Properties

Label 672.3.g.a.463.10
Level $672$
Weight $3$
Character 672.463
Analytic conductor $18.311$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(463,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.463"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 463.10
Character \(\chi\) \(=\) 672.463
Dual form 672.3.g.a.463.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +6.16432i q^{5} +2.64575i q^{7} +3.00000 q^{9} +18.3516 q^{11} -17.5694i q^{13} -10.6769i q^{15} +17.3798 q^{17} -9.17365 q^{19} -4.58258i q^{21} +12.5593i q^{23} -12.9988 q^{25} -5.19615 q^{27} -11.8380i q^{29} +52.4097i q^{31} -31.7859 q^{33} -16.3093 q^{35} +50.5280i q^{37} +30.4311i q^{39} -31.1053 q^{41} +54.6464 q^{43} +18.4930i q^{45} -9.54776i q^{47} -7.00000 q^{49} -30.1027 q^{51} +58.4627i q^{53} +113.125i q^{55} +15.8892 q^{57} +37.2670 q^{59} -40.0382i q^{61} +7.93725i q^{63} +108.303 q^{65} +60.0932 q^{67} -21.7534i q^{69} -65.0830i q^{71} -71.2799 q^{73} +22.5147 q^{75} +48.5538i q^{77} +130.677i q^{79} +9.00000 q^{81} -151.032 q^{83} +107.135i q^{85} +20.5041i q^{87} +104.920 q^{89} +46.4842 q^{91} -90.7763i q^{93} -56.5493i q^{95} +30.9691 q^{97} +55.0548 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 72 q^{9} - 32 q^{11} + 16 q^{17} + 64 q^{19} - 72 q^{25} - 80 q^{41} - 32 q^{43} - 168 q^{49} - 192 q^{51} - 192 q^{65} + 32 q^{67} - 240 q^{73} + 384 q^{75} + 216 q^{81} + 320 q^{83} + 400 q^{89}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 6.16432i 1.23286i 0.787408 + 0.616432i \(0.211422\pi\)
−0.787408 + 0.616432i \(0.788578\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 18.3516 1.66833 0.834164 0.551517i \(-0.185951\pi\)
0.834164 + 0.551517i \(0.185951\pi\)
\(12\) 0 0
\(13\) − 17.5694i − 1.35149i −0.737135 0.675746i \(-0.763822\pi\)
0.737135 0.675746i \(-0.236178\pi\)
\(14\) 0 0
\(15\) − 10.6769i − 0.711794i
\(16\) 0 0
\(17\) 17.3798 1.02234 0.511170 0.859480i \(-0.329212\pi\)
0.511170 + 0.859480i \(0.329212\pi\)
\(18\) 0 0
\(19\) −9.17365 −0.482824 −0.241412 0.970423i \(-0.577610\pi\)
−0.241412 + 0.970423i \(0.577610\pi\)
\(20\) 0 0
\(21\) − 4.58258i − 0.218218i
\(22\) 0 0
\(23\) 12.5593i 0.546058i 0.962006 + 0.273029i \(0.0880255\pi\)
−0.962006 + 0.273029i \(0.911974\pi\)
\(24\) 0 0
\(25\) −12.9988 −0.519954
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) − 11.8380i − 0.408208i −0.978949 0.204104i \(-0.934572\pi\)
0.978949 0.204104i \(-0.0654280\pi\)
\(30\) 0 0
\(31\) 52.4097i 1.69064i 0.534264 + 0.845318i \(0.320589\pi\)
−0.534264 + 0.845318i \(0.679411\pi\)
\(32\) 0 0
\(33\) −31.7859 −0.963209
\(34\) 0 0
\(35\) −16.3093 −0.465979
\(36\) 0 0
\(37\) 50.5280i 1.36562i 0.730596 + 0.682810i \(0.239242\pi\)
−0.730596 + 0.682810i \(0.760758\pi\)
\(38\) 0 0
\(39\) 30.4311i 0.780284i
\(40\) 0 0
\(41\) −31.1053 −0.758667 −0.379333 0.925260i \(-0.623847\pi\)
−0.379333 + 0.925260i \(0.623847\pi\)
\(42\) 0 0
\(43\) 54.6464 1.27085 0.635423 0.772164i \(-0.280826\pi\)
0.635423 + 0.772164i \(0.280826\pi\)
\(44\) 0 0
\(45\) 18.4930i 0.410955i
\(46\) 0 0
\(47\) − 9.54776i − 0.203144i −0.994828 0.101572i \(-0.967613\pi\)
0.994828 0.101572i \(-0.0323872\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) −30.1027 −0.590248
\(52\) 0 0
\(53\) 58.4627i 1.10307i 0.834152 + 0.551535i \(0.185958\pi\)
−0.834152 + 0.551535i \(0.814042\pi\)
\(54\) 0 0
\(55\) 113.125i 2.05682i
\(56\) 0 0
\(57\) 15.8892 0.278758
\(58\) 0 0
\(59\) 37.2670 0.631645 0.315822 0.948818i \(-0.397720\pi\)
0.315822 + 0.948818i \(0.397720\pi\)
\(60\) 0 0
\(61\) − 40.0382i − 0.656364i −0.944615 0.328182i \(-0.893564\pi\)
0.944615 0.328182i \(-0.106436\pi\)
\(62\) 0 0
\(63\) 7.93725i 0.125988i
\(64\) 0 0
\(65\) 108.303 1.66620
\(66\) 0 0
\(67\) 60.0932 0.896914 0.448457 0.893805i \(-0.351974\pi\)
0.448457 + 0.893805i \(0.351974\pi\)
\(68\) 0 0
\(69\) − 21.7534i − 0.315267i
\(70\) 0 0
\(71\) − 65.0830i − 0.916662i −0.888782 0.458331i \(-0.848448\pi\)
0.888782 0.458331i \(-0.151552\pi\)
\(72\) 0 0
\(73\) −71.2799 −0.976437 −0.488219 0.872721i \(-0.662353\pi\)
−0.488219 + 0.872721i \(0.662353\pi\)
\(74\) 0 0
\(75\) 22.5147 0.300195
\(76\) 0 0
\(77\) 48.5538i 0.630569i
\(78\) 0 0
\(79\) 130.677i 1.65414i 0.562097 + 0.827071i \(0.309995\pi\)
−0.562097 + 0.827071i \(0.690005\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −151.032 −1.81967 −0.909834 0.414973i \(-0.863791\pi\)
−0.909834 + 0.414973i \(0.863791\pi\)
\(84\) 0 0
\(85\) 107.135i 1.26041i
\(86\) 0 0
\(87\) 20.5041i 0.235679i
\(88\) 0 0
\(89\) 104.920 1.17888 0.589438 0.807813i \(-0.299349\pi\)
0.589438 + 0.807813i \(0.299349\pi\)
\(90\) 0 0
\(91\) 46.4842 0.510816
\(92\) 0 0
\(93\) − 90.7763i − 0.976089i
\(94\) 0 0
\(95\) − 56.5493i − 0.595256i
\(96\) 0 0
\(97\) 30.9691 0.319269 0.159634 0.987176i \(-0.448969\pi\)
0.159634 + 0.987176i \(0.448969\pi\)
\(98\) 0 0
\(99\) 55.0548 0.556109
\(100\) 0 0
\(101\) 125.478i 1.24236i 0.783669 + 0.621178i \(0.213346\pi\)
−0.783669 + 0.621178i \(0.786654\pi\)
\(102\) 0 0
\(103\) − 110.356i − 1.07142i −0.844402 0.535710i \(-0.820044\pi\)
0.844402 0.535710i \(-0.179956\pi\)
\(104\) 0 0
\(105\) 28.2485 0.269033
\(106\) 0 0
\(107\) 23.8889 0.223261 0.111631 0.993750i \(-0.464393\pi\)
0.111631 + 0.993750i \(0.464393\pi\)
\(108\) 0 0
\(109\) 196.446i 1.80225i 0.433556 + 0.901126i \(0.357258\pi\)
−0.433556 + 0.901126i \(0.642742\pi\)
\(110\) 0 0
\(111\) − 87.5170i − 0.788441i
\(112\) 0 0
\(113\) −107.844 −0.954371 −0.477186 0.878803i \(-0.658343\pi\)
−0.477186 + 0.878803i \(0.658343\pi\)
\(114\) 0 0
\(115\) −77.4198 −0.673215
\(116\) 0 0
\(117\) − 52.7082i − 0.450497i
\(118\) 0 0
\(119\) 45.9826i 0.386408i
\(120\) 0 0
\(121\) 215.781 1.78332
\(122\) 0 0
\(123\) 53.8760 0.438017
\(124\) 0 0
\(125\) 73.9790i 0.591832i
\(126\) 0 0
\(127\) 31.7684i 0.250145i 0.992148 + 0.125073i \(0.0399164\pi\)
−0.992148 + 0.125073i \(0.960084\pi\)
\(128\) 0 0
\(129\) −94.6503 −0.733724
\(130\) 0 0
\(131\) 24.7991 0.189306 0.0946532 0.995510i \(-0.469826\pi\)
0.0946532 + 0.995510i \(0.469826\pi\)
\(132\) 0 0
\(133\) − 24.2712i − 0.182490i
\(134\) 0 0
\(135\) − 32.0307i − 0.237265i
\(136\) 0 0
\(137\) −88.3273 −0.644725 −0.322362 0.946616i \(-0.604477\pi\)
−0.322362 + 0.946616i \(0.604477\pi\)
\(138\) 0 0
\(139\) −126.221 −0.908062 −0.454031 0.890986i \(-0.650014\pi\)
−0.454031 + 0.890986i \(0.650014\pi\)
\(140\) 0 0
\(141\) 16.5372i 0.117285i
\(142\) 0 0
\(143\) − 322.426i − 2.25473i
\(144\) 0 0
\(145\) 72.9734 0.503265
\(146\) 0 0
\(147\) 12.1244 0.0824786
\(148\) 0 0
\(149\) − 95.4419i − 0.640550i −0.947325 0.320275i \(-0.896225\pi\)
0.947325 0.320275i \(-0.103775\pi\)
\(150\) 0 0
\(151\) − 18.6965i − 0.123818i −0.998082 0.0619091i \(-0.980281\pi\)
0.998082 0.0619091i \(-0.0197189\pi\)
\(152\) 0 0
\(153\) 52.1393 0.340780
\(154\) 0 0
\(155\) −323.070 −2.08432
\(156\) 0 0
\(157\) − 4.06821i − 0.0259122i −0.999916 0.0129561i \(-0.995876\pi\)
0.999916 0.0129561i \(-0.00412417\pi\)
\(158\) 0 0
\(159\) − 101.260i − 0.636858i
\(160\) 0 0
\(161\) −33.2289 −0.206391
\(162\) 0 0
\(163\) −194.179 −1.19128 −0.595642 0.803250i \(-0.703102\pi\)
−0.595642 + 0.803250i \(0.703102\pi\)
\(164\) 0 0
\(165\) − 195.939i − 1.18751i
\(166\) 0 0
\(167\) 46.3885i 0.277775i 0.990308 + 0.138888i \(0.0443527\pi\)
−0.990308 + 0.138888i \(0.955647\pi\)
\(168\) 0 0
\(169\) −139.683 −0.826529
\(170\) 0 0
\(171\) −27.5209 −0.160941
\(172\) 0 0
\(173\) − 256.754i − 1.48412i −0.670331 0.742062i \(-0.733848\pi\)
0.670331 0.742062i \(-0.266152\pi\)
\(174\) 0 0
\(175\) − 34.3917i − 0.196524i
\(176\) 0 0
\(177\) −64.5484 −0.364680
\(178\) 0 0
\(179\) 186.571 1.04229 0.521147 0.853467i \(-0.325504\pi\)
0.521147 + 0.853467i \(0.325504\pi\)
\(180\) 0 0
\(181\) 12.2636i 0.0677546i 0.999426 + 0.0338773i \(0.0107855\pi\)
−0.999426 + 0.0338773i \(0.989214\pi\)
\(182\) 0 0
\(183\) 69.3482i 0.378952i
\(184\) 0 0
\(185\) −311.470 −1.68362
\(186\) 0 0
\(187\) 318.947 1.70560
\(188\) 0 0
\(189\) − 13.7477i − 0.0727393i
\(190\) 0 0
\(191\) − 31.2212i − 0.163462i −0.996654 0.0817310i \(-0.973955\pi\)
0.996654 0.0817310i \(-0.0260448\pi\)
\(192\) 0 0
\(193\) 272.816 1.41355 0.706777 0.707437i \(-0.250149\pi\)
0.706777 + 0.707437i \(0.250149\pi\)
\(194\) 0 0
\(195\) −187.587 −0.961984
\(196\) 0 0
\(197\) − 367.742i − 1.86671i −0.358952 0.933356i \(-0.616866\pi\)
0.358952 0.933356i \(-0.383134\pi\)
\(198\) 0 0
\(199\) 220.530i 1.10819i 0.832453 + 0.554095i \(0.186936\pi\)
−0.832453 + 0.554095i \(0.813064\pi\)
\(200\) 0 0
\(201\) −104.084 −0.517833
\(202\) 0 0
\(203\) 31.3205 0.154288
\(204\) 0 0
\(205\) − 191.743i − 0.935333i
\(206\) 0 0
\(207\) 37.6780i 0.182019i
\(208\) 0 0
\(209\) −168.351 −0.805508
\(210\) 0 0
\(211\) 289.313 1.37115 0.685575 0.728002i \(-0.259551\pi\)
0.685575 + 0.728002i \(0.259551\pi\)
\(212\) 0 0
\(213\) 112.727i 0.529235i
\(214\) 0 0
\(215\) 336.858i 1.56678i
\(216\) 0 0
\(217\) −138.663 −0.639000
\(218\) 0 0
\(219\) 123.460 0.563746
\(220\) 0 0
\(221\) − 305.352i − 1.38168i
\(222\) 0 0
\(223\) − 134.210i − 0.601838i −0.953650 0.300919i \(-0.902707\pi\)
0.953650 0.300919i \(-0.0972934\pi\)
\(224\) 0 0
\(225\) −38.9965 −0.173318
\(226\) 0 0
\(227\) 351.467 1.54831 0.774157 0.632994i \(-0.218174\pi\)
0.774157 + 0.632994i \(0.218174\pi\)
\(228\) 0 0
\(229\) 271.439i 1.18532i 0.805452 + 0.592661i \(0.201922\pi\)
−0.805452 + 0.592661i \(0.798078\pi\)
\(230\) 0 0
\(231\) − 84.0976i − 0.364059i
\(232\) 0 0
\(233\) 288.131 1.23661 0.618306 0.785938i \(-0.287819\pi\)
0.618306 + 0.785938i \(0.287819\pi\)
\(234\) 0 0
\(235\) 58.8555 0.250449
\(236\) 0 0
\(237\) − 226.340i − 0.955020i
\(238\) 0 0
\(239\) − 247.003i − 1.03349i −0.856141 0.516743i \(-0.827144\pi\)
0.856141 0.516743i \(-0.172856\pi\)
\(240\) 0 0
\(241\) −96.8368 −0.401813 −0.200906 0.979610i \(-0.564389\pi\)
−0.200906 + 0.979610i \(0.564389\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) − 43.1502i − 0.176123i
\(246\) 0 0
\(247\) 161.175i 0.652532i
\(248\) 0 0
\(249\) 261.596 1.05059
\(250\) 0 0
\(251\) −47.0750 −0.187550 −0.0937748 0.995593i \(-0.529893\pi\)
−0.0937748 + 0.995593i \(0.529893\pi\)
\(252\) 0 0
\(253\) 230.484i 0.911004i
\(254\) 0 0
\(255\) − 185.562i − 0.727696i
\(256\) 0 0
\(257\) −43.2628 −0.168338 −0.0841689 0.996452i \(-0.526824\pi\)
−0.0841689 + 0.996452i \(0.526824\pi\)
\(258\) 0 0
\(259\) −133.684 −0.516156
\(260\) 0 0
\(261\) − 35.5141i − 0.136069i
\(262\) 0 0
\(263\) − 234.603i − 0.892028i −0.895026 0.446014i \(-0.852843\pi\)
0.895026 0.446014i \(-0.147157\pi\)
\(264\) 0 0
\(265\) −360.383 −1.35993
\(266\) 0 0
\(267\) −181.727 −0.680625
\(268\) 0 0
\(269\) − 258.099i − 0.959475i −0.877412 0.479737i \(-0.840732\pi\)
0.877412 0.479737i \(-0.159268\pi\)
\(270\) 0 0
\(271\) − 33.9000i − 0.125092i −0.998042 0.0625462i \(-0.980078\pi\)
0.998042 0.0625462i \(-0.0199221\pi\)
\(272\) 0 0
\(273\) −80.5130 −0.294920
\(274\) 0 0
\(275\) −238.550 −0.867453
\(276\) 0 0
\(277\) − 307.373i − 1.10965i −0.831967 0.554825i \(-0.812785\pi\)
0.831967 0.554825i \(-0.187215\pi\)
\(278\) 0 0
\(279\) 157.229i 0.563545i
\(280\) 0 0
\(281\) 464.885 1.65439 0.827197 0.561911i \(-0.189934\pi\)
0.827197 + 0.561911i \(0.189934\pi\)
\(282\) 0 0
\(283\) −258.876 −0.914756 −0.457378 0.889272i \(-0.651211\pi\)
−0.457378 + 0.889272i \(0.651211\pi\)
\(284\) 0 0
\(285\) 97.9463i 0.343671i
\(286\) 0 0
\(287\) − 82.2970i − 0.286749i
\(288\) 0 0
\(289\) 13.0566 0.0451787
\(290\) 0 0
\(291\) −53.6400 −0.184330
\(292\) 0 0
\(293\) 56.2381i 0.191939i 0.995384 + 0.0959695i \(0.0305951\pi\)
−0.995384 + 0.0959695i \(0.969405\pi\)
\(294\) 0 0
\(295\) 229.726i 0.778732i
\(296\) 0 0
\(297\) −95.3577 −0.321070
\(298\) 0 0
\(299\) 220.660 0.737993
\(300\) 0 0
\(301\) 144.581i 0.480335i
\(302\) 0 0
\(303\) − 217.334i − 0.717275i
\(304\) 0 0
\(305\) 246.808 0.809207
\(306\) 0 0
\(307\) −322.183 −1.04946 −0.524728 0.851270i \(-0.675833\pi\)
−0.524728 + 0.851270i \(0.675833\pi\)
\(308\) 0 0
\(309\) 191.142i 0.618584i
\(310\) 0 0
\(311\) 4.79256i 0.0154102i 0.999970 + 0.00770508i \(0.00245263\pi\)
−0.999970 + 0.00770508i \(0.997547\pi\)
\(312\) 0 0
\(313\) 109.002 0.348248 0.174124 0.984724i \(-0.444291\pi\)
0.174124 + 0.984724i \(0.444291\pi\)
\(314\) 0 0
\(315\) −48.9278 −0.155326
\(316\) 0 0
\(317\) 38.2661i 0.120713i 0.998177 + 0.0603566i \(0.0192238\pi\)
−0.998177 + 0.0603566i \(0.980776\pi\)
\(318\) 0 0
\(319\) − 217.247i − 0.681024i
\(320\) 0 0
\(321\) −41.3769 −0.128900
\(322\) 0 0
\(323\) −159.436 −0.493610
\(324\) 0 0
\(325\) 228.382i 0.702713i
\(326\) 0 0
\(327\) − 340.254i − 1.04053i
\(328\) 0 0
\(329\) 25.2610 0.0767812
\(330\) 0 0
\(331\) −94.2493 −0.284741 −0.142371 0.989813i \(-0.545472\pi\)
−0.142371 + 0.989813i \(0.545472\pi\)
\(332\) 0 0
\(333\) 151.584i 0.455207i
\(334\) 0 0
\(335\) 370.434i 1.10577i
\(336\) 0 0
\(337\) 329.007 0.976281 0.488140 0.872765i \(-0.337675\pi\)
0.488140 + 0.872765i \(0.337675\pi\)
\(338\) 0 0
\(339\) 186.791 0.551006
\(340\) 0 0
\(341\) 961.802i 2.82053i
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) 134.095 0.388681
\(346\) 0 0
\(347\) 552.515 1.59226 0.796131 0.605124i \(-0.206876\pi\)
0.796131 + 0.605124i \(0.206876\pi\)
\(348\) 0 0
\(349\) 178.048i 0.510165i 0.966919 + 0.255082i \(0.0821026\pi\)
−0.966919 + 0.255082i \(0.917897\pi\)
\(350\) 0 0
\(351\) 91.2932i 0.260095i
\(352\) 0 0
\(353\) −601.918 −1.70515 −0.852575 0.522604i \(-0.824960\pi\)
−0.852575 + 0.522604i \(0.824960\pi\)
\(354\) 0 0
\(355\) 401.192 1.13012
\(356\) 0 0
\(357\) − 79.6441i − 0.223093i
\(358\) 0 0
\(359\) 132.354i 0.368674i 0.982863 + 0.184337i \(0.0590138\pi\)
−0.982863 + 0.184337i \(0.940986\pi\)
\(360\) 0 0
\(361\) −276.844 −0.766881
\(362\) 0 0
\(363\) −373.744 −1.02960
\(364\) 0 0
\(365\) − 439.392i − 1.20381i
\(366\) 0 0
\(367\) 214.090i 0.583352i 0.956517 + 0.291676i \(0.0942128\pi\)
−0.956517 + 0.291676i \(0.905787\pi\)
\(368\) 0 0
\(369\) −93.3160 −0.252889
\(370\) 0 0
\(371\) −154.678 −0.416921
\(372\) 0 0
\(373\) − 460.986i − 1.23589i −0.786223 0.617943i \(-0.787966\pi\)
0.786223 0.617943i \(-0.212034\pi\)
\(374\) 0 0
\(375\) − 128.135i − 0.341694i
\(376\) 0 0
\(377\) −207.987 −0.551689
\(378\) 0 0
\(379\) −539.587 −1.42371 −0.711856 0.702325i \(-0.752145\pi\)
−0.711856 + 0.702325i \(0.752145\pi\)
\(380\) 0 0
\(381\) − 55.0246i − 0.144421i
\(382\) 0 0
\(383\) − 298.687i − 0.779863i −0.920844 0.389931i \(-0.872499\pi\)
0.920844 0.389931i \(-0.127501\pi\)
\(384\) 0 0
\(385\) −299.301 −0.777405
\(386\) 0 0
\(387\) 163.939 0.423615
\(388\) 0 0
\(389\) − 158.045i − 0.406286i −0.979149 0.203143i \(-0.934884\pi\)
0.979149 0.203143i \(-0.0651157\pi\)
\(390\) 0 0
\(391\) 218.278i 0.558257i
\(392\) 0 0
\(393\) −42.9534 −0.109296
\(394\) 0 0
\(395\) −805.537 −2.03933
\(396\) 0 0
\(397\) − 290.058i − 0.730625i −0.930885 0.365313i \(-0.880962\pi\)
0.930885 0.365313i \(-0.119038\pi\)
\(398\) 0 0
\(399\) 42.0389i 0.105361i
\(400\) 0 0
\(401\) 111.817 0.278846 0.139423 0.990233i \(-0.455475\pi\)
0.139423 + 0.990233i \(0.455475\pi\)
\(402\) 0 0
\(403\) 920.806 2.28488
\(404\) 0 0
\(405\) 55.4789i 0.136985i
\(406\) 0 0
\(407\) 927.269i 2.27830i
\(408\) 0 0
\(409\) 481.749 1.17787 0.588935 0.808180i \(-0.299547\pi\)
0.588935 + 0.808180i \(0.299547\pi\)
\(410\) 0 0
\(411\) 152.987 0.372232
\(412\) 0 0
\(413\) 98.5993i 0.238739i
\(414\) 0 0
\(415\) − 931.012i − 2.24340i
\(416\) 0 0
\(417\) 218.621 0.524270
\(418\) 0 0
\(419\) 656.386 1.56655 0.783277 0.621673i \(-0.213547\pi\)
0.783277 + 0.621673i \(0.213547\pi\)
\(420\) 0 0
\(421\) 238.193i 0.565779i 0.959153 + 0.282889i \(0.0912929\pi\)
−0.959153 + 0.282889i \(0.908707\pi\)
\(422\) 0 0
\(423\) − 28.6433i − 0.0677146i
\(424\) 0 0
\(425\) −225.917 −0.531569
\(426\) 0 0
\(427\) 105.931 0.248082
\(428\) 0 0
\(429\) 558.459i 1.30177i
\(430\) 0 0
\(431\) − 329.786i − 0.765166i −0.923921 0.382583i \(-0.875035\pi\)
0.923921 0.382583i \(-0.124965\pi\)
\(432\) 0 0
\(433\) 454.294 1.04918 0.524588 0.851356i \(-0.324219\pi\)
0.524588 + 0.851356i \(0.324219\pi\)
\(434\) 0 0
\(435\) −126.394 −0.290560
\(436\) 0 0
\(437\) − 115.215i − 0.263650i
\(438\) 0 0
\(439\) 358.082i 0.815676i 0.913054 + 0.407838i \(0.133717\pi\)
−0.913054 + 0.407838i \(0.866283\pi\)
\(440\) 0 0
\(441\) −21.0000 −0.0476190
\(442\) 0 0
\(443\) 158.477 0.357737 0.178868 0.983873i \(-0.442756\pi\)
0.178868 + 0.983873i \(0.442756\pi\)
\(444\) 0 0
\(445\) 646.761i 1.45339i
\(446\) 0 0
\(447\) 165.310i 0.369821i
\(448\) 0 0
\(449\) −433.724 −0.965978 −0.482989 0.875626i \(-0.660449\pi\)
−0.482989 + 0.875626i \(0.660449\pi\)
\(450\) 0 0
\(451\) −570.833 −1.26570
\(452\) 0 0
\(453\) 32.3834i 0.0714865i
\(454\) 0 0
\(455\) 286.544i 0.629766i
\(456\) 0 0
\(457\) −352.377 −0.771066 −0.385533 0.922694i \(-0.625982\pi\)
−0.385533 + 0.922694i \(0.625982\pi\)
\(458\) 0 0
\(459\) −90.3080 −0.196749
\(460\) 0 0
\(461\) 407.443i 0.883824i 0.897058 + 0.441912i \(0.145700\pi\)
−0.897058 + 0.441912i \(0.854300\pi\)
\(462\) 0 0
\(463\) − 159.028i − 0.343474i −0.985143 0.171737i \(-0.945062\pi\)
0.985143 0.171737i \(-0.0549379\pi\)
\(464\) 0 0
\(465\) 559.574 1.20338
\(466\) 0 0
\(467\) −306.786 −0.656930 −0.328465 0.944516i \(-0.606531\pi\)
−0.328465 + 0.944516i \(0.606531\pi\)
\(468\) 0 0
\(469\) 158.992i 0.339001i
\(470\) 0 0
\(471\) 7.04635i 0.0149604i
\(472\) 0 0
\(473\) 1002.85 2.12019
\(474\) 0 0
\(475\) 119.247 0.251046
\(476\) 0 0
\(477\) 175.388i 0.367690i
\(478\) 0 0
\(479\) 74.7230i 0.155998i 0.996953 + 0.0779990i \(0.0248531\pi\)
−0.996953 + 0.0779990i \(0.975147\pi\)
\(480\) 0 0
\(481\) 887.745 1.84562
\(482\) 0 0
\(483\) 57.5541 0.119160
\(484\) 0 0
\(485\) 190.903i 0.393615i
\(486\) 0 0
\(487\) 459.351i 0.943225i 0.881806 + 0.471612i \(0.156328\pi\)
−0.881806 + 0.471612i \(0.843672\pi\)
\(488\) 0 0
\(489\) 336.328 0.687788
\(490\) 0 0
\(491\) −495.412 −1.00899 −0.504493 0.863416i \(-0.668320\pi\)
−0.504493 + 0.863416i \(0.668320\pi\)
\(492\) 0 0
\(493\) − 205.742i − 0.417327i
\(494\) 0 0
\(495\) 339.375i 0.685607i
\(496\) 0 0
\(497\) 172.193 0.346466
\(498\) 0 0
\(499\) 277.598 0.556309 0.278155 0.960536i \(-0.410277\pi\)
0.278155 + 0.960536i \(0.410277\pi\)
\(500\) 0 0
\(501\) − 80.3472i − 0.160374i
\(502\) 0 0
\(503\) − 470.363i − 0.935116i −0.883962 0.467558i \(-0.845134\pi\)
0.883962 0.467558i \(-0.154866\pi\)
\(504\) 0 0
\(505\) −773.486 −1.53166
\(506\) 0 0
\(507\) 241.939 0.477196
\(508\) 0 0
\(509\) − 431.842i − 0.848413i −0.905566 0.424206i \(-0.860553\pi\)
0.905566 0.424206i \(-0.139447\pi\)
\(510\) 0 0
\(511\) − 188.589i − 0.369058i
\(512\) 0 0
\(513\) 47.6677 0.0929194
\(514\) 0 0
\(515\) 680.271 1.32091
\(516\) 0 0
\(517\) − 175.217i − 0.338911i
\(518\) 0 0
\(519\) 444.710i 0.856860i
\(520\) 0 0
\(521\) −145.399 −0.279077 −0.139539 0.990217i \(-0.544562\pi\)
−0.139539 + 0.990217i \(0.544562\pi\)
\(522\) 0 0
\(523\) 624.823 1.19469 0.597345 0.801984i \(-0.296222\pi\)
0.597345 + 0.801984i \(0.296222\pi\)
\(524\) 0 0
\(525\) 59.5682i 0.113463i
\(526\) 0 0
\(527\) 910.869i 1.72840i
\(528\) 0 0
\(529\) 371.263 0.701821
\(530\) 0 0
\(531\) 111.801 0.210548
\(532\) 0 0
\(533\) 546.502i 1.02533i
\(534\) 0 0
\(535\) 147.259i 0.275251i
\(536\) 0 0
\(537\) −323.150 −0.601769
\(538\) 0 0
\(539\) −128.461 −0.238333
\(540\) 0 0
\(541\) 873.673i 1.61492i 0.589921 + 0.807461i \(0.299159\pi\)
−0.589921 + 0.807461i \(0.700841\pi\)
\(542\) 0 0
\(543\) − 21.2411i − 0.0391181i
\(544\) 0 0
\(545\) −1210.95 −2.22193
\(546\) 0 0
\(547\) −63.9331 −0.116879 −0.0584397 0.998291i \(-0.518613\pi\)
−0.0584397 + 0.998291i \(0.518613\pi\)
\(548\) 0 0
\(549\) − 120.115i − 0.218788i
\(550\) 0 0
\(551\) 108.598i 0.197092i
\(552\) 0 0
\(553\) −345.740 −0.625207
\(554\) 0 0
\(555\) 539.483 0.972041
\(556\) 0 0
\(557\) 442.096i 0.793710i 0.917881 + 0.396855i \(0.129898\pi\)
−0.917881 + 0.396855i \(0.870102\pi\)
\(558\) 0 0
\(559\) − 960.104i − 1.71754i
\(560\) 0 0
\(561\) −552.432 −0.984727
\(562\) 0 0
\(563\) −207.884 −0.369243 −0.184621 0.982810i \(-0.559106\pi\)
−0.184621 + 0.982810i \(0.559106\pi\)
\(564\) 0 0
\(565\) − 664.785i − 1.17661i
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) −36.9418 −0.0649241 −0.0324620 0.999473i \(-0.510335\pi\)
−0.0324620 + 0.999473i \(0.510335\pi\)
\(570\) 0 0
\(571\) −752.995 −1.31873 −0.659365 0.751823i \(-0.729175\pi\)
−0.659365 + 0.751823i \(0.729175\pi\)
\(572\) 0 0
\(573\) 54.0768i 0.0943748i
\(574\) 0 0
\(575\) − 163.257i − 0.283925i
\(576\) 0 0
\(577\) −645.055 −1.11795 −0.558973 0.829186i \(-0.688804\pi\)
−0.558973 + 0.829186i \(0.688804\pi\)
\(578\) 0 0
\(579\) −472.531 −0.816115
\(580\) 0 0
\(581\) − 399.594i − 0.687770i
\(582\) 0 0
\(583\) 1072.88i 1.84028i
\(584\) 0 0
\(585\) 324.910 0.555402
\(586\) 0 0
\(587\) 321.664 0.547980 0.273990 0.961733i \(-0.411656\pi\)
0.273990 + 0.961733i \(0.411656\pi\)
\(588\) 0 0
\(589\) − 480.788i − 0.816279i
\(590\) 0 0
\(591\) 636.948i 1.07775i
\(592\) 0 0
\(593\) 563.214 0.949771 0.474886 0.880047i \(-0.342489\pi\)
0.474886 + 0.880047i \(0.342489\pi\)
\(594\) 0 0
\(595\) −283.451 −0.476389
\(596\) 0 0
\(597\) − 381.969i − 0.639814i
\(598\) 0 0
\(599\) 518.990i 0.866427i 0.901291 + 0.433213i \(0.142620\pi\)
−0.901291 + 0.433213i \(0.857380\pi\)
\(600\) 0 0
\(601\) 662.908 1.10301 0.551504 0.834172i \(-0.314054\pi\)
0.551504 + 0.834172i \(0.314054\pi\)
\(602\) 0 0
\(603\) 180.280 0.298971
\(604\) 0 0
\(605\) 1330.15i 2.19859i
\(606\) 0 0
\(607\) − 787.794i − 1.29785i −0.760853 0.648925i \(-0.775219\pi\)
0.760853 0.648925i \(-0.224781\pi\)
\(608\) 0 0
\(609\) −54.2486 −0.0890782
\(610\) 0 0
\(611\) −167.748 −0.274547
\(612\) 0 0
\(613\) − 1056.68i − 1.72378i −0.507092 0.861892i \(-0.669279\pi\)
0.507092 0.861892i \(-0.330721\pi\)
\(614\) 0 0
\(615\) 332.109i 0.540015i
\(616\) 0 0
\(617\) −39.6456 −0.0642554 −0.0321277 0.999484i \(-0.510228\pi\)
−0.0321277 + 0.999484i \(0.510228\pi\)
\(618\) 0 0
\(619\) −479.135 −0.774047 −0.387023 0.922070i \(-0.626497\pi\)
−0.387023 + 0.922070i \(0.626497\pi\)
\(620\) 0 0
\(621\) − 65.2602i − 0.105089i
\(622\) 0 0
\(623\) 277.592i 0.445574i
\(624\) 0 0
\(625\) −781.001 −1.24960
\(626\) 0 0
\(627\) 291.593 0.465060
\(628\) 0 0
\(629\) 878.165i 1.39613i
\(630\) 0 0
\(631\) − 1038.15i − 1.64525i −0.568583 0.822626i \(-0.692508\pi\)
0.568583 0.822626i \(-0.307492\pi\)
\(632\) 0 0
\(633\) −501.104 −0.791634
\(634\) 0 0
\(635\) −195.831 −0.308395
\(636\) 0 0
\(637\) 122.986i 0.193070i
\(638\) 0 0
\(639\) − 195.249i − 0.305554i
\(640\) 0 0
\(641\) 770.901 1.20265 0.601327 0.799003i \(-0.294639\pi\)
0.601327 + 0.799003i \(0.294639\pi\)
\(642\) 0 0
\(643\) −610.183 −0.948963 −0.474482 0.880265i \(-0.657364\pi\)
−0.474482 + 0.880265i \(0.657364\pi\)
\(644\) 0 0
\(645\) − 583.455i − 0.904581i
\(646\) 0 0
\(647\) 1049.62i 1.62228i 0.584850 + 0.811142i \(0.301153\pi\)
−0.584850 + 0.811142i \(0.698847\pi\)
\(648\) 0 0
\(649\) 683.910 1.05379
\(650\) 0 0
\(651\) 240.171 0.368927
\(652\) 0 0
\(653\) − 743.849i − 1.13913i −0.821948 0.569563i \(-0.807112\pi\)
0.821948 0.569563i \(-0.192888\pi\)
\(654\) 0 0
\(655\) 152.870i 0.233389i
\(656\) 0 0
\(657\) −213.840 −0.325479
\(658\) 0 0
\(659\) −476.526 −0.723105 −0.361552 0.932352i \(-0.617753\pi\)
−0.361552 + 0.932352i \(0.617753\pi\)
\(660\) 0 0
\(661\) − 970.379i − 1.46805i −0.679124 0.734024i \(-0.737640\pi\)
0.679124 0.734024i \(-0.262360\pi\)
\(662\) 0 0
\(663\) 528.885i 0.797715i
\(664\) 0 0
\(665\) 149.615 0.224986
\(666\) 0 0
\(667\) 148.678 0.222905
\(668\) 0 0
\(669\) 232.458i 0.347472i
\(670\) 0 0
\(671\) − 734.765i − 1.09503i
\(672\) 0 0
\(673\) −399.194 −0.593156 −0.296578 0.955009i \(-0.595845\pi\)
−0.296578 + 0.955009i \(0.595845\pi\)
\(674\) 0 0
\(675\) 67.5440 0.100065
\(676\) 0 0
\(677\) − 371.606i − 0.548900i −0.961601 0.274450i \(-0.911504\pi\)
0.961601 0.274450i \(-0.0884958\pi\)
\(678\) 0 0
\(679\) 81.9364i 0.120672i
\(680\) 0 0
\(681\) −608.759 −0.893920
\(682\) 0 0
\(683\) 863.088 1.26367 0.631836 0.775102i \(-0.282302\pi\)
0.631836 + 0.775102i \(0.282302\pi\)
\(684\) 0 0
\(685\) − 544.478i − 0.794858i
\(686\) 0 0
\(687\) − 470.145i − 0.684346i
\(688\) 0 0
\(689\) 1027.15 1.49079
\(690\) 0 0
\(691\) 128.866 0.186492 0.0932461 0.995643i \(-0.470276\pi\)
0.0932461 + 0.995643i \(0.470276\pi\)
\(692\) 0 0
\(693\) 145.661i 0.210190i
\(694\) 0 0
\(695\) − 778.064i − 1.11952i
\(696\) 0 0
\(697\) −540.604 −0.775615
\(698\) 0 0
\(699\) −499.057 −0.713958
\(700\) 0 0
\(701\) 35.1038i 0.0500767i 0.999686 + 0.0250384i \(0.00797080\pi\)
−0.999686 + 0.0250384i \(0.992029\pi\)
\(702\) 0 0
\(703\) − 463.526i − 0.659354i
\(704\) 0 0
\(705\) −101.941 −0.144597
\(706\) 0 0
\(707\) −331.984 −0.469567
\(708\) 0 0
\(709\) 355.246i 0.501053i 0.968110 + 0.250526i \(0.0806037\pi\)
−0.968110 + 0.250526i \(0.919396\pi\)
\(710\) 0 0
\(711\) 392.032i 0.551381i
\(712\) 0 0
\(713\) −658.231 −0.923185
\(714\) 0 0
\(715\) 1987.54 2.77978
\(716\) 0 0
\(717\) 427.822i 0.596683i
\(718\) 0 0
\(719\) − 543.096i − 0.755349i −0.925938 0.377674i \(-0.876724\pi\)
0.925938 0.377674i \(-0.123276\pi\)
\(720\) 0 0
\(721\) 291.975 0.404958
\(722\) 0 0
\(723\) 167.726 0.231987
\(724\) 0 0
\(725\) 153.881i 0.212249i
\(726\) 0 0
\(727\) 893.793i 1.22943i 0.788751 + 0.614713i \(0.210728\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 949.742 1.29924
\(732\) 0 0
\(733\) − 1282.23i − 1.74929i −0.484767 0.874643i \(-0.661096\pi\)
0.484767 0.874643i \(-0.338904\pi\)
\(734\) 0 0
\(735\) 74.7384i 0.101685i
\(736\) 0 0
\(737\) 1102.81 1.49635
\(738\) 0 0
\(739\) −677.536 −0.916828 −0.458414 0.888739i \(-0.651582\pi\)
−0.458414 + 0.888739i \(0.651582\pi\)
\(740\) 0 0
\(741\) − 279.164i − 0.376739i
\(742\) 0 0
\(743\) − 1069.32i − 1.43919i −0.694393 0.719596i \(-0.744327\pi\)
0.694393 0.719596i \(-0.255673\pi\)
\(744\) 0 0
\(745\) 588.334 0.789711
\(746\) 0 0
\(747\) −453.097 −0.606556
\(748\) 0 0
\(749\) 63.2042i 0.0843848i
\(750\) 0 0
\(751\) − 634.789i − 0.845259i −0.906303 0.422629i \(-0.861107\pi\)
0.906303 0.422629i \(-0.138893\pi\)
\(752\) 0 0
\(753\) 81.5362 0.108282
\(754\) 0 0
\(755\) 115.252 0.152651
\(756\) 0 0
\(757\) − 216.902i − 0.286528i −0.989684 0.143264i \(-0.954240\pi\)
0.989684 0.143264i \(-0.0457599\pi\)
\(758\) 0 0
\(759\) − 399.210i − 0.525968i
\(760\) 0 0
\(761\) −471.719 −0.619868 −0.309934 0.950758i \(-0.600307\pi\)
−0.309934 + 0.950758i \(0.600307\pi\)
\(762\) 0 0
\(763\) −519.746 −0.681188
\(764\) 0 0
\(765\) 321.404i 0.420135i
\(766\) 0 0
\(767\) − 654.759i − 0.853662i
\(768\) 0 0
\(769\) −1382.58 −1.79790 −0.898948 0.438056i \(-0.855667\pi\)
−0.898948 + 0.438056i \(0.855667\pi\)
\(770\) 0 0
\(771\) 74.9334 0.0971899
\(772\) 0 0
\(773\) − 402.193i − 0.520302i −0.965568 0.260151i \(-0.916228\pi\)
0.965568 0.260151i \(-0.0837723\pi\)
\(774\) 0 0
\(775\) − 681.265i − 0.879052i
\(776\) 0 0
\(777\) 231.548 0.298003
\(778\) 0 0
\(779\) 285.349 0.366302
\(780\) 0 0
\(781\) − 1194.38i − 1.52929i
\(782\) 0 0
\(783\) 61.5122i 0.0785596i
\(784\) 0 0
\(785\) 25.0778 0.0319462
\(786\) 0 0
\(787\) −593.635 −0.754301 −0.377151 0.926152i \(-0.623096\pi\)
−0.377151 + 0.926152i \(0.623096\pi\)
\(788\) 0 0
\(789\) 406.345i 0.515013i
\(790\) 0 0
\(791\) − 285.328i − 0.360718i
\(792\) 0 0
\(793\) −703.446 −0.887070
\(794\) 0 0
\(795\) 624.201 0.785159
\(796\) 0 0
\(797\) − 1173.37i − 1.47224i −0.676853 0.736118i \(-0.736657\pi\)
0.676853 0.736118i \(-0.263343\pi\)
\(798\) 0 0
\(799\) − 165.938i − 0.207682i
\(800\) 0 0
\(801\) 314.760 0.392959
\(802\) 0 0
\(803\) −1308.10 −1.62902
\(804\) 0 0
\(805\) − 204.833i − 0.254451i
\(806\) 0 0
\(807\) 447.040i 0.553953i
\(808\) 0 0
\(809\) −583.712 −0.721523 −0.360762 0.932658i \(-0.617483\pi\)
−0.360762 + 0.932658i \(0.617483\pi\)
\(810\) 0 0
\(811\) 124.565 0.153595 0.0767973 0.997047i \(-0.475531\pi\)
0.0767973 + 0.997047i \(0.475531\pi\)
\(812\) 0 0
\(813\) 58.7166i 0.0722221i
\(814\) 0 0
\(815\) − 1196.98i − 1.46869i
\(816\) 0 0
\(817\) −501.307 −0.613595
\(818\) 0 0
\(819\) 139.453 0.170272
\(820\) 0 0
\(821\) − 53.7147i − 0.0654260i −0.999465 0.0327130i \(-0.989585\pi\)
0.999465 0.0327130i \(-0.0104147\pi\)
\(822\) 0 0
\(823\) − 1141.75i − 1.38730i −0.720312 0.693651i \(-0.756001\pi\)
0.720312 0.693651i \(-0.243999\pi\)
\(824\) 0 0
\(825\) 413.180 0.500824
\(826\) 0 0
\(827\) 795.993 0.962507 0.481253 0.876582i \(-0.340182\pi\)
0.481253 + 0.876582i \(0.340182\pi\)
\(828\) 0 0
\(829\) 1171.16i 1.41274i 0.707844 + 0.706369i \(0.249668\pi\)
−0.707844 + 0.706369i \(0.750332\pi\)
\(830\) 0 0
\(831\) 532.386i 0.640657i
\(832\) 0 0
\(833\) −121.658 −0.146049
\(834\) 0 0
\(835\) −285.954 −0.342459
\(836\) 0 0
\(837\) − 272.329i − 0.325363i
\(838\) 0 0
\(839\) − 440.914i − 0.525524i −0.964861 0.262762i \(-0.915367\pi\)
0.964861 0.262762i \(-0.0846334\pi\)
\(840\) 0 0
\(841\) 700.861 0.833366
\(842\) 0 0
\(843\) −805.204 −0.955165
\(844\) 0 0
\(845\) − 861.053i − 1.01900i
\(846\) 0 0
\(847\) 570.904i 0.674031i
\(848\) 0 0
\(849\) 448.386 0.528134
\(850\) 0 0
\(851\) −634.598 −0.745708
\(852\) 0 0
\(853\) − 631.048i − 0.739798i −0.929072 0.369899i \(-0.879392\pi\)
0.929072 0.369899i \(-0.120608\pi\)
\(854\) 0 0
\(855\) − 169.648i − 0.198419i
\(856\) 0 0
\(857\) 432.516 0.504686 0.252343 0.967638i \(-0.418799\pi\)
0.252343 + 0.967638i \(0.418799\pi\)
\(858\) 0 0
\(859\) −171.236 −0.199343 −0.0996716 0.995020i \(-0.531779\pi\)
−0.0996716 + 0.995020i \(0.531779\pi\)
\(860\) 0 0
\(861\) 142.543i 0.165555i
\(862\) 0 0
\(863\) − 908.096i − 1.05225i −0.850406 0.526127i \(-0.823644\pi\)
0.850406 0.526127i \(-0.176356\pi\)
\(864\) 0 0
\(865\) 1582.71 1.82972
\(866\) 0 0
\(867\) −22.6148 −0.0260839
\(868\) 0 0
\(869\) 2398.14i 2.75965i
\(870\) 0 0
\(871\) − 1055.80i − 1.21217i
\(872\) 0 0
\(873\) 92.9072 0.106423
\(874\) 0 0
\(875\) −195.730 −0.223691
\(876\) 0 0
\(877\) 596.521i 0.680183i 0.940392 + 0.340092i \(0.110458\pi\)
−0.940392 + 0.340092i \(0.889542\pi\)
\(878\) 0 0
\(879\) − 97.4073i − 0.110816i
\(880\) 0 0
\(881\) −268.205 −0.304433 −0.152216 0.988347i \(-0.548641\pi\)
−0.152216 + 0.988347i \(0.548641\pi\)
\(882\) 0 0
\(883\) −434.461 −0.492028 −0.246014 0.969266i \(-0.579121\pi\)
−0.246014 + 0.969266i \(0.579121\pi\)
\(884\) 0 0
\(885\) − 397.897i − 0.449601i
\(886\) 0 0
\(887\) 357.593i 0.403148i 0.979473 + 0.201574i \(0.0646057\pi\)
−0.979473 + 0.201574i \(0.935394\pi\)
\(888\) 0 0
\(889\) −84.0514 −0.0945460
\(890\) 0 0
\(891\) 165.164 0.185370
\(892\) 0 0
\(893\) 87.5878i 0.0980827i
\(894\) 0 0
\(895\) 1150.08i 1.28501i
\(896\) 0 0
\(897\) −382.194 −0.426080
\(898\) 0 0
\(899\) 620.427 0.690131
\(900\) 0 0
\(901\) 1016.07i 1.12771i
\(902\) 0 0
\(903\) − 250.421i − 0.277321i
\(904\) 0 0
\(905\) −75.5966 −0.0835322
\(906\) 0 0
\(907\) −1201.18 −1.32434 −0.662170 0.749353i \(-0.730365\pi\)
−0.662170 + 0.749353i \(0.730365\pi\)
\(908\) 0 0
\(909\) 376.434i 0.414119i
\(910\) 0 0
\(911\) 1432.03i 1.57193i 0.618270 + 0.785966i \(0.287834\pi\)
−0.618270 + 0.785966i \(0.712166\pi\)
\(912\) 0 0
\(913\) −2771.69 −3.03580
\(914\) 0 0
\(915\) −427.484 −0.467196
\(916\) 0 0
\(917\) 65.6124i 0.0715511i
\(918\) 0 0
\(919\) − 437.793i − 0.476380i −0.971219 0.238190i \(-0.923446\pi\)
0.971219 0.238190i \(-0.0765541\pi\)
\(920\) 0 0
\(921\) 558.038 0.605904
\(922\) 0 0
\(923\) −1143.47 −1.23886
\(924\) 0 0
\(925\) − 656.805i − 0.710059i
\(926\) 0 0
\(927\) − 331.068i − 0.357140i
\(928\) 0 0
\(929\) 1102.35 1.18660 0.593298 0.804983i \(-0.297826\pi\)
0.593298 + 0.804983i \(0.297826\pi\)
\(930\) 0 0
\(931\) 64.2155 0.0689748
\(932\) 0 0
\(933\) − 8.30096i − 0.00889706i
\(934\) 0 0
\(935\) 1966.09i 2.10277i
\(936\) 0 0
\(937\) 1227.69 1.31024 0.655118 0.755527i \(-0.272619\pi\)
0.655118 + 0.755527i \(0.272619\pi\)
\(938\) 0 0
\(939\) −188.796 −0.201061
\(940\) 0 0
\(941\) − 1235.97i − 1.31347i −0.754123 0.656733i \(-0.771938\pi\)
0.754123 0.656733i \(-0.228062\pi\)
\(942\) 0 0
\(943\) − 390.662i − 0.414276i
\(944\) 0 0
\(945\) 84.7454 0.0896777
\(946\) 0 0
\(947\) 353.554 0.373341 0.186671 0.982423i \(-0.440230\pi\)
0.186671 + 0.982423i \(0.440230\pi\)
\(948\) 0 0
\(949\) 1252.34i 1.31965i
\(950\) 0 0
\(951\) − 66.2788i − 0.0696938i
\(952\) 0 0
\(953\) −477.524 −0.501075 −0.250537 0.968107i \(-0.580607\pi\)
−0.250537 + 0.968107i \(0.580607\pi\)
\(954\) 0 0
\(955\) 192.458 0.201526
\(956\) 0 0
\(957\) 376.282i 0.393190i
\(958\) 0 0
\(959\) − 233.692i − 0.243683i
\(960\) 0 0
\(961\) −1785.78 −1.85825
\(962\) 0 0
\(963\) 71.6668 0.0744204
\(964\) 0 0
\(965\) 1681.72i 1.74272i
\(966\) 0 0
\(967\) − 957.602i − 0.990281i −0.868813 0.495141i \(-0.835117\pi\)
0.868813 0.495141i \(-0.164883\pi\)
\(968\) 0 0
\(969\) 276.151 0.284986
\(970\) 0 0
\(971\) −1417.31 −1.45964 −0.729821 0.683639i \(-0.760396\pi\)
−0.729821 + 0.683639i \(0.760396\pi\)
\(972\) 0 0
\(973\) − 333.948i − 0.343215i
\(974\) 0 0
\(975\) − 395.569i − 0.405711i
\(976\) 0 0
\(977\) −1820.53 −1.86339 −0.931693 0.363248i \(-0.881668\pi\)
−0.931693 + 0.363248i \(0.881668\pi\)
\(978\) 0 0
\(979\) 1925.45 1.96675
\(980\) 0 0
\(981\) 589.337i 0.600751i
\(982\) 0 0
\(983\) 789.256i 0.802905i 0.915880 + 0.401453i \(0.131495\pi\)
−0.915880 + 0.401453i \(0.868505\pi\)
\(984\) 0 0
\(985\) 2266.88 2.30140
\(986\) 0 0
\(987\) −43.7533 −0.0443296
\(988\) 0 0
\(989\) 686.322i 0.693956i
\(990\) 0 0
\(991\) 245.162i 0.247388i 0.992320 + 0.123694i \(0.0394742\pi\)
−0.992320 + 0.123694i \(0.960526\pi\)
\(992\) 0 0
\(993\) 163.245 0.164395
\(994\) 0 0
\(995\) −1359.42 −1.36625
\(996\) 0 0
\(997\) − 1676.61i − 1.68166i −0.541302 0.840828i \(-0.682068\pi\)
0.541302 0.840828i \(-0.317932\pi\)
\(998\) 0 0
\(999\) − 262.551i − 0.262814i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.g.a.463.10 24
3.2 odd 2 2016.3.g.d.1135.4 24
4.3 odd 2 168.3.g.a.43.22 yes 24
8.3 odd 2 inner 672.3.g.a.463.3 24
8.5 even 2 168.3.g.a.43.21 24
12.11 even 2 504.3.g.d.379.3 24
24.5 odd 2 504.3.g.d.379.4 24
24.11 even 2 2016.3.g.d.1135.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.g.a.43.21 24 8.5 even 2
168.3.g.a.43.22 yes 24 4.3 odd 2
504.3.g.d.379.3 24 12.11 even 2
504.3.g.d.379.4 24 24.5 odd 2
672.3.g.a.463.3 24 8.3 odd 2 inner
672.3.g.a.463.10 24 1.1 even 1 trivial
2016.3.g.d.1135.4 24 3.2 odd 2
2016.3.g.d.1135.21 24 24.11 even 2