6581 + 4.60719i −0.420307 + 0.152979i −0.543511 0.839402i \(-0.682905\pi\)
0.123204 + 0.992381i \(0.460683\pi\)
\(908\) −6.81471 11.8034i −0.226154 0.391711i
\(909\) −12.1285 14.8143i −0.402277 0.491360i
\(910\) 0 0
\(911\) −4.06209 + 23.0373i −0.134583 + 0.763259i 0.840566 + 0.541709i \(0.182223\pi\)
−0.975149 + 0.221550i \(0.928888\pi\)
\(912\) −25.5265 + 6.67467i −0.845268 + 0.221020i
\(913\) −18.7965 6.84138i −0.622075 0.226417i
\(914\) 0.775793 + 4.39974i 0.0256609 + 0.145530i
\(915\) 0 0
\(916\) −27.3279 22.9309i −0.902941 0.757657i
\(917\) 39.2858 1.29733
\(918\) 1.46972 3.00815i 0.0485081 0.0992838i
\(919\) −6.93563 −0.228785 −0.114393 0.993436i \(-0.536492\pi\)
−0.114393 + 0.993436i \(0.536492\pi\)
\(920\) 0 0
\(921\) 15.8850 22.3967i 0.523428 0.737996i
\(922\) −0.758974 4.30436i −0.0249955 0.141756i
\(923\) 69.8136 + 25.4101i 2.29794 + 0.836383i
\(924\) 23.2697 + 23.5527i 0.765515 + 0.774828i
\(925\) 0 0
\(926\) −1.23660 + 2.14186i −0.0406372 + 0.0703857i
\(927\) −31.9300 + 17.9235i −1.04872 + 0.588686i
\(928\) −0.690742 1.19640i −0.0226747 0.0392738i
\(929\) 11.5336 4.19788i 0.378404 0.137728i −0.145814 0.989312i \(-0.546580\pi\)
0.524218 + 0.851584i \(0.324358\pi\)
\(930\) 0 0
\(931\) −15.7219 + 13.1922i −0.515265 + 0.432358i
\(932\) 36.0022 30.2094i 1.17929 0.989543i
\(933\) 24.5046 + 11.6075i 0.802243 + 0.380014i
\(934\) 6.16140 2.24257i 0.201607 0.0733790i
\(935\) 0 0
\(936\) −16.8523 10.0033i −0.550836 0.326969i
\(937\) 12.4035 21.4835i 0.405205 0.701836i −0.589140 0.808031i \(-0.700533\pi\)
0.994345 + 0.106195i \(0.0338668\pi\)
\(938\) −0.688361 + 3.90389i −0.0224758 + 0.127466i
\(939\) 1.23583 + 1.25086i 0.0403297 + 0.0408203i
\(940\) 0 0
\(941\) 9.97338 + 56.5618i 0.325123 + 1.84386i 0.508811 + 0.860878i \(0.330085\pi\)
−0.183688 + 0.982985i \(0.558804\pi\)
\(942\) 1.50570 2.12293i 0.0490584 0.0691688i
\(943\) 17.3299 + 14.5415i 0.564339 + 0.473537i
\(944\) 18.9621 0.617162
\(945\) 0 0
\(946\) 0.0942865 0.00306552
\(947\) 3.15158 + 2.64449i 0.102413 + 0.0859344i 0.692556 0.721364i \(-0.256484\pi\)
−0.590144 + 0.807298i \(0.700929\pi\)
\(948\) 7.75497 + 0.725742i 0.251870 + 0.0235710i
\(949\) 7.37719 + 41.8381i 0.239474 + 1.35812i
\(950\) 0 0
\(951\) 19.3459 5.05855i 0.627333 0.164035i
\(952\) 1.49244 8.46404i 0.0483702 0.274321i
\(953\) 5.45128 9.44189i 0.176584 0.305853i −0.764124 0.645069i \(-0.776829\pi\)
0.940708 + 0.339216i \(0.110162\pi\)
\(954\) 10.4264 1.70873i 0.337566 0.0553220i
\(955\) 0 0
\(956\) 31.2050 11.3577i 1.00924 0.367334i
\(957\) 0.166305 + 2.04307i 0.00537588 + 0.0660431i
\(958\) −8.20732 + 6.88676i −0.265166 + 0.222501i
\(959\) 31.8880 26.7572i 1.02972 0.864035i
\(960\) 0 0
\(961\) 18.8979 6.87826i 0.609609 0.221879i
\(962\) −3.39822 5.88589i −0.109563 0.189769i
\(963\) −3.30846 + 3.84741i −0.106614 + 0.123981i
\(964\) −6.95136 + 12.0401i −0.223888 + 0.387786i
\(965\) 0 0
\(966\) −2.20578 + 8.03740i −0.0709699 + 0.258599i
\(967\) −33.6762 12.2571i −1.08295 0.394163i −0.261947 0.965082i \(-0.584365\pi\)
−0.821006 + 0.570920i \(0.806587\pi\)
\(968\) −0.491574 2.78786i −0.0157998 0.0896051i
\(969\) −6.75204 14.7114i −0.216907 0.472597i
\(970\) 0 0
\(971\) 28.9416 0.928779 0.464390 0.885631i \(-0.346274\pi\)
0.464390 + 0.885631i \(0.346274\pi\)
\(972\) −20.3810 21.6520i −0.653721 0.694489i
\(973\) 0.826134 0.0264847
\(974\) −5.11291 4.29024i −0.163828 0.137468i
\(975\) 0 0
\(976\) 4.10963 + 23.3069i 0.131546 + 0.746035i
\(977\) −22.9170 8.34110i −0.733179 0.266855i −0.0516691 0.998664i \(-0.516454\pi\)
−0.681510 + 0.731809i \(0.738676\pi\)
\(978\) 0.0187388 0.0682801i 0.000599200 0.00218336i
\(979\) 0.887716 5.03448i 0.0283715 0.160903i
\(980\) 0 0
\(981\) 30.0308 34.9228i 0.958808 1.11500i
\(982\) 3.12161 + 5.40679i 0.0996147 + 0.172538i
\(983\) 2.47204 0.899750i 0.0788460 0.0286976i −0.302296 0.953214i \(-0.597753\pi\)
0.381142 + 0.924517i \(0.375531\pi\)
\(984\) 8.26240 5.71126i 0.263396 0.182068i
\(985\) 0 0
\(986\) 0.198985 0.166968i 0.00633696 0.00531734i
\(987\) −5.52844 67.9173i −0.175972 2.16183i
\(988\) −43.4647 + 15.8199i −1.38280 + 0.503297i
\(989\) −0.244802 0.424010i −0.00778426 0.0134827i
\(990\) 0 0
\(991\) 9.51245 16.4761i 0.302173 0.523379i −0.674455 0.738316i \(-0.735621\pi\)
0.976628 + 0.214937i \(0.0689546\pi\)
\(992\) 1.96360 11.1361i 0.0623444 0.353572i
\(993\) −5.80358 + 1.51752i −0.184171 + 0.0481569i
\(994\) −13.1824 4.79799i −0.418119 0.152183i
\(995\) 0 0
\(996\) 22.4149 + 2.09768i 0.710243 + 0.0664674i
\(997\) 12.9456 + 10.8627i 0.409993 + 0.344025i 0.824341 0.566094i \(-0.191546\pi\)
−0.414348 + 0.910118i \(0.635990\pi\)
\(998\) −7.77169 −0.246009
\(999\) −5.09641 20.5003i −0.161243 0.648602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.151.7 96
5.2 odd 4 135.2.p.a.124.10 yes 96
5.3 odd 4 135.2.p.a.124.7 yes 96
5.4 even 2 inner 675.2.l.h.151.10 96
15.2 even 4 405.2.p.a.289.7 96
15.8 even 4 405.2.p.a.289.10 96
27.22 even 9 inner 675.2.l.h.76.7 96
135.22 odd 36 135.2.p.a.49.7 96
135.32 even 36 405.2.p.a.199.10 96
135.49 even 18 inner 675.2.l.h.76.10 96
135.103 odd 36 135.2.p.a.49.10 yes 96
135.113 even 36 405.2.p.a.199.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.7 96 135.22 odd 36
135.2.p.a.49.10 yes 96 135.103 odd 36
135.2.p.a.124.7 yes 96 5.3 odd 4
135.2.p.a.124.10 yes 96 5.2 odd 4
405.2.p.a.199.7 96 135.113 even 36
405.2.p.a.199.10 96 135.32 even 36
405.2.p.a.289.7 96 15.2 even 4
405.2.p.a.289.10 96 15.8 even 4
675.2.l.h.76.7 96 27.22 even 9 inner
675.2.l.h.76.10 96 135.49 even 18 inner
675.2.l.h.151.7 96 1.1 even 1 trivial
675.2.l.h.151.10 96 5.4 even 2 inner