Properties

Label 675.2.l.g.76.8
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [66,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.8
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.g.151.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01600 - 0.852522i) q^{2} +(-0.196018 - 1.72092i) q^{3} +(-0.0418420 + 0.237298i) q^{4} +(-1.66628 - 1.58134i) q^{6} +(0.769922 + 4.36644i) q^{7} +(1.48608 + 2.57396i) q^{8} +(-2.92315 + 0.674663i) q^{9} +(3.91123 + 1.42357i) q^{11} +(0.416573 + 0.0254923i) q^{12} +(1.15946 + 0.972900i) q^{13} +(4.50473 + 3.77991i) q^{14} +(3.25136 + 1.18340i) q^{16} +(-0.568932 + 0.985419i) q^{17} +(-2.39475 + 3.17751i) q^{18} +(-3.37499 - 5.84565i) q^{19} +(7.36340 - 2.18088i) q^{21} +(5.18742 - 1.88807i) q^{22} +(-1.38642 + 7.86279i) q^{23} +(4.13830 - 3.06197i) q^{24} +2.00742 q^{26} +(1.73403 + 4.89828i) q^{27} -1.06836 q^{28} +(1.89402 - 1.58927i) q^{29} +(0.369663 - 2.09646i) q^{31} +(-1.27359 + 0.463549i) q^{32} +(1.68319 - 7.00997i) q^{33} +(0.262059 + 1.48621i) q^{34} +(-0.0377853 - 0.721887i) q^{36} +(4.99967 - 8.65969i) q^{37} +(-8.41252 - 3.06191i) q^{38} +(1.44701 - 2.18604i) q^{39} +(-0.384359 - 0.322515i) q^{41} +(5.62194 - 8.49322i) q^{42} +(0.102738 + 0.0373936i) q^{43} +(-0.501464 + 0.868561i) q^{44} +(5.29460 + 9.17051i) q^{46} +(-1.31484 - 7.45681i) q^{47} +(1.39921 - 5.82730i) q^{48} +(-11.8952 + 4.32950i) q^{49} +(1.80735 + 0.785929i) q^{51} +(-0.279381 + 0.234429i) q^{52} -3.96330 q^{53} +(5.93766 + 3.49833i) q^{54} +(-10.0949 + 8.47063i) q^{56} +(-9.39836 + 6.95395i) q^{57} +(0.569427 - 3.22938i) q^{58} +(7.67614 - 2.79389i) q^{59} +(-2.14296 - 12.1533i) q^{61} +(-1.41170 - 2.44514i) q^{62} +(-5.19648 - 12.2444i) q^{63} +(-4.35880 + 7.54966i) q^{64} +(-4.26604 - 8.55705i) q^{66} +(2.25173 + 1.88943i) q^{67} +(-0.210033 - 0.176238i) q^{68} +(13.8030 + 0.844680i) q^{69} +(-3.78880 + 6.56240i) q^{71} +(-6.08060 - 6.52149i) q^{72} +(5.12757 + 8.88121i) q^{73} +(-2.30293 - 13.0605i) q^{74} +(1.52838 - 0.556283i) q^{76} +(-3.20460 + 18.1742i) q^{77} +(-0.393490 - 3.45462i) q^{78} +(3.74388 - 3.14149i) q^{79} +(8.08966 - 3.94429i) q^{81} -0.665459 q^{82} +(2.78888 - 2.34014i) q^{83} +(0.209418 + 1.83857i) q^{84} +(0.136260 - 0.0495947i) q^{86} +(-3.10627 - 2.94793i) q^{87} +(2.14817 + 12.1829i) q^{88} +(5.74755 + 9.95505i) q^{89} +(-3.35542 + 5.81176i) q^{91} +(-1.80781 - 0.657989i) q^{92} +(-3.68031 - 0.225218i) q^{93} +(-7.69297 - 6.45516i) q^{94} +(1.04738 + 2.10089i) q^{96} +(7.36555 + 2.68084i) q^{97} +(-8.39449 + 14.5397i) q^{98} +(-12.3936 - 1.52256i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{6} + 6 q^{7} + 12 q^{8} - 6 q^{9} + 15 q^{11} + 18 q^{12} + 15 q^{14} + 18 q^{16} + 30 q^{17} - 12 q^{18} + 12 q^{19} + 12 q^{21} - 45 q^{22} + 36 q^{23} - 39 q^{24} + 6 q^{26} + 51 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01600 0.852522i 0.718418 0.602824i −0.208529 0.978016i \(-0.566868\pi\)
0.926947 + 0.375192i \(0.122423\pi\)
\(3\) −0.196018 1.72092i −0.113171 0.993576i
\(4\) −0.0418420 + 0.237298i −0.0209210 + 0.118649i
\(5\) 0 0
\(6\) −1.66628 1.58134i −0.680255 0.645580i
\(7\) 0.769922 + 4.36644i 0.291003 + 1.65036i 0.683018 + 0.730402i \(0.260667\pi\)
−0.392015 + 0.919959i \(0.628222\pi\)
\(8\) 1.48608 + 2.57396i 0.525408 + 0.910034i
\(9\) −2.92315 + 0.674663i −0.974385 + 0.224888i
\(10\) 0 0
\(11\) 3.91123 + 1.42357i 1.17928 + 0.429223i 0.855947 0.517063i \(-0.172975\pi\)
0.323332 + 0.946286i \(0.395197\pi\)
\(12\) 0.416573 + 0.0254923i 0.120254 + 0.00735900i
\(13\) 1.15946 + 0.972900i 0.321576 + 0.269834i 0.789257 0.614063i \(-0.210466\pi\)
−0.467681 + 0.883897i \(0.654910\pi\)
\(14\) 4.50473 + 3.77991i 1.20394 + 1.01022i
\(15\) 0 0
\(16\) 3.25136 + 1.18340i 0.812839 + 0.295849i
\(17\) −0.568932 + 0.985419i −0.137986 + 0.238999i −0.926734 0.375717i \(-0.877396\pi\)
0.788748 + 0.614717i \(0.210730\pi\)
\(18\) −2.39475 + 3.17751i −0.564448 + 0.748946i
\(19\) −3.37499 5.84565i −0.774275 1.34108i −0.935201 0.354118i \(-0.884781\pi\)
0.160926 0.986967i \(-0.448552\pi\)
\(20\) 0 0
\(21\) 7.36340 2.18088i 1.60683 0.475906i
\(22\) 5.18742 1.88807i 1.10596 0.402537i
\(23\) −1.38642 + 7.86279i −0.289089 + 1.63950i 0.401215 + 0.915984i \(0.368588\pi\)
−0.690303 + 0.723520i \(0.742523\pi\)
\(24\) 4.13830 3.06197i 0.844726 0.625022i
\(25\) 0 0
\(26\) 2.00742 0.393688
\(27\) 1.73403 + 4.89828i 0.333715 + 0.942674i
\(28\) −1.06836 −0.201902
\(29\) 1.89402 1.58927i 0.351710 0.295120i −0.449766 0.893146i \(-0.648493\pi\)
0.801476 + 0.598026i \(0.204048\pi\)
\(30\) 0 0
\(31\) 0.369663 2.09646i 0.0663933 0.376535i −0.933448 0.358713i \(-0.883216\pi\)
0.999841 0.0178222i \(-0.00567328\pi\)
\(32\) −1.27359 + 0.463549i −0.225141 + 0.0819447i
\(33\) 1.68319 7.00997i 0.293005 1.22028i
\(34\) 0.262059 + 1.48621i 0.0449427 + 0.254883i
\(35\) 0 0
\(36\) −0.0377853 0.721887i −0.00629756 0.120315i
\(37\) 4.99967 8.65969i 0.821941 1.42364i −0.0822930 0.996608i \(-0.526224\pi\)
0.904235 0.427036i \(-0.140442\pi\)
\(38\) −8.41252 3.06191i −1.36469 0.496707i
\(39\) 1.44701 2.18604i 0.231708 0.350047i
\(40\) 0 0
\(41\) −0.384359 0.322515i −0.0600268 0.0503685i 0.612281 0.790640i \(-0.290252\pi\)
−0.672307 + 0.740272i \(0.734697\pi\)
\(42\) 5.62194 8.49322i 0.867484 1.31053i
\(43\) 0.102738 + 0.0373936i 0.0156674 + 0.00570247i 0.349842 0.936809i \(-0.386235\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(44\) −0.501464 + 0.868561i −0.0755985 + 0.130940i
\(45\) 0 0
\(46\) 5.29460 + 9.17051i 0.780646 + 1.35212i
\(47\) −1.31484 7.45681i −0.191789 1.08769i −0.916918 0.399075i \(-0.869331\pi\)
0.725129 0.688613i \(-0.241780\pi\)
\(48\) 1.39921 5.82730i 0.201959 0.841099i
\(49\) −11.8952 + 4.32950i −1.69932 + 0.618500i
\(50\) 0 0
\(51\) 1.80735 + 0.785929i 0.253080 + 0.110052i
\(52\) −0.279381 + 0.234429i −0.0387432 + 0.0325094i
\(53\) −3.96330 −0.544401 −0.272201 0.962241i \(-0.587751\pi\)
−0.272201 + 0.962241i \(0.587751\pi\)
\(54\) 5.93766 + 3.49833i 0.808013 + 0.476063i
\(55\) 0 0
\(56\) −10.0949 + 8.47063i −1.34899 + 1.13194i
\(57\) −9.39836 + 6.95395i −1.24484 + 0.921073i
\(58\) 0.569427 3.22938i 0.0747695 0.424039i
\(59\) 7.67614 2.79389i 0.999348 0.363733i 0.210015 0.977698i \(-0.432649\pi\)
0.789333 + 0.613965i \(0.210426\pi\)
\(60\) 0 0
\(61\) −2.14296 12.1533i −0.274377 1.55607i −0.740932 0.671580i \(-0.765616\pi\)
0.466555 0.884492i \(-0.345495\pi\)
\(62\) −1.41170 2.44514i −0.179286 0.310533i
\(63\) −5.19648 12.2444i −0.654695 1.54264i
\(64\) −4.35880 + 7.54966i −0.544850 + 0.943708i
\(65\) 0 0
\(66\) −4.26604 8.55705i −0.525113 1.05330i
\(67\) 2.25173 + 1.88943i 0.275093 + 0.230830i 0.769887 0.638180i \(-0.220312\pi\)
−0.494795 + 0.869010i \(0.664757\pi\)
\(68\) −0.210033 0.176238i −0.0254702 0.0213720i
\(69\) 13.8030 + 0.844680i 1.66169 + 0.101688i
\(70\) 0 0
\(71\) −3.78880 + 6.56240i −0.449648 + 0.778814i −0.998363 0.0571960i \(-0.981784\pi\)
0.548715 + 0.836010i \(0.315117\pi\)
\(72\) −6.08060 6.52149i −0.716605 0.768565i
\(73\) 5.12757 + 8.88121i 0.600136 + 1.03947i 0.992800 + 0.119785i \(0.0382204\pi\)
−0.392663 + 0.919682i \(0.628446\pi\)
\(74\) −2.30293 13.0605i −0.267710 1.51826i
\(75\) 0 0
\(76\) 1.52838 0.556283i 0.175317 0.0638101i
\(77\) −3.20460 + 18.1742i −0.365198 + 2.07114i
\(78\) −0.393490 3.45462i −0.0445540 0.391159i
\(79\) 3.74388 3.14149i 0.421219 0.353445i −0.407408 0.913246i \(-0.633567\pi\)
0.828627 + 0.559802i \(0.189123\pi\)
\(80\) 0 0
\(81\) 8.08966 3.94429i 0.898851 0.438254i
\(82\) −0.665459 −0.0734876
\(83\) 2.78888 2.34014i 0.306119 0.256864i −0.476767 0.879030i \(-0.658191\pi\)
0.782886 + 0.622166i \(0.213747\pi\)
\(84\) 0.209418 + 1.83857i 0.0228494 + 0.200604i
\(85\) 0 0
\(86\) 0.136260 0.0495947i 0.0146933 0.00534794i
\(87\) −3.10627 2.94793i −0.333027 0.316052i
\(88\) 2.14817 + 12.1829i 0.228996 + 1.29870i
\(89\) 5.74755 + 9.95505i 0.609239 + 1.05523i 0.991366 + 0.131123i \(0.0418583\pi\)
−0.382127 + 0.924110i \(0.624808\pi\)
\(90\) 0 0
\(91\) −3.35542 + 5.81176i −0.351744 + 0.609238i
\(92\) −1.80781 0.657989i −0.188477 0.0686001i
\(93\) −3.68031 0.225218i −0.381630 0.0233540i
\(94\) −7.69297 6.45516i −0.793469 0.665799i
\(95\) 0 0
\(96\) 1.04738 + 2.10089i 0.106898 + 0.214421i
\(97\) 7.36555 + 2.68084i 0.747858 + 0.272198i 0.687704 0.725991i \(-0.258619\pi\)
0.0601538 + 0.998189i \(0.480841\pi\)
\(98\) −8.39449 + 14.5397i −0.847971 + 1.46873i
\(99\) −12.3936 1.52256i −1.24560 0.153023i
\(100\) 0 0
\(101\) −1.84949 10.4890i −0.184031 1.04369i −0.927194 0.374581i \(-0.877786\pi\)
0.743163 0.669110i \(-0.233325\pi\)
\(102\) 2.50628 0.742306i 0.248159 0.0734993i
\(103\) −7.83309 + 2.85101i −0.771817 + 0.280918i −0.697756 0.716335i \(-0.745818\pi\)
−0.0740609 + 0.997254i \(0.523596\pi\)
\(104\) −0.781165 + 4.43021i −0.0765996 + 0.434418i
\(105\) 0 0
\(106\) −4.02670 + 3.37880i −0.391107 + 0.328178i
\(107\) 12.1812 1.17760 0.588800 0.808279i \(-0.299601\pi\)
0.588800 + 0.808279i \(0.299601\pi\)
\(108\) −1.23491 + 0.206528i −0.118829 + 0.0198732i
\(109\) −0.268688 −0.0257356 −0.0128678 0.999917i \(-0.504096\pi\)
−0.0128678 + 0.999917i \(0.504096\pi\)
\(110\) 0 0
\(111\) −15.8827 6.90660i −1.50752 0.655546i
\(112\) −2.66395 + 15.1080i −0.251719 + 1.42757i
\(113\) 1.94653 0.708479i 0.183114 0.0666481i −0.248836 0.968546i \(-0.580048\pi\)
0.431950 + 0.901898i \(0.357826\pi\)
\(114\) −3.62030 + 15.0775i −0.339073 + 1.41214i
\(115\) 0 0
\(116\) 0.297881 + 0.515944i 0.0276575 + 0.0479042i
\(117\) −4.04565 2.06170i −0.374021 0.190604i
\(118\) 5.41708 9.38266i 0.498683 0.863743i
\(119\) −4.74081 1.72551i −0.434589 0.158178i
\(120\) 0 0
\(121\) 4.84466 + 4.06516i 0.440424 + 0.369560i
\(122\) −12.5382 10.5208i −1.13515 0.952508i
\(123\) −0.479683 + 0.724671i −0.0432516 + 0.0653414i
\(124\) 0.482018 + 0.175440i 0.0432865 + 0.0157550i
\(125\) 0 0
\(126\) −15.7182 8.01010i −1.40029 0.713597i
\(127\) −7.59522 13.1553i −0.673967 1.16735i −0.976770 0.214292i \(-0.931256\pi\)
0.302802 0.953053i \(-0.402078\pi\)
\(128\) 1.53703 + 8.71693i 0.135855 + 0.770475i
\(129\) 0.0442131 0.184134i 0.00389274 0.0162121i
\(130\) 0 0
\(131\) 0.588630 3.33829i 0.0514289 0.291668i −0.948236 0.317568i \(-0.897134\pi\)
0.999665 + 0.0258999i \(0.00824510\pi\)
\(132\) 1.59302 + 0.692728i 0.138655 + 0.0602942i
\(133\) 22.9262 19.2374i 1.98796 1.66809i
\(134\) 3.89853 0.336782
\(135\) 0 0
\(136\) −3.38191 −0.289997
\(137\) −14.1918 + 11.9084i −1.21249 + 1.01740i −0.213306 + 0.976985i \(0.568423\pi\)
−0.999183 + 0.0404136i \(0.987132\pi\)
\(138\) 14.7439 10.9092i 1.25509 0.928651i
\(139\) 2.88601 16.3674i 0.244788 1.38826i −0.576197 0.817311i \(-0.695464\pi\)
0.820985 0.570950i \(-0.193425\pi\)
\(140\) 0 0
\(141\) −12.5749 + 3.72440i −1.05900 + 0.313651i
\(142\) 1.74518 + 9.89741i 0.146452 + 0.830572i
\(143\) 3.14991 + 5.45581i 0.263409 + 0.456237i
\(144\) −10.3026 1.26568i −0.858551 0.105474i
\(145\) 0 0
\(146\) 12.7810 + 4.65191i 1.05776 + 0.384995i
\(147\) 9.78241 + 19.6221i 0.806840 + 1.61840i
\(148\) 1.84573 + 1.54875i 0.151718 + 0.127307i
\(149\) −6.52625 5.47617i −0.534651 0.448626i 0.335053 0.942199i \(-0.391246\pi\)
−0.869704 + 0.493574i \(0.835690\pi\)
\(150\) 0 0
\(151\) 11.3452 + 4.12932i 0.923259 + 0.336039i 0.759534 0.650467i \(-0.225427\pi\)
0.163725 + 0.986506i \(0.447649\pi\)
\(152\) 10.0310 17.3742i 0.813621 1.40923i
\(153\) 0.998250 3.26437i 0.0807038 0.263909i
\(154\) 12.2380 + 21.1969i 0.986169 + 1.70810i
\(155\) 0 0
\(156\) 0.458197 + 0.434841i 0.0366851 + 0.0348152i
\(157\) −12.2495 + 4.45846i −0.977618 + 0.355824i −0.780914 0.624639i \(-0.785246\pi\)
−0.196704 + 0.980463i \(0.563024\pi\)
\(158\) 1.12558 6.38347i 0.0895462 0.507842i
\(159\) 0.776877 + 6.82053i 0.0616103 + 0.540904i
\(160\) 0 0
\(161\) −35.3999 −2.78990
\(162\) 4.85647 10.9040i 0.381561 0.856698i
\(163\) 15.2191 1.19205 0.596025 0.802966i \(-0.296746\pi\)
0.596025 + 0.802966i \(0.296746\pi\)
\(164\) 0.0926146 0.0777128i 0.00723198 0.00606835i
\(165\) 0 0
\(166\) 0.838462 4.75515i 0.0650773 0.369072i
\(167\) −14.9634 + 5.44622i −1.15790 + 0.421441i −0.848347 0.529441i \(-0.822402\pi\)
−0.309553 + 0.950882i \(0.600179\pi\)
\(168\) 16.5561 + 15.7122i 1.27733 + 1.21222i
\(169\) −1.85962 10.5464i −0.143048 0.811264i
\(170\) 0 0
\(171\) 13.8095 + 14.8108i 1.05604 + 1.13261i
\(172\) −0.0131722 + 0.0228149i −0.00100437 + 0.00173962i
\(173\) −12.0020 4.36838i −0.912497 0.332122i −0.157248 0.987559i \(-0.550262\pi\)
−0.755249 + 0.655437i \(0.772484\pi\)
\(174\) −5.66914 0.346925i −0.429776 0.0263003i
\(175\) 0 0
\(176\) 11.0322 + 9.25707i 0.831580 + 0.697778i
\(177\) −6.31272 12.6624i −0.474493 0.951764i
\(178\) 14.3264 + 5.21438i 1.07381 + 0.390834i
\(179\) −1.85652 + 3.21558i −0.138763 + 0.240344i −0.927029 0.374991i \(-0.877646\pi\)
0.788266 + 0.615335i \(0.210979\pi\)
\(180\) 0 0
\(181\) −1.53697 2.66211i −0.114242 0.197873i 0.803234 0.595663i \(-0.203111\pi\)
−0.917477 + 0.397790i \(0.869777\pi\)
\(182\) 1.54556 + 8.76530i 0.114564 + 0.649727i
\(183\) −20.4949 + 6.07013i −1.51502 + 0.448717i
\(184\) −22.2989 + 8.11612i −1.64389 + 0.598328i
\(185\) 0 0
\(186\) −3.93118 + 2.90872i −0.288248 + 0.213278i
\(187\) −3.62804 + 3.04428i −0.265308 + 0.222620i
\(188\) 1.82450 0.133065
\(189\) −20.0530 + 11.3428i −1.45864 + 0.825071i
\(190\) 0 0
\(191\) −3.18718 + 2.67436i −0.230616 + 0.193510i −0.750772 0.660561i \(-0.770318\pi\)
0.520156 + 0.854071i \(0.325874\pi\)
\(192\) 13.8468 + 6.02129i 0.999306 + 0.434549i
\(193\) −0.685014 + 3.88491i −0.0493084 + 0.279642i −0.999486 0.0320682i \(-0.989791\pi\)
0.950177 + 0.311710i \(0.100902\pi\)
\(194\) 9.76884 3.55557i 0.701362 0.255275i
\(195\) 0 0
\(196\) −0.529662 3.00386i −0.0378330 0.214562i
\(197\) 4.35710 + 7.54672i 0.310430 + 0.537681i 0.978456 0.206457i \(-0.0661935\pi\)
−0.668025 + 0.744139i \(0.732860\pi\)
\(198\) −13.8898 + 9.01886i −0.987106 + 0.640943i
\(199\) 6.70417 11.6120i 0.475246 0.823151i −0.524352 0.851502i \(-0.675692\pi\)
0.999598 + 0.0283510i \(0.00902560\pi\)
\(200\) 0 0
\(201\) 2.81018 4.24542i 0.198215 0.299449i
\(202\) −10.8211 9.08002i −0.761373 0.638868i
\(203\) 8.39770 + 7.04651i 0.589403 + 0.494568i
\(204\) −0.262122 + 0.395996i −0.0183522 + 0.0277252i
\(205\) 0 0
\(206\) −5.52784 + 9.57450i −0.385143 + 0.667087i
\(207\) −1.25200 23.9195i −0.0870204 1.66252i
\(208\) 2.61848 + 4.53535i 0.181559 + 0.314470i
\(209\) −4.87865 27.6682i −0.337463 1.91385i
\(210\) 0 0
\(211\) 3.45959 1.25919i 0.238168 0.0866861i −0.220179 0.975460i \(-0.570664\pi\)
0.458347 + 0.888773i \(0.348442\pi\)
\(212\) 0.165832 0.940482i 0.0113894 0.0645926i
\(213\) 12.0361 + 5.23390i 0.824697 + 0.358621i
\(214\) 12.3760 10.3847i 0.846009 0.709886i
\(215\) 0 0
\(216\) −10.0311 + 11.7426i −0.682529 + 0.798980i
\(217\) 9.43869 0.640740
\(218\) −0.272986 + 0.229062i −0.0184889 + 0.0155140i
\(219\) 14.2788 10.5650i 0.964871 0.713918i
\(220\) 0 0
\(221\) −1.61837 + 0.589038i −0.108863 + 0.0396230i
\(222\) −22.0248 + 6.52326i −1.47821 + 0.437812i
\(223\) −1.82849 10.3699i −0.122445 0.694417i −0.982793 0.184711i \(-0.940865\pi\)
0.860348 0.509707i \(-0.170246\pi\)
\(224\) −3.00463 5.20417i −0.200755 0.347718i
\(225\) 0 0
\(226\) 1.37367 2.37927i 0.0913754 0.158267i
\(227\) 24.9055 + 9.06486i 1.65304 + 0.601656i 0.989246 0.146263i \(-0.0467245\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(228\) −1.25691 2.52118i −0.0832409 0.166969i
\(229\) −8.45322 7.09309i −0.558605 0.468725i 0.319238 0.947675i \(-0.396573\pi\)
−0.877842 + 0.478950i \(0.841018\pi\)
\(230\) 0 0
\(231\) 31.9046 + 1.95241i 2.09917 + 0.128459i
\(232\) 6.90538 + 2.51335i 0.453361 + 0.165010i
\(233\) 6.70173 11.6077i 0.439045 0.760448i −0.558571 0.829457i \(-0.688650\pi\)
0.997616 + 0.0690083i \(0.0219835\pi\)
\(234\) −5.86801 + 1.35433i −0.383604 + 0.0885356i
\(235\) 0 0
\(236\) 0.341798 + 1.93843i 0.0222492 + 0.126181i
\(237\) −6.14012 5.82714i −0.398844 0.378513i
\(238\) −6.28768 + 2.28853i −0.407570 + 0.148343i
\(239\) −1.52780 + 8.66459i −0.0988253 + 0.560466i 0.894683 + 0.446702i \(0.147402\pi\)
−0.993508 + 0.113763i \(0.963709\pi\)
\(240\) 0 0
\(241\) −11.2282 + 9.42161i −0.723274 + 0.606899i −0.928289 0.371860i \(-0.878720\pi\)
0.205015 + 0.978759i \(0.434276\pi\)
\(242\) 8.38779 0.539188
\(243\) −8.37353 13.1485i −0.537162 0.843479i
\(244\) 2.97362 0.190366
\(245\) 0 0
\(246\) 0.130442 + 1.14520i 0.00831666 + 0.0730155i
\(247\) 1.77408 10.0613i 0.112882 0.640186i
\(248\) 5.94556 2.16401i 0.377544 0.137415i
\(249\) −4.57388 4.34073i −0.289858 0.275083i
\(250\) 0 0
\(251\) −1.91159 3.31097i −0.120658 0.208986i 0.799369 0.600840i \(-0.205167\pi\)
−0.920027 + 0.391854i \(0.871834\pi\)
\(252\) 3.12299 0.720784i 0.196730 0.0454052i
\(253\) −16.6158 + 28.7795i −1.04463 + 1.80935i
\(254\) −18.9319 6.89065i −1.18789 0.432358i
\(255\) 0 0
\(256\) −4.36315 3.66112i −0.272697 0.228820i
\(257\) −6.25436 5.24803i −0.390136 0.327363i 0.426530 0.904473i \(-0.359736\pi\)
−0.816666 + 0.577110i \(0.804180\pi\)
\(258\) −0.112058 0.224772i −0.00697644 0.0139937i
\(259\) 41.6614 + 15.1635i 2.58871 + 0.942215i
\(260\) 0 0
\(261\) −4.46428 + 5.92350i −0.276332 + 0.366656i
\(262\) −2.24792 3.89351i −0.138877 0.240542i
\(263\) −4.83914 27.4441i −0.298394 1.69228i −0.653077 0.757291i \(-0.726522\pi\)
0.354683 0.934987i \(-0.384589\pi\)
\(264\) 20.5448 6.08491i 1.26444 0.374500i
\(265\) 0 0
\(266\) 6.89266 39.0902i 0.422616 2.39678i
\(267\) 16.0052 11.8425i 0.979505 0.724746i
\(268\) −0.542574 + 0.455273i −0.0331430 + 0.0278103i
\(269\) −13.1520 −0.801893 −0.400947 0.916101i \(-0.631319\pi\)
−0.400947 + 0.916101i \(0.631319\pi\)
\(270\) 0 0
\(271\) 8.19664 0.497911 0.248955 0.968515i \(-0.419913\pi\)
0.248955 + 0.968515i \(0.419913\pi\)
\(272\) −3.01594 + 2.53068i −0.182868 + 0.153445i
\(273\) 10.6593 + 4.63522i 0.645132 + 0.280536i
\(274\) −4.26670 + 24.1977i −0.257761 + 1.46183i
\(275\) 0 0
\(276\) −0.777987 + 3.24008i −0.0468293 + 0.195030i
\(277\) −5.06046 28.6993i −0.304054 1.72437i −0.627926 0.778273i \(-0.716096\pi\)
0.323873 0.946101i \(-0.395015\pi\)
\(278\) −11.0214 19.0896i −0.661017 1.14492i
\(279\) 0.333823 + 6.37767i 0.0199855 + 0.381821i
\(280\) 0 0
\(281\) −22.1793 8.07261i −1.32311 0.481572i −0.418655 0.908145i \(-0.637498\pi\)
−0.904453 + 0.426574i \(0.859720\pi\)
\(282\) −9.60089 + 14.5043i −0.571724 + 0.863720i
\(283\) −15.0763 12.6506i −0.896195 0.751997i 0.0732477 0.997314i \(-0.476664\pi\)
−0.969443 + 0.245317i \(0.921108\pi\)
\(284\) −1.39871 1.17366i −0.0829983 0.0696438i
\(285\) 0 0
\(286\) 7.85149 + 2.85771i 0.464268 + 0.168980i
\(287\) 1.11232 1.92659i 0.0656581 0.113723i
\(288\) 3.41016 2.21427i 0.200946 0.130477i
\(289\) 7.85263 + 13.6012i 0.461920 + 0.800068i
\(290\) 0 0
\(291\) 3.16974 13.2010i 0.185814 0.773858i
\(292\) −2.32204 + 0.845153i −0.135887 + 0.0494588i
\(293\) −1.07189 + 6.07899i −0.0626205 + 0.355138i 0.937357 + 0.348371i \(0.113265\pi\)
−0.999977 + 0.00676709i \(0.997846\pi\)
\(294\) 26.6671 + 11.5962i 1.55526 + 0.676306i
\(295\) 0 0
\(296\) 29.7196 1.72742
\(297\) −0.190848 + 21.6268i −0.0110742 + 1.25491i
\(298\) −11.2992 −0.654545
\(299\) −9.25720 + 7.76772i −0.535358 + 0.449219i
\(300\) 0 0
\(301\) −0.0841768 + 0.477390i −0.00485187 + 0.0275163i
\(302\) 15.0470 5.47666i 0.865858 0.315147i
\(303\) −17.6882 + 5.23885i −1.01616 + 0.300964i
\(304\) −4.05556 23.0002i −0.232603 1.31915i
\(305\) 0 0
\(306\) −1.76873 4.16762i −0.101111 0.238247i
\(307\) 5.97167 10.3432i 0.340821 0.590320i −0.643764 0.765224i \(-0.722628\pi\)
0.984585 + 0.174904i \(0.0559616\pi\)
\(308\) −4.17861 1.52089i −0.238098 0.0866607i
\(309\) 6.44179 + 12.9213i 0.366461 + 0.735067i
\(310\) 0 0
\(311\) 19.1774 + 16.0917i 1.08745 + 0.912478i 0.996518 0.0833788i \(-0.0265711\pi\)
0.0909314 + 0.995857i \(0.471016\pi\)
\(312\) 7.77717 + 0.475927i 0.440296 + 0.0269440i
\(313\) −14.4140 5.24628i −0.814729 0.296537i −0.0991534 0.995072i \(-0.531613\pi\)
−0.715576 + 0.698535i \(0.753836\pi\)
\(314\) −8.64453 + 14.9728i −0.487839 + 0.844962i
\(315\) 0 0
\(316\) 0.588816 + 1.01986i 0.0331235 + 0.0573716i
\(317\) −0.0427784 0.242608i −0.00240267 0.0136262i 0.983583 0.180457i \(-0.0577577\pi\)
−0.985986 + 0.166831i \(0.946647\pi\)
\(318\) 6.60396 + 6.26733i 0.370332 + 0.351455i
\(319\) 9.67037 3.51973i 0.541437 0.197067i
\(320\) 0 0
\(321\) −2.38773 20.9629i −0.133270 1.17003i
\(322\) −35.9661 + 30.1791i −2.00431 + 1.68182i
\(323\) 7.68055 0.427358
\(324\) 0.597483 + 2.08470i 0.0331935 + 0.115816i
\(325\) 0 0
\(326\) 15.4625 12.9746i 0.856390 0.718597i
\(327\) 0.0526675 + 0.462391i 0.00291252 + 0.0255703i
\(328\) 0.258955 1.46861i 0.0142984 0.0810904i
\(329\) 31.5474 11.4823i 1.73927 0.633041i
\(330\) 0 0
\(331\) −4.33167 24.5661i −0.238090 1.35028i −0.836008 0.548718i \(-0.815116\pi\)
0.597918 0.801558i \(-0.295995\pi\)
\(332\) 0.438619 + 0.759710i 0.0240723 + 0.0416945i
\(333\) −8.77245 + 28.6867i −0.480727 + 1.57202i
\(334\) −10.5597 + 18.2899i −0.577801 + 1.00078i
\(335\) 0 0
\(336\) 26.5219 + 1.62301i 1.44689 + 0.0885427i
\(337\) 22.7032 + 19.0503i 1.23672 + 1.03773i 0.997773 + 0.0667018i \(0.0212476\pi\)
0.238950 + 0.971032i \(0.423197\pi\)
\(338\) −10.8804 9.12976i −0.591817 0.496594i
\(339\) −1.60079 3.21096i −0.0869431 0.174395i
\(340\) 0 0
\(341\) 4.43029 7.67349i 0.239914 0.415543i
\(342\) 26.6568 + 3.27481i 1.44144 + 0.177082i
\(343\) −12.5446 21.7279i −0.677344 1.17319i
\(344\) 0.0564271 + 0.320014i 0.00304235 + 0.0172540i
\(345\) 0 0
\(346\) −15.9181 + 5.79373i −0.855765 + 0.311473i
\(347\) −5.18983 + 29.4330i −0.278604 + 1.58004i 0.448670 + 0.893698i \(0.351898\pi\)
−0.727274 + 0.686347i \(0.759213\pi\)
\(348\) 0.829511 0.613764i 0.0444665 0.0329012i
\(349\) 0.356538 0.299171i 0.0190850 0.0160142i −0.633195 0.773992i \(-0.718257\pi\)
0.652280 + 0.757978i \(0.273813\pi\)
\(350\) 0 0
\(351\) −2.75500 + 7.36639i −0.147051 + 0.393189i
\(352\) −5.64120 −0.300677
\(353\) −1.25375 + 1.05202i −0.0667304 + 0.0559934i −0.675543 0.737321i \(-0.736091\pi\)
0.608812 + 0.793314i \(0.291646\pi\)
\(354\) −17.2087 7.48321i −0.914631 0.397728i
\(355\) 0 0
\(356\) −2.60280 + 0.947342i −0.137948 + 0.0502090i
\(357\) −2.04019 + 8.49680i −0.107979 + 0.449699i
\(358\) 0.855141 + 4.84974i 0.0451956 + 0.256317i
\(359\) 9.42812 + 16.3300i 0.497597 + 0.861863i 0.999996 0.00277241i \(-0.000882486\pi\)
−0.502399 + 0.864636i \(0.667549\pi\)
\(360\) 0 0
\(361\) −13.2811 + 23.0035i −0.699005 + 1.21071i
\(362\) −3.83107 1.39439i −0.201356 0.0732877i
\(363\) 6.04618 9.13414i 0.317342 0.479418i
\(364\) −1.23872 1.03941i −0.0649266 0.0544799i
\(365\) 0 0
\(366\) −15.6478 + 23.6395i −0.817922 + 1.23566i
\(367\) 9.61068 + 3.49800i 0.501673 + 0.182594i 0.580446 0.814298i \(-0.302878\pi\)
−0.0787732 + 0.996893i \(0.525100\pi\)
\(368\) −13.8125 + 23.9240i −0.720029 + 1.24713i
\(369\) 1.34113 + 0.683450i 0.0698164 + 0.0355790i
\(370\) 0 0
\(371\) −3.05143 17.3055i −0.158422 0.898458i
\(372\) 0.207435 0.863905i 0.0107550 0.0447914i
\(373\) −6.52759 + 2.37585i −0.337986 + 0.123017i −0.505437 0.862864i \(-0.668669\pi\)
0.167451 + 0.985880i \(0.446446\pi\)
\(374\) −1.09075 + 6.18596i −0.0564014 + 0.319868i
\(375\) 0 0
\(376\) 17.2396 14.4658i 0.889065 0.746014i
\(377\) 3.74223 0.192735
\(378\) −10.7037 + 28.6199i −0.550541 + 1.47205i
\(379\) 8.93586 0.459004 0.229502 0.973308i \(-0.426290\pi\)
0.229502 + 0.973308i \(0.426290\pi\)
\(380\) 0 0
\(381\) −21.1505 + 15.6495i −1.08357 + 0.801747i
\(382\) −0.958210 + 5.43428i −0.0490263 + 0.278042i
\(383\) 19.4731 7.08761i 0.995026 0.362160i 0.207362 0.978264i \(-0.433512\pi\)
0.787665 + 0.616104i \(0.211290\pi\)
\(384\) 14.6999 4.35378i 0.750150 0.222178i
\(385\) 0 0
\(386\) 2.61600 + 4.53104i 0.133151 + 0.230624i
\(387\) −0.325547 0.0399937i −0.0165485 0.00203300i
\(388\) −0.944347 + 1.63566i −0.0479419 + 0.0830379i
\(389\) −5.25158 1.91142i −0.266266 0.0969127i 0.205437 0.978670i \(-0.434138\pi\)
−0.471703 + 0.881758i \(0.656361\pi\)
\(390\) 0 0
\(391\) −6.95936 5.83960i −0.351950 0.295321i
\(392\) −28.8212 24.1839i −1.45569 1.22147i
\(393\) −5.86032 0.358624i −0.295614 0.0180902i
\(394\) 10.8605 + 3.95291i 0.547146 + 0.199145i
\(395\) 0 0
\(396\) 0.879871 2.87726i 0.0442152 0.144588i
\(397\) −6.78805 11.7572i −0.340682 0.590079i 0.643877 0.765129i \(-0.277325\pi\)
−0.984560 + 0.175050i \(0.943991\pi\)
\(398\) −3.08804 17.5132i −0.154790 0.877856i
\(399\) −37.6000 35.6834i −1.88236 1.78641i
\(400\) 0 0
\(401\) −3.34334 + 18.9610i −0.166958 + 0.946868i 0.780064 + 0.625700i \(0.215187\pi\)
−0.947022 + 0.321168i \(0.895925\pi\)
\(402\) −0.764180 6.70907i −0.0381138 0.334618i
\(403\) 2.46826 2.07111i 0.122953 0.103169i
\(404\) 2.56640 0.127683
\(405\) 0 0
\(406\) 14.5393 0.721575
\(407\) 31.8826 26.7526i 1.58036 1.32608i
\(408\) 0.662914 + 5.82001i 0.0328191 + 0.288133i
\(409\) 1.49345 8.46979i 0.0738464 0.418804i −0.925364 0.379079i \(-0.876241\pi\)
0.999211 0.0397248i \(-0.0126481\pi\)
\(410\) 0 0
\(411\) 23.2752 + 22.0888i 1.14808 + 1.08956i
\(412\) −0.348787 1.97807i −0.0171835 0.0974524i
\(413\) 18.1094 + 31.3664i 0.891104 + 1.54344i
\(414\) −21.6639 23.2348i −1.06472 1.14193i
\(415\) 0 0
\(416\) −1.92766 0.701612i −0.0945114 0.0343994i
\(417\) −28.7327 1.75831i −1.40705 0.0861046i
\(418\) −28.5444 23.9516i −1.39615 1.17151i
\(419\) 22.8459 + 19.1700i 1.11609 + 0.936515i 0.998401 0.0565354i \(-0.0180054\pi\)
0.117694 + 0.993050i \(0.462450\pi\)
\(420\) 0 0
\(421\) 3.86135 + 1.40541i 0.188190 + 0.0684957i 0.434396 0.900722i \(-0.356962\pi\)
−0.246206 + 0.969218i \(0.579184\pi\)
\(422\) 2.44145 4.22871i 0.118848 0.205850i
\(423\) 8.87430 + 20.9103i 0.431483 + 1.01670i
\(424\) −5.88978 10.2014i −0.286033 0.495423i
\(425\) 0 0
\(426\) 16.6906 4.94339i 0.808662 0.239508i
\(427\) 51.4168 18.7142i 2.48823 0.905643i
\(428\) −0.509685 + 2.89057i −0.0246366 + 0.139721i
\(429\) 8.77159 6.49019i 0.423496 0.313349i
\(430\) 0 0
\(431\) 38.4602 1.85256 0.926281 0.376833i \(-0.122987\pi\)
0.926281 + 0.376833i \(0.122987\pi\)
\(432\) −0.158650 + 17.9781i −0.00763305 + 0.864972i
\(433\) 13.0726 0.628230 0.314115 0.949385i \(-0.398292\pi\)
0.314115 + 0.949385i \(0.398292\pi\)
\(434\) 9.58967 8.04669i 0.460319 0.386253i
\(435\) 0 0
\(436\) 0.0112424 0.0637590i 0.000538415 0.00305350i
\(437\) 50.6423 18.4323i 2.42255 0.881735i
\(438\) 5.50027 22.9070i 0.262813 1.09454i
\(439\) 1.34135 + 7.60717i 0.0640191 + 0.363071i 0.999941 + 0.0108629i \(0.00345783\pi\)
−0.935922 + 0.352208i \(0.885431\pi\)
\(440\) 0 0
\(441\) 31.8506 20.6811i 1.51669 0.984812i
\(442\) −1.14209 + 1.97815i −0.0543236 + 0.0940912i
\(443\) 20.4640 + 7.44827i 0.972272 + 0.353878i 0.778831 0.627234i \(-0.215813\pi\)
0.193441 + 0.981112i \(0.438035\pi\)
\(444\) 2.30349 3.47994i 0.109319 0.165151i
\(445\) 0 0
\(446\) −10.6983 8.97692i −0.506578 0.425069i
\(447\) −8.14481 + 12.3046i −0.385236 + 0.581988i
\(448\) −36.3211 13.2198i −1.71601 0.624577i
\(449\) −15.4280 + 26.7221i −0.728093 + 1.26109i 0.229595 + 0.973286i \(0.426260\pi\)
−0.957688 + 0.287808i \(0.907073\pi\)
\(450\) 0 0
\(451\) −1.04419 1.80859i −0.0491691 0.0851634i
\(452\) 0.0866738 + 0.491552i 0.00407679 + 0.0231206i
\(453\) 4.88238 20.3336i 0.229394 0.955358i
\(454\) 33.0319 12.0226i 1.55026 0.564250i
\(455\) 0 0
\(456\) −31.8659 13.8569i −1.49226 0.648910i
\(457\) −24.8797 + 20.8765i −1.16382 + 0.976564i −0.999951 0.00991784i \(-0.996843\pi\)
−0.163872 + 0.986482i \(0.552399\pi\)
\(458\) −14.6355 −0.683870
\(459\) −5.81340 1.07804i −0.271346 0.0503185i
\(460\) 0 0
\(461\) 19.5612 16.4138i 0.911056 0.764467i −0.0612635 0.998122i \(-0.519513\pi\)
0.972320 + 0.233655i \(0.0750685\pi\)
\(462\) 34.0794 25.2157i 1.58552 1.17314i
\(463\) 1.63666 9.28198i 0.0760622 0.431370i −0.922868 0.385117i \(-0.874161\pi\)
0.998930 0.0462526i \(-0.0147279\pi\)
\(464\) 8.03886 2.92591i 0.373195 0.135832i
\(465\) 0 0
\(466\) −3.08692 17.5068i −0.142999 0.810986i
\(467\) −19.3386 33.4955i −0.894885 1.54999i −0.833947 0.551845i \(-0.813924\pi\)
−0.0609381 0.998142i \(-0.519409\pi\)
\(468\) 0.658514 0.873759i 0.0304398 0.0403895i
\(469\) −6.51642 + 11.2868i −0.300900 + 0.521175i
\(470\) 0 0
\(471\) 10.0738 + 20.2065i 0.464176 + 0.931068i
\(472\) 18.5987 + 15.6062i 0.856075 + 0.718332i
\(473\) 0.348600 + 0.292510i 0.0160286 + 0.0134496i
\(474\) −11.2061 0.685761i −0.514713 0.0314981i
\(475\) 0 0
\(476\) 0.607826 1.05279i 0.0278596 0.0482543i
\(477\) 11.5853 2.67389i 0.530456 0.122429i
\(478\) 5.83451 + 10.1057i 0.266864 + 0.462223i
\(479\) 6.46290 + 36.6529i 0.295297 + 1.67471i 0.665992 + 0.745959i \(0.268009\pi\)
−0.370695 + 0.928755i \(0.620880\pi\)
\(480\) 0 0
\(481\) 14.2219 5.17636i 0.648464 0.236022i
\(482\) −3.37571 + 19.1446i −0.153760 + 0.872014i
\(483\) 6.93900 + 60.9204i 0.315735 + 2.77198i
\(484\) −1.16736 + 0.979534i −0.0530620 + 0.0445243i
\(485\) 0 0
\(486\) −19.7169 6.22024i −0.894376 0.282156i
\(487\) −38.1901 −1.73056 −0.865279 0.501290i \(-0.832859\pi\)
−0.865279 + 0.501290i \(0.832859\pi\)
\(488\) 28.0976 23.5767i 1.27192 1.06727i
\(489\) −2.98321 26.1909i −0.134905 1.18439i
\(490\) 0 0
\(491\) −0.225443 + 0.0820546i −0.0101741 + 0.00370307i −0.347102 0.937827i \(-0.612834\pi\)
0.336928 + 0.941530i \(0.390612\pi\)
\(492\) −0.151892 0.144149i −0.00684782 0.00649876i
\(493\) 0.488529 + 2.77059i 0.0220023 + 0.124781i
\(494\) −6.77503 11.7347i −0.304823 0.527969i
\(495\) 0 0
\(496\) 3.68285 6.37888i 0.165365 0.286420i
\(497\) −31.5714 11.4911i −1.41617 0.515445i
\(498\) −8.34761 0.510835i −0.374065 0.0228911i
\(499\) −15.4596 12.9721i −0.692067 0.580713i 0.227438 0.973793i \(-0.426965\pi\)
−0.919504 + 0.393080i \(0.871410\pi\)
\(500\) 0 0
\(501\) 12.3056 + 24.6832i 0.549774 + 1.10277i
\(502\) −4.76484 1.73426i −0.212665 0.0774037i
\(503\) 10.8170 18.7357i 0.482308 0.835382i −0.517486 0.855692i \(-0.673132\pi\)
0.999794 + 0.0203102i \(0.00646537\pi\)
\(504\) 23.7941 31.5716i 1.05988 1.40631i
\(505\) 0 0
\(506\) 7.65351 + 43.4052i 0.340240 + 1.92960i
\(507\) −17.7851 + 5.26755i −0.789863 + 0.233940i
\(508\) 3.43953 1.25189i 0.152604 0.0555434i
\(509\) −3.61621 + 20.5086i −0.160286 + 0.909026i 0.793507 + 0.608561i \(0.208253\pi\)
−0.953793 + 0.300465i \(0.902858\pi\)
\(510\) 0 0
\(511\) −34.8315 + 29.2271i −1.54085 + 1.29293i
\(512\) −25.2569 −1.11621
\(513\) 22.7813 26.6682i 1.00582 1.17743i
\(514\) −10.8285 −0.477623
\(515\) 0 0
\(516\) 0.0418447 + 0.0181962i 0.00184211 + 0.000801043i
\(517\) 5.47267 31.0371i 0.240688 1.36501i
\(518\) 55.2551 20.1112i 2.42777 0.883635i
\(519\) −5.16504 + 21.5108i −0.226720 + 0.944221i
\(520\) 0 0
\(521\) 4.03581 + 6.99023i 0.176812 + 0.306247i 0.940787 0.338999i \(-0.110088\pi\)
−0.763975 + 0.645246i \(0.776755\pi\)
\(522\) 0.514220 + 9.82416i 0.0225068 + 0.429992i
\(523\) −10.2876 + 17.8186i −0.449845 + 0.779154i −0.998376 0.0569761i \(-0.981854\pi\)
0.548531 + 0.836131i \(0.315187\pi\)
\(524\) 0.767539 + 0.279361i 0.0335301 + 0.0122040i
\(525\) 0 0
\(526\) −28.3133 23.7577i −1.23452 1.03588i
\(527\) 1.85558 + 1.55702i 0.0808303 + 0.0678247i
\(528\) 13.7682 20.8000i 0.599185 0.905205i
\(529\) −38.2883 13.9358i −1.66471 0.605904i
\(530\) 0 0
\(531\) −20.5536 + 13.3458i −0.891951 + 0.579157i
\(532\) 3.60571 + 6.24528i 0.156327 + 0.270767i
\(533\) −0.131872 0.747886i −0.00571203 0.0323945i
\(534\) 6.16532 25.6767i 0.266799 1.11114i
\(535\) 0 0
\(536\) −1.51707 + 8.60371i −0.0655273 + 0.371624i
\(537\) 5.89768 + 2.56461i 0.254504 + 0.110671i
\(538\) −13.3624 + 11.2124i −0.576094 + 0.483400i
\(539\) −52.6882 −2.26944
\(540\) 0 0
\(541\) −36.3288 −1.56190 −0.780949 0.624595i \(-0.785264\pi\)
−0.780949 + 0.624595i \(0.785264\pi\)
\(542\) 8.32776 6.98782i 0.357708 0.300152i
\(543\) −4.28002 + 3.16683i −0.183673 + 0.135902i
\(544\) 0.267797 1.51875i 0.0114817 0.0651159i
\(545\) 0 0
\(546\) 14.7815 4.37794i 0.632588 0.187359i
\(547\) −2.24700 12.7434i −0.0960749 0.544868i −0.994413 0.105563i \(-0.966336\pi\)
0.898338 0.439306i \(-0.144775\pi\)
\(548\) −2.23201 3.86596i −0.0953468 0.165145i
\(549\) 14.4636 + 34.0802i 0.617290 + 1.45451i
\(550\) 0 0
\(551\) −15.6826 5.70800i −0.668101 0.243169i
\(552\) 18.3382 + 36.7837i 0.780525 + 1.56562i
\(553\) 16.5996 + 13.9287i 0.705887 + 0.592310i
\(554\) −29.6082 24.8442i −1.25793 1.05553i
\(555\) 0 0
\(556\) 3.76318 + 1.36969i 0.159594 + 0.0580876i
\(557\) −8.28524 + 14.3505i −0.351057 + 0.608049i −0.986435 0.164153i \(-0.947511\pi\)
0.635378 + 0.772201i \(0.280844\pi\)
\(558\) 5.77627 + 6.19510i 0.244529 + 0.262260i
\(559\) 0.0827402 + 0.143310i 0.00349954 + 0.00606138i
\(560\) 0 0
\(561\) 5.95014 + 5.64684i 0.251215 + 0.238410i
\(562\) −29.4162 + 10.7066i −1.24085 + 0.451631i
\(563\) −1.76244 + 9.99530i −0.0742781 + 0.421252i 0.924881 + 0.380256i \(0.124164\pi\)
−0.999159 + 0.0409958i \(0.986947\pi\)
\(564\) −0.357634 3.13983i −0.0150591 0.132211i
\(565\) 0 0
\(566\) −26.1024 −1.09716
\(567\) 23.4509 + 32.2863i 0.984846 + 1.35590i
\(568\) −22.5218 −0.944996
\(569\) 21.4282 17.9804i 0.898317 0.753777i −0.0715441 0.997437i \(-0.522793\pi\)
0.969861 + 0.243660i \(0.0783482\pi\)
\(570\) 0 0
\(571\) −3.43834 + 19.4998i −0.143890 + 0.816041i 0.824362 + 0.566064i \(0.191534\pi\)
−0.968252 + 0.249978i \(0.919577\pi\)
\(572\) −1.42645 + 0.519185i −0.0596428 + 0.0217082i
\(573\) 5.22711 + 4.96067i 0.218366 + 0.207235i
\(574\) −0.512351 2.90569i −0.0213851 0.121281i
\(575\) 0 0
\(576\) 7.64797 25.0095i 0.318665 1.04206i
\(577\) 1.56447 2.70975i 0.0651299 0.112808i −0.831622 0.555343i \(-0.812587\pi\)
0.896752 + 0.442534i \(0.145920\pi\)
\(578\) 19.5735 + 7.12418i 0.814151 + 0.296327i
\(579\) 6.81990 + 0.417346i 0.283426 + 0.0173443i
\(580\) 0 0
\(581\) 12.3653 + 10.3757i 0.513000 + 0.430458i
\(582\) −8.03372 16.1145i −0.333009 0.667966i
\(583\) −15.5014 5.64204i −0.642001 0.233669i
\(584\) −15.2399 + 26.3964i −0.630633 + 1.09229i
\(585\) 0 0
\(586\) 4.09344 + 7.09004i 0.169098 + 0.292887i
\(587\) 7.65127 + 43.3925i 0.315802 + 1.79100i 0.567688 + 0.823244i \(0.307838\pi\)
−0.251887 + 0.967757i \(0.581051\pi\)
\(588\) −5.06559 + 1.50032i −0.208902 + 0.0618720i
\(589\) −13.5028 + 4.91461i −0.556372 + 0.202503i
\(590\) 0 0
\(591\) 12.1333 8.97752i 0.499095 0.369286i
\(592\) 26.5036 22.2391i 1.08929 0.914023i
\(593\) 10.1063 0.415015 0.207507 0.978233i \(-0.433465\pi\)
0.207507 + 0.978233i \(0.433465\pi\)
\(594\) 18.2434 + 22.1354i 0.748537 + 0.908228i
\(595\) 0 0
\(596\) 1.57256 1.31953i 0.0644144 0.0540501i
\(597\) −21.2974 9.26122i −0.871647 0.379036i
\(598\) −2.78313 + 15.7839i −0.113811 + 0.645453i
\(599\) 1.62169 0.590247i 0.0662605 0.0241169i −0.308677 0.951167i \(-0.599886\pi\)
0.374938 + 0.927050i \(0.377664\pi\)
\(600\) 0 0
\(601\) 3.60539 + 20.4472i 0.147067 + 0.834058i 0.965684 + 0.259719i \(0.0836299\pi\)
−0.818617 + 0.574339i \(0.805259\pi\)
\(602\) 0.321462 + 0.556789i 0.0131018 + 0.0226930i
\(603\) −7.85688 4.00393i −0.319957 0.163053i
\(604\) −1.45458 + 2.51941i −0.0591862 + 0.102513i
\(605\) 0 0
\(606\) −13.5049 + 20.4022i −0.548598 + 0.828783i
\(607\) −1.55129 1.30168i −0.0629648 0.0528337i 0.610762 0.791814i \(-0.290863\pi\)
−0.673727 + 0.738980i \(0.735308\pi\)
\(608\) 7.00810 + 5.88050i 0.284216 + 0.238486i
\(609\) 10.4804 15.8330i 0.424687 0.641587i
\(610\) 0 0
\(611\) 5.73024 9.92506i 0.231821 0.401525i
\(612\) 0.732859 + 0.373470i 0.0296241 + 0.0150966i
\(613\) 15.5244 + 26.8891i 0.627027 + 1.08604i 0.988145 + 0.153522i \(0.0490616\pi\)
−0.361119 + 0.932520i \(0.617605\pi\)
\(614\) −2.75064 15.5997i −0.111007 0.629551i
\(615\) 0 0
\(616\) −51.5420 + 18.7598i −2.07669 + 0.755852i
\(617\) 1.47195 8.34783i 0.0592584 0.336071i −0.940737 0.339137i \(-0.889865\pi\)
0.999995 + 0.00306626i \(0.000976023\pi\)
\(618\) 17.5605 + 7.63621i 0.706388 + 0.307174i
\(619\) −32.3309 + 27.1288i −1.29949 + 1.09040i −0.309255 + 0.950979i \(0.600080\pi\)
−0.990233 + 0.139421i \(0.955476\pi\)
\(620\) 0 0
\(621\) −40.9182 + 6.84325i −1.64199 + 0.274610i
\(622\) 33.2027 1.33131
\(623\) −39.0430 + 32.7610i −1.56422 + 1.31254i
\(624\) 7.29171 5.39522i 0.291902 0.215982i
\(625\) 0 0
\(626\) −19.1172 + 6.95808i −0.764076 + 0.278101i
\(627\) −46.6586 + 13.8192i −1.86336 + 0.551887i
\(628\) −0.545438 3.09333i −0.0217654 0.123437i
\(629\) 5.68895 + 9.85355i 0.226833 + 0.392887i
\(630\) 0 0
\(631\) 14.3615 24.8748i 0.571721 0.990250i −0.424668 0.905349i \(-0.639609\pi\)
0.996389 0.0849008i \(-0.0270573\pi\)
\(632\) 13.6498 + 4.96811i 0.542959 + 0.197621i
\(633\) −2.84511 5.70687i −0.113083 0.226828i
\(634\) −0.250291 0.210019i −0.00994034 0.00834094i
\(635\) 0 0
\(636\) −1.65100 0.101034i −0.0654666 0.00400625i
\(637\) −18.0042 6.55298i −0.713351 0.259638i
\(638\) 6.82442 11.8202i 0.270181 0.467968i
\(639\) 6.64785 21.7391i 0.262985 0.859985i
\(640\) 0 0
\(641\) −3.15096 17.8700i −0.124456 0.705822i −0.981630 0.190796i \(-0.938893\pi\)
0.857174 0.515026i \(-0.172218\pi\)
\(642\) −20.2972 19.2626i −0.801069 0.760235i
\(643\) 14.9832 5.45343i 0.590879 0.215062i −0.0292372 0.999573i \(-0.509308\pi\)
0.620116 + 0.784510i \(0.287086\pi\)
\(644\) 1.48120 8.40031i 0.0583675 0.331018i
\(645\) 0 0
\(646\) 7.80341 6.54784i 0.307021 0.257621i
\(647\) −13.7644 −0.541133 −0.270567 0.962701i \(-0.587211\pi\)
−0.270567 + 0.962701i \(0.587211\pi\)
\(648\) 22.1743 + 14.9610i 0.871090 + 0.587723i
\(649\) 34.0004 1.33463
\(650\) 0 0
\(651\) −1.85015 16.2433i −0.0725131 0.636624i
\(652\) −0.636797 + 3.61146i −0.0249389 + 0.141436i
\(653\) −15.9602 + 5.80905i −0.624573 + 0.227326i −0.634867 0.772621i \(-0.718945\pi\)
0.0102948 + 0.999947i \(0.496723\pi\)
\(654\) 0.447708 + 0.424887i 0.0175068 + 0.0166144i
\(655\) 0 0
\(656\) −0.868024 1.50346i −0.0338907 0.0587003i
\(657\) −20.9805 22.5018i −0.818527 0.877877i
\(658\) 22.2631 38.5609i 0.867907 1.50326i
\(659\) 10.6118 + 3.86239i 0.413378 + 0.150457i 0.540333 0.841451i \(-0.318298\pi\)
−0.126955 + 0.991908i \(0.540520\pi\)
\(660\) 0 0
\(661\) −2.63000 2.20683i −0.102295 0.0858358i 0.590206 0.807253i \(-0.299047\pi\)
−0.692501 + 0.721417i \(0.743491\pi\)
\(662\) −25.3441 21.2662i −0.985027 0.826535i
\(663\) 1.33092 + 2.66962i 0.0516885 + 0.103680i
\(664\) 10.1679 + 3.70083i 0.394592 + 0.143620i
\(665\) 0 0
\(666\) 15.5433 + 36.6243i 0.602289 + 1.41916i
\(667\) 9.87018 + 17.0957i 0.382175 + 0.661946i
\(668\) −0.666279 3.77865i −0.0257791 0.146201i
\(669\) −17.4873 + 5.17936i −0.676099 + 0.200246i
\(670\) 0 0
\(671\) 8.91950 50.5850i 0.344334 1.95281i
\(672\) −8.36702 + 6.19084i −0.322765 + 0.238817i
\(673\) 20.0688 16.8397i 0.773595 0.649123i −0.168032 0.985782i \(-0.553741\pi\)
0.941627 + 0.336658i \(0.109297\pi\)
\(674\) 39.3071 1.51405
\(675\) 0 0
\(676\) 2.58045 0.0992482
\(677\) −14.4837 + 12.1532i −0.556653 + 0.467087i −0.877186 0.480150i \(-0.840582\pi\)
0.320534 + 0.947237i \(0.396138\pi\)
\(678\) −4.36381 1.89761i −0.167591 0.0728772i
\(679\) −6.03484 + 34.2253i −0.231596 + 1.31345i
\(680\) 0 0
\(681\) 10.7180 44.6373i 0.410715 1.71051i
\(682\) −2.04066 11.5732i −0.0781409 0.443159i
\(683\) −12.2251 21.1745i −0.467782 0.810222i 0.531541 0.847033i \(-0.321613\pi\)
−0.999322 + 0.0368112i \(0.988280\pi\)
\(684\) −4.09238 + 2.65724i −0.156476 + 0.101602i
\(685\) 0 0
\(686\) −31.2687 11.3809i −1.19385 0.434524i
\(687\) −10.5497 + 15.9377i −0.402496 + 0.608062i
\(688\) 0.289787 + 0.243160i 0.0110480 + 0.00927039i
\(689\) −4.59528 3.85590i −0.175066 0.146898i
\(690\) 0 0
\(691\) 17.7400 + 6.45685i 0.674863 + 0.245630i 0.656640 0.754204i \(-0.271977\pi\)
0.0182226 + 0.999834i \(0.494199\pi\)
\(692\) 1.53880 2.66527i 0.0584962 0.101318i
\(693\) −2.89391 55.2880i −0.109931 2.10022i
\(694\) 19.8194 + 34.3282i 0.752334 + 1.30308i
\(695\) 0 0
\(696\) 2.97171 12.3763i 0.112642 0.469122i
\(697\) 0.536487 0.195265i 0.0203209 0.00739620i
\(698\) 0.107191 0.607913i 0.00405725 0.0230098i
\(699\) −21.2897 9.25785i −0.805250 0.350164i
\(700\) 0 0
\(701\) −21.8730 −0.826131 −0.413066 0.910701i \(-0.635542\pi\)
−0.413066 + 0.910701i \(0.635542\pi\)
\(702\) 3.48094 + 9.83292i 0.131380 + 0.371120i
\(703\) −67.4954 −2.54564
\(704\) −27.7957 + 23.3234i −1.04759 + 0.879034i
\(705\) 0 0
\(706\) −0.376934 + 2.13770i −0.0141861 + 0.0804533i
\(707\) 44.3755 16.1514i 1.66891 0.607435i
\(708\) 3.26890 0.968175i 0.122853 0.0363863i
\(709\) −5.59910 31.7541i −0.210279 1.19255i −0.888914 0.458074i \(-0.848539\pi\)
0.678636 0.734475i \(-0.262572\pi\)
\(710\) 0 0
\(711\) −8.82449 + 11.7089i −0.330944 + 0.439118i
\(712\) −17.0826 + 29.5880i −0.640198 + 1.10886i
\(713\) 15.9715 + 5.81315i 0.598138 + 0.217704i
\(714\) 5.17088 + 10.3720i 0.193515 + 0.388163i
\(715\) 0 0
\(716\) −0.685371 0.575094i −0.0256135 0.0214923i
\(717\) 15.2106 + 0.930816i 0.568049 + 0.0347620i
\(718\) 23.5006 + 8.55352i 0.877035 + 0.319214i
\(719\) 21.9733 38.0589i 0.819467 1.41936i −0.0866093 0.996242i \(-0.527603\pi\)
0.906076 0.423115i \(-0.139063\pi\)
\(720\) 0 0
\(721\) −18.4796 32.0077i −0.688218 1.19203i
\(722\) 6.11747 + 34.6939i 0.227669 + 1.29117i
\(723\) 18.4148 + 17.4761i 0.684854 + 0.649944i
\(724\) 0.696024 0.253332i 0.0258675 0.00941501i
\(725\) 0 0
\(726\) −1.64416 14.4347i −0.0610203 0.535724i
\(727\) −6.81176 + 5.71575i −0.252634 + 0.211985i −0.760306 0.649565i \(-0.774951\pi\)
0.507671 + 0.861551i \(0.330506\pi\)
\(728\) −19.9457 −0.739237
\(729\) −20.9863 + 16.9875i −0.777269 + 0.629168i
\(730\) 0 0
\(731\) −0.0952994 + 0.0799657i −0.00352478 + 0.00295764i
\(732\) −0.582882 5.11737i −0.0215439 0.189143i
\(733\) 0.294938 1.67268i 0.0108938 0.0617818i −0.978876 0.204454i \(-0.934458\pi\)
0.989770 + 0.142672i \(0.0455694\pi\)
\(734\) 12.7465 4.63936i 0.470483 0.171242i
\(735\) 0 0
\(736\) −1.87906 10.6567i −0.0692629 0.392809i
\(737\) 6.11730 + 10.5955i 0.225334 + 0.390289i
\(738\) 1.94524 0.448960i 0.0716052 0.0165265i
\(739\) −20.4924 + 35.4939i −0.753826 + 1.30566i 0.192130 + 0.981369i \(0.438460\pi\)
−0.945956 + 0.324295i \(0.894873\pi\)
\(740\) 0 0
\(741\) −17.6625 1.08086i −0.648848 0.0397065i
\(742\) −17.8536 14.9809i −0.655426 0.549967i
\(743\) −40.7602 34.2019i −1.49535 1.25475i −0.887600 0.460614i \(-0.847629\pi\)
−0.607747 0.794131i \(-0.707926\pi\)
\(744\) −4.88953 9.80767i −0.179259 0.359567i
\(745\) 0 0
\(746\) −4.60655 + 7.97877i −0.168658 + 0.292124i
\(747\) −6.57351 + 8.72215i −0.240512 + 0.319127i
\(748\) −0.570598 0.988304i −0.0208631 0.0361360i
\(749\) 9.37857 + 53.1885i 0.342685 + 1.94347i
\(750\) 0 0
\(751\) 15.4986 5.64104i 0.565554 0.205845i −0.0433900 0.999058i \(-0.513816\pi\)
0.608944 + 0.793214i \(0.291594\pi\)
\(752\) 4.54937 25.8007i 0.165898 0.940856i
\(753\) −5.32321 + 3.93870i −0.193989 + 0.143534i
\(754\) 3.80210 3.19034i 0.138464 0.116185i
\(755\) 0 0
\(756\) −1.85258 5.23314i −0.0673775 0.190327i
\(757\) −5.75782 −0.209271 −0.104636 0.994511i \(-0.533368\pi\)
−0.104636 + 0.994511i \(0.533368\pi\)
\(758\) 9.07880 7.61802i 0.329757 0.276699i
\(759\) 52.7843 + 22.9533i 1.91595 + 0.833152i
\(760\) 0 0
\(761\) −35.1758 + 12.8029i −1.27512 + 0.464106i −0.888816 0.458265i \(-0.848471\pi\)
−0.386305 + 0.922371i \(0.626249\pi\)
\(762\) −8.14730 + 33.9311i −0.295145 + 1.22919i
\(763\) −0.206869 1.17321i −0.00748914 0.0424730i
\(764\) −0.501262 0.868212i −0.0181350 0.0314108i
\(765\) 0 0
\(766\) 13.7422 23.8022i 0.496526 0.860008i
\(767\) 11.6183 + 4.22873i 0.419514 + 0.152690i
\(768\) −5.44525 + 8.22630i −0.196489 + 0.296841i
\(769\) 13.8998 + 11.6633i 0.501239 + 0.420589i 0.858034 0.513593i \(-0.171686\pi\)
−0.356795 + 0.934183i \(0.616130\pi\)
\(770\) 0 0
\(771\) −7.80549 + 11.7920i −0.281108 + 0.424678i
\(772\) −0.893218 0.325105i −0.0321476 0.0117008i
\(773\) −11.0792 + 19.1897i −0.398490 + 0.690206i −0.993540 0.113483i \(-0.963799\pi\)
0.595049 + 0.803689i \(0.297132\pi\)
\(774\) −0.364850 + 0.236903i −0.0131143 + 0.00851530i
\(775\) 0 0
\(776\) 4.04540 + 22.9426i 0.145221 + 0.823591i
\(777\) 17.9289 74.6684i 0.643195 2.67871i
\(778\) −6.96511 + 2.53509i −0.249711 + 0.0908874i
\(779\) −0.588106 + 3.33531i −0.0210711 + 0.119500i
\(780\) 0 0
\(781\) −24.1609 + 20.2734i −0.864546 + 0.725440i
\(782\) −12.0491 −0.430874
\(783\) 11.0690 + 6.52158i 0.395573 + 0.233062i
\(784\) −43.7991 −1.56425
\(785\) 0 0
\(786\) −6.25980 + 4.63169i −0.223280 + 0.165207i
\(787\) −2.02055 + 11.4591i −0.0720248 + 0.408473i 0.927385 + 0.374109i \(0.122051\pi\)
−0.999409 + 0.0343635i \(0.989060\pi\)
\(788\) −1.97313 + 0.718160i −0.0702898 + 0.0255834i
\(789\) −46.2807 + 13.7073i −1.64764 + 0.487994i
\(790\) 0 0
\(791\) 4.59221 + 7.95394i 0.163280 + 0.282810i
\(792\) −14.4988 34.1632i −0.515192 1.21394i
\(793\) 9.33929 16.1761i 0.331648 0.574431i
\(794\) −16.9199 6.15835i −0.600466 0.218552i
\(795\) 0 0
\(796\) 2.47498 + 2.07675i 0.0877233 + 0.0736086i
\(797\) −41.6719 34.9669i −1.47610 1.23859i −0.910236 0.414090i \(-0.864100\pi\)
−0.565860 0.824501i \(-0.691456\pi\)
\(798\) −68.6224 4.19937i −2.42921 0.148656i
\(799\) 8.09614 + 2.94675i 0.286421 + 0.104249i
\(800\) 0 0
\(801\) −23.5173 25.2225i −0.830942 0.891192i
\(802\) 12.7679 + 22.1146i 0.450849 + 0.780893i
\(803\) 7.41206 + 42.0359i 0.261566 + 1.48341i
\(804\) 0.889845 + 0.844486i 0.0313824 + 0.0297827i
\(805\) 0 0
\(806\) 0.742069 4.20848i 0.0261383 0.148238i
\(807\) 2.57803 + 22.6336i 0.0907509 + 0.796741i
\(808\) 24.2497 20.3480i 0.853103 0.715838i
\(809\) −9.51410 −0.334498 −0.167249 0.985915i \(-0.553488\pi\)
−0.167249 + 0.985915i \(0.553488\pi\)
\(810\) 0 0
\(811\) −16.3207 −0.573098 −0.286549 0.958066i \(-0.592508\pi\)
−0.286549 + 0.958066i \(0.592508\pi\)
\(812\) −2.02350 + 1.69792i −0.0710109 + 0.0595852i
\(813\) −1.60669 14.1058i −0.0563490 0.494712i
\(814\) 9.58534 54.3611i 0.335966 1.90536i
\(815\) 0 0
\(816\) 4.94628 + 4.69415i 0.173154 + 0.164328i
\(817\) −0.128150 0.726774i −0.00448340 0.0254266i
\(818\) −5.70334 9.87847i −0.199413 0.345393i
\(819\) 5.88744 19.2525i 0.205724 0.672735i
\(820\) 0 0
\(821\) 15.3844 + 5.59945i 0.536918 + 0.195422i 0.596224 0.802818i \(-0.296667\pi\)
−0.0593069 + 0.998240i \(0.518889\pi\)
\(822\) 42.4787 + 2.59950i 1.48161 + 0.0906679i
\(823\) 1.62199 + 1.36101i 0.0565391 + 0.0474419i 0.670619 0.741802i \(-0.266028\pi\)
−0.614080 + 0.789244i \(0.710473\pi\)
\(824\) −18.9790 15.9253i −0.661164 0.554783i
\(825\) 0 0
\(826\) 45.1396 + 16.4295i 1.57061 + 0.571654i
\(827\) −9.52304 + 16.4944i −0.331148 + 0.573566i −0.982737 0.185006i \(-0.940769\pi\)
0.651589 + 0.758572i \(0.274103\pi\)
\(828\) 5.72843 + 0.703742i 0.199077 + 0.0244567i
\(829\) −14.7459 25.5407i −0.512148 0.887066i −0.999901 0.0140841i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(830\) 0 0
\(831\) −48.3973 + 14.3342i −1.67889 + 0.497249i
\(832\) −12.3989 + 4.51284i −0.429855 + 0.156454i
\(833\) 2.50119 14.1850i 0.0866611 0.491480i
\(834\) −30.6913 + 22.7088i −1.06275 + 0.786342i
\(835\) 0 0
\(836\) 6.76974 0.234136
\(837\) 10.9101 1.82462i 0.377107 0.0630681i
\(838\) 39.5542 1.36638
\(839\) 20.6987 17.3682i 0.714597 0.599618i −0.211288 0.977424i \(-0.567766\pi\)
0.925885 + 0.377806i \(0.123321\pi\)
\(840\) 0 0
\(841\) −3.97427 + 22.5392i −0.137044 + 0.777214i
\(842\) 5.12126 1.86399i 0.176490 0.0642372i
\(843\) −9.54481 + 39.7513i −0.328741 + 1.36911i
\(844\) 0.154046 + 0.873641i 0.00530250 + 0.0300719i
\(845\) 0 0
\(846\) 26.8428 + 13.6793i 0.922874 + 0.470303i
\(847\) −14.0203 + 24.2838i −0.481742 + 0.834401i
\(848\) −12.8861 4.69016i −0.442511 0.161061i
\(849\) −18.8154 + 28.4250i −0.645743 + 0.975542i
\(850\) 0 0
\(851\) 61.1576 + 51.3174i 2.09646 + 1.75914i
\(852\) −1.74560 + 2.63713i −0.0598034 + 0.0903467i
\(853\) 6.30921 + 2.29637i 0.216023 + 0.0786260i 0.447765 0.894151i \(-0.352220\pi\)
−0.231742 + 0.972777i \(0.574442\pi\)
\(854\) 36.2850 62.8475i 1.24165 2.15060i
\(855\) 0 0
\(856\) 18.1022 + 31.3539i 0.618721 + 1.07166i
\(857\) −1.13853 6.45695i −0.0388916 0.220565i 0.959168 0.282839i \(-0.0912761\pi\)
−0.998059 + 0.0622733i \(0.980165\pi\)
\(858\) 3.37887 14.0720i 0.115353 0.480409i
\(859\) 46.0053 16.7446i 1.56968 0.571317i 0.596752 0.802426i \(-0.296458\pi\)
0.972928 + 0.231109i \(0.0742354\pi\)
\(860\) 0 0
\(861\) −3.53355 1.53657i −0.120423 0.0523662i
\(862\) 39.0754 32.7882i 1.33091 1.11677i
\(863\) 24.9816 0.850383 0.425192 0.905103i \(-0.360207\pi\)
0.425192 + 0.905103i \(0.360207\pi\)
\(864\) −4.47904 5.43460i −0.152380 0.184889i
\(865\) 0 0
\(866\) 13.2817 11.1447i 0.451332 0.378712i
\(867\) 21.8673 16.1798i 0.742652 0.549496i
\(868\) −0.394934 + 2.23978i −0.0134049 + 0.0760231i
\(869\) 19.1153 6.95739i 0.648442 0.236013i
\(870\) 0 0
\(871\) 0.772563 + 4.38142i 0.0261773 + 0.148459i
\(872\) −0.399291 0.691592i −0.0135217 0.0234203i
\(873\) −23.3393 2.86725i −0.789915 0.0970417i
\(874\) 35.7384 61.9007i 1.20887 2.09382i
\(875\) 0 0
\(876\) 1.90960 + 3.83039i 0.0645195 + 0.129417i
\(877\) −3.01099 2.52652i −0.101674 0.0853144i 0.590534 0.807013i \(-0.298917\pi\)
−0.692208 + 0.721699i \(0.743362\pi\)
\(878\) 7.84809 + 6.58533i 0.264860 + 0.222244i
\(879\) 10.6716 + 0.653051i 0.359944 + 0.0220269i
\(880\) 0 0
\(881\) 6.07726 10.5261i 0.204748 0.354634i −0.745304 0.666724i \(-0.767696\pi\)
0.950052 + 0.312090i \(0.101029\pi\)
\(882\) 14.7290 48.1652i 0.495951 1.62181i
\(883\) −8.72154 15.1061i −0.293503 0.508362i 0.681132 0.732160i \(-0.261488\pi\)
−0.974636 + 0.223798i \(0.928154\pi\)
\(884\) −0.0720616 0.408682i −0.00242369 0.0137454i
\(885\) 0 0
\(886\) 27.1411 9.87856i 0.911823 0.331877i
\(887\) −6.80216 + 38.5770i −0.228394 + 1.29529i 0.627695 + 0.778460i \(0.283999\pi\)
−0.856089 + 0.516828i \(0.827113\pi\)
\(888\) −5.82557 51.1452i −0.195493 1.71632i
\(889\) 51.5942 43.2927i 1.73041 1.45199i
\(890\) 0 0
\(891\) 37.2555 3.91080i 1.24811 0.131017i
\(892\) 2.53725 0.0849535
\(893\) −39.1524 + 32.8527i −1.31018 + 1.09937i
\(894\) 2.21484 + 19.4451i 0.0740754 + 0.650340i
\(895\) 0 0
\(896\) −36.8786 + 13.4227i −1.23203 + 0.448421i
\(897\) 15.1822 + 14.4083i 0.506920 + 0.481080i
\(898\) 7.10638 + 40.3023i 0.237143 + 1.34491i
\(899\) −2.63169 4.55823i −0.0877719 0.152025i
\(900\) 0 0
\(901\) 2.25485 3.90551i 0.0751199 0.130111i
\(902\) −2.60276 0.947327i −0.0866625 0.0315426i
\(903\) 0.838052 + 0.0512849i 0.0278886 + 0.00170665i
\(904\) 4.71630 + 3.95744i 0.156862 + 0.131623i
\(905\) 0 0
\(906\) −12.3744 24.8212i −0.411112 0.824630i
\(907\) −27.8001 10.1184i −0.923088 0.335977i −0.163622 0.986523i \(-0.552318\pi\)
−0.759466 + 0.650546i \(0.774540\pi\)
\(908\) −3.19317 + 5.53073i −0.105969 + 0.183544i
\(909\) 12.4829 + 29.4131i 0.414030 + 0.975571i
\(910\) 0 0
\(911\) −8.01745 45.4692i −0.265630 1.50646i −0.767235 0.641366i \(-0.778368\pi\)
0.501605 0.865097i \(-0.332743\pi\)
\(912\) −38.7867 + 11.4878i −1.28436 + 0.380398i
\(913\) 14.2393 5.18268i 0.471252 0.171522i
\(914\) −7.47996 + 42.4210i −0.247415 + 1.40316i
\(915\) 0 0
\(916\) 2.03688 1.70914i 0.0673003 0.0564716i
\(917\) 15.0297 0.496323
\(918\) −6.82545 + 3.86077i −0.225273 + 0.127424i
\(919\) 3.32517 0.109687 0.0548435 0.998495i \(-0.482534\pi\)
0.0548435 + 0.998495i \(0.482534\pi\)
\(920\) 0 0
\(921\) −18.9705 8.24933i −0.625098 0.271825i
\(922\) 5.88098 33.3527i 0.193680 1.09841i
\(923\) −10.7775 + 3.92270i −0.354746 + 0.129117i
\(924\) −1.79825 + 7.48919i −0.0591582 + 0.246376i
\(925\) 0 0
\(926\) −6.25025 10.8257i −0.205396 0.355756i
\(927\) 20.9739 13.6186i 0.688872 0.447295i
\(928\) −1.67550 + 2.90205i −0.0550010 + 0.0952645i
\(929\) 5.41753 + 1.97182i 0.177743 + 0.0646933i 0.429359 0.903134i \(-0.358740\pi\)
−0.251615 + 0.967827i \(0.580962\pi\)
\(930\) 0 0
\(931\) 65.4549 + 54.9232i 2.14520 + 1.80004i
\(932\) 2.47408 + 2.07600i 0.0810411 + 0.0680016i
\(933\) 23.9335 36.1571i 0.783549 1.18373i
\(934\) −48.2036 17.5447i −1.57727 0.574079i
\(935\) 0 0
\(936\) −0.705430 13.4772i −0.0230577 0.440516i
\(937\) 13.3901 + 23.1923i 0.437436 + 0.757661i 0.997491 0.0707946i \(-0.0225535\pi\)
−0.560055 + 0.828455i \(0.689220\pi\)
\(938\) 3.00156 + 17.0227i 0.0980045 + 0.555811i
\(939\) −6.20304 + 25.8338i −0.202429 + 0.843055i
\(940\) 0 0
\(941\) −7.05048 + 39.9852i −0.229839 + 1.30348i 0.623376 + 0.781922i \(0.285761\pi\)
−0.853215 + 0.521559i \(0.825351\pi\)
\(942\) 27.4614 + 11.9416i 0.894742 + 0.389080i
\(943\) 3.06875 2.57499i 0.0999324 0.0838532i
\(944\) 28.2642 0.919920
\(945\) 0 0
\(946\) 0.603547 0.0196230
\(947\) 5.40097 4.53195i 0.175508 0.147269i −0.550802 0.834636i \(-0.685678\pi\)
0.726310 + 0.687367i \(0.241234\pi\)
\(948\) 1.63968 1.21322i 0.0532544 0.0394035i
\(949\) −2.69533 + 15.2860i −0.0874942 + 0.496204i
\(950\) 0 0
\(951\) −0.409125 + 0.121174i −0.0132668 + 0.00392933i
\(952\) −2.60381 14.7669i −0.0843899 0.478599i
\(953\) 10.6923 + 18.5197i 0.346359 + 0.599911i 0.985600 0.169095i \(-0.0540846\pi\)
−0.639241 + 0.769007i \(0.720751\pi\)
\(954\) 9.49110 12.5934i 0.307286 0.407727i
\(955\) 0 0
\(956\) −1.99216 0.725088i −0.0644311 0.0234510i
\(957\) −7.95275 15.9520i −0.257076 0.515656i
\(958\) 37.8137 + 31.7294i 1.22170 + 1.02513i
\(959\) −62.9237 52.7993i −2.03191 1.70498i
\(960\) 0 0
\(961\) 24.8720 + 9.05266i 0.802322 + 0.292021i
\(962\) 10.0365 17.3837i 0.323589 0.560472i
\(963\) −35.6075 + 8.21819i −1.14744 + 0.264828i
\(964\) −1.76591 3.05865i −0.0568763 0.0985126i
\(965\) 0 0
\(966\) 58.9860 + 55.9793i 1.89784 + 1.80110i
\(967\) 30.8331 11.2223i 0.991527 0.360886i 0.205216 0.978717i \(-0.434210\pi\)
0.786311 + 0.617831i \(0.211988\pi\)
\(968\) −3.26401 + 18.5111i −0.104909 + 0.594970i
\(969\) −1.50552 13.2176i −0.0483644 0.424612i
\(970\) 0 0
\(971\) 2.11522 0.0678807 0.0339404 0.999424i \(-0.489194\pi\)
0.0339404 + 0.999424i \(0.489194\pi\)
\(972\) 3.47048 1.43686i 0.111316 0.0460873i
\(973\) 73.6892 2.36237
\(974\) −38.8010 + 32.5579i −1.24326 + 1.04322i
\(975\) 0 0
\(976\) 7.41468 42.0507i 0.237338 1.34601i
\(977\) 16.9431 6.16678i 0.542058 0.197293i −0.0564564 0.998405i \(-0.517980\pi\)
0.598514 + 0.801112i \(0.295758\pi\)
\(978\) −25.3592 24.0666i −0.810899 0.769564i
\(979\) 8.30826 + 47.1185i 0.265533 + 1.50591i
\(980\) 0 0
\(981\) 0.785415 0.181274i 0.0250764 0.00578762i
\(982\) −0.159096 + 0.275562i −0.00507696 + 0.00879355i
\(983\) −17.3223 6.30480i −0.552496 0.201092i 0.0506592 0.998716i \(-0.483868\pi\)
−0.603155 + 0.797624i \(0.706090\pi\)
\(984\) −2.57812 0.157769i −0.0821876 0.00502950i
\(985\) 0 0
\(986\) 2.85833 + 2.39842i 0.0910278 + 0.0763814i
\(987\) −25.9441 52.0400i −0.825808 1.65645i
\(988\) 2.31330 + 0.841971i 0.0735958 + 0.0267867i
\(989\) −0.436456 + 0.755965i −0.0138785 + 0.0240383i
\(990\) 0 0
\(991\) −17.5641 30.4220i −0.557943 0.966386i −0.997668 0.0682536i \(-0.978257\pi\)
0.439725 0.898133i \(-0.355076\pi\)
\(992\) 0.501014 + 2.84139i 0.0159072 + 0.0902143i
\(993\) −41.4273 + 12.2699i −1.31466 + 0.389372i
\(994\) −41.8728 + 15.2405i −1.32813 + 0.483398i
\(995\) 0 0
\(996\) 1.22143 0.903746i 0.0387024 0.0286363i
\(997\) 13.4706 11.3032i 0.426620 0.357976i −0.404055 0.914735i \(-0.632400\pi\)
0.830674 + 0.556758i \(0.187955\pi\)
\(998\) −26.7659 −0.847261
\(999\) 51.0872 + 9.47361i 1.61633 + 0.299732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.g.76.8 yes 66
5.2 odd 4 675.2.u.e.49.16 132
5.3 odd 4 675.2.u.e.49.7 132
5.4 even 2 675.2.l.f.76.4 66
27.16 even 9 inner 675.2.l.g.151.8 yes 66
135.43 odd 36 675.2.u.e.124.16 132
135.97 odd 36 675.2.u.e.124.7 132
135.124 even 18 675.2.l.f.151.4 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.4 66 5.4 even 2
675.2.l.f.151.4 yes 66 135.124 even 18
675.2.l.g.76.8 yes 66 1.1 even 1 trivial
675.2.l.g.151.8 yes 66 27.16 even 9 inner
675.2.u.e.49.7 132 5.3 odd 4
675.2.u.e.49.16 132 5.2 odd 4
675.2.u.e.124.7 132 135.97 odd 36
675.2.u.e.124.16 132 135.43 odd 36