Properties

Label 672.3.bh.c.481.7
Level $672$
Weight $3$
Character 672.481
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,24,0,0,0,12,0,24,0,12,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 76 x^{14} - 392 x^{13} + 1982 x^{12} - 7160 x^{11} + 23796 x^{10} - 61736 x^{9} + \cdots + 16807 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{18}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 481.7
Root \(0.500000 - 2.54626i\) of defining polynomial
Character \(\chi\) \(=\) 672.481
Dual form 672.3.bh.c.577.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +(4.12320 + 2.38053i) q^{5} +(6.96231 + 0.725445i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-10.0157 - 17.3477i) q^{11} -8.03507i q^{13} +8.24641 q^{15} +(2.82192 - 1.62923i) q^{17} +(6.97874 + 4.02918i) q^{19} +(11.0717 - 4.94137i) q^{21} +(19.6162 - 33.9763i) q^{23} +(-1.16613 - 2.01979i) q^{25} -5.19615i q^{27} +14.6407 q^{29} +(-18.2308 + 10.5256i) q^{31} +(-30.0471 - 17.3477i) q^{33} +(26.9801 + 19.5652i) q^{35} +(-19.9254 + 34.5117i) q^{37} +(-6.95858 - 12.0526i) q^{39} +75.7892i q^{41} +57.6698 q^{43} +(12.3696 - 7.14160i) q^{45} +(22.9002 + 13.2214i) q^{47} +(47.9475 + 10.1015i) q^{49} +(2.82192 - 4.88770i) q^{51} +(-23.9789 - 41.5327i) q^{53} -95.3709i q^{55} +13.9575 q^{57} +(-3.68843 + 2.12952i) q^{59} +(-34.1223 - 19.7005i) q^{61} +(12.3282 - 17.0004i) q^{63} +(19.1277 - 33.1302i) q^{65} +(7.03215 + 12.1800i) q^{67} -67.9527i q^{69} +82.3201 q^{71} +(-78.1500 + 45.1199i) q^{73} +(-3.49838 - 2.01979i) q^{75} +(-57.1476 - 128.046i) q^{77} +(41.4414 - 71.7787i) q^{79} +(-4.50000 - 7.79423i) q^{81} -100.182i q^{83} +15.5138 q^{85} +(21.9611 - 12.6792i) q^{87} +(102.957 + 59.4420i) q^{89} +(5.82900 - 55.9426i) q^{91} +(-18.2308 + 31.5767i) q^{93} +(19.1832 + 33.2262i) q^{95} +182.783i q^{97} -60.0942 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{3} + 12 q^{7} + 24 q^{9} + 12 q^{11} - 48 q^{17} + 60 q^{19} + 24 q^{21} + 48 q^{23} + 52 q^{25} - 64 q^{29} + 60 q^{31} + 36 q^{33} - 4 q^{37} - 12 q^{39} - 72 q^{43} - 120 q^{47} - 8 q^{49}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) 0 0
\(5\) 4.12320 + 2.38053i 0.824641 + 0.476107i 0.852014 0.523519i \(-0.175381\pi\)
−0.0273734 + 0.999625i \(0.508714\pi\)
\(6\) 0 0
\(7\) 6.96231 + 0.725445i 0.994615 + 0.103635i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −10.0157 17.3477i −0.910519 1.57706i −0.813333 0.581798i \(-0.802349\pi\)
−0.0971854 0.995266i \(-0.530984\pi\)
\(12\) 0 0
\(13\) 8.03507i 0.618082i −0.951049 0.309041i \(-0.899992\pi\)
0.951049 0.309041i \(-0.100008\pi\)
\(14\) 0 0
\(15\) 8.24641 0.549760
\(16\) 0 0
\(17\) 2.82192 1.62923i 0.165995 0.0958373i −0.414701 0.909958i \(-0.636114\pi\)
0.580696 + 0.814120i \(0.302780\pi\)
\(18\) 0 0
\(19\) 6.97874 + 4.02918i 0.367302 + 0.212062i 0.672279 0.740298i \(-0.265315\pi\)
−0.304977 + 0.952360i \(0.598649\pi\)
\(20\) 0 0
\(21\) 11.0717 4.94137i 0.527225 0.235303i
\(22\) 0 0
\(23\) 19.6162 33.9763i 0.852880 1.47723i −0.0257172 0.999669i \(-0.508187\pi\)
0.878598 0.477563i \(-0.158480\pi\)
\(24\) 0 0
\(25\) −1.16613 2.01979i −0.0466451 0.0807917i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 14.6407 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(30\) 0 0
\(31\) −18.2308 + 10.5256i −0.588091 + 0.339535i −0.764342 0.644811i \(-0.776936\pi\)
0.176251 + 0.984345i \(0.443603\pi\)
\(32\) 0 0
\(33\) −30.0471 17.3477i −0.910519 0.525688i
\(34\) 0 0
\(35\) 26.9801 + 19.5652i 0.770859 + 0.559005i
\(36\) 0 0
\(37\) −19.9254 + 34.5117i −0.538523 + 0.932750i 0.460461 + 0.887680i \(0.347684\pi\)
−0.998984 + 0.0450695i \(0.985649\pi\)
\(38\) 0 0
\(39\) −6.95858 12.0526i −0.178425 0.309041i
\(40\) 0 0
\(41\) 75.7892i 1.84852i 0.381767 + 0.924259i \(0.375316\pi\)
−0.381767 + 0.924259i \(0.624684\pi\)
\(42\) 0 0
\(43\) 57.6698 1.34116 0.670579 0.741838i \(-0.266046\pi\)
0.670579 + 0.741838i \(0.266046\pi\)
\(44\) 0 0
\(45\) 12.3696 7.14160i 0.274880 0.158702i
\(46\) 0 0
\(47\) 22.9002 + 13.2214i 0.487238 + 0.281307i 0.723428 0.690400i \(-0.242565\pi\)
−0.236190 + 0.971707i \(0.575899\pi\)
\(48\) 0 0
\(49\) 47.9475 + 10.1015i 0.978520 + 0.206154i
\(50\) 0 0
\(51\) 2.82192 4.88770i 0.0553317 0.0958373i
\(52\) 0 0
\(53\) −23.9789 41.5327i −0.452433 0.783637i 0.546104 0.837718i \(-0.316110\pi\)
−0.998537 + 0.0540809i \(0.982777\pi\)
\(54\) 0 0
\(55\) 95.3709i 1.73402i
\(56\) 0 0
\(57\) 13.9575 0.244868
\(58\) 0 0
\(59\) −3.68843 + 2.12952i −0.0625158 + 0.0360935i −0.530932 0.847414i \(-0.678158\pi\)
0.468416 + 0.883508i \(0.344825\pi\)
\(60\) 0 0
\(61\) −34.1223 19.7005i −0.559381 0.322959i 0.193516 0.981097i \(-0.438011\pi\)
−0.752897 + 0.658138i \(0.771344\pi\)
\(62\) 0 0
\(63\) 12.3282 17.0004i 0.195686 0.269848i
\(64\) 0 0
\(65\) 19.1277 33.1302i 0.294273 0.509696i
\(66\) 0 0
\(67\) 7.03215 + 12.1800i 0.104957 + 0.181792i 0.913721 0.406343i \(-0.133196\pi\)
−0.808763 + 0.588134i \(0.799863\pi\)
\(68\) 0 0
\(69\) 67.9527i 0.984821i
\(70\) 0 0
\(71\) 82.3201 1.15944 0.579719 0.814816i \(-0.303162\pi\)
0.579719 + 0.814816i \(0.303162\pi\)
\(72\) 0 0
\(73\) −78.1500 + 45.1199i −1.07055 + 0.618081i −0.928331 0.371754i \(-0.878756\pi\)
−0.142217 + 0.989836i \(0.545423\pi\)
\(74\) 0 0
\(75\) −3.49838 2.01979i −0.0466451 0.0269306i
\(76\) 0 0
\(77\) −57.1476 128.046i −0.742177 1.66293i
\(78\) 0 0
\(79\) 41.4414 71.7787i 0.524575 0.908591i −0.475016 0.879977i \(-0.657558\pi\)
0.999591 0.0286132i \(-0.00910910\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 100.182i 1.20701i −0.797360 0.603504i \(-0.793771\pi\)
0.797360 0.603504i \(-0.206229\pi\)
\(84\) 0 0
\(85\) 15.5138 0.182515
\(86\) 0 0
\(87\) 21.9611 12.6792i 0.252426 0.145738i
\(88\) 0 0
\(89\) 102.957 + 59.4420i 1.15682 + 0.667888i 0.950539 0.310606i \(-0.100532\pi\)
0.206276 + 0.978494i \(0.433865\pi\)
\(90\) 0 0
\(91\) 5.82900 55.9426i 0.0640549 0.614754i
\(92\) 0 0
\(93\) −18.2308 + 31.5767i −0.196030 + 0.339535i
\(94\) 0 0
\(95\) 19.1832 + 33.2262i 0.201928 + 0.349750i
\(96\) 0 0
\(97\) 182.783i 1.88436i 0.335100 + 0.942182i \(0.391230\pi\)
−0.335100 + 0.942182i \(0.608770\pi\)
\(98\) 0 0
\(99\) −60.0942 −0.607012
\(100\) 0 0
\(101\) −45.6915 + 26.3800i −0.452391 + 0.261188i −0.708840 0.705370i \(-0.750781\pi\)
0.256448 + 0.966558i \(0.417448\pi\)
\(102\) 0 0
\(103\) −0.649827 0.375178i −0.00630900 0.00364251i 0.496842 0.867841i \(-0.334493\pi\)
−0.503151 + 0.864198i \(0.667826\pi\)
\(104\) 0 0
\(105\) 57.4140 + 5.98231i 0.546800 + 0.0569744i
\(106\) 0 0
\(107\) 20.5176 35.5375i 0.191753 0.332126i −0.754078 0.656785i \(-0.771916\pi\)
0.945831 + 0.324658i \(0.105249\pi\)
\(108\) 0 0
\(109\) −10.5758 18.3179i −0.0970258 0.168054i 0.813426 0.581668i \(-0.197600\pi\)
−0.910452 + 0.413614i \(0.864266\pi\)
\(110\) 0 0
\(111\) 69.0235i 0.621833i
\(112\) 0 0
\(113\) −32.5548 −0.288096 −0.144048 0.989571i \(-0.546012\pi\)
−0.144048 + 0.989571i \(0.546012\pi\)
\(114\) 0 0
\(115\) 161.764 93.3942i 1.40664 0.812124i
\(116\) 0 0
\(117\) −20.8757 12.0526i −0.178425 0.103014i
\(118\) 0 0
\(119\) 20.8290 9.29609i 0.175033 0.0781184i
\(120\) 0 0
\(121\) −140.129 + 242.710i −1.15809 + 2.00587i
\(122\) 0 0
\(123\) 65.6354 + 113.684i 0.533621 + 0.924259i
\(124\) 0 0
\(125\) 130.131i 1.04105i
\(126\) 0 0
\(127\) −180.800 −1.42362 −0.711811 0.702371i \(-0.752125\pi\)
−0.711811 + 0.702371i \(0.752125\pi\)
\(128\) 0 0
\(129\) 86.5047 49.9435i 0.670579 0.387159i
\(130\) 0 0
\(131\) −143.214 82.6846i −1.09324 0.631180i −0.158800 0.987311i \(-0.550762\pi\)
−0.934436 + 0.356131i \(0.884096\pi\)
\(132\) 0 0
\(133\) 45.6652 + 33.1151i 0.343347 + 0.248985i
\(134\) 0 0
\(135\) 12.3696 21.4248i 0.0916267 0.158702i
\(136\) 0 0
\(137\) −50.7716 87.9391i −0.370596 0.641891i 0.619061 0.785343i \(-0.287513\pi\)
−0.989657 + 0.143452i \(0.954180\pi\)
\(138\) 0 0
\(139\) 69.1168i 0.497243i 0.968601 + 0.248622i \(0.0799776\pi\)
−0.968601 + 0.248622i \(0.920022\pi\)
\(140\) 0 0
\(141\) 45.8003 0.324825
\(142\) 0 0
\(143\) −139.390 + 80.4769i −0.974756 + 0.562776i
\(144\) 0 0
\(145\) 60.3667 + 34.8527i 0.416322 + 0.240364i
\(146\) 0 0
\(147\) 80.6694 26.3714i 0.548771 0.179397i
\(148\) 0 0
\(149\) 120.048 207.930i 0.805694 1.39550i −0.110128 0.993917i \(-0.535126\pi\)
0.915822 0.401585i \(-0.131541\pi\)
\(150\) 0 0
\(151\) 127.578 + 220.972i 0.844890 + 1.46339i 0.885717 + 0.464226i \(0.153667\pi\)
−0.0408273 + 0.999166i \(0.512999\pi\)
\(152\) 0 0
\(153\) 9.77541i 0.0638916i
\(154\) 0 0
\(155\) −100.226 −0.646619
\(156\) 0 0
\(157\) −24.4349 + 14.1075i −0.155636 + 0.0898566i −0.575795 0.817594i \(-0.695308\pi\)
0.420159 + 0.907450i \(0.361974\pi\)
\(158\) 0 0
\(159\) −71.9368 41.5327i −0.452433 0.261212i
\(160\) 0 0
\(161\) 161.222 222.323i 1.00138 1.38089i
\(162\) 0 0
\(163\) −147.881 + 256.138i −0.907246 + 1.57140i −0.0893731 + 0.995998i \(0.528486\pi\)
−0.817873 + 0.575399i \(0.804847\pi\)
\(164\) 0 0
\(165\) −82.5936 143.056i −0.500567 0.867008i
\(166\) 0 0
\(167\) 197.655i 1.18356i 0.806099 + 0.591781i \(0.201575\pi\)
−0.806099 + 0.591781i \(0.798425\pi\)
\(168\) 0 0
\(169\) 104.438 0.617974
\(170\) 0 0
\(171\) 20.9362 12.0875i 0.122434 0.0706873i
\(172\) 0 0
\(173\) 143.301 + 82.7350i 0.828331 + 0.478237i 0.853281 0.521451i \(-0.174609\pi\)
−0.0249497 + 0.999689i \(0.507943\pi\)
\(174\) 0 0
\(175\) −6.65369 14.9084i −0.0380211 0.0851907i
\(176\) 0 0
\(177\) −3.68843 + 6.38856i −0.0208386 + 0.0360935i
\(178\) 0 0
\(179\) −0.973062 1.68539i −0.00543610 0.00941561i 0.863295 0.504700i \(-0.168397\pi\)
−0.868731 + 0.495285i \(0.835064\pi\)
\(180\) 0 0
\(181\) 7.57563i 0.0418543i 0.999781 + 0.0209271i \(0.00666180\pi\)
−0.999781 + 0.0209271i \(0.993338\pi\)
\(182\) 0 0
\(183\) −68.2445 −0.372921
\(184\) 0 0
\(185\) −164.313 + 94.8660i −0.888176 + 0.512789i
\(186\) 0 0
\(187\) −56.5270 32.6359i −0.302283 0.174523i
\(188\) 0 0
\(189\) 3.76952 36.1772i 0.0199446 0.191414i
\(190\) 0 0
\(191\) −27.1913 + 47.0967i −0.142363 + 0.246580i −0.928386 0.371617i \(-0.878803\pi\)
0.786023 + 0.618197i \(0.212137\pi\)
\(192\) 0 0
\(193\) 88.1806 + 152.733i 0.456894 + 0.791364i 0.998795 0.0490784i \(-0.0156284\pi\)
−0.541901 + 0.840443i \(0.682295\pi\)
\(194\) 0 0
\(195\) 66.2605i 0.339797i
\(196\) 0 0
\(197\) −98.7425 −0.501231 −0.250616 0.968087i \(-0.580633\pi\)
−0.250616 + 0.968087i \(0.580633\pi\)
\(198\) 0 0
\(199\) −297.560 + 171.796i −1.49528 + 0.863298i −0.999985 0.00542881i \(-0.998272\pi\)
−0.495291 + 0.868727i \(0.664939\pi\)
\(200\) 0 0
\(201\) 21.0965 + 12.1800i 0.104957 + 0.0605972i
\(202\) 0 0
\(203\) 101.933 + 10.6210i 0.502134 + 0.0523204i
\(204\) 0 0
\(205\) −180.419 + 312.494i −0.880091 + 1.52436i
\(206\) 0 0
\(207\) −58.8487 101.929i −0.284293 0.492411i
\(208\) 0 0
\(209\) 161.420i 0.772346i
\(210\) 0 0
\(211\) −184.550 −0.874645 −0.437323 0.899305i \(-0.644073\pi\)
−0.437323 + 0.899305i \(0.644073\pi\)
\(212\) 0 0
\(213\) 123.480 71.2913i 0.579719 0.334701i
\(214\) 0 0
\(215\) 237.784 + 137.285i 1.10597 + 0.638534i
\(216\) 0 0
\(217\) −134.564 + 60.0568i −0.620112 + 0.276760i
\(218\) 0 0
\(219\) −78.1500 + 135.360i −0.356849 + 0.618081i
\(220\) 0 0
\(221\) −13.0910 22.6743i −0.0592354 0.102599i
\(222\) 0 0
\(223\) 201.934i 0.905534i −0.891629 0.452767i \(-0.850437\pi\)
0.891629 0.452767i \(-0.149563\pi\)
\(224\) 0 0
\(225\) −6.99677 −0.0310967
\(226\) 0 0
\(227\) −321.629 + 185.693i −1.41687 + 0.818029i −0.996022 0.0891028i \(-0.971600\pi\)
−0.420846 + 0.907132i \(0.638267\pi\)
\(228\) 0 0
\(229\) 316.879 + 182.950i 1.38375 + 0.798910i 0.992602 0.121417i \(-0.0387438\pi\)
0.391151 + 0.920327i \(0.372077\pi\)
\(230\) 0 0
\(231\) −196.612 142.578i −0.851136 0.617219i
\(232\) 0 0
\(233\) −162.550 + 281.545i −0.697640 + 1.20835i 0.271643 + 0.962398i \(0.412433\pi\)
−0.969283 + 0.245949i \(0.920900\pi\)
\(234\) 0 0
\(235\) 62.9481 + 109.029i 0.267864 + 0.463954i
\(236\) 0 0
\(237\) 143.557i 0.605727i
\(238\) 0 0
\(239\) 262.345 1.09768 0.548840 0.835928i \(-0.315070\pi\)
0.548840 + 0.835928i \(0.315070\pi\)
\(240\) 0 0
\(241\) −12.5187 + 7.22765i −0.0519446 + 0.0299902i −0.525747 0.850641i \(-0.676214\pi\)
0.473803 + 0.880631i \(0.342881\pi\)
\(242\) 0 0
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) 173.650 + 155.791i 0.708776 + 0.635882i
\(246\) 0 0
\(247\) 32.3747 56.0747i 0.131072 0.227023i
\(248\) 0 0
\(249\) −86.7599 150.273i −0.348433 0.603504i
\(250\) 0 0
\(251\) 88.1019i 0.351004i −0.984479 0.175502i \(-0.943845\pi\)
0.984479 0.175502i \(-0.0561548\pi\)
\(252\) 0 0
\(253\) −785.882 −3.10625
\(254\) 0 0
\(255\) 23.2707 13.4353i 0.0912576 0.0526876i
\(256\) 0 0
\(257\) 48.1756 + 27.8142i 0.187454 + 0.108226i 0.590790 0.806825i \(-0.298816\pi\)
−0.403336 + 0.915052i \(0.632150\pi\)
\(258\) 0 0
\(259\) −163.763 + 225.827i −0.632289 + 0.871917i
\(260\) 0 0
\(261\) 21.9611 38.0377i 0.0841422 0.145738i
\(262\) 0 0
\(263\) −220.150 381.311i −0.837072 1.44985i −0.892332 0.451380i \(-0.850932\pi\)
0.0552594 0.998472i \(-0.482401\pi\)
\(264\) 0 0
\(265\) 228.331i 0.861625i
\(266\) 0 0
\(267\) 205.913 0.771210
\(268\) 0 0
\(269\) 69.0223 39.8501i 0.256589 0.148141i −0.366189 0.930541i \(-0.619338\pi\)
0.622777 + 0.782399i \(0.286004\pi\)
\(270\) 0 0
\(271\) 46.4151 + 26.7978i 0.171274 + 0.0988848i 0.583186 0.812339i \(-0.301806\pi\)
−0.411913 + 0.911223i \(0.635139\pi\)
\(272\) 0 0
\(273\) −39.7042 88.9620i −0.145437 0.325868i
\(274\) 0 0
\(275\) −23.3592 + 40.4593i −0.0849425 + 0.147125i
\(276\) 0 0
\(277\) −186.167 322.450i −0.672082 1.16408i −0.977313 0.211801i \(-0.932067\pi\)
0.305231 0.952278i \(-0.401266\pi\)
\(278\) 0 0
\(279\) 63.1534i 0.226356i
\(280\) 0 0
\(281\) 12.1407 0.0432053 0.0216026 0.999767i \(-0.493123\pi\)
0.0216026 + 0.999767i \(0.493123\pi\)
\(282\) 0 0
\(283\) 115.266 66.5486i 0.407299 0.235154i −0.282330 0.959317i \(-0.591107\pi\)
0.689629 + 0.724163i \(0.257774\pi\)
\(284\) 0 0
\(285\) 57.5495 + 33.2262i 0.201928 + 0.116583i
\(286\) 0 0
\(287\) −54.9809 + 527.668i −0.191571 + 1.83856i
\(288\) 0 0
\(289\) −139.191 + 241.086i −0.481630 + 0.834208i
\(290\) 0 0
\(291\) 158.295 + 274.175i 0.543969 + 0.942182i
\(292\) 0 0
\(293\) 312.457i 1.06640i −0.845988 0.533202i \(-0.820988\pi\)
0.845988 0.533202i \(-0.179012\pi\)
\(294\) 0 0
\(295\) −20.2776 −0.0687375
\(296\) 0 0
\(297\) −90.1413 + 52.0431i −0.303506 + 0.175229i
\(298\) 0 0
\(299\) −273.002 157.618i −0.913051 0.527150i
\(300\) 0 0
\(301\) 401.515 + 41.8362i 1.33394 + 0.138991i
\(302\) 0 0
\(303\) −45.6915 + 79.1400i −0.150797 + 0.261188i
\(304\) 0 0
\(305\) −93.7953 162.458i −0.307526 0.532650i
\(306\) 0 0
\(307\) 74.1852i 0.241646i 0.992674 + 0.120823i \(0.0385533\pi\)
−0.992674 + 0.120823i \(0.961447\pi\)
\(308\) 0 0
\(309\) −1.29965 −0.00420600
\(310\) 0 0
\(311\) −291.157 + 168.099i −0.936195 + 0.540512i −0.888766 0.458362i \(-0.848436\pi\)
−0.0474295 + 0.998875i \(0.515103\pi\)
\(312\) 0 0
\(313\) 306.481 + 176.947i 0.979174 + 0.565326i 0.902021 0.431693i \(-0.142084\pi\)
0.0771532 + 0.997019i \(0.475417\pi\)
\(314\) 0 0
\(315\) 91.3019 40.7485i 0.289847 0.129360i
\(316\) 0 0
\(317\) −264.435 + 458.014i −0.834179 + 1.44484i 0.0605186 + 0.998167i \(0.480725\pi\)
−0.894697 + 0.446673i \(0.852609\pi\)
\(318\) 0 0
\(319\) −146.637 253.983i −0.459678 0.796186i
\(320\) 0 0
\(321\) 71.0750i 0.221418i
\(322\) 0 0
\(323\) 26.2579 0.0812938
\(324\) 0 0
\(325\) −16.2292 + 9.36992i −0.0499359 + 0.0288305i
\(326\) 0 0
\(327\) −31.7275 18.3179i −0.0970258 0.0560179i
\(328\) 0 0
\(329\) 149.847 + 108.664i 0.455461 + 0.330287i
\(330\) 0 0
\(331\) 120.511 208.730i 0.364080 0.630605i −0.624548 0.780987i \(-0.714717\pi\)
0.988628 + 0.150381i \(0.0480501\pi\)
\(332\) 0 0
\(333\) 59.7761 + 103.535i 0.179508 + 0.310917i
\(334\) 0 0
\(335\) 66.9611i 0.199884i
\(336\) 0 0
\(337\) −12.7531 −0.0378429 −0.0189215 0.999821i \(-0.506023\pi\)
−0.0189215 + 0.999821i \(0.506023\pi\)
\(338\) 0 0
\(339\) −48.8322 + 28.1933i −0.144048 + 0.0831660i
\(340\) 0 0
\(341\) 365.189 + 210.842i 1.07094 + 0.618305i
\(342\) 0 0
\(343\) 326.497 + 105.113i 0.951886 + 0.306453i
\(344\) 0 0
\(345\) 161.764 280.183i 0.468880 0.812124i
\(346\) 0 0
\(347\) −131.657 228.037i −0.379416 0.657168i 0.611561 0.791197i \(-0.290542\pi\)
−0.990977 + 0.134029i \(0.957209\pi\)
\(348\) 0 0
\(349\) 455.175i 1.30423i 0.758122 + 0.652113i \(0.226117\pi\)
−0.758122 + 0.652113i \(0.773883\pi\)
\(350\) 0 0
\(351\) −41.7515 −0.118950
\(352\) 0 0
\(353\) 480.103 277.188i 1.36007 0.785234i 0.370434 0.928859i \(-0.379209\pi\)
0.989632 + 0.143625i \(0.0458758\pi\)
\(354\) 0 0
\(355\) 339.423 + 195.966i 0.956120 + 0.552016i
\(356\) 0 0
\(357\) 23.1928 31.9826i 0.0649659 0.0895870i
\(358\) 0 0
\(359\) 100.706 174.428i 0.280518 0.485872i −0.690994 0.722860i \(-0.742827\pi\)
0.971512 + 0.236989i \(0.0761604\pi\)
\(360\) 0 0
\(361\) −148.031 256.398i −0.410059 0.710244i
\(362\) 0 0
\(363\) 485.420i 1.33725i
\(364\) 0 0
\(365\) −429.638 −1.17709
\(366\) 0 0
\(367\) 95.7746 55.2955i 0.260966 0.150669i −0.363809 0.931474i \(-0.618524\pi\)
0.624775 + 0.780805i \(0.285191\pi\)
\(368\) 0 0
\(369\) 196.906 + 113.684i 0.533621 + 0.308086i
\(370\) 0 0
\(371\) −136.819 306.559i −0.368784 0.826305i
\(372\) 0 0
\(373\) 135.293 234.334i 0.362715 0.628241i −0.625692 0.780070i \(-0.715183\pi\)
0.988407 + 0.151830i \(0.0485165\pi\)
\(374\) 0 0
\(375\) −112.696 195.196i −0.300524 0.520523i
\(376\) 0 0
\(377\) 117.639i 0.312041i
\(378\) 0 0
\(379\) −477.970 −1.26114 −0.630568 0.776134i \(-0.717178\pi\)
−0.630568 + 0.776134i \(0.717178\pi\)
\(380\) 0 0
\(381\) −271.200 + 156.577i −0.711811 + 0.410964i
\(382\) 0 0
\(383\) 300.104 + 173.265i 0.783560 + 0.452389i 0.837691 0.546145i \(-0.183905\pi\)
−0.0541302 + 0.998534i \(0.517239\pi\)
\(384\) 0 0
\(385\) 69.1863 664.001i 0.179705 1.72468i
\(386\) 0 0
\(387\) 86.5047 149.830i 0.223526 0.387159i
\(388\) 0 0
\(389\) −145.824 252.574i −0.374868 0.649290i 0.615439 0.788184i \(-0.288979\pi\)
−0.990307 + 0.138894i \(0.955645\pi\)
\(390\) 0 0
\(391\) 127.838i 0.326951i
\(392\) 0 0
\(393\) −286.428 −0.728824
\(394\) 0 0
\(395\) 341.743 197.305i 0.865172 0.499507i
\(396\) 0 0
\(397\) 479.019 + 276.561i 1.20660 + 0.696628i 0.962014 0.273000i \(-0.0880160\pi\)
0.244582 + 0.969629i \(0.421349\pi\)
\(398\) 0 0
\(399\) 97.1763 + 10.1254i 0.243550 + 0.0253769i
\(400\) 0 0
\(401\) −120.143 + 208.093i −0.299608 + 0.518936i −0.976046 0.217563i \(-0.930189\pi\)
0.676439 + 0.736499i \(0.263522\pi\)
\(402\) 0 0
\(403\) 84.5737 + 146.486i 0.209860 + 0.363489i
\(404\) 0 0
\(405\) 42.8496i 0.105801i
\(406\) 0 0
\(407\) 798.266 1.96134
\(408\) 0 0
\(409\) −551.423 + 318.364i −1.34822 + 0.778396i −0.987998 0.154469i \(-0.950633\pi\)
−0.360224 + 0.932866i \(0.617300\pi\)
\(410\) 0 0
\(411\) −152.315 87.9391i −0.370596 0.213964i
\(412\) 0 0
\(413\) −27.2249 + 12.1506i −0.0659198 + 0.0294204i
\(414\) 0 0
\(415\) 238.486 413.070i 0.574665 0.995348i
\(416\) 0 0
\(417\) 59.8569 + 103.675i 0.143542 + 0.248622i
\(418\) 0 0
\(419\) 187.780i 0.448163i −0.974570 0.224081i \(-0.928062\pi\)
0.974570 0.224081i \(-0.0719381\pi\)
\(420\) 0 0
\(421\) 278.920 0.662517 0.331258 0.943540i \(-0.392527\pi\)
0.331258 + 0.943540i \(0.392527\pi\)
\(422\) 0 0
\(423\) 68.7005 39.6643i 0.162413 0.0937689i
\(424\) 0 0
\(425\) −6.58143 3.79979i −0.0154857 0.00894069i
\(426\) 0 0
\(427\) −223.278 161.915i −0.522899 0.379191i
\(428\) 0 0
\(429\) −139.390 + 241.431i −0.324919 + 0.562776i
\(430\) 0 0
\(431\) 152.459 + 264.066i 0.353733 + 0.612683i 0.986900 0.161332i \(-0.0515790\pi\)
−0.633168 + 0.774015i \(0.718246\pi\)
\(432\) 0 0
\(433\) 803.297i 1.85519i −0.373588 0.927595i \(-0.621873\pi\)
0.373588 0.927595i \(-0.378127\pi\)
\(434\) 0 0
\(435\) 120.733 0.277548
\(436\) 0 0
\(437\) 273.793 158.075i 0.626530 0.361727i
\(438\) 0 0
\(439\) −253.391 146.296i −0.577201 0.333247i 0.182819 0.983147i \(-0.441478\pi\)
−0.760020 + 0.649899i \(0.774811\pi\)
\(440\) 0 0
\(441\) 98.1658 109.419i 0.222598 0.248115i
\(442\) 0 0
\(443\) −10.0891 + 17.4748i −0.0227745 + 0.0394466i −0.877188 0.480147i \(-0.840583\pi\)
0.854414 + 0.519594i \(0.173917\pi\)
\(444\) 0 0
\(445\) 283.007 + 490.183i 0.635971 + 1.10153i
\(446\) 0 0
\(447\) 415.860i 0.930335i
\(448\) 0 0
\(449\) −140.081 −0.311984 −0.155992 0.987758i \(-0.549857\pi\)
−0.155992 + 0.987758i \(0.549857\pi\)
\(450\) 0 0
\(451\) 1314.77 759.082i 2.91523 1.68311i
\(452\) 0 0
\(453\) 382.735 + 220.972i 0.844890 + 0.487797i
\(454\) 0 0
\(455\) 157.207 216.787i 0.345511 0.476454i
\(456\) 0 0
\(457\) −45.9491 + 79.5862i −0.100545 + 0.174149i −0.911909 0.410392i \(-0.865392\pi\)
0.811364 + 0.584541i \(0.198725\pi\)
\(458\) 0 0
\(459\) −8.46575 14.6631i −0.0184439 0.0319458i
\(460\) 0 0
\(461\) 217.149i 0.471040i 0.971870 + 0.235520i \(0.0756793\pi\)
−0.971870 + 0.235520i \(0.924321\pi\)
\(462\) 0 0
\(463\) −90.4223 −0.195297 −0.0976483 0.995221i \(-0.531132\pi\)
−0.0976483 + 0.995221i \(0.531132\pi\)
\(464\) 0 0
\(465\) −150.339 + 86.7982i −0.323309 + 0.186663i
\(466\) 0 0
\(467\) −143.220 82.6880i −0.306681 0.177062i 0.338760 0.940873i \(-0.389993\pi\)
−0.645440 + 0.763811i \(0.723326\pi\)
\(468\) 0 0
\(469\) 40.1241 + 89.9027i 0.0855524 + 0.191690i
\(470\) 0 0
\(471\) −24.4349 + 42.3225i −0.0518787 + 0.0898566i
\(472\) 0 0
\(473\) −577.603 1000.44i −1.22115 2.11509i
\(474\) 0 0
\(475\) 18.7941i 0.0395666i
\(476\) 0 0
\(477\) −143.874 −0.301622
\(478\) 0 0
\(479\) 318.129 183.672i 0.664152 0.383448i −0.129705 0.991553i \(-0.541403\pi\)
0.793857 + 0.608104i \(0.208070\pi\)
\(480\) 0 0
\(481\) 277.304 + 160.102i 0.576516 + 0.332852i
\(482\) 0 0
\(483\) 49.2959 473.107i 0.102062 0.979519i
\(484\) 0 0
\(485\) −435.122 + 753.653i −0.897159 + 1.55392i
\(486\) 0 0
\(487\) −198.591 343.970i −0.407784 0.706303i 0.586857 0.809691i \(-0.300365\pi\)
−0.994641 + 0.103388i \(0.967032\pi\)
\(488\) 0 0
\(489\) 512.275i 1.04760i
\(490\) 0 0
\(491\) 202.970 0.413381 0.206691 0.978406i \(-0.433731\pi\)
0.206691 + 0.978406i \(0.433731\pi\)
\(492\) 0 0
\(493\) 41.3149 23.8532i 0.0838031 0.0483838i
\(494\) 0 0
\(495\) −247.781 143.056i −0.500567 0.289003i
\(496\) 0 0
\(497\) 573.138 + 59.7187i 1.15320 + 0.120158i
\(498\) 0 0
\(499\) −79.9083 + 138.405i −0.160137 + 0.277365i −0.934918 0.354865i \(-0.884527\pi\)
0.774781 + 0.632230i \(0.217860\pi\)
\(500\) 0 0
\(501\) 171.174 + 296.482i 0.341665 + 0.591781i
\(502\) 0 0
\(503\) 119.831i 0.238233i 0.992880 + 0.119116i \(0.0380061\pi\)
−0.992880 + 0.119116i \(0.961994\pi\)
\(504\) 0 0
\(505\) −251.194 −0.497414
\(506\) 0 0
\(507\) 156.656 90.4456i 0.308987 0.178394i
\(508\) 0 0
\(509\) 27.6729 + 15.9769i 0.0543671 + 0.0313889i 0.526937 0.849904i \(-0.323340\pi\)
−0.472570 + 0.881293i \(0.656674\pi\)
\(510\) 0 0
\(511\) −576.836 + 257.445i −1.12884 + 0.503807i
\(512\) 0 0
\(513\) 20.9362 36.2626i 0.0408113 0.0706873i
\(514\) 0 0
\(515\) −1.78625 3.09387i −0.00346844 0.00600752i
\(516\) 0 0
\(517\) 529.687i 1.02454i
\(518\) 0 0
\(519\) 286.603 0.552221
\(520\) 0 0
\(521\) 25.4676 14.7037i 0.0488821 0.0282221i −0.475360 0.879791i \(-0.657682\pi\)
0.524242 + 0.851569i \(0.324349\pi\)
\(522\) 0 0
\(523\) 708.823 + 409.239i 1.35530 + 0.782484i 0.988986 0.148007i \(-0.0472857\pi\)
0.366316 + 0.930491i \(0.380619\pi\)
\(524\) 0 0
\(525\) −22.8916 16.6003i −0.0436030 0.0316196i
\(526\) 0 0
\(527\) −34.2973 + 59.4046i −0.0650802 + 0.112722i
\(528\) 0 0
\(529\) −505.094 874.849i −0.954810 1.65378i
\(530\) 0 0
\(531\) 12.7771i 0.0240624i
\(532\) 0 0
\(533\) 608.972 1.14254
\(534\) 0 0
\(535\) 169.196 97.6856i 0.316255 0.182590i
\(536\) 0 0
\(537\) −2.91919 1.68539i −0.00543610 0.00313854i
\(538\) 0 0
\(539\) −304.989 932.953i −0.565842 1.73090i
\(540\) 0 0
\(541\) −4.73933 + 8.20876i −0.00876032 + 0.0151733i −0.870372 0.492394i \(-0.836122\pi\)
0.861612 + 0.507567i \(0.169455\pi\)
\(542\) 0 0
\(543\) 6.56069 + 11.3634i 0.0120823 + 0.0209271i
\(544\) 0 0
\(545\) 100.704i 0.184779i
\(546\) 0 0
\(547\) −390.922 −0.714666 −0.357333 0.933977i \(-0.616314\pi\)
−0.357333 + 0.933977i \(0.616314\pi\)
\(548\) 0 0
\(549\) −102.367 + 59.1015i −0.186460 + 0.107653i
\(550\) 0 0
\(551\) 102.174 + 58.9901i 0.185434 + 0.107060i
\(552\) 0 0
\(553\) 340.599 469.682i 0.615912 0.849334i
\(554\) 0 0
\(555\) −164.313 + 284.598i −0.296059 + 0.512789i
\(556\) 0 0
\(557\) 153.953 + 266.655i 0.276397 + 0.478734i 0.970487 0.241155i \(-0.0775262\pi\)
−0.694090 + 0.719889i \(0.744193\pi\)
\(558\) 0 0
\(559\) 463.381i 0.828946i
\(560\) 0 0
\(561\) −113.054 −0.201522
\(562\) 0 0
\(563\) 383.039 221.148i 0.680353 0.392802i −0.119635 0.992818i \(-0.538172\pi\)
0.799988 + 0.600016i \(0.204839\pi\)
\(564\) 0 0
\(565\) −134.230 77.4978i −0.237575 0.137164i
\(566\) 0 0
\(567\) −25.6761 57.5303i −0.0452841 0.101464i
\(568\) 0 0
\(569\) −341.194 + 590.965i −0.599637 + 1.03860i 0.393237 + 0.919437i \(0.371355\pi\)
−0.992874 + 0.119165i \(0.961978\pi\)
\(570\) 0 0
\(571\) 537.999 + 931.841i 0.942205 + 1.63195i 0.761254 + 0.648454i \(0.224584\pi\)
0.180951 + 0.983492i \(0.442082\pi\)
\(572\) 0 0
\(573\) 94.1934i 0.164386i
\(574\) 0 0
\(575\) −91.5002 −0.159131
\(576\) 0 0
\(577\) 376.559 217.406i 0.652614 0.376787i −0.136843 0.990593i \(-0.543695\pi\)
0.789457 + 0.613806i \(0.210362\pi\)
\(578\) 0 0
\(579\) 264.542 + 152.733i 0.456894 + 0.263788i
\(580\) 0 0
\(581\) 72.6763 697.496i 0.125088 1.20051i
\(582\) 0 0
\(583\) −480.332 + 831.959i −0.823897 + 1.42703i
\(584\) 0 0
\(585\) −57.3832 99.3907i −0.0980910 0.169899i
\(586\) 0 0
\(587\) 661.370i 1.12670i 0.826220 + 0.563348i \(0.190487\pi\)
−0.826220 + 0.563348i \(0.809513\pi\)
\(588\) 0 0
\(589\) −169.638 −0.288010
\(590\) 0 0
\(591\) −148.114 + 85.5135i −0.250616 + 0.144693i
\(592\) 0 0
\(593\) −463.867 267.814i −0.782238 0.451626i 0.0549845 0.998487i \(-0.482489\pi\)
−0.837223 + 0.546862i \(0.815822\pi\)
\(594\) 0 0
\(595\) 108.012 + 11.2544i 0.181532 + 0.0189150i
\(596\) 0 0
\(597\) −297.560 + 515.389i −0.498425 + 0.863298i
\(598\) 0 0
\(599\) −273.471 473.666i −0.456546 0.790761i 0.542229 0.840231i \(-0.317580\pi\)
−0.998776 + 0.0494691i \(0.984247\pi\)
\(600\) 0 0
\(601\) 643.284i 1.07036i 0.844739 + 0.535178i \(0.179755\pi\)
−0.844739 + 0.535178i \(0.820245\pi\)
\(602\) 0 0
\(603\) 42.1929 0.0699717
\(604\) 0 0
\(605\) −1155.56 + 667.162i −1.91001 + 1.10275i
\(606\) 0 0
\(607\) 683.386 + 394.553i 1.12584 + 0.650005i 0.942886 0.333116i \(-0.108100\pi\)
0.182955 + 0.983121i \(0.441434\pi\)
\(608\) 0 0
\(609\) 162.098 72.3453i 0.266171 0.118794i
\(610\) 0 0
\(611\) 106.235 184.005i 0.173871 0.301153i
\(612\) 0 0
\(613\) −529.746 917.546i −0.864185 1.49681i −0.867854 0.496820i \(-0.834501\pi\)
0.00366824 0.999993i \(-0.498832\pi\)
\(614\) 0 0
\(615\) 624.989i 1.01624i
\(616\) 0 0
\(617\) −459.828 −0.745265 −0.372632 0.927979i \(-0.621545\pi\)
−0.372632 + 0.927979i \(0.621545\pi\)
\(618\) 0 0
\(619\) −581.867 + 335.941i −0.940011 + 0.542716i −0.889964 0.456031i \(-0.849271\pi\)
−0.0500475 + 0.998747i \(0.515937\pi\)
\(620\) 0 0
\(621\) −176.546 101.929i −0.284293 0.164137i
\(622\) 0 0
\(623\) 673.693 + 488.543i 1.08137 + 0.784178i
\(624\) 0 0
\(625\) 280.627 486.060i 0.449003 0.777697i
\(626\) 0 0
\(627\) −139.794 242.130i −0.222957 0.386173i
\(628\) 0 0
\(629\) 129.852i 0.206443i
\(630\) 0 0
\(631\) 5.44649 0.00863152 0.00431576 0.999991i \(-0.498626\pi\)
0.00431576 + 0.999991i \(0.498626\pi\)
\(632\) 0 0
\(633\) −276.825 + 159.825i −0.437323 + 0.252488i
\(634\) 0 0
\(635\) −745.475 430.400i −1.17398 0.677796i
\(636\) 0 0
\(637\) 81.1666 385.261i 0.127420 0.604806i
\(638\) 0 0
\(639\) 123.480 213.874i 0.193240 0.334701i
\(640\) 0 0
\(641\) 414.375 + 717.718i 0.646450 + 1.11969i 0.983964 + 0.178365i \(0.0570806\pi\)
−0.337514 + 0.941321i \(0.609586\pi\)
\(642\) 0 0
\(643\) 1003.09i 1.56001i −0.625773 0.780005i \(-0.715216\pi\)
0.625773 0.780005i \(-0.284784\pi\)
\(644\) 0 0
\(645\) 475.568 0.737315
\(646\) 0 0
\(647\) −167.179 + 96.5208i −0.258391 + 0.149182i −0.623600 0.781743i \(-0.714331\pi\)
0.365209 + 0.930925i \(0.380997\pi\)
\(648\) 0 0
\(649\) 73.8846 + 42.6573i 0.113844 + 0.0657277i
\(650\) 0 0
\(651\) −149.836 + 206.621i −0.230163 + 0.317391i
\(652\) 0 0
\(653\) −261.555 + 453.027i −0.400544 + 0.693763i −0.993792 0.111257i \(-0.964512\pi\)
0.593247 + 0.805020i \(0.297846\pi\)
\(654\) 0 0
\(655\) −393.667 681.851i −0.601018 1.04099i
\(656\) 0 0
\(657\) 270.720i 0.412054i
\(658\) 0 0
\(659\) −1140.04 −1.72995 −0.864976 0.501813i \(-0.832666\pi\)
−0.864976 + 0.501813i \(0.832666\pi\)
\(660\) 0 0
\(661\) 186.400 107.618i 0.281997 0.162811i −0.352330 0.935876i \(-0.614610\pi\)
0.634327 + 0.773065i \(0.281277\pi\)
\(662\) 0 0
\(663\) −39.2731 22.6743i −0.0592354 0.0341996i
\(664\) 0 0
\(665\) 109.455 + 245.248i 0.164595 + 0.368793i
\(666\) 0 0
\(667\) 287.196 497.439i 0.430579 0.745785i
\(668\) 0 0
\(669\) −174.880 302.901i −0.261405 0.452767i
\(670\) 0 0
\(671\) 789.257i 1.17624i
\(672\) 0 0
\(673\) 981.407 1.45826 0.729128 0.684377i \(-0.239926\pi\)
0.729128 + 0.684377i \(0.239926\pi\)
\(674\) 0 0
\(675\) −10.4951 + 6.05938i −0.0155484 + 0.00897685i
\(676\) 0 0
\(677\) 1118.63 + 645.842i 1.65234 + 0.953976i 0.976109 + 0.217282i \(0.0697191\pi\)
0.676226 + 0.736694i \(0.263614\pi\)
\(678\) 0 0
\(679\) −132.599 + 1272.59i −0.195286 + 1.87422i
\(680\) 0 0
\(681\) −321.629 + 557.078i −0.472289 + 0.818029i
\(682\) 0 0
\(683\) −46.1542 79.9415i −0.0675758 0.117045i 0.830258 0.557379i \(-0.188193\pi\)
−0.897834 + 0.440335i \(0.854860\pi\)
\(684\) 0 0
\(685\) 483.454i 0.705773i
\(686\) 0 0
\(687\) 633.758 0.922501
\(688\) 0 0
\(689\) −333.719 + 192.672i −0.484352 + 0.279641i
\(690\) 0 0
\(691\) 130.766 + 75.4977i 0.189241 + 0.109259i 0.591627 0.806212i \(-0.298486\pi\)
−0.402386 + 0.915470i \(0.631819\pi\)
\(692\) 0 0
\(693\) −418.395 43.5950i −0.603744 0.0629077i
\(694\) 0 0
\(695\) −164.535 + 284.983i −0.236741 + 0.410047i
\(696\) 0 0
\(697\) 123.478 + 213.871i 0.177157 + 0.306845i
\(698\) 0 0
\(699\) 563.090i 0.805565i
\(700\) 0 0
\(701\) 518.111 0.739103 0.369551 0.929210i \(-0.379511\pi\)
0.369551 + 0.929210i \(0.379511\pi\)
\(702\) 0 0
\(703\) −278.108 + 160.566i −0.395601 + 0.228401i
\(704\) 0 0
\(705\) 188.844 + 109.029i 0.267864 + 0.154651i
\(706\) 0 0
\(707\) −337.256 + 150.519i −0.477024 + 0.212898i
\(708\) 0 0
\(709\) −183.389 + 317.638i −0.258658 + 0.448009i −0.965883 0.258980i \(-0.916614\pi\)
0.707225 + 0.706989i \(0.249947\pi\)
\(710\) 0 0
\(711\) −124.324 215.336i −0.174858 0.302864i
\(712\) 0 0
\(713\) 825.889i 1.15833i
\(714\) 0 0
\(715\) −766.312 −1.07176
\(716\) 0 0
\(717\) 393.518 227.198i 0.548840 0.316873i
\(718\) 0 0
\(719\) −940.161 542.802i −1.30760 0.754940i −0.325901 0.945404i \(-0.605668\pi\)
−0.981694 + 0.190464i \(0.939001\pi\)
\(720\) 0 0
\(721\) −4.25213 3.08352i −0.00589754 0.00427673i
\(722\) 0 0
\(723\) −12.5187 + 21.6829i −0.0173149 + 0.0299902i
\(724\) 0 0
\(725\) −17.0730 29.5712i −0.0235489 0.0407879i
\(726\) 0 0
\(727\) 964.388i 1.32653i −0.748384 0.663265i \(-0.769170\pi\)
0.748384 0.663265i \(-0.230830\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 162.739 93.9576i 0.222626 0.128533i
\(732\) 0 0
\(733\) −897.332 518.075i −1.22419 0.706787i −0.258382 0.966043i \(-0.583189\pi\)
−0.965809 + 0.259256i \(0.916523\pi\)
\(734\) 0 0
\(735\) 395.394 + 83.3014i 0.537951 + 0.113335i
\(736\) 0 0
\(737\) 140.864 243.983i 0.191131 0.331049i
\(738\) 0 0
\(739\) 90.8990 + 157.442i 0.123003 + 0.213047i 0.920950 0.389680i \(-0.127414\pi\)
−0.797948 + 0.602727i \(0.794081\pi\)
\(740\) 0 0
\(741\) 112.149i 0.151349i
\(742\) 0 0
\(743\) 756.385 1.01801 0.509007 0.860762i \(-0.330013\pi\)
0.509007 + 0.860762i \(0.330013\pi\)
\(744\) 0 0
\(745\) 989.968 571.558i 1.32882 0.767192i
\(746\) 0 0
\(747\) −260.280 150.273i −0.348433 0.201168i
\(748\) 0 0
\(749\) 168.630 232.539i 0.225141 0.310466i
\(750\) 0 0
\(751\) 590.565 1022.89i 0.786372 1.36204i −0.141804 0.989895i \(-0.545290\pi\)
0.928176 0.372141i \(-0.121376\pi\)
\(752\) 0 0
\(753\) −76.2985 132.153i −0.101326 0.175502i
\(754\) 0 0
\(755\) 1214.82i 1.60903i
\(756\) 0 0
\(757\) 519.548 0.686325 0.343163 0.939276i \(-0.388502\pi\)
0.343163 + 0.939276i \(0.388502\pi\)
\(758\) 0 0
\(759\) −1178.82 + 680.594i −1.55313 + 0.896698i
\(760\) 0 0
\(761\) −194.150 112.093i −0.255125 0.147296i 0.366984 0.930227i \(-0.380390\pi\)
−0.622109 + 0.782931i \(0.713724\pi\)
\(762\) 0 0
\(763\) −60.3435 135.207i −0.0790872 0.177204i
\(764\) 0 0
\(765\) 23.2707 40.3060i 0.0304192 0.0526876i
\(766\) 0 0
\(767\) 17.1108 + 29.6368i 0.0223088 + 0.0386399i
\(768\) 0 0
\(769\) 1323.88i 1.72155i −0.508982 0.860777i \(-0.669978\pi\)
0.508982 0.860777i \(-0.330022\pi\)
\(770\) 0 0
\(771\) 96.3511 0.124969
\(772\) 0 0
\(773\) −344.501 + 198.898i −0.445668 + 0.257306i −0.705999 0.708213i \(-0.749502\pi\)
0.260331 + 0.965519i \(0.416168\pi\)
\(774\) 0 0
\(775\) 42.5189 + 24.5483i 0.0548632 + 0.0316753i
\(776\) 0 0
\(777\) −50.0727 + 480.563i −0.0644436 + 0.618485i
\(778\) 0 0
\(779\) −305.368 + 528.913i −0.392000 + 0.678964i
\(780\) 0 0
\(781\) −824.494 1428.07i −1.05569 1.82851i
\(782\) 0 0
\(783\) 76.0755i 0.0971590i
\(784\) 0 0
\(785\) −134.333 −0.171125
\(786\) 0 0
\(787\) −646.379 + 373.187i −0.821320 + 0.474189i −0.850871 0.525374i \(-0.823925\pi\)
0.0295516 + 0.999563i \(0.490592\pi\)
\(788\) 0 0
\(789\) −660.450 381.311i −0.837072 0.483284i
\(790\) 0 0
\(791\) −226.657 23.6167i −0.286544 0.0298568i
\(792\) 0 0
\(793\) −158.295 + 274.175i −0.199615 + 0.345744i
\(794\) 0 0
\(795\) −197.740 342.496i −0.248730 0.430812i
\(796\) 0 0
\(797\) 159.247i 0.199808i −0.994997 0.0999040i \(-0.968146\pi\)
0.994997 0.0999040i \(-0.0318536\pi\)
\(798\) 0 0
\(799\) 86.1632 0.107839
\(800\) 0 0
\(801\) 308.870 178.326i 0.385605 0.222629i
\(802\) 0 0
\(803\) 1565.45 + 903.816i 1.94951 + 1.12555i
\(804\) 0 0
\(805\) 1194.00 532.889i 1.48323 0.661974i
\(806\) 0 0
\(807\) 69.0223 119.550i 0.0855295 0.148141i
\(808\) 0 0
\(809\) 535.657 + 927.785i 0.662122 + 1.14683i 0.980057 + 0.198717i \(0.0636774\pi\)
−0.317935 + 0.948113i \(0.602989\pi\)
\(810\) 0 0
\(811\) 466.486i 0.575199i 0.957751 + 0.287599i \(0.0928572\pi\)
−0.957751 + 0.287599i \(0.907143\pi\)
\(812\) 0 0
\(813\) 92.8302 0.114182
\(814\) 0 0
\(815\) −1219.49 + 704.072i −1.49630 + 0.863892i
\(816\) 0 0
\(817\) 402.462 + 232.362i 0.492610 + 0.284409i
\(818\) 0 0
\(819\) −136.600 99.0581i −0.166788 0.120950i
\(820\) 0 0
\(821\) 743.425 1287.65i 0.905512 1.56839i 0.0852835 0.996357i \(-0.472820\pi\)
0.820229 0.572036i \(-0.193846\pi\)
\(822\) 0 0
\(823\) −430.852 746.258i −0.523514 0.906753i −0.999625 0.0273681i \(-0.991287\pi\)
0.476111 0.879385i \(-0.342046\pi\)
\(824\) 0 0
\(825\) 80.9186i 0.0980831i
\(826\) 0 0
\(827\) 621.169 0.751111 0.375556 0.926800i \(-0.377452\pi\)
0.375556 + 0.926800i \(0.377452\pi\)
\(828\) 0 0
\(829\) 574.498 331.687i 0.693001 0.400105i −0.111734 0.993738i \(-0.535640\pi\)
0.804735 + 0.593634i \(0.202307\pi\)
\(830\) 0 0
\(831\) −558.500 322.450i −0.672082 0.388027i
\(832\) 0 0
\(833\) 151.762 49.6120i 0.182187 0.0595582i
\(834\) 0 0
\(835\) −470.524 + 814.971i −0.563501 + 0.976013i
\(836\) 0 0
\(837\) 54.6925 + 94.7302i 0.0653435 + 0.113178i
\(838\) 0 0
\(839\) 543.556i 0.647862i −0.946081 0.323931i \(-0.894996\pi\)
0.946081 0.323931i \(-0.105004\pi\)
\(840\) 0 0
\(841\) −626.649 −0.745124
\(842\) 0 0
\(843\) 18.2110 10.5141i 0.0216026 0.0124723i
\(844\) 0 0
\(845\) 430.618 + 248.617i 0.509607 + 0.294222i
\(846\) 0 0
\(847\) −1151.69 + 1588.17i −1.35973 + 1.87505i
\(848\) 0 0
\(849\) 115.266 199.646i 0.135766 0.235154i
\(850\) 0 0
\(851\) 781.722 + 1353.98i 0.918592 + 1.59105i
\(852\) 0 0
\(853\) 712.546i 0.835341i 0.908599 + 0.417670i \(0.137153\pi\)
−0.908599 + 0.417670i \(0.862847\pi\)
\(854\) 0 0
\(855\) 115.099 0.134619
\(856\) 0 0
\(857\) −173.885 + 100.393i −0.202900 + 0.117144i −0.598008 0.801490i \(-0.704041\pi\)
0.395107 + 0.918635i \(0.370707\pi\)
\(858\) 0 0
\(859\) −765.085 441.722i −0.890669 0.514228i −0.0165077 0.999864i \(-0.505255\pi\)
−0.874161 + 0.485636i \(0.838588\pi\)
\(860\) 0 0
\(861\) 374.502 + 839.117i 0.434962 + 0.974584i
\(862\) 0 0
\(863\) −196.473 + 340.302i −0.227663 + 0.394324i −0.957115 0.289708i \(-0.906442\pi\)
0.729452 + 0.684032i \(0.239775\pi\)
\(864\) 0 0
\(865\) 393.907 + 682.267i 0.455384 + 0.788748i
\(866\) 0 0
\(867\) 482.172i 0.556139i
\(868\) 0 0
\(869\) −1660.26 −1.91054
\(870\) 0 0
\(871\) 97.8675 56.5038i 0.112362 0.0648724i
\(872\) 0 0
\(873\) 474.885 + 274.175i 0.543969 + 0.314061i
\(874\) 0 0
\(875\) 94.4026 906.010i 0.107889 1.03544i
\(876\) 0 0
\(877\) 106.581 184.604i 0.121529 0.210494i −0.798842 0.601541i \(-0.794554\pi\)
0.920371 + 0.391047i \(0.127887\pi\)
\(878\) 0 0
\(879\) −270.595 468.685i −0.307844 0.533202i
\(880\) 0 0
\(881\) 595.779i 0.676254i 0.941101 + 0.338127i \(0.109793\pi\)
−0.941101 + 0.338127i \(0.890207\pi\)
\(882\) 0 0
\(883\) −973.948 −1.10300 −0.551500 0.834175i \(-0.685944\pi\)
−0.551500 + 0.834175i \(0.685944\pi\)
\(884\) 0 0
\(885\) −30.4163 + 17.5609i −0.0343687 + 0.0198428i
\(886\) 0 0
\(887\) −668.226 385.801i −0.753356 0.434950i 0.0735495 0.997292i \(-0.476567\pi\)
−0.826905 + 0.562342i \(0.809901\pi\)
\(888\) 0 0
\(889\) −1258.79 131.160i −1.41596 0.147537i
\(890\) 0 0
\(891\) −90.1413 + 156.129i −0.101169 + 0.175229i
\(892\) 0 0
\(893\) 106.543 + 184.538i 0.119309 + 0.206649i
\(894\) 0 0
\(895\) 9.26563i 0.0103527i
\(896\) 0 0
\(897\) −546.005 −0.608701
\(898\) 0 0
\(899\) −266.913 + 154.102i −0.296900 + 0.171415i
\(900\) 0 0
\(901\) −135.333 78.1347i −0.150203 0.0867199i
\(902\) 0 0
\(903\) 638.503 284.968i 0.707091 0.315579i
\(904\) 0 0
\(905\) −18.0340 + 31.2359i −0.0199271 + 0.0345148i
\(906\) 0 0
\(907\) 720.104 + 1247.26i 0.793941 + 1.37515i 0.923510 + 0.383575i \(0.125307\pi\)
−0.129569 + 0.991570i \(0.541359\pi\)
\(908\) 0 0
\(909\) 158.280i 0.174125i
\(910\) 0 0
\(911\) 351.853 0.386227 0.193114 0.981176i \(-0.438141\pi\)
0.193114 + 0.981176i \(0.438141\pi\)
\(912\) 0 0
\(913\) −1737.92 + 1003.39i −1.90353 + 1.09900i
\(914\) 0 0
\(915\) −281.386 162.458i −0.307526 0.177550i
\(916\) 0 0
\(917\) −937.116 679.569i −1.02194 0.741079i
\(918\) 0 0
\(919\) −311.224 + 539.056i −0.338655 + 0.586568i −0.984180 0.177171i \(-0.943305\pi\)
0.645525 + 0.763739i \(0.276639\pi\)
\(920\) 0 0
\(921\) 64.2463 + 111.278i 0.0697571 + 0.120823i
\(922\) 0 0
\(923\) 661.448i 0.716628i
\(924\) 0 0
\(925\) 92.9421 0.100478
\(926\) 0 0
\(927\) −1.94948 + 1.12553i −0.00210300 + 0.00121417i
\(928\) 0 0
\(929\) 1342.02 + 774.818i 1.44459 + 0.834035i 0.998151 0.0607792i \(-0.0193585\pi\)
0.446439 + 0.894814i \(0.352692\pi\)
\(930\) 0 0
\(931\) 293.912 + 263.685i 0.315695 + 0.283228i
\(932\) 0 0
\(933\) −291.157 + 504.298i −0.312065 + 0.540512i
\(934\) 0 0
\(935\) −155.382 269.129i −0.166183 0.287838i
\(936\) 0 0
\(937\) 430.581i 0.459532i 0.973246 + 0.229766i \(0.0737960\pi\)
−0.973246 + 0.229766i \(0.926204\pi\)
\(938\) 0 0
\(939\) 612.963 0.652783
\(940\) 0 0
\(941\) −979.433 + 565.476i −1.04084 + 0.600931i −0.920072 0.391750i \(-0.871870\pi\)
−0.120771 + 0.992680i \(0.538537\pi\)
\(942\) 0 0
\(943\) 2575.04 + 1486.70i 2.73069 + 1.57656i
\(944\) 0 0
\(945\) 101.664 140.193i 0.107580 0.148352i
\(946\) 0 0
\(947\) −691.847 + 1198.31i −0.730568 + 1.26538i 0.226073 + 0.974110i \(0.427411\pi\)
−0.956641 + 0.291270i \(0.905922\pi\)
\(948\) 0 0
\(949\) 362.542 + 627.941i 0.382025 + 0.661687i
\(950\) 0 0
\(951\) 916.029i 0.963227i
\(952\) 0 0
\(953\) 800.947 0.840448 0.420224 0.907420i \(-0.361952\pi\)
0.420224 + 0.907420i \(0.361952\pi\)
\(954\) 0 0
\(955\) −224.231 + 129.460i −0.234796 + 0.135560i
\(956\) 0 0
\(957\) −439.912 253.983i −0.459678 0.265395i
\(958\) 0 0
\(959\) −289.693 649.091i −0.302078 0.676841i
\(960\) 0 0
\(961\) −258.925 + 448.471i −0.269432 + 0.466671i
\(962\) 0 0
\(963\) −61.5528 106.613i −0.0639177 0.110709i
\(964\) 0 0
\(965\) 839.667i 0.870121i
\(966\) 0 0
\(967\) −285.981 −0.295740 −0.147870 0.989007i \(-0.547242\pi\)
−0.147870 + 0.989007i \(0.547242\pi\)
\(968\) 0 0
\(969\) 39.3869 22.7400i 0.0406469 0.0234675i
\(970\) 0 0
\(971\) −1465.09 845.873i −1.50885 0.871136i −0.999947 0.0103123i \(-0.996717\pi\)
−0.508904 0.860823i \(-0.669949\pi\)
\(972\) 0 0
\(973\) −50.1404 + 481.213i −0.0515318 + 0.494566i
\(974\) 0 0
\(975\) −16.2292 + 28.1098i −0.0166453 + 0.0288305i
\(976\) 0 0
\(977\) −726.742 1258.75i −0.743851 1.28839i −0.950730 0.310021i \(-0.899664\pi\)
0.206879 0.978366i \(-0.433669\pi\)
\(978\) 0 0
\(979\) 2381.41i 2.43250i
\(980\) 0 0
\(981\) −63.4549 −0.0646839
\(982\) 0 0
\(983\) −269.568 + 155.635i −0.274230 + 0.158327i −0.630808 0.775939i \(-0.717277\pi\)
0.356579 + 0.934265i \(0.383943\pi\)
\(984\) 0 0
\(985\) −407.136 235.060i −0.413336 0.238639i
\(986\) 0 0
\(987\) 318.876 + 33.2256i 0.323076 + 0.0336632i
\(988\) 0 0
\(989\) 1131.26 1959.41i 1.14385 1.98120i
\(990\) 0 0
\(991\) 384.739 + 666.388i 0.388234 + 0.672440i 0.992212 0.124560i \(-0.0397521\pi\)
−0.603979 + 0.797001i \(0.706419\pi\)
\(992\) 0 0
\(993\) 417.461i 0.420404i
\(994\) 0 0
\(995\) −1635.87 −1.64409
\(996\) 0 0
\(997\) 1289.12 744.274i 1.29300 0.746514i 0.313815 0.949484i \(-0.398393\pi\)
0.979185 + 0.202971i \(0.0650596\pi\)
\(998\) 0 0
\(999\) 179.328 + 103.535i 0.179508 + 0.103639i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.c.481.7 yes 16
4.3 odd 2 672.3.bh.a.481.7 16
7.3 odd 6 inner 672.3.bh.c.577.7 yes 16
28.3 even 6 672.3.bh.a.577.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.a.481.7 16 4.3 odd 2
672.3.bh.a.577.7 yes 16 28.3 even 6
672.3.bh.c.481.7 yes 16 1.1 even 1 trivial
672.3.bh.c.577.7 yes 16 7.3 odd 6 inner