Properties

Label 675.2.ba.c.518.12
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.12
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.c.632.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.347779 - 0.0304268i) q^{2} +(0.528165 + 1.64956i) q^{3} +(-1.84959 - 0.326133i) q^{4} +(-0.133494 - 0.589753i) q^{6} +(0.994510 + 0.696364i) q^{7} +(1.30775 + 0.350411i) q^{8} +(-2.44208 + 1.74248i) q^{9} +(-0.626120 + 1.72025i) q^{11} +(-0.438914 - 3.22326i) q^{12} +(-0.0303916 - 0.347377i) q^{13} +(-0.324682 - 0.272441i) q^{14} +(3.08557 + 1.12306i) q^{16} +(-1.92212 + 0.515030i) q^{17} +(0.902324 - 0.531693i) q^{18} +(-4.81794 + 2.78164i) q^{19} +(-0.623426 + 2.00830i) q^{21} +(0.270093 - 0.579217i) q^{22} +(-1.69206 - 2.41651i) q^{23} +(0.112685 + 2.34229i) q^{24} +0.121735i q^{26} +(-4.16414 - 3.10804i) q^{27} +(-1.61233 - 1.61233i) q^{28} +(-1.34520 + 1.12876i) q^{29} +(-0.372471 + 2.11239i) q^{31} +(-3.49300 - 1.62881i) q^{32} +(-3.16835 - 0.124245i) q^{33} +(0.684143 - 0.120633i) q^{34} +(5.08513 - 2.42643i) q^{36} +(-0.433293 - 1.61707i) q^{37} +(1.76022 - 0.820803i) q^{38} +(0.556967 - 0.233605i) q^{39} +(-7.15599 + 8.52817i) q^{41} +(0.277921 - 0.679476i) q^{42} +(-1.86279 - 3.99477i) q^{43} +(1.71910 - 2.97756i) q^{44} +(0.514936 + 0.891896i) q^{46} +(-6.40776 + 9.15123i) q^{47} +(-0.222855 + 5.68299i) q^{48} +(-1.89001 - 5.19277i) q^{49} +(-1.86477 - 2.89862i) q^{51} +(-0.0570792 + 0.652418i) q^{52} +(5.25853 - 5.25853i) q^{53} +(1.35364 + 1.20761i) q^{54} +(1.05656 + 1.25916i) q^{56} +(-7.13315 - 6.47831i) q^{57} +(0.502179 - 0.351629i) q^{58} +(-5.35536 + 1.94919i) q^{59} +(1.30500 + 7.40100i) q^{61} +(0.193811 - 0.723312i) q^{62} +(-3.64208 + 0.0323344i) q^{63} +(-4.52212 - 2.61085i) q^{64} +(1.09811 + 0.139612i) q^{66} +(9.76158 - 0.854027i) q^{67} +(3.72310 - 0.325729i) q^{68} +(3.09249 - 4.06746i) q^{69} +(-13.6425 - 7.87649i) q^{71} +(-3.80422 + 1.42299i) q^{72} +(3.10541 - 11.5895i) q^{73} +(0.101488 + 0.575568i) q^{74} +(9.81841 - 3.57361i) q^{76} +(-1.82060 + 1.27480i) q^{77} +(-0.200810 + 0.0642964i) q^{78} +(9.65809 + 11.5101i) q^{79} +(2.92754 - 8.51055i) q^{81} +(2.74819 - 2.74819i) q^{82} +(-1.12664 + 12.8776i) q^{83} +(1.80806 - 3.51121i) q^{84} +(0.526293 + 1.44598i) q^{86} +(-2.57244 - 1.62282i) q^{87} +(-1.42160 + 2.03026i) q^{88} +(-1.27248 - 2.20400i) q^{89} +(0.211676 - 0.366634i) q^{91} +(2.34151 + 5.02139i) q^{92} +(-3.68124 + 0.501277i) q^{93} +(2.50693 - 2.98764i) q^{94} +(0.841940 - 6.62218i) q^{96} +(5.51873 - 2.57343i) q^{97} +(0.499308 + 1.86344i) q^{98} +(-1.46846 - 5.29200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.347779 0.0304268i −0.245917 0.0215150i −0.0364693 0.999335i \(-0.511611\pi\)
−0.209448 + 0.977820i \(0.567167\pi\)
\(3\) 0.528165 + 1.64956i 0.304936 + 0.952373i
\(4\) −1.84959 0.326133i −0.924795 0.163066i
\(5\) 0 0
\(6\) −0.133494 0.589753i −0.0544988 0.240765i
\(7\) 0.994510 + 0.696364i 0.375890 + 0.263201i 0.746220 0.665699i \(-0.231867\pi\)
−0.370330 + 0.928900i \(0.620756\pi\)
\(8\) 1.30775 + 0.350411i 0.462360 + 0.123889i
\(9\) −2.44208 + 1.74248i −0.814028 + 0.580826i
\(10\) 0 0
\(11\) −0.626120 + 1.72025i −0.188782 + 0.518675i −0.997589 0.0693995i \(-0.977892\pi\)
0.808807 + 0.588075i \(0.200114\pi\)
\(12\) −0.438914 3.22326i −0.126704 0.930475i
\(13\) −0.0303916 0.347377i −0.00842911 0.0963452i 0.990815 0.135226i \(-0.0431762\pi\)
−0.999244 + 0.0388812i \(0.987621\pi\)
\(14\) −0.324682 0.272441i −0.0867749 0.0728128i
\(15\) 0 0
\(16\) 3.08557 + 1.12306i 0.771393 + 0.280764i
\(17\) −1.92212 + 0.515030i −0.466182 + 0.124913i −0.484261 0.874924i \(-0.660912\pi\)
0.0180793 + 0.999837i \(0.494245\pi\)
\(18\) 0.902324 0.531693i 0.212680 0.125321i
\(19\) −4.81794 + 2.78164i −1.10531 + 0.638152i −0.937611 0.347685i \(-0.886968\pi\)
−0.167701 + 0.985838i \(0.553634\pi\)
\(20\) 0 0
\(21\) −0.623426 + 2.00830i −0.136043 + 0.438246i
\(22\) 0.270093 0.579217i 0.0575841 0.123489i
\(23\) −1.69206 2.41651i −0.352818 0.503877i 0.603037 0.797713i \(-0.293957\pi\)
−0.955856 + 0.293836i \(0.905068\pi\)
\(24\) 0.112685 + 2.34229i 0.0230018 + 0.478117i
\(25\) 0 0
\(26\) 0.121735i 0.0238743i
\(27\) −4.16414 3.10804i −0.801389 0.598143i
\(28\) −1.61233 1.61233i −0.304702 0.304702i
\(29\) −1.34520 + 1.12876i −0.249798 + 0.209605i −0.759085 0.650991i \(-0.774353\pi\)
0.509287 + 0.860597i \(0.329909\pi\)
\(30\) 0 0
\(31\) −0.372471 + 2.11239i −0.0668978 + 0.379396i 0.932916 + 0.360094i \(0.117256\pi\)
−0.999814 + 0.0193020i \(0.993856\pi\)
\(32\) −3.49300 1.62881i −0.617481 0.287936i
\(33\) −3.16835 0.124245i −0.551539 0.0216283i
\(34\) 0.684143 0.120633i 0.117330 0.0206884i
\(35\) 0 0
\(36\) 5.08513 2.42643i 0.847522 0.404405i
\(37\) −0.433293 1.61707i −0.0712329 0.265845i 0.921120 0.389279i \(-0.127276\pi\)
−0.992353 + 0.123434i \(0.960609\pi\)
\(38\) 1.76022 0.820803i 0.285545 0.133152i
\(39\) 0.556967 0.233605i 0.0891862 0.0374068i
\(40\) 0 0
\(41\) −7.15599 + 8.52817i −1.11758 + 1.33188i −0.180172 + 0.983635i \(0.557666\pi\)
−0.937405 + 0.348242i \(0.886779\pi\)
\(42\) 0.277921 0.679476i 0.0428841 0.104845i
\(43\) −1.86279 3.99477i −0.284073 0.609197i 0.711552 0.702634i \(-0.247993\pi\)
−0.995625 + 0.0934362i \(0.970215\pi\)
\(44\) 1.71910 2.97756i 0.259163 0.448884i
\(45\) 0 0
\(46\) 0.514936 + 0.891896i 0.0759232 + 0.131503i
\(47\) −6.40776 + 9.15123i −0.934668 + 1.33484i 0.00759474 + 0.999971i \(0.497582\pi\)
−0.942263 + 0.334874i \(0.891306\pi\)
\(48\) −0.222855 + 5.68299i −0.0321664 + 0.820269i
\(49\) −1.89001 5.19277i −0.270002 0.741824i
\(50\) 0 0
\(51\) −1.86477 2.89862i −0.261119 0.405888i
\(52\) −0.0570792 + 0.652418i −0.00791545 + 0.0904741i
\(53\) 5.25853 5.25853i 0.722314 0.722314i −0.246762 0.969076i \(-0.579367\pi\)
0.969076 + 0.246762i \(0.0793666\pi\)
\(54\) 1.35364 + 1.20761i 0.184206 + 0.164335i
\(55\) 0 0
\(56\) 1.05656 + 1.25916i 0.141189 + 0.168262i
\(57\) −7.13315 6.47831i −0.944809 0.858074i
\(58\) 0.502179 0.351629i 0.0659393 0.0461712i
\(59\) −5.35536 + 1.94919i −0.697209 + 0.253763i −0.666219 0.745756i \(-0.732088\pi\)
−0.0309902 + 0.999520i \(0.509866\pi\)
\(60\) 0 0
\(61\) 1.30500 + 7.40100i 0.167088 + 0.947602i 0.946886 + 0.321570i \(0.104211\pi\)
−0.779798 + 0.626031i \(0.784678\pi\)
\(62\) 0.193811 0.723312i 0.0246140 0.0918608i
\(63\) −3.64208 + 0.0323344i −0.458858 + 0.00407376i
\(64\) −4.52212 2.61085i −0.565265 0.326356i
\(65\) 0 0
\(66\) 1.09811 + 0.139612i 0.135167 + 0.0171851i
\(67\) 9.76158 0.854027i 1.19257 0.104336i 0.526465 0.850197i \(-0.323517\pi\)
0.666102 + 0.745861i \(0.267962\pi\)
\(68\) 3.72310 0.325729i 0.451492 0.0395004i
\(69\) 3.09249 4.06746i 0.372291 0.489665i
\(70\) 0 0
\(71\) −13.6425 7.87649i −1.61906 0.934767i −0.987163 0.159718i \(-0.948942\pi\)
−0.631901 0.775049i \(-0.717725\pi\)
\(72\) −3.80422 + 1.42299i −0.448332 + 0.167702i
\(73\) 3.10541 11.5895i 0.363460 1.35645i −0.506036 0.862513i \(-0.668890\pi\)
0.869496 0.493940i \(-0.164444\pi\)
\(74\) 0.101488 + 0.575568i 0.0117978 + 0.0669084i
\(75\) 0 0
\(76\) 9.81841 3.57361i 1.12625 0.409921i
\(77\) −1.82060 + 1.27480i −0.207477 + 0.145277i
\(78\) −0.200810 + 0.0642964i −0.0227372 + 0.00728013i
\(79\) 9.65809 + 11.5101i 1.08662 + 1.29498i 0.952674 + 0.303995i \(0.0983205\pi\)
0.133946 + 0.990989i \(0.457235\pi\)
\(80\) 0 0
\(81\) 2.92754 8.51055i 0.325282 0.945617i
\(82\) 2.74819 2.74819i 0.303487 0.303487i
\(83\) −1.12664 + 12.8776i −0.123665 + 1.41350i 0.640241 + 0.768174i \(0.278834\pi\)
−0.763906 + 0.645327i \(0.776721\pi\)
\(84\) 1.80806 3.51121i 0.197275 0.383104i
\(85\) 0 0
\(86\) 0.526293 + 1.44598i 0.0567517 + 0.155924i
\(87\) −2.57244 1.62282i −0.275795 0.173985i
\(88\) −1.42160 + 2.03026i −0.151543 + 0.216426i
\(89\) −1.27248 2.20400i −0.134883 0.233623i 0.790670 0.612243i \(-0.209732\pi\)
−0.925553 + 0.378619i \(0.876399\pi\)
\(90\) 0 0
\(91\) 0.211676 0.366634i 0.0221897 0.0384337i
\(92\) 2.34151 + 5.02139i 0.244119 + 0.523516i
\(93\) −3.68124 + 0.501277i −0.381726 + 0.0519801i
\(94\) 2.50693 2.98764i 0.258570 0.308152i
\(95\) 0 0
\(96\) 0.841940 6.62218i 0.0859301 0.675874i
\(97\) 5.51873 2.57343i 0.560342 0.261292i −0.121746 0.992561i \(-0.538849\pi\)
0.682089 + 0.731269i \(0.261072\pi\)
\(98\) 0.499308 + 1.86344i 0.0504378 + 0.188236i
\(99\) −1.46846 5.29200i −0.147586 0.531866i
\(100\) 0 0
\(101\) 6.16986 1.08791i 0.613924 0.108251i 0.141965 0.989872i \(-0.454658\pi\)
0.471959 + 0.881620i \(0.343547\pi\)
\(102\) 0.560332 + 1.06482i 0.0554811 + 0.105433i
\(103\) 12.9364 + 6.03233i 1.27466 + 0.594383i 0.937801 0.347172i \(-0.112858\pi\)
0.336858 + 0.941556i \(0.390636\pi\)
\(104\) 0.0819802 0.464933i 0.00803882 0.0455904i
\(105\) 0 0
\(106\) −1.98881 + 1.66881i −0.193170 + 0.162089i
\(107\) 12.7480 + 12.7480i 1.23240 + 1.23240i 0.963041 + 0.269355i \(0.0868104\pi\)
0.269355 + 0.963041i \(0.413190\pi\)
\(108\) 6.68832 + 7.10667i 0.643584 + 0.683839i
\(109\) 9.14545i 0.875976i 0.898981 + 0.437988i \(0.144309\pi\)
−0.898981 + 0.437988i \(0.855691\pi\)
\(110\) 0 0
\(111\) 2.43860 1.56882i 0.231462 0.148906i
\(112\) 2.28658 + 3.26557i 0.216061 + 0.308567i
\(113\) −5.16253 + 11.0711i −0.485650 + 1.04148i 0.498946 + 0.866633i \(0.333721\pi\)
−0.984596 + 0.174846i \(0.944057\pi\)
\(114\) 2.28365 + 2.47006i 0.213883 + 0.231343i
\(115\) 0 0
\(116\) 2.85620 1.64903i 0.265192 0.153108i
\(117\) 0.679516 + 0.795368i 0.0628213 + 0.0735318i
\(118\) 1.92179 0.514943i 0.176915 0.0474043i
\(119\) −2.27021 0.826290i −0.208110 0.0757459i
\(120\) 0 0
\(121\) 5.85925 + 4.91650i 0.532659 + 0.446954i
\(122\) −0.228662 2.61362i −0.0207021 0.236626i
\(123\) −17.8473 7.29993i −1.60923 0.658213i
\(124\) 1.37784 3.78558i 0.123734 0.339955i
\(125\) 0 0
\(126\) 1.26762 + 0.0995713i 0.112929 + 0.00887051i
\(127\) 6.64080 + 1.77940i 0.589276 + 0.157896i 0.541122 0.840944i \(-0.318000\pi\)
0.0481536 + 0.998840i \(0.484666\pi\)
\(128\) 7.80744 + 5.46683i 0.690087 + 0.483204i
\(129\) 5.60575 5.18269i 0.493559 0.456310i
\(130\) 0 0
\(131\) −18.1487 3.20011i −1.58566 0.279595i −0.689823 0.723978i \(-0.742312\pi\)
−0.895837 + 0.444384i \(0.853423\pi\)
\(132\) 5.81963 + 1.26310i 0.506534 + 0.109939i
\(133\) −6.72853 0.588670i −0.583438 0.0510442i
\(134\) −3.42086 −0.295517
\(135\) 0 0
\(136\) −2.69412 −0.231019
\(137\) 0.496033 + 0.0433972i 0.0423789 + 0.00370768i 0.108325 0.994115i \(-0.465451\pi\)
−0.0659466 + 0.997823i \(0.521007\pi\)
\(138\) −1.19926 + 1.32049i −0.102088 + 0.112407i
\(139\) 1.39820 + 0.246540i 0.118594 + 0.0209113i 0.232630 0.972565i \(-0.425267\pi\)
−0.114036 + 0.993477i \(0.536378\pi\)
\(140\) 0 0
\(141\) −18.4798 5.73661i −1.55628 0.483110i
\(142\) 4.50492 + 3.15438i 0.378044 + 0.264709i
\(143\) 0.616605 + 0.165219i 0.0515631 + 0.0138163i
\(144\) −9.49212 + 2.63394i −0.791010 + 0.219495i
\(145\) 0 0
\(146\) −1.43263 + 3.93611i −0.118565 + 0.325755i
\(147\) 7.56753 5.86032i 0.624159 0.483351i
\(148\) 0.274035 + 3.13223i 0.0225255 + 0.257468i
\(149\) 12.3163 + 10.3346i 1.00899 + 0.846644i 0.988204 0.153140i \(-0.0489386\pi\)
0.0207862 + 0.999784i \(0.493383\pi\)
\(150\) 0 0
\(151\) −0.578102 0.210412i −0.0470453 0.0171231i 0.318390 0.947960i \(-0.396858\pi\)
−0.365436 + 0.930837i \(0.619080\pi\)
\(152\) −7.27539 + 1.94943i −0.590112 + 0.158120i
\(153\) 3.79654 4.60699i 0.306932 0.372453i
\(154\) 0.671956 0.387954i 0.0541478 0.0312622i
\(155\) 0 0
\(156\) −1.10635 + 0.250429i −0.0885787 + 0.0200504i
\(157\) 3.52308 7.55527i 0.281172 0.602976i −0.714106 0.700038i \(-0.753167\pi\)
0.995278 + 0.0970614i \(0.0309443\pi\)
\(158\) −3.00867 4.29683i −0.239357 0.341837i
\(159\) 11.4516 + 5.89687i 0.908172 + 0.467652i
\(160\) 0 0
\(161\) 3.58153i 0.282264i
\(162\) −1.27709 + 2.87072i −0.100337 + 0.225545i
\(163\) −12.1060 12.1060i −0.948215 0.948215i 0.0505083 0.998724i \(-0.483916\pi\)
−0.998724 + 0.0505083i \(0.983916\pi\)
\(164\) 16.0170 13.4398i 1.25071 1.04947i
\(165\) 0 0
\(166\) 0.783648 4.44429i 0.0608228 0.344943i
\(167\) 16.2781 + 7.59058i 1.25963 + 0.587377i 0.933714 0.358020i \(-0.116548\pi\)
0.325920 + 0.945397i \(0.394326\pi\)
\(168\) −1.51902 + 2.40790i −0.117195 + 0.185773i
\(169\) 12.6828 2.23631i 0.975596 0.172024i
\(170\) 0 0
\(171\) 6.91887 15.1882i 0.529099 1.16147i
\(172\) 2.14258 + 7.99621i 0.163370 + 0.609706i
\(173\) −6.74861 + 3.14693i −0.513088 + 0.239257i −0.661877 0.749612i \(-0.730240\pi\)
0.148790 + 0.988869i \(0.452462\pi\)
\(174\) 0.845266 + 0.642654i 0.0640794 + 0.0487195i
\(175\) 0 0
\(176\) −3.86388 + 4.60479i −0.291251 + 0.347099i
\(177\) −6.04382 7.80449i −0.454282 0.586621i
\(178\) 0.375482 + 0.805223i 0.0281435 + 0.0603540i
\(179\) −1.32416 + 2.29350i −0.0989720 + 0.171425i −0.911259 0.411833i \(-0.864889\pi\)
0.812287 + 0.583257i \(0.198222\pi\)
\(180\) 0 0
\(181\) −4.01126 6.94770i −0.298155 0.516419i 0.677559 0.735468i \(-0.263038\pi\)
−0.975714 + 0.219049i \(0.929704\pi\)
\(182\) −0.0847721 + 0.121067i −0.00628373 + 0.00897409i
\(183\) −11.5191 + 6.06162i −0.851519 + 0.448088i
\(184\) −1.36602 3.75311i −0.100704 0.276683i
\(185\) 0 0
\(186\) 1.29551 0.0623259i 0.0949914 0.00456996i
\(187\) 0.317496 3.62899i 0.0232176 0.265378i
\(188\) 14.8363 14.8363i 1.08205 1.08205i
\(189\) −1.97695 5.99074i −0.143802 0.435762i
\(190\) 0 0
\(191\) 7.76324 + 9.25187i 0.561728 + 0.669442i 0.969911 0.243458i \(-0.0782820\pi\)
−0.408183 + 0.912900i \(0.633838\pi\)
\(192\) 1.91832 8.83846i 0.138443 0.637861i
\(193\) 6.37332 4.46264i 0.458761 0.321228i −0.321249 0.946995i \(-0.604103\pi\)
0.780010 + 0.625767i \(0.215214\pi\)
\(194\) −1.99760 + 0.727068i −0.143420 + 0.0522004i
\(195\) 0 0
\(196\) 1.80222 + 10.2209i 0.128730 + 0.730063i
\(197\) 0.144274 0.538437i 0.0102791 0.0383620i −0.960596 0.277949i \(-0.910345\pi\)
0.970875 + 0.239587i \(0.0770120\pi\)
\(198\) 0.349683 + 1.88513i 0.0248509 + 0.133970i
\(199\) 2.90871 + 1.67935i 0.206193 + 0.119046i 0.599541 0.800344i \(-0.295350\pi\)
−0.393348 + 0.919390i \(0.628683\pi\)
\(200\) 0 0
\(201\) 6.56449 + 15.6512i 0.463023 + 1.10395i
\(202\) −2.17885 + 0.190625i −0.153304 + 0.0134123i
\(203\) −2.12385 + 0.185812i −0.149065 + 0.0130415i
\(204\) 2.50372 + 5.96943i 0.175295 + 0.417943i
\(205\) 0 0
\(206\) −4.31546 2.49153i −0.300672 0.173593i
\(207\) 8.34286 + 2.95294i 0.579869 + 0.205244i
\(208\) 0.296349 1.10599i 0.0205481 0.0766865i
\(209\) −1.76851 10.0297i −0.122330 0.693770i
\(210\) 0 0
\(211\) 12.2782 4.46890i 0.845267 0.307652i 0.117158 0.993113i \(-0.462622\pi\)
0.728109 + 0.685461i \(0.240399\pi\)
\(212\) −11.4411 + 8.01114i −0.785778 + 0.550208i
\(213\) 5.78724 26.6641i 0.396535 1.82700i
\(214\) −4.04561 4.82137i −0.276552 0.329582i
\(215\) 0 0
\(216\) −4.35657 5.52370i −0.296427 0.375841i
\(217\) −1.84142 + 1.84142i −0.125004 + 0.125004i
\(218\) 0.278266 3.18060i 0.0188466 0.215417i
\(219\) 20.7578 0.998640i 1.40268 0.0674818i
\(220\) 0 0
\(221\) 0.237326 + 0.652047i 0.0159643 + 0.0438615i
\(222\) −0.895830 + 0.471406i −0.0601242 + 0.0316387i
\(223\) −9.16597 + 13.0904i −0.613799 + 0.876595i −0.998929 0.0462669i \(-0.985268\pi\)
0.385131 + 0.922862i \(0.374156\pi\)
\(224\) −2.33958 4.05227i −0.156320 0.270753i
\(225\) 0 0
\(226\) 2.13228 3.69321i 0.141837 0.245669i
\(227\) −3.92241 8.41164i −0.260340 0.558300i 0.732077 0.681222i \(-0.238551\pi\)
−0.992416 + 0.122922i \(0.960774\pi\)
\(228\) 11.0806 + 14.3086i 0.733832 + 0.947609i
\(229\) −4.29414 + 5.11756i −0.283765 + 0.338178i −0.889032 0.457844i \(-0.848622\pi\)
0.605268 + 0.796022i \(0.293066\pi\)
\(230\) 0 0
\(231\) −3.06444 2.32989i −0.201625 0.153295i
\(232\) −2.15472 + 1.00476i −0.141464 + 0.0659659i
\(233\) −1.43934 5.37169i −0.0942942 0.351911i 0.902617 0.430444i \(-0.141643\pi\)
−0.996911 + 0.0785332i \(0.974976\pi\)
\(234\) −0.212121 0.297288i −0.0138668 0.0194343i
\(235\) 0 0
\(236\) 10.5409 1.85865i 0.686156 0.120988i
\(237\) −13.8855 + 22.0108i −0.901957 + 1.42975i
\(238\) 0.764392 + 0.356442i 0.0495482 + 0.0231047i
\(239\) 1.28207 7.27098i 0.0829302 0.470320i −0.914854 0.403785i \(-0.867694\pi\)
0.997784 0.0665354i \(-0.0211945\pi\)
\(240\) 0 0
\(241\) −11.5447 + 9.68711i −0.743656 + 0.624002i −0.933817 0.357751i \(-0.883544\pi\)
0.190161 + 0.981753i \(0.439099\pi\)
\(242\) −1.88813 1.88813i −0.121374 0.121374i
\(243\) 15.5849 + 0.334171i 0.999770 + 0.0214371i
\(244\) 14.1144i 0.903584i
\(245\) 0 0
\(246\) 5.98479 + 3.08180i 0.381577 + 0.196488i
\(247\) 1.11270 + 1.58911i 0.0707997 + 0.101112i
\(248\) −1.22730 + 2.63196i −0.0779339 + 0.167130i
\(249\) −21.8374 + 4.94304i −1.38389 + 0.313252i
\(250\) 0 0
\(251\) 24.4606 14.1224i 1.54394 0.891395i 0.545357 0.838204i \(-0.316394\pi\)
0.998584 0.0531910i \(-0.0169392\pi\)
\(252\) 6.74689 + 1.12799i 0.425014 + 0.0710570i
\(253\) 5.21643 1.39774i 0.327954 0.0878751i
\(254\) −2.25539 0.820896i −0.141516 0.0515076i
\(255\) 0 0
\(256\) 5.45117 + 4.57408i 0.340698 + 0.285880i
\(257\) −1.75903 20.1058i −0.109725 1.25417i −0.828924 0.559362i \(-0.811046\pi\)
0.719198 0.694805i \(-0.244509\pi\)
\(258\) −2.10726 + 1.63187i −0.131192 + 0.101596i
\(259\) 0.695156 1.90992i 0.0431949 0.118677i
\(260\) 0 0
\(261\) 1.31826 5.10051i 0.0815982 0.315714i
\(262\) 6.21438 + 1.66514i 0.383925 + 0.102872i
\(263\) 10.3997 + 7.28196i 0.641274 + 0.449025i 0.848448 0.529279i \(-0.177538\pi\)
−0.207174 + 0.978304i \(0.566427\pi\)
\(264\) −4.09987 1.27270i −0.252330 0.0783296i
\(265\) 0 0
\(266\) 2.32213 + 0.409455i 0.142379 + 0.0251053i
\(267\) 2.96354 3.26310i 0.181366 0.199699i
\(268\) −18.3334 1.60397i −1.11989 0.0979780i
\(269\) −19.2549 −1.17399 −0.586995 0.809591i \(-0.699689\pi\)
−0.586995 + 0.809591i \(0.699689\pi\)
\(270\) 0 0
\(271\) −21.6954 −1.31790 −0.658952 0.752185i \(-0.729000\pi\)
−0.658952 + 0.752185i \(0.729000\pi\)
\(272\) −6.50923 0.569484i −0.394680 0.0345301i
\(273\) 0.716584 + 0.155529i 0.0433696 + 0.00941304i
\(274\) −0.171189 0.0301853i −0.0103419 0.00182356i
\(275\) 0 0
\(276\) −7.04636 + 6.51458i −0.424141 + 0.392132i
\(277\) −21.1890 14.8367i −1.27312 0.891452i −0.275566 0.961282i \(-0.588865\pi\)
−0.997559 + 0.0698305i \(0.977754\pi\)
\(278\) −0.478764 0.128284i −0.0287143 0.00769399i
\(279\) −2.77119 5.80765i −0.165907 0.347695i
\(280\) 0 0
\(281\) 1.44986 3.98347i 0.0864916 0.237634i −0.888905 0.458092i \(-0.848533\pi\)
0.975396 + 0.220458i \(0.0707553\pi\)
\(282\) 6.25236 + 2.55736i 0.372323 + 0.152288i
\(283\) 1.24561 + 14.2374i 0.0740440 + 0.846327i 0.938874 + 0.344262i \(0.111871\pi\)
−0.864830 + 0.502065i \(0.832574\pi\)
\(284\) 22.6642 + 19.0175i 1.34487 + 1.12848i
\(285\) 0 0
\(286\) −0.209415 0.0762210i −0.0123830 0.00450704i
\(287\) −13.0554 + 3.49819i −0.770636 + 0.206491i
\(288\) 11.3684 2.10878i 0.669887 0.124261i
\(289\) −11.2932 + 6.52011i −0.664303 + 0.383536i
\(290\) 0 0
\(291\) 7.15982 + 7.74428i 0.419716 + 0.453977i
\(292\) −9.52346 + 20.4231i −0.557318 + 1.19517i
\(293\) −16.4573 23.5035i −0.961447 1.37309i −0.927565 0.373663i \(-0.878102\pi\)
−0.0338821 0.999426i \(-0.510787\pi\)
\(294\) −2.81014 + 1.80784i −0.163891 + 0.105436i
\(295\) 0 0
\(296\) 2.26656i 0.131741i
\(297\) 7.95386 5.21736i 0.461530 0.302742i
\(298\) −3.96891 3.96891i −0.229913 0.229913i
\(299\) −0.788016 + 0.661224i −0.0455722 + 0.0382396i
\(300\) 0 0
\(301\) 0.929248 5.27003i 0.0535609 0.303759i
\(302\) 0.194650 + 0.0907668i 0.0112008 + 0.00522304i
\(303\) 5.05328 + 9.60295i 0.290303 + 0.551675i
\(304\) −17.9901 + 3.17213i −1.03180 + 0.181934i
\(305\) 0 0
\(306\) −1.46053 + 1.48670i −0.0834932 + 0.0849890i
\(307\) −0.586171 2.18762i −0.0334545 0.124854i 0.947179 0.320705i \(-0.103920\pi\)
−0.980634 + 0.195851i \(0.937253\pi\)
\(308\) 3.78312 1.76410i 0.215564 0.100519i
\(309\) −3.11814 + 24.5254i −0.177385 + 1.39520i
\(310\) 0 0
\(311\) −7.85950 + 9.36659i −0.445672 + 0.531131i −0.941375 0.337361i \(-0.890466\pi\)
0.495704 + 0.868492i \(0.334910\pi\)
\(312\) 0.810233 0.110330i 0.0458704 0.00624622i
\(313\) 7.14921 + 15.3315i 0.404097 + 0.866590i 0.998070 + 0.0621042i \(0.0197811\pi\)
−0.593972 + 0.804486i \(0.702441\pi\)
\(314\) −1.45514 + 2.52037i −0.0821181 + 0.142233i
\(315\) 0 0
\(316\) −14.1097 24.4387i −0.793733 1.37479i
\(317\) 7.16210 10.2285i 0.402264 0.574492i −0.566006 0.824401i \(-0.691512\pi\)
0.968269 + 0.249909i \(0.0804008\pi\)
\(318\) −3.80321 2.39925i −0.213274 0.134543i
\(319\) −1.09949 3.02083i −0.0615597 0.169134i
\(320\) 0 0
\(321\) −14.2955 + 27.7616i −0.797898 + 1.54950i
\(322\) −0.108974 + 1.24558i −0.00607290 + 0.0694136i
\(323\) 7.82802 7.82802i 0.435563 0.435563i
\(324\) −8.19032 + 14.7863i −0.455018 + 0.821460i
\(325\) 0 0
\(326\) 3.84187 + 4.57856i 0.212782 + 0.253583i
\(327\) −15.0860 + 4.83031i −0.834255 + 0.267117i
\(328\) −12.3466 + 8.64519i −0.681728 + 0.477351i
\(329\) −12.7452 + 4.63886i −0.702664 + 0.255749i
\(330\) 0 0
\(331\) 3.65344 + 20.7197i 0.200811 + 1.13886i 0.903897 + 0.427751i \(0.140694\pi\)
−0.703086 + 0.711105i \(0.748195\pi\)
\(332\) 6.28364 23.4509i 0.344860 1.28703i
\(333\) 3.87585 + 3.19402i 0.212395 + 0.175031i
\(334\) −5.43022 3.13514i −0.297128 0.171547i
\(335\) 0 0
\(336\) −4.17906 + 5.49660i −0.227986 + 0.299864i
\(337\) −31.2906 + 2.73757i −1.70451 + 0.149125i −0.897382 0.441255i \(-0.854533\pi\)
−0.807125 + 0.590380i \(0.798978\pi\)
\(338\) −4.47884 + 0.391848i −0.243617 + 0.0213137i
\(339\) −20.9891 2.66853i −1.13997 0.144935i
\(340\) 0 0
\(341\) −3.40063 1.96335i −0.184154 0.106322i
\(342\) −2.86837 + 5.07161i −0.155104 + 0.274241i
\(343\) 3.93599 14.6893i 0.212524 0.793149i
\(344\) −1.03626 5.87691i −0.0558713 0.316862i
\(345\) 0 0
\(346\) 2.44278 0.889099i 0.131325 0.0477983i
\(347\) 4.96853 3.47900i 0.266725 0.186763i −0.432562 0.901604i \(-0.642390\pi\)
0.699286 + 0.714842i \(0.253501\pi\)
\(348\) 4.22871 + 3.84051i 0.226683 + 0.205873i
\(349\) 6.64292 + 7.91672i 0.355587 + 0.423772i 0.913951 0.405824i \(-0.133015\pi\)
−0.558364 + 0.829596i \(0.688571\pi\)
\(350\) 0 0
\(351\) −0.953109 + 1.54099i −0.0508732 + 0.0822518i
\(352\) 4.98900 4.98900i 0.265915 0.265915i
\(353\) −1.17998 + 13.4872i −0.0628039 + 0.717851i 0.897886 + 0.440228i \(0.145102\pi\)
−0.960690 + 0.277624i \(0.910453\pi\)
\(354\) 1.86445 + 2.89813i 0.0990945 + 0.154034i
\(355\) 0 0
\(356\) 1.63477 + 4.49149i 0.0866426 + 0.238049i
\(357\) 0.163966 4.18126i 0.00867799 0.221296i
\(358\) 0.530298 0.757344i 0.0280271 0.0400269i
\(359\) 4.91852 + 8.51912i 0.259589 + 0.449622i 0.966132 0.258049i \(-0.0830795\pi\)
−0.706543 + 0.707670i \(0.749746\pi\)
\(360\) 0 0
\(361\) 5.97506 10.3491i 0.314477 0.544690i
\(362\) 1.18364 + 2.53832i 0.0622106 + 0.133411i
\(363\) −5.01539 + 12.2619i −0.263240 + 0.643583i
\(364\) −0.511086 + 0.609088i −0.0267882 + 0.0319249i
\(365\) 0 0
\(366\) 4.19055 1.75762i 0.219044 0.0918721i
\(367\) 5.70110 2.65847i 0.297595 0.138771i −0.268086 0.963395i \(-0.586391\pi\)
0.565681 + 0.824624i \(0.308613\pi\)
\(368\) −2.50709 9.35658i −0.130691 0.487746i
\(369\) 2.61536 33.2957i 0.136150 1.73330i
\(370\) 0 0
\(371\) 8.89150 1.56781i 0.461624 0.0813967i
\(372\) 6.97226 + 0.273413i 0.361495 + 0.0141758i
\(373\) 20.3048 + 9.46829i 1.05134 + 0.490249i 0.869939 0.493159i \(-0.164158\pi\)
0.181404 + 0.983409i \(0.441936\pi\)
\(374\) −0.220837 + 1.25243i −0.0114192 + 0.0647615i
\(375\) 0 0
\(376\) −11.5865 + 9.72219i −0.597526 + 0.501383i
\(377\) 0.432989 + 0.432989i 0.0223000 + 0.0223000i
\(378\) 0.505265 + 2.14361i 0.0259880 + 0.110255i
\(379\) 19.0825i 0.980201i 0.871666 + 0.490101i \(0.163040\pi\)
−0.871666 + 0.490101i \(0.836960\pi\)
\(380\) 0 0
\(381\) 0.572220 + 11.8942i 0.0293157 + 0.609358i
\(382\) −2.41839 3.45382i −0.123736 0.176713i
\(383\) −15.7700 + 33.8190i −0.805811 + 1.72807i −0.129338 + 0.991601i \(0.541285\pi\)
−0.676473 + 0.736467i \(0.736493\pi\)
\(384\) −4.89423 + 15.7662i −0.249758 + 0.804566i
\(385\) 0 0
\(386\) −2.35229 + 1.35810i −0.119729 + 0.0691253i
\(387\) 11.5099 + 6.50969i 0.585081 + 0.330906i
\(388\) −11.0467 + 2.95995i −0.560810 + 0.150269i
\(389\) −15.5765 5.66936i −0.789757 0.287448i −0.0845222 0.996422i \(-0.526936\pi\)
−0.705235 + 0.708973i \(0.749159\pi\)
\(390\) 0 0
\(391\) 4.49691 + 3.77335i 0.227418 + 0.190827i
\(392\) −0.652064 7.45313i −0.0329342 0.376440i
\(393\) −4.30675 31.6275i −0.217247 1.59540i
\(394\) −0.0665583 + 0.182867i −0.00335316 + 0.00921273i
\(395\) 0 0
\(396\) 0.990160 + 10.2669i 0.0497574 + 0.515933i
\(397\) −21.8514 5.85505i −1.09669 0.293857i −0.335273 0.942121i \(-0.608829\pi\)
−0.761415 + 0.648264i \(0.775495\pi\)
\(398\) −0.960494 0.672545i −0.0481452 0.0337116i
\(399\) −2.58273 11.4100i −0.129298 0.571215i
\(400\) 0 0
\(401\) 16.6110 + 2.92896i 0.829512 + 0.146265i 0.572253 0.820077i \(-0.306069\pi\)
0.257259 + 0.966342i \(0.417181\pi\)
\(402\) −1.80678 5.64291i −0.0901139 0.281443i
\(403\) 0.745116 + 0.0651892i 0.0371169 + 0.00324731i
\(404\) −11.7665 −0.585406
\(405\) 0 0
\(406\) 0.744283 0.0369382
\(407\) 3.05306 + 0.267108i 0.151335 + 0.0132401i
\(408\) −1.42294 4.44411i −0.0704461 0.220016i
\(409\) −18.0511 3.18290i −0.892572 0.157384i −0.291492 0.956573i \(-0.594152\pi\)
−0.601080 + 0.799189i \(0.705263\pi\)
\(410\) 0 0
\(411\) 0.190401 + 0.841156i 0.00939178 + 0.0414911i
\(412\) −21.9597 15.3763i −1.08187 0.757537i
\(413\) −6.68331 1.79079i −0.328864 0.0881189i
\(414\) −2.81163 1.28082i −0.138184 0.0629488i
\(415\) 0 0
\(416\) −0.459655 + 1.26289i −0.0225364 + 0.0619183i
\(417\) 0.331798 + 2.43663i 0.0162482 + 0.119322i
\(418\) 0.309879 + 3.54194i 0.0151567 + 0.173242i
\(419\) 15.7554 + 13.2204i 0.769702 + 0.645857i 0.940633 0.339426i \(-0.110233\pi\)
−0.170930 + 0.985283i \(0.554677\pi\)
\(420\) 0 0
\(421\) −20.2545 7.37202i −0.987143 0.359290i −0.202529 0.979276i \(-0.564916\pi\)
−0.784613 + 0.619986i \(0.787138\pi\)
\(422\) −4.40608 + 1.18061i −0.214485 + 0.0574710i
\(423\) −0.297533 33.5135i −0.0144666 1.62948i
\(424\) 8.71949 5.03420i 0.423456 0.244482i
\(425\) 0 0
\(426\) −2.82399 + 9.09715i −0.136823 + 0.440758i
\(427\) −3.85596 + 8.26913i −0.186603 + 0.400171i
\(428\) −19.4210 27.7361i −0.938752 1.34068i
\(429\) 0.0531312 + 1.10439i 0.00256520 + 0.0533204i
\(430\) 0 0
\(431\) 12.5960i 0.606728i −0.952875 0.303364i \(-0.901890\pi\)
0.952875 0.303364i \(-0.0981099\pi\)
\(432\) −9.35825 14.2666i −0.450249 0.686404i
\(433\) 21.2452 + 21.2452i 1.02098 + 1.02098i 0.999775 + 0.0212037i \(0.00674984\pi\)
0.0212037 + 0.999775i \(0.493250\pi\)
\(434\) 0.696435 0.584379i 0.0334300 0.0280511i
\(435\) 0 0
\(436\) 2.98263 16.9153i 0.142842 0.810098i
\(437\) 14.8741 + 6.93591i 0.711525 + 0.331789i
\(438\) −7.24951 0.284285i −0.346395 0.0135837i
\(439\) 18.8946 3.33163i 0.901790 0.159010i 0.296517 0.955028i \(-0.404175\pi\)
0.605273 + 0.796018i \(0.293064\pi\)
\(440\) 0 0
\(441\) 13.6639 + 9.38786i 0.650660 + 0.447041i
\(442\) −0.0626973 0.233990i −0.00298221 0.0111298i
\(443\) −10.3607 + 4.83128i −0.492252 + 0.229541i −0.652862 0.757477i \(-0.726432\pi\)
0.160610 + 0.987018i \(0.448654\pi\)
\(444\) −5.02206 + 2.10637i −0.238337 + 0.0999640i
\(445\) 0 0
\(446\) 3.58603 4.27367i 0.169804 0.202364i
\(447\) −10.5425 + 25.7748i −0.498643 + 1.21911i
\(448\) −2.67920 5.74556i −0.126580 0.271452i
\(449\) −16.0515 + 27.8021i −0.757519 + 1.31206i 0.186593 + 0.982437i \(0.440256\pi\)
−0.944112 + 0.329625i \(0.893078\pi\)
\(450\) 0 0
\(451\) −10.1901 17.6497i −0.479832 0.831094i
\(452\) 13.1592 18.7933i 0.618957 0.883962i
\(453\) 0.0417534 1.06475i 0.00196175 0.0500261i
\(454\) 1.10820 + 3.04474i 0.0520102 + 0.142897i
\(455\) 0 0
\(456\) −7.05831 10.9716i −0.330536 0.513790i
\(457\) −0.332479 + 3.80025i −0.0155527 + 0.177768i 0.984445 + 0.175692i \(0.0562164\pi\)
−0.999998 + 0.00207595i \(0.999339\pi\)
\(458\) 1.64912 1.64912i 0.0770585 0.0770585i
\(459\) 9.60470 + 3.82936i 0.448309 + 0.178739i
\(460\) 0 0
\(461\) 19.3941 + 23.1130i 0.903273 + 1.07648i 0.996726 + 0.0808555i \(0.0257652\pi\)
−0.0934525 + 0.995624i \(0.529790\pi\)
\(462\) 0.994857 + 0.903527i 0.0462849 + 0.0420359i
\(463\) 28.0226 19.6216i 1.30232 0.911895i 0.303164 0.952938i \(-0.401957\pi\)
0.999157 + 0.0410431i \(0.0130681\pi\)
\(464\) −5.41838 + 1.97213i −0.251542 + 0.0915538i
\(465\) 0 0
\(466\) 0.337129 + 1.91196i 0.0156172 + 0.0885696i
\(467\) −0.957293 + 3.57267i −0.0442982 + 0.165323i −0.984531 0.175208i \(-0.943940\pi\)
0.940233 + 0.340531i \(0.110607\pi\)
\(468\) −0.997432 1.69272i −0.0461063 0.0782459i
\(469\) 10.3027 + 5.94827i 0.475734 + 0.274665i
\(470\) 0 0
\(471\) 14.3236 + 1.82110i 0.659998 + 0.0839116i
\(472\) −7.68650 + 0.672482i −0.353800 + 0.0309535i
\(473\) 8.03835 0.703264i 0.369604 0.0323361i
\(474\) 5.49879 7.23241i 0.252568 0.332196i
\(475\) 0 0
\(476\) 3.92948 + 2.26869i 0.180108 + 0.103985i
\(477\) −3.67889 + 22.0046i −0.168445 + 1.00752i
\(478\) −0.667110 + 2.48969i −0.0305129 + 0.113876i
\(479\) −2.01746 11.4416i −0.0921799 0.522778i −0.995575 0.0939694i \(-0.970044\pi\)
0.903395 0.428809i \(-0.141067\pi\)
\(480\) 0 0
\(481\) −0.548566 + 0.199662i −0.0250124 + 0.00910379i
\(482\) 4.30974 3.01771i 0.196303 0.137453i
\(483\) 5.90794 1.89164i 0.268821 0.0860726i
\(484\) −9.23379 11.0044i −0.419718 0.500200i
\(485\) 0 0
\(486\) −5.40993 0.590415i −0.245399 0.0267818i
\(487\) −8.89951 + 8.89951i −0.403275 + 0.403275i −0.879386 0.476110i \(-0.842046\pi\)
0.476110 + 0.879386i \(0.342046\pi\)
\(488\) −0.886781 + 10.1360i −0.0401427 + 0.458833i
\(489\) 13.5756 26.3635i 0.613909 1.19220i
\(490\) 0 0
\(491\) −9.12806 25.0791i −0.411943 1.13181i −0.956156 0.292858i \(-0.905394\pi\)
0.544212 0.838947i \(-0.316829\pi\)
\(492\) 30.6294 + 19.3225i 1.38088 + 0.871124i
\(493\) 2.00429 2.86243i 0.0902688 0.128917i
\(494\) −0.338624 0.586515i −0.0152354 0.0263885i
\(495\) 0 0
\(496\) −3.52162 + 6.09962i −0.158125 + 0.273881i
\(497\) −8.08268 17.3334i −0.362558 0.777508i
\(498\) 7.74500 1.05464i 0.347062 0.0472598i
\(499\) 19.0750 22.7327i 0.853916 1.01766i −0.145683 0.989331i \(-0.546538\pi\)
0.999599 0.0283261i \(-0.00901768\pi\)
\(500\) 0 0
\(501\) −3.92360 + 30.8607i −0.175294 + 1.37875i
\(502\) −8.93660 + 4.16721i −0.398860 + 0.185991i
\(503\) 0.889794 + 3.32076i 0.0396740 + 0.148065i 0.982922 0.184025i \(-0.0589128\pi\)
−0.943248 + 0.332090i \(0.892246\pi\)
\(504\) −4.77426 1.23394i −0.212662 0.0549639i
\(505\) 0 0
\(506\) −1.85670 + 0.327386i −0.0825402 + 0.0145541i
\(507\) 10.3875 + 19.7398i 0.461326 + 0.876675i
\(508\) −11.7024 5.45694i −0.519212 0.242113i
\(509\) 6.07079 34.4292i 0.269083 1.52605i −0.488068 0.872806i \(-0.662298\pi\)
0.757151 0.653240i \(-0.226591\pi\)
\(510\) 0 0
\(511\) 11.1589 9.36342i 0.493640 0.414213i
\(512\) −15.2357 15.2357i −0.673328 0.673328i
\(513\) 28.7081 + 3.39122i 1.26749 + 0.149726i
\(514\) 7.04591i 0.310782i
\(515\) 0 0
\(516\) −12.0586 + 7.75763i −0.530850 + 0.341511i
\(517\) −11.7304 16.7527i −0.515902 0.736784i
\(518\) −0.299874 + 0.643081i −0.0131757 + 0.0282554i
\(519\) −8.75543 9.47013i −0.384321 0.415693i
\(520\) 0 0
\(521\) 20.9011 12.0673i 0.915696 0.528677i 0.0334362 0.999441i \(-0.489355\pi\)
0.882259 + 0.470764i \(0.156022\pi\)
\(522\) −0.613656 + 1.73374i −0.0268590 + 0.0758839i
\(523\) 13.0959 3.50904i 0.572645 0.153440i 0.0391356 0.999234i \(-0.487540\pi\)
0.533509 + 0.845794i \(0.320873\pi\)
\(524\) 32.5240 + 11.8378i 1.42082 + 0.517135i
\(525\) 0 0
\(526\) −3.39524 2.84894i −0.148040 0.124220i
\(527\) −0.372010 4.25209i −0.0162050 0.185224i
\(528\) −9.63663 3.94160i −0.419380 0.171536i
\(529\) 4.89001 13.4352i 0.212609 0.584139i
\(530\) 0 0
\(531\) 9.68182 14.0917i 0.420155 0.611527i
\(532\) 12.2530 + 3.28319i 0.531237 + 0.142344i
\(533\) 3.17998 + 2.22664i 0.137740 + 0.0964466i
\(534\) −1.12995 + 1.04467i −0.0488975 + 0.0452073i
\(535\) 0 0
\(536\) 13.0650 + 2.30371i 0.564321 + 0.0995050i
\(537\) −4.48264 0.972922i −0.193440 0.0419847i
\(538\) 6.69645 + 0.585863i 0.288704 + 0.0252584i
\(539\) 10.1162 0.435737
\(540\) 0 0
\(541\) −4.99037 −0.214553 −0.107276 0.994229i \(-0.534213\pi\)
−0.107276 + 0.994229i \(0.534213\pi\)
\(542\) 7.54523 + 0.660122i 0.324095 + 0.0283547i
\(543\) 9.34203 10.2863i 0.400905 0.441429i
\(544\) 7.55283 + 1.33177i 0.323825 + 0.0570991i
\(545\) 0 0
\(546\) −0.244481 0.0758931i −0.0104628 0.00324792i
\(547\) 21.3890 + 14.9768i 0.914528 + 0.640360i 0.933158 0.359467i \(-0.117041\pi\)
−0.0186294 + 0.999826i \(0.505930\pi\)
\(548\) −0.903304 0.242040i −0.0385872 0.0103394i
\(549\) −16.0830 15.7999i −0.686406 0.674325i
\(550\) 0 0
\(551\) 3.34131 9.18018i 0.142345 0.391089i
\(552\) 5.46948 4.23559i 0.232797 0.180279i
\(553\) 1.58988 + 18.1724i 0.0676086 + 0.772770i
\(554\) 6.91767 + 5.80462i 0.293904 + 0.246615i
\(555\) 0 0
\(556\) −2.50569 0.911998i −0.106265 0.0386773i
\(557\) 43.1866 11.5718i 1.82987 0.490313i 0.831959 0.554838i \(-0.187220\pi\)
0.997916 + 0.0645241i \(0.0205529\pi\)
\(558\) 0.787053 + 2.10410i 0.0333186 + 0.0890737i
\(559\) −1.33108 + 0.768500i −0.0562987 + 0.0325041i
\(560\) 0 0
\(561\) 6.15392 1.39298i 0.259819 0.0588117i
\(562\) −0.625436 + 1.34125i −0.0263824 + 0.0565773i
\(563\) −20.8190 29.7327i −0.877418 1.25308i −0.966398 0.257049i \(-0.917250\pi\)
0.0889809 0.996033i \(-0.471639\pi\)
\(564\) 32.3093 + 16.6373i 1.36047 + 0.700556i
\(565\) 0 0
\(566\) 4.98938i 0.209719i
\(567\) 8.83791 6.42520i 0.371157 0.269833i
\(568\) −15.0810 15.0810i −0.632783 0.632783i
\(569\) −15.5547 + 13.0520i −0.652088 + 0.547167i −0.907704 0.419612i \(-0.862166\pi\)
0.255616 + 0.966778i \(0.417722\pi\)
\(570\) 0 0
\(571\) 0.319709 1.81316i 0.0133794 0.0758784i −0.977387 0.211458i \(-0.932179\pi\)
0.990766 + 0.135580i \(0.0432898\pi\)
\(572\) −1.08658 0.506682i −0.0454324 0.0211855i
\(573\) −11.1612 + 17.6924i −0.466267 + 0.739112i
\(574\) 4.64684 0.819363i 0.193955 0.0341996i
\(575\) 0 0
\(576\) 15.5927 1.50379i 0.649698 0.0626579i
\(577\) −2.35105 8.77425i −0.0978756 0.365277i 0.899564 0.436789i \(-0.143884\pi\)
−0.997440 + 0.0715120i \(0.977218\pi\)
\(578\) 4.12591 1.92394i 0.171615 0.0800255i
\(579\) 10.7276 + 8.15614i 0.445822 + 0.338958i
\(580\) 0 0
\(581\) −10.0880 + 12.0224i −0.418519 + 0.498771i
\(582\) −2.25440 2.91115i −0.0934481 0.120671i
\(583\) 5.75351 + 12.3385i 0.238286 + 0.511006i
\(584\) 8.12220 14.0681i 0.336099 0.582140i
\(585\) 0 0
\(586\) 5.00838 + 8.67477i 0.206894 + 0.358351i
\(587\) −6.25159 + 8.92820i −0.258031 + 0.368506i −0.927176 0.374625i \(-0.877771\pi\)
0.669145 + 0.743131i \(0.266660\pi\)
\(588\) −15.9081 + 8.37118i −0.656038 + 0.345222i
\(589\) −4.08136 11.2135i −0.168170 0.462042i
\(590\) 0 0
\(591\) 0.964383 0.0463957i 0.0396694 0.00190846i
\(592\) 0.479106 5.47620i 0.0196911 0.225071i
\(593\) −14.2644 + 14.2644i −0.585769 + 0.585769i −0.936483 0.350714i \(-0.885939\pi\)
0.350714 + 0.936483i \(0.385939\pi\)
\(594\) −2.92494 + 1.57248i −0.120012 + 0.0645196i
\(595\) 0 0
\(596\) −19.4097 23.1315i −0.795051 0.947505i
\(597\) −1.23390 + 5.68507i −0.0505001 + 0.232674i
\(598\) 0.294175 0.205983i 0.0120297 0.00842328i
\(599\) −29.1082 + 10.5945i −1.18933 + 0.432880i −0.859488 0.511157i \(-0.829217\pi\)
−0.329841 + 0.944037i \(0.606995\pi\)
\(600\) 0 0
\(601\) −6.41218 36.3653i −0.261558 1.48337i −0.778659 0.627447i \(-0.784100\pi\)
0.517101 0.855925i \(-0.327011\pi\)
\(602\) −0.483523 + 1.80453i −0.0197069 + 0.0735472i
\(603\) −22.3505 + 19.0949i −0.910181 + 0.777606i
\(604\) 1.00063 + 0.577714i 0.0407151 + 0.0235069i
\(605\) 0 0
\(606\) −1.46524 3.49346i −0.0595213 0.141912i
\(607\) 23.5036 2.05629i 0.953980 0.0834624i 0.400474 0.916308i \(-0.368845\pi\)
0.553506 + 0.832846i \(0.313290\pi\)
\(608\) 21.3598 1.86874i 0.866256 0.0757876i
\(609\) −1.42825 3.40527i −0.0578756 0.137988i
\(610\) 0 0
\(611\) 3.37367 + 1.94779i 0.136484 + 0.0787992i
\(612\) −8.52454 + 7.28287i −0.344584 + 0.294393i
\(613\) −4.63610 + 17.3022i −0.187251 + 0.698828i 0.806887 + 0.590706i \(0.201151\pi\)
−0.994138 + 0.108123i \(0.965516\pi\)
\(614\) 0.137296 + 0.778644i 0.00554081 + 0.0314235i
\(615\) 0 0
\(616\) −2.82760 + 1.02916i −0.113927 + 0.0414661i
\(617\) −2.87925 + 2.01607i −0.115914 + 0.0811641i −0.630096 0.776517i \(-0.716985\pi\)
0.514182 + 0.857681i \(0.328096\pi\)
\(618\) 1.83065 8.43454i 0.0736396 0.339287i
\(619\) 15.8282 + 18.8633i 0.636188 + 0.758180i 0.983763 0.179473i \(-0.0574391\pi\)
−0.347575 + 0.937652i \(0.612995\pi\)
\(620\) 0 0
\(621\) −0.464642 + 15.3217i −0.0186455 + 0.614837i
\(622\) 3.01837 3.01837i 0.121026 0.121026i
\(623\) 0.269291 3.07801i 0.0107889 0.123318i
\(624\) 1.98091 0.0953002i 0.0793000 0.00381506i
\(625\) 0 0
\(626\) −2.01986 5.54952i −0.0807299 0.221803i
\(627\) 15.6105 8.21460i 0.623425 0.328060i
\(628\) −8.98028 + 12.8252i −0.358352 + 0.511780i
\(629\) 1.66568 + 2.88504i 0.0664150 + 0.115034i
\(630\) 0 0
\(631\) −3.43649 + 5.95218i −0.136805 + 0.236953i −0.926285 0.376823i \(-0.877017\pi\)
0.789481 + 0.613775i \(0.210350\pi\)
\(632\) 8.59713 + 18.4366i 0.341975 + 0.733368i
\(633\) 13.8566 + 17.8933i 0.550752 + 0.711195i
\(634\) −2.80205 + 3.33936i −0.111284 + 0.132623i
\(635\) 0 0
\(636\) −19.2576 14.6415i −0.763615 0.580575i
\(637\) −1.74641 + 0.814364i −0.0691953 + 0.0322663i
\(638\) 0.290466 + 1.08404i 0.0114997 + 0.0429174i
\(639\) 47.0407 4.53668i 1.86090 0.179468i
\(640\) 0 0
\(641\) 11.3164 1.99539i 0.446972 0.0788133i 0.0543684 0.998521i \(-0.482685\pi\)
0.392604 + 0.919708i \(0.371574\pi\)
\(642\) 5.81638 9.21995i 0.229554 0.363882i
\(643\) −8.56819 3.99541i −0.337896 0.157564i 0.246262 0.969203i \(-0.420798\pi\)
−0.584158 + 0.811640i \(0.698575\pi\)
\(644\) −1.16805 + 6.62436i −0.0460278 + 0.261037i
\(645\) 0 0
\(646\) −2.96061 + 2.48424i −0.116484 + 0.0977413i
\(647\) 19.8792 + 19.8792i 0.781533 + 0.781533i 0.980090 0.198556i \(-0.0636252\pi\)
−0.198556 + 0.980090i \(0.563625\pi\)
\(648\) 6.81068 10.1038i 0.267549 0.396916i
\(649\) 10.4330i 0.409531i
\(650\) 0 0
\(651\) −4.01010 2.06495i −0.157168 0.0809319i
\(652\) 18.4430 + 26.3393i 0.722283 + 1.03153i
\(653\) −15.1637 + 32.5186i −0.593400 + 1.27255i 0.348705 + 0.937233i \(0.386622\pi\)
−0.942105 + 0.335318i \(0.891156\pi\)
\(654\) 5.39356 1.22087i 0.210905 0.0477396i
\(655\) 0 0
\(656\) −31.6579 + 18.2777i −1.23603 + 0.713625i
\(657\) 12.6109 + 33.7137i 0.491996 + 1.31530i
\(658\) 4.57365 1.22551i 0.178300 0.0477752i
\(659\) 24.5585 + 8.93857i 0.956664 + 0.348197i 0.772725 0.634741i \(-0.218893\pi\)
0.183939 + 0.982938i \(0.441115\pi\)
\(660\) 0 0
\(661\) −12.4073 10.4109i −0.482587 0.404939i 0.368774 0.929519i \(-0.379778\pi\)
−0.851361 + 0.524581i \(0.824222\pi\)
\(662\) −0.640157 7.31703i −0.0248804 0.284385i
\(663\) −0.950243 + 0.735871i −0.0369044 + 0.0285789i
\(664\) −5.98582 + 16.4459i −0.232295 + 0.638225i
\(665\) 0 0
\(666\) −1.25076 1.22874i −0.0484659 0.0476129i
\(667\) 5.00382 + 1.34077i 0.193749 + 0.0519148i
\(668\) −27.6322 19.3483i −1.06912 0.748607i
\(669\) −26.4345 8.20592i −1.02201 0.317259i
\(670\) 0 0
\(671\) −13.5487 2.38900i −0.523041 0.0922262i
\(672\) 5.44876 5.99953i 0.210191 0.231437i
\(673\) −19.6853 1.72224i −0.758813 0.0663875i −0.298819 0.954310i \(-0.596593\pi\)
−0.459994 + 0.887922i \(0.652148\pi\)
\(674\) 10.9655 0.422376
\(675\) 0 0
\(676\) −24.1872 −0.930278
\(677\) −11.7973 1.03213i −0.453407 0.0396679i −0.141834 0.989890i \(-0.545300\pi\)
−0.311572 + 0.950222i \(0.600856\pi\)
\(678\) 7.21836 + 1.56669i 0.277220 + 0.0601683i
\(679\) 7.28048 + 1.28374i 0.279399 + 0.0492656i
\(680\) 0 0
\(681\) 11.8038 10.9130i 0.452323 0.418187i
\(682\) 1.12293 + 0.786284i 0.0429992 + 0.0301084i
\(683\) 11.3569 + 3.04307i 0.434559 + 0.116440i 0.469466 0.882951i \(-0.344447\pi\)
−0.0349062 + 0.999391i \(0.511113\pi\)
\(684\) −17.7504 + 25.8354i −0.678705 + 0.987842i
\(685\) 0 0
\(686\) −1.81581 + 4.98889i −0.0693278 + 0.190477i
\(687\) −10.7097 4.38052i −0.408601 0.167127i
\(688\) −1.26143 14.4182i −0.0480915 0.549688i
\(689\) −1.98651 1.66688i −0.0756799 0.0635030i
\(690\) 0 0
\(691\) 5.29511 + 1.92726i 0.201435 + 0.0733165i 0.440768 0.897621i \(-0.354706\pi\)
−0.239332 + 0.970938i \(0.576929\pi\)
\(692\) 13.5085 3.61959i 0.513516 0.137596i
\(693\) 2.22475 6.28553i 0.0845114 0.238767i
\(694\) −1.83381 + 1.05875i −0.0696104 + 0.0401896i
\(695\) 0 0
\(696\) −2.79546 3.02366i −0.105962 0.114611i
\(697\) 9.36238 20.0777i 0.354625 0.760497i
\(698\) −2.06939 2.95540i −0.0783276 0.111863i
\(699\) 8.10070 5.21141i 0.306397 0.197114i
\(700\) 0 0
\(701\) 21.8407i 0.824911i −0.910978 0.412455i \(-0.864671\pi\)
0.910978 0.412455i \(-0.135329\pi\)
\(702\) 0.378359 0.506924i 0.0142802 0.0191326i
\(703\) 6.58570 + 6.58570i 0.248384 + 0.248384i
\(704\) 7.32271 6.14448i 0.275985 0.231579i
\(705\) 0 0
\(706\) 0.820744 4.65467i 0.0308891 0.175181i
\(707\) 6.89357 + 3.21453i 0.259260 + 0.120895i
\(708\) 8.63330 + 16.4062i 0.324459 + 0.616583i
\(709\) −17.5327 + 3.09148i −0.658453 + 0.116103i −0.492884 0.870095i \(-0.664057\pi\)
−0.165569 + 0.986198i \(0.552946\pi\)
\(710\) 0 0
\(711\) −43.6419 11.2795i −1.63670 0.423015i
\(712\) −0.891781 3.32817i −0.0334209 0.124729i
\(713\) 5.73485 2.67420i 0.214772 0.100150i
\(714\) −0.184246 + 1.44917i −0.00689524 + 0.0542338i
\(715\) 0 0
\(716\) 3.19713 3.81019i 0.119482 0.142394i
\(717\) 12.6710 1.72543i 0.473209 0.0644373i
\(718\) −1.45135 3.11243i −0.0541639 0.116155i
\(719\) 12.2911 21.2888i 0.458381 0.793939i −0.540495 0.841347i \(-0.681763\pi\)
0.998876 + 0.0474084i \(0.0150962\pi\)
\(720\) 0 0
\(721\) 8.66466 + 15.0076i 0.322689 + 0.558914i
\(722\) −2.39289 + 3.41741i −0.0890543 + 0.127183i
\(723\) −22.0769 13.9272i −0.821050 0.517957i
\(724\) 5.15331 + 14.1586i 0.191521 + 0.526201i
\(725\) 0 0
\(726\) 2.11734 4.11183i 0.0785819 0.152604i
\(727\) −2.85719 + 32.6578i −0.105967 + 1.21121i 0.737994 + 0.674807i \(0.235773\pi\)
−0.843962 + 0.536404i \(0.819782\pi\)
\(728\) 0.405292 0.405292i 0.0150211 0.0150211i
\(729\) 7.68015 + 25.8847i 0.284450 + 0.958691i
\(730\) 0 0
\(731\) 5.63793 + 6.71903i 0.208526 + 0.248512i
\(732\) 23.2826 7.45475i 0.860549 0.275536i
\(733\) −25.5313 + 17.8772i −0.943022 + 0.660311i −0.940539 0.339686i \(-0.889679\pi\)
−0.00248290 + 0.999997i \(0.500790\pi\)
\(734\) −2.06361 + 0.751094i −0.0761694 + 0.0277234i
\(735\) 0 0
\(736\) 1.97432 + 11.1969i 0.0727742 + 0.412723i
\(737\) −4.64278 + 17.3271i −0.171019 + 0.638251i
\(738\) −1.92265 + 11.5000i −0.0707736 + 0.423320i
\(739\) −9.53500 5.50503i −0.350751 0.202506i 0.314265 0.949335i \(-0.398242\pi\)
−0.665016 + 0.746829i \(0.731575\pi\)
\(740\) 0 0
\(741\) −2.03363 + 2.67478i −0.0747073 + 0.0982606i
\(742\) −3.13998 + 0.274713i −0.115272 + 0.0100850i
\(743\) 50.0244 4.37657i 1.83522 0.160561i 0.883679 0.468092i \(-0.155059\pi\)
0.951538 + 0.307532i \(0.0995030\pi\)
\(744\) −4.98979 0.634398i −0.182935 0.0232582i
\(745\) 0 0
\(746\) −6.77350 3.91068i −0.247996 0.143180i
\(747\) −19.6876 33.4113i −0.720331 1.22246i
\(748\) −1.77077 + 6.60861i −0.0647458 + 0.241635i
\(749\) 3.80077 + 21.5553i 0.138877 + 0.787612i
\(750\) 0 0
\(751\) −11.3558 + 4.13319i −0.414380 + 0.150822i −0.540793 0.841156i \(-0.681876\pi\)
0.126413 + 0.991978i \(0.459654\pi\)
\(752\) −30.0490 + 21.0405i −1.09577 + 0.767268i
\(753\) 36.2149 + 32.8903i 1.31974 + 1.19859i
\(754\) −0.137410 0.163759i −0.00500418 0.00596375i
\(755\) 0 0
\(756\) 1.70278 + 11.7252i 0.0619296 + 0.426440i
\(757\) −14.6269 + 14.6269i −0.531625 + 0.531625i −0.921056 0.389431i \(-0.872672\pi\)
0.389431 + 0.921056i \(0.372672\pi\)
\(758\) 0.580618 6.63649i 0.0210890 0.241048i
\(759\) 5.06079 + 7.86657i 0.183695 + 0.285538i
\(760\) 0 0
\(761\) 7.74333 + 21.2746i 0.280695 + 0.771204i 0.997280 + 0.0737041i \(0.0234820\pi\)
−0.716585 + 0.697500i \(0.754296\pi\)
\(762\) 0.162895 4.15397i 0.00590108 0.150482i
\(763\) −6.36856 + 9.09525i −0.230557 + 0.329270i
\(764\) −11.3415 19.6440i −0.410320 0.710696i
\(765\) 0 0
\(766\) 6.51349 11.2817i 0.235342 0.407625i
\(767\) 0.839864 + 1.80109i 0.0303257 + 0.0650337i
\(768\) −4.66609 + 11.4079i −0.168373 + 0.411647i
\(769\) 13.7049 16.3329i 0.494213 0.588980i −0.460071 0.887882i \(-0.652176\pi\)
0.954284 + 0.298902i \(0.0966204\pi\)
\(770\) 0 0
\(771\) 32.2367 13.5208i 1.16098 0.486940i
\(772\) −13.2434 + 6.17552i −0.476642 + 0.222262i
\(773\) −4.23460 15.8037i −0.152308 0.568421i −0.999321 0.0368487i \(-0.988268\pi\)
0.847013 0.531572i \(-0.178399\pi\)
\(774\) −3.80484 2.61415i −0.136762 0.0939635i
\(775\) 0 0
\(776\) 8.11889 1.43158i 0.291451 0.0513907i
\(777\) 3.51769 + 0.137944i 0.126196 + 0.00494872i
\(778\) 5.24467 + 2.44563i 0.188030 + 0.0876800i
\(779\) 10.7548 60.9936i 0.385332 2.18532i
\(780\) 0 0
\(781\) 22.0914 18.5368i 0.790491 0.663301i
\(782\) −1.44912 1.44912i −0.0518204 0.0518204i
\(783\) 9.10985 0.519367i 0.325559 0.0185607i
\(784\) 18.1452i 0.648044i
\(785\) 0 0
\(786\) 0.535476 + 11.1304i 0.0190998 + 0.397010i
\(787\) −7.09564 10.1336i −0.252932 0.361225i 0.672527 0.740073i \(-0.265209\pi\)
−0.925459 + 0.378848i \(0.876320\pi\)
\(788\) −0.442449 + 0.948835i −0.0157616 + 0.0338009i
\(789\) −6.51925 + 21.0010i −0.232091 + 0.747656i
\(790\) 0 0
\(791\) −12.8437 + 7.41530i −0.456669 + 0.263658i
\(792\) −0.0660097 7.43518i −0.00234555 0.264198i
\(793\) 2.53128 0.678255i 0.0898884 0.0240855i
\(794\) 7.42130 + 2.70113i 0.263372 + 0.0958596i
\(795\) 0 0
\(796\) −4.83224 4.05473i −0.171274 0.143716i
\(797\) −4.48822 51.3006i −0.158981 1.81716i −0.488009 0.872839i \(-0.662277\pi\)
0.329028 0.944320i \(-0.393279\pi\)
\(798\) 0.551050 + 4.04675i 0.0195070 + 0.143253i
\(799\) 7.60331 20.8899i 0.268986 0.739033i
\(800\) 0 0
\(801\) 6.94792 + 3.16508i 0.245493 + 0.111833i
\(802\) −5.68784 1.52405i −0.200844 0.0538161i
\(803\) 17.9926 + 12.5985i 0.634943 + 0.444592i
\(804\) −7.03725 31.0892i −0.248185 1.09643i
\(805\) 0 0
\(806\) −0.257153 0.0453429i −0.00905781 0.00159714i
\(807\) −10.1697 31.7620i −0.357992 1.11808i
\(808\) 8.44986 + 0.739267i 0.297265 + 0.0260073i
\(809\) 29.5460 1.03878 0.519391 0.854537i \(-0.326159\pi\)
0.519391 + 0.854537i \(0.326159\pi\)
\(810\) 0 0
\(811\) 51.8564 1.82093 0.910463 0.413591i \(-0.135726\pi\)
0.910463 + 0.413591i \(0.135726\pi\)
\(812\) 3.98885 + 0.348979i 0.139981 + 0.0122468i
\(813\) −11.4588 35.7879i −0.401877 1.25514i
\(814\) −1.05367 0.185790i −0.0369309 0.00651192i
\(815\) 0 0
\(816\) −2.49855 11.0381i −0.0874669 0.386412i
\(817\) 20.0869 + 14.0650i 0.702751 + 0.492071i
\(818\) 6.18097 + 1.65619i 0.216113 + 0.0579072i
\(819\) 0.121921 + 1.26419i 0.00426025 + 0.0441744i
\(820\) 0 0
\(821\) 9.08233 24.9535i 0.316976 0.870883i −0.674226 0.738525i \(-0.735523\pi\)
0.991202 0.132358i \(-0.0422550\pi\)
\(822\) −0.0406239 0.298330i −0.00141692 0.0104054i
\(823\) −2.06396 23.5911i −0.0719450 0.822335i −0.943356 0.331782i \(-0.892350\pi\)
0.871411 0.490553i \(-0.163205\pi\)
\(824\) 14.8038 + 12.4218i 0.515714 + 0.432735i
\(825\) 0 0
\(826\) 2.26983 + 0.826151i 0.0789775 + 0.0287455i
\(827\) −10.7335 + 2.87604i −0.373241 + 0.100010i −0.440563 0.897722i \(-0.645221\pi\)
0.0673219 + 0.997731i \(0.478555\pi\)
\(828\) −14.4678 8.18261i −0.502792 0.284365i
\(829\) −22.4115 + 12.9393i −0.778382 + 0.449399i −0.835857 0.548948i \(-0.815029\pi\)
0.0574744 + 0.998347i \(0.481695\pi\)
\(830\) 0 0
\(831\) 13.2827 42.7888i 0.460772 1.48433i
\(832\) −0.769515 + 1.65023i −0.0266781 + 0.0572115i
\(833\) 6.30725 + 9.00769i 0.218533 + 0.312098i
\(834\) −0.0412538 0.857504i −0.00142850 0.0296929i
\(835\) 0 0
\(836\) 19.1276i 0.661543i
\(837\) 8.11642 7.63863i 0.280544 0.264030i
\(838\) −5.07716 5.07716i −0.175387 0.175387i
\(839\) −7.70983 + 6.46931i −0.266173 + 0.223346i −0.766099 0.642722i \(-0.777805\pi\)
0.499926 + 0.866068i \(0.333360\pi\)
\(840\) 0 0
\(841\) −4.50032 + 25.5226i −0.155184 + 0.880090i
\(842\) 6.81978 + 3.18012i 0.235025 + 0.109594i
\(843\) 7.33673 + 0.287705i 0.252690 + 0.00990910i
\(844\) −24.1671 + 4.26131i −0.831866 + 0.146680i
\(845\) 0 0
\(846\) −0.916230 + 11.6643i −0.0315006 + 0.401028i
\(847\) 2.40342 + 8.96968i 0.0825824 + 0.308202i
\(848\) 22.1312 10.3199i 0.759988 0.354388i
\(849\) −22.8276 + 9.57442i −0.783440 + 0.328593i
\(850\) 0 0
\(851\) −3.17451 + 3.78323i −0.108821 + 0.129688i
\(852\) −19.4001 + 47.4303i −0.664636 + 1.62494i
\(853\) −8.70782 18.6740i −0.298150 0.639385i 0.698976 0.715145i \(-0.253639\pi\)
−0.997126 + 0.0757601i \(0.975862\pi\)
\(854\) 1.59263 2.75851i 0.0544985 0.0943942i
\(855\) 0 0
\(856\) 12.2042 + 21.1382i 0.417130 + 0.722490i
\(857\) −14.8249 + 21.1722i −0.506409 + 0.723228i −0.988219 0.153048i \(-0.951091\pi\)
0.481809 + 0.876276i \(0.339980\pi\)
\(858\) 0.0151250 0.385700i 0.000516359 0.0131676i
\(859\) −7.25364 19.9292i −0.247491 0.679976i −0.999777 0.0211390i \(-0.993271\pi\)
0.752285 0.658837i \(-0.228951\pi\)
\(860\) 0 0
\(861\) −12.6659 19.6880i −0.431652 0.670966i
\(862\) −0.383256 + 4.38063i −0.0130537 + 0.149205i
\(863\) −27.3490 + 27.3490i −0.930969 + 0.930969i −0.997767 0.0667973i \(-0.978722\pi\)
0.0667973 + 0.997767i \(0.478722\pi\)
\(864\) 9.48292 + 17.6390i 0.322616 + 0.600090i
\(865\) 0 0
\(866\) −6.74222 8.03506i −0.229110 0.273043i
\(867\) −16.7199 15.1850i −0.567839 0.515710i
\(868\) 4.00642 2.80532i 0.135987 0.0952188i
\(869\) −25.8473 + 9.40766i −0.876810 + 0.319133i
\(870\) 0 0
\(871\) −0.593339 3.36500i −0.0201045 0.114019i
\(872\) −3.20467 + 11.9600i −0.108524 + 0.405016i
\(873\) −8.99306 + 15.9008i −0.304369 + 0.538160i
\(874\) −4.96187 2.86474i −0.167838 0.0969011i
\(875\) 0 0
\(876\) −38.7191 4.92272i −1.30820 0.166323i
\(877\) 35.0252 3.06431i 1.18272 0.103474i 0.521221 0.853422i \(-0.325477\pi\)
0.661497 + 0.749948i \(0.269921\pi\)
\(878\) −6.67252 + 0.583770i −0.225187 + 0.0197013i
\(879\) 30.0782 39.5610i 1.01451 1.33436i
\(880\) 0 0
\(881\) 30.8912 + 17.8350i 1.04075 + 0.600877i 0.920046 0.391811i \(-0.128151\pi\)
0.120704 + 0.992689i \(0.461485\pi\)
\(882\) −4.46636 3.68065i −0.150390 0.123934i
\(883\) 9.00780 33.6176i 0.303137 1.13132i −0.631401 0.775457i \(-0.717520\pi\)
0.934537 0.355865i \(-0.115814\pi\)
\(884\) −0.226302 1.28342i −0.00761135 0.0431661i
\(885\) 0 0
\(886\) 3.75024 1.36498i 0.125992 0.0458572i
\(887\) −40.9327 + 28.6614i −1.37439 + 0.962355i −0.375010 + 0.927021i \(0.622361\pi\)
−0.999376 + 0.0353349i \(0.988750\pi\)
\(888\) 3.73882 1.19712i 0.125467 0.0401726i
\(889\) 5.36524 + 6.39404i 0.179944 + 0.214449i
\(890\) 0 0
\(891\) 12.8073 + 10.3647i 0.429060 + 0.347232i
\(892\) 21.2225 21.2225i 0.710581 0.710581i
\(893\) 5.41679 61.9142i 0.181266 2.07188i
\(894\) 4.45070 8.64318i 0.148854 0.289071i
\(895\) 0 0
\(896\) 3.95768 + 10.8736i 0.132217 + 0.363263i
\(897\) −1.50693 0.950643i −0.0503149 0.0317410i
\(898\) 6.42832 9.18060i 0.214516 0.306361i
\(899\) −1.88333 3.26202i −0.0628126 0.108795i
\(900\) 0 0
\(901\) −7.39920 + 12.8158i −0.246503 + 0.426956i
\(902\) 3.00688 + 6.44827i 0.100118 + 0.214704i
\(903\) 9.18401 1.25060i 0.305625 0.0416172i
\(904\) −10.6307 + 12.6692i −0.353573 + 0.421372i
\(905\) 0 0
\(906\) −0.0469177 + 0.369026i −0.00155874 + 0.0122601i
\(907\) 46.8450 21.8442i 1.55546 0.725325i 0.560747 0.827987i \(-0.310514\pi\)
0.994716 + 0.102662i \(0.0327361\pi\)
\(908\) 4.51155 + 16.8373i 0.149721 + 0.558766i
\(909\) −13.1717 + 13.4076i −0.436876 + 0.444703i
\(910\) 0 0
\(911\) −57.8699 + 10.2040i −1.91731 + 0.338074i −0.998408 0.0564017i \(-0.982037\pi\)
−0.918906 + 0.394476i \(0.870926\pi\)
\(912\) −14.7343 28.0002i −0.487902 0.927180i
\(913\) −21.4473 10.0010i −0.709802 0.330986i
\(914\) 0.231259 1.31153i 0.00764935 0.0433816i
\(915\) 0 0
\(916\) 9.61141 8.06493i 0.317570 0.266473i
\(917\) −15.8206 15.8206i −0.522443 0.522443i
\(918\) −3.22380 1.62401i −0.106401 0.0536004i
\(919\) 31.9476i 1.05385i 0.849911 + 0.526927i \(0.176656\pi\)
−0.849911 + 0.526927i \(0.823344\pi\)
\(920\) 0 0
\(921\) 3.29901 2.12235i 0.108706 0.0699337i
\(922\) −6.04162 8.62832i −0.198970 0.284159i
\(923\) −2.32150 + 4.97847i −0.0764130 + 0.163868i
\(924\) 4.90810 + 5.30875i 0.161465 + 0.174645i
\(925\) 0 0
\(926\) −10.3427 + 5.97137i −0.339883 + 0.196231i
\(927\) −42.1029 + 7.80990i −1.38284 + 0.256511i
\(928\) 6.53733 1.75167i 0.214598 0.0575014i
\(929\) −42.9561 15.6347i −1.40934 0.512959i −0.478407 0.878138i \(-0.658785\pi\)
−0.930937 + 0.365179i \(0.881008\pi\)
\(930\) 0 0
\(931\) 23.5504 + 19.7611i 0.771833 + 0.647645i
\(932\) 0.910305 + 10.4048i 0.0298180 + 0.340822i
\(933\) −19.6019 8.01760i −0.641736 0.262484i
\(934\) 0.441631 1.21337i 0.0144506 0.0397028i
\(935\) 0 0
\(936\) 0.609933 + 1.27825i 0.0199363 + 0.0417810i
\(937\) −42.7303 11.4496i −1.39594 0.374041i −0.519054 0.854741i \(-0.673716\pi\)
−0.876885 + 0.480701i \(0.840382\pi\)
\(938\) −3.40208 2.38216i −0.111082 0.0777804i
\(939\) −21.5143 + 19.8906i −0.702093 + 0.649106i
\(940\) 0 0
\(941\) 2.76151 + 0.486928i 0.0900225 + 0.0158734i 0.218478 0.975842i \(-0.429891\pi\)
−0.128455 + 0.991715i \(0.541002\pi\)
\(942\) −4.92605 1.06916i −0.160499 0.0348351i
\(943\) 32.7167 + 2.86234i 1.06540 + 0.0932107i
\(944\) −18.7134 −0.609070
\(945\) 0 0
\(946\) −2.81697 −0.0915876
\(947\) −32.3652 2.83159i −1.05173 0.0920142i −0.451840 0.892099i \(-0.649232\pi\)
−0.599887 + 0.800085i \(0.704788\pi\)
\(948\) 32.8608 36.1825i 1.06727 1.17515i
\(949\) −4.12032 0.726524i −0.133751 0.0235840i
\(950\) 0 0
\(951\) 20.6553 + 6.41194i 0.669795 + 0.207921i
\(952\) −2.67933 1.87609i −0.0868376 0.0608044i
\(953\) 8.92145 + 2.39049i 0.288994 + 0.0774357i 0.400404 0.916339i \(-0.368870\pi\)
−0.111410 + 0.993775i \(0.535537\pi\)
\(954\) 1.94897 7.54082i 0.0631003 0.244143i
\(955\) 0 0
\(956\) −4.74261 + 13.0302i −0.153387 + 0.421427i
\(957\) 4.40232 3.40917i 0.142307 0.110203i
\(958\) 0.353500 + 4.04053i 0.0114211 + 0.130543i
\(959\) 0.463089 + 0.388578i 0.0149539 + 0.0125478i
\(960\) 0 0
\(961\) 24.8070 + 9.02902i 0.800226 + 0.291259i
\(962\) 0.196855 0.0527471i 0.00634686 0.00170064i
\(963\) −53.3448 8.91857i −1.71901 0.287397i
\(964\) 24.5122 14.1521i 0.789484 0.455809i
\(965\) 0 0
\(966\) −2.11222 + 0.478114i −0.0679595 + 0.0153831i
\(967\) 17.1014 36.6740i 0.549943 1.17936i −0.413267 0.910610i \(-0.635613\pi\)
0.963211 0.268747i \(-0.0866097\pi\)
\(968\) 5.93965 + 8.48270i 0.190908 + 0.272644i
\(969\) 17.0473 + 8.77829i 0.547637 + 0.281999i
\(970\) 0 0
\(971\) 12.5885i 0.403983i 0.979387 + 0.201991i \(0.0647413\pi\)
−0.979387 + 0.201991i \(0.935259\pi\)
\(972\) −28.7167 5.70082i −0.921087 0.182854i
\(973\) 1.21884 + 1.21884i 0.0390743 + 0.0390743i
\(974\) 3.36585 2.82428i 0.107849 0.0904959i
\(975\) 0 0
\(976\) −4.28508 + 24.3019i −0.137162 + 0.777885i
\(977\) 29.7224 + 13.8598i 0.950905 + 0.443414i 0.835247 0.549875i \(-0.185325\pi\)
0.115658 + 0.993289i \(0.463102\pi\)
\(978\) −5.52347 + 8.75563i −0.176621 + 0.279974i
\(979\) 4.58816 0.809016i 0.146638 0.0258563i
\(980\) 0 0
\(981\) −15.9358 22.3340i −0.508789 0.713068i
\(982\) 2.41147 + 8.99974i 0.0769532 + 0.287193i
\(983\) −13.6314 + 6.35642i −0.434774 + 0.202738i −0.627668 0.778481i \(-0.715990\pi\)
0.192894 + 0.981220i \(0.438213\pi\)
\(984\) −20.7818 15.8004i −0.662499 0.503697i
\(985\) 0 0
\(986\) −0.784146 + 0.934509i −0.0249723 + 0.0297608i
\(987\) −14.3836 18.5738i −0.457836 0.591211i
\(988\) −1.53979 3.30209i −0.0489872 0.105053i
\(989\) −6.50145 + 11.2608i −0.206734 + 0.358074i
\(990\) 0 0
\(991\) 26.1024 + 45.2106i 0.829169 + 1.43616i 0.898691 + 0.438583i \(0.144519\pi\)
−0.0695216 + 0.997580i \(0.522147\pi\)
\(992\) 4.74172 6.77188i 0.150550 0.215008i
\(993\) −32.2487 + 16.9700i −1.02338 + 0.538525i
\(994\) 2.28359 + 6.27412i 0.0724311 + 0.199003i
\(995\) 0 0
\(996\) 42.0024 2.02070i 1.33090 0.0640283i
\(997\) 0.819878 9.37125i 0.0259658 0.296791i −0.972097 0.234579i \(-0.924629\pi\)
0.998063 0.0622119i \(-0.0198155\pi\)
\(998\) −7.32559 + 7.32559i −0.231887 + 0.231887i
\(999\) −3.22163 + 8.08041i −0.101928 + 0.255653i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.518.12 yes 288
5.2 odd 4 inner 675.2.ba.c.32.13 yes 288
5.3 odd 4 inner 675.2.ba.c.32.12 288
5.4 even 2 inner 675.2.ba.c.518.13 yes 288
27.11 odd 18 inner 675.2.ba.c.443.13 yes 288
135.38 even 36 inner 675.2.ba.c.632.13 yes 288
135.92 even 36 inner 675.2.ba.c.632.12 yes 288
135.119 odd 18 inner 675.2.ba.c.443.12 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.12 288 5.3 odd 4 inner
675.2.ba.c.32.13 yes 288 5.2 odd 4 inner
675.2.ba.c.443.12 yes 288 135.119 odd 18 inner
675.2.ba.c.443.13 yes 288 27.11 odd 18 inner
675.2.ba.c.518.12 yes 288 1.1 even 1 trivial
675.2.ba.c.518.13 yes 288 5.4 even 2 inner
675.2.ba.c.632.12 yes 288 135.92 even 36 inner
675.2.ba.c.632.13 yes 288 135.38 even 36 inner