Properties

Label 672.3.bh.b.577.5
Level $672$
Weight $3$
Character 672.577
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-24,0,0,0,-12,0,24,0,-12,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 120 x^{14} - 700 x^{13} + 5060 x^{12} - 21624 x^{11} + 95002 x^{10} - 292520 x^{9} + \cdots + 76783 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.5
Root \(0.500000 - 1.70210i\) of defining polynomial
Character \(\chi\) \(=\) 672.577
Dual form 672.3.bh.b.481.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-0.803356 + 0.463818i) q^{5} +(0.377407 + 6.98982i) q^{7} +(1.50000 + 2.59808i) q^{9} +(7.28297 - 12.6145i) q^{11} +14.4822i q^{13} +1.60671 q^{15} +(-18.8640 - 10.8912i) q^{17} +(8.69362 - 5.01926i) q^{19} +(5.48725 - 10.8116i) q^{21} +(2.65798 + 4.60375i) q^{23} +(-12.0697 + 20.9054i) q^{25} -5.19615i q^{27} -8.59590 q^{29} +(-39.7627 - 22.9570i) q^{31} +(-21.8489 + 12.6145i) q^{33} +(-3.54519 - 5.44026i) q^{35} +(18.8742 + 32.6910i) q^{37} +(12.5419 - 21.7232i) q^{39} +41.3390i q^{41} -14.8107 q^{43} +(-2.41007 - 1.39145i) q^{45} +(-24.7153 + 14.2694i) q^{47} +(-48.7151 + 5.27601i) q^{49} +(18.8640 + 32.6735i) q^{51} +(-41.3353 + 71.5948i) q^{53} +13.5119i q^{55} -17.3872 q^{57} +(48.8859 + 28.2243i) q^{59} +(-33.6563 + 19.4315i) q^{61} +(-17.5940 + 11.4653i) q^{63} +(-6.71708 - 11.6343i) q^{65} +(-31.5515 + 54.6488i) q^{67} -9.20751i q^{69} +91.5126 q^{71} +(-93.7022 - 54.0990i) q^{73} +(36.2092 - 20.9054i) q^{75} +(90.9215 + 46.1458i) q^{77} +(20.1148 + 34.8399i) q^{79} +(-4.50000 + 7.79423i) q^{81} -11.9047i q^{83} +20.2060 q^{85} +(12.8939 + 7.44427i) q^{87} +(-65.5180 + 37.8268i) q^{89} +(-101.228 + 5.46567i) q^{91} +(39.7627 + 68.8710i) q^{93} +(-4.65604 + 8.06451i) q^{95} +153.192i q^{97} +43.6978 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 12 q^{7} + 24 q^{9} - 12 q^{11} + 48 q^{17} + 36 q^{19} + 24 q^{21} + 48 q^{23} + 20 q^{25} + 64 q^{29} - 60 q^{31} + 36 q^{33} - 36 q^{37} + 12 q^{39} + 72 q^{43} - 72 q^{47} - 40 q^{49}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) 0 0
\(5\) −0.803356 + 0.463818i −0.160671 + 0.0927635i −0.578180 0.815909i \(-0.696237\pi\)
0.417509 + 0.908673i \(0.362903\pi\)
\(6\) 0 0
\(7\) 0.377407 + 6.98982i 0.0539153 + 0.998546i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 7.28297 12.6145i 0.662088 1.14677i −0.317978 0.948098i \(-0.603004\pi\)
0.980066 0.198672i \(-0.0636627\pi\)
\(12\) 0 0
\(13\) 14.4822i 1.11401i 0.830508 + 0.557006i \(0.188050\pi\)
−0.830508 + 0.557006i \(0.811950\pi\)
\(14\) 0 0
\(15\) 1.60671 0.107114
\(16\) 0 0
\(17\) −18.8640 10.8912i −1.10965 0.640656i −0.170910 0.985287i \(-0.554671\pi\)
−0.938738 + 0.344631i \(0.888004\pi\)
\(18\) 0 0
\(19\) 8.69362 5.01926i 0.457559 0.264172i −0.253458 0.967346i \(-0.581568\pi\)
0.711017 + 0.703175i \(0.248235\pi\)
\(20\) 0 0
\(21\) 5.48725 10.8116i 0.261298 0.514837i
\(22\) 0 0
\(23\) 2.65798 + 4.60375i 0.115564 + 0.200163i 0.918005 0.396568i \(-0.129799\pi\)
−0.802441 + 0.596732i \(0.796466\pi\)
\(24\) 0 0
\(25\) −12.0697 + 20.9054i −0.482790 + 0.836217i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −8.59590 −0.296410 −0.148205 0.988957i \(-0.547350\pi\)
−0.148205 + 0.988957i \(0.547350\pi\)
\(30\) 0 0
\(31\) −39.7627 22.9570i −1.28267 0.740549i −0.305332 0.952246i \(-0.598768\pi\)
−0.977335 + 0.211697i \(0.932101\pi\)
\(32\) 0 0
\(33\) −21.8489 + 12.6145i −0.662088 + 0.382257i
\(34\) 0 0
\(35\) −3.54519 5.44026i −0.101291 0.155436i
\(36\) 0 0
\(37\) 18.8742 + 32.6910i 0.510113 + 0.883541i 0.999931 + 0.0117167i \(0.00372963\pi\)
−0.489819 + 0.871824i \(0.662937\pi\)
\(38\) 0 0
\(39\) 12.5419 21.7232i 0.321588 0.557006i
\(40\) 0 0
\(41\) 41.3390i 1.00827i 0.863625 + 0.504134i \(0.168188\pi\)
−0.863625 + 0.504134i \(0.831812\pi\)
\(42\) 0 0
\(43\) −14.8107 −0.344435 −0.172217 0.985059i \(-0.555093\pi\)
−0.172217 + 0.985059i \(0.555093\pi\)
\(44\) 0 0
\(45\) −2.41007 1.39145i −0.0535570 0.0309212i
\(46\) 0 0
\(47\) −24.7153 + 14.2694i −0.525857 + 0.303604i −0.739328 0.673346i \(-0.764857\pi\)
0.213471 + 0.976949i \(0.431523\pi\)
\(48\) 0 0
\(49\) −48.7151 + 5.27601i −0.994186 + 0.107674i
\(50\) 0 0
\(51\) 18.8640 + 32.6735i 0.369883 + 0.640656i
\(52\) 0 0
\(53\) −41.3353 + 71.5948i −0.779911 + 1.35084i 0.152082 + 0.988368i \(0.451402\pi\)
−0.931993 + 0.362477i \(0.881931\pi\)
\(54\) 0 0
\(55\) 13.5119i 0.245670i
\(56\) 0 0
\(57\) −17.3872 −0.305039
\(58\) 0 0
\(59\) 48.8859 + 28.2243i 0.828574 + 0.478378i 0.853364 0.521315i \(-0.174558\pi\)
−0.0247901 + 0.999693i \(0.507892\pi\)
\(60\) 0 0
\(61\) −33.6563 + 19.4315i −0.551743 + 0.318549i −0.749825 0.661637i \(-0.769862\pi\)
0.198082 + 0.980185i \(0.436529\pi\)
\(62\) 0 0
\(63\) −17.5940 + 11.4653i −0.279269 + 0.181988i
\(64\) 0 0
\(65\) −6.71708 11.6343i −0.103340 0.178990i
\(66\) 0 0
\(67\) −31.5515 + 54.6488i −0.470918 + 0.815654i −0.999447 0.0332615i \(-0.989411\pi\)
0.528529 + 0.848915i \(0.322744\pi\)
\(68\) 0 0
\(69\) 9.20751i 0.133442i
\(70\) 0 0
\(71\) 91.5126 1.28891 0.644455 0.764642i \(-0.277084\pi\)
0.644455 + 0.764642i \(0.277084\pi\)
\(72\) 0 0
\(73\) −93.7022 54.0990i −1.28359 0.741082i −0.306088 0.952003i \(-0.599020\pi\)
−0.977503 + 0.210921i \(0.932354\pi\)
\(74\) 0 0
\(75\) 36.2092 20.9054i 0.482790 0.278739i
\(76\) 0 0
\(77\) 90.9215 + 46.1458i 1.18080 + 0.599296i
\(78\) 0 0
\(79\) 20.1148 + 34.8399i 0.254618 + 0.441011i 0.964792 0.263015i \(-0.0847169\pi\)
−0.710174 + 0.704026i \(0.751384\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 11.9047i 0.143430i −0.997425 0.0717152i \(-0.977153\pi\)
0.997425 0.0717152i \(-0.0228473\pi\)
\(84\) 0 0
\(85\) 20.2060 0.237718
\(86\) 0 0
\(87\) 12.8939 + 7.44427i 0.148205 + 0.0855663i
\(88\) 0 0
\(89\) −65.5180 + 37.8268i −0.736157 + 0.425021i −0.820670 0.571402i \(-0.806400\pi\)
0.0845132 + 0.996422i \(0.473066\pi\)
\(90\) 0 0
\(91\) −101.228 + 5.46567i −1.11239 + 0.0600623i
\(92\) 0 0
\(93\) 39.7627 + 68.8710i 0.427556 + 0.740549i
\(94\) 0 0
\(95\) −4.65604 + 8.06451i −0.0490110 + 0.0848895i
\(96\) 0 0
\(97\) 153.192i 1.57930i 0.613555 + 0.789652i \(0.289739\pi\)
−0.613555 + 0.789652i \(0.710261\pi\)
\(98\) 0 0
\(99\) 43.6978 0.441392
\(100\) 0 0
\(101\) 19.9204 + 11.5011i 0.197232 + 0.113872i 0.595364 0.803456i \(-0.297008\pi\)
−0.398132 + 0.917328i \(0.630341\pi\)
\(102\) 0 0
\(103\) −154.703 + 89.3180i −1.50197 + 0.867165i −0.501976 + 0.864881i \(0.667394\pi\)
−0.999997 + 0.00228358i \(0.999273\pi\)
\(104\) 0 0
\(105\) 0.606384 + 11.2306i 0.00577509 + 0.106958i
\(106\) 0 0
\(107\) −60.6271 105.009i −0.566609 0.981395i −0.996898 0.0787039i \(-0.974922\pi\)
0.430289 0.902691i \(-0.358411\pi\)
\(108\) 0 0
\(109\) 89.1390 154.393i 0.817789 1.41645i −0.0895187 0.995985i \(-0.528533\pi\)
0.907308 0.420467i \(-0.138134\pi\)
\(110\) 0 0
\(111\) 65.3820i 0.589027i
\(112\) 0 0
\(113\) −173.570 −1.53602 −0.768011 0.640437i \(-0.778753\pi\)
−0.768011 + 0.640437i \(0.778753\pi\)
\(114\) 0 0
\(115\) −4.27060 2.46563i −0.0371357 0.0214403i
\(116\) 0 0
\(117\) −37.6257 + 21.7232i −0.321588 + 0.185669i
\(118\) 0 0
\(119\) 69.0077 135.967i 0.579897 1.14258i
\(120\) 0 0
\(121\) −45.5832 78.9524i −0.376720 0.652499i
\(122\) 0 0
\(123\) 35.8006 62.0085i 0.291062 0.504134i
\(124\) 0 0
\(125\) 45.5835i 0.364668i
\(126\) 0 0
\(127\) −81.9650 −0.645394 −0.322697 0.946502i \(-0.604589\pi\)
−0.322697 + 0.946502i \(0.604589\pi\)
\(128\) 0 0
\(129\) 22.2160 + 12.8264i 0.172217 + 0.0994298i
\(130\) 0 0
\(131\) −137.288 + 79.2635i −1.04800 + 0.605065i −0.922089 0.386977i \(-0.873519\pi\)
−0.125913 + 0.992041i \(0.540186\pi\)
\(132\) 0 0
\(133\) 38.3648 + 58.8725i 0.288457 + 0.442651i
\(134\) 0 0
\(135\) 2.41007 + 4.17436i 0.0178523 + 0.0309212i
\(136\) 0 0
\(137\) 82.2387 142.442i 0.600282 1.03972i −0.392496 0.919754i \(-0.628388\pi\)
0.992778 0.119966i \(-0.0382784\pi\)
\(138\) 0 0
\(139\) 72.2545i 0.519817i −0.965633 0.259908i \(-0.916308\pi\)
0.965633 0.259908i \(-0.0836924\pi\)
\(140\) 0 0
\(141\) 49.4306 0.350571
\(142\) 0 0
\(143\) 182.685 + 105.473i 1.27752 + 0.737574i
\(144\) 0 0
\(145\) 6.90556 3.98693i 0.0476246 0.0274961i
\(146\) 0 0
\(147\) 77.6419 + 34.2745i 0.528176 + 0.233160i
\(148\) 0 0
\(149\) 1.18929 + 2.05991i 0.00798182 + 0.0138249i 0.869989 0.493072i \(-0.164126\pi\)
−0.862007 + 0.506897i \(0.830793\pi\)
\(150\) 0 0
\(151\) 43.6360 75.5798i 0.288980 0.500529i −0.684586 0.728932i \(-0.740017\pi\)
0.973567 + 0.228403i \(0.0733505\pi\)
\(152\) 0 0
\(153\) 65.3469i 0.427104i
\(154\) 0 0
\(155\) 42.5914 0.274784
\(156\) 0 0
\(157\) 121.900 + 70.3789i 0.776432 + 0.448273i 0.835164 0.550001i \(-0.185373\pi\)
−0.0587326 + 0.998274i \(0.518706\pi\)
\(158\) 0 0
\(159\) 124.006 71.5948i 0.779911 0.450282i
\(160\) 0 0
\(161\) −31.1763 + 20.3163i −0.193641 + 0.126188i
\(162\) 0 0
\(163\) 98.9970 + 171.468i 0.607343 + 1.05195i 0.991676 + 0.128755i \(0.0410981\pi\)
−0.384333 + 0.923194i \(0.625569\pi\)
\(164\) 0 0
\(165\) 11.7016 20.2678i 0.0709189 0.122835i
\(166\) 0 0
\(167\) 5.76908i 0.0345454i 0.999851 + 0.0172727i \(0.00549835\pi\)
−0.999851 + 0.0172727i \(0.994502\pi\)
\(168\) 0 0
\(169\) −40.7328 −0.241023
\(170\) 0 0
\(171\) 26.0809 + 15.0578i 0.152520 + 0.0880573i
\(172\) 0 0
\(173\) 151.729 87.6005i 0.877044 0.506362i 0.00736129 0.999973i \(-0.497657\pi\)
0.869683 + 0.493611i \(0.164323\pi\)
\(174\) 0 0
\(175\) −150.680 76.4755i −0.861030 0.437003i
\(176\) 0 0
\(177\) −48.8859 84.6728i −0.276191 0.478378i
\(178\) 0 0
\(179\) 160.382 277.791i 0.895991 1.55190i 0.0634182 0.997987i \(-0.479800\pi\)
0.832573 0.553915i \(-0.186867\pi\)
\(180\) 0 0
\(181\) 33.4249i 0.184668i 0.995728 + 0.0923338i \(0.0294327\pi\)
−0.995728 + 0.0923338i \(0.970567\pi\)
\(182\) 0 0
\(183\) 67.3126 0.367828
\(184\) 0 0
\(185\) −30.3253 17.5083i −0.163921 0.0946397i
\(186\) 0 0
\(187\) −274.772 + 158.640i −1.46937 + 0.848341i
\(188\) 0 0
\(189\) 36.3202 1.96106i 0.192170 0.0103760i
\(190\) 0 0
\(191\) 135.932 + 235.441i 0.711686 + 1.23268i 0.964224 + 0.265090i \(0.0854016\pi\)
−0.252537 + 0.967587i \(0.581265\pi\)
\(192\) 0 0
\(193\) 43.8766 75.9966i 0.227340 0.393765i −0.729679 0.683790i \(-0.760330\pi\)
0.957019 + 0.290025i \(0.0936638\pi\)
\(194\) 0 0
\(195\) 23.2686i 0.119326i
\(196\) 0 0
\(197\) 228.881 1.16183 0.580915 0.813964i \(-0.302695\pi\)
0.580915 + 0.813964i \(0.302695\pi\)
\(198\) 0 0
\(199\) −283.498 163.678i −1.42461 0.822501i −0.427925 0.903814i \(-0.640755\pi\)
−0.996689 + 0.0813136i \(0.974088\pi\)
\(200\) 0 0
\(201\) 94.6545 54.6488i 0.470918 0.271885i
\(202\) 0 0
\(203\) −3.24415 60.0838i −0.0159811 0.295979i
\(204\) 0 0
\(205\) −19.1738 33.2099i −0.0935306 0.162000i
\(206\) 0 0
\(207\) −7.97394 + 13.8113i −0.0385214 + 0.0667211i
\(208\) 0 0
\(209\) 146.220i 0.699620i
\(210\) 0 0
\(211\) −151.304 −0.717079 −0.358539 0.933515i \(-0.616725\pi\)
−0.358539 + 0.933515i \(0.616725\pi\)
\(212\) 0 0
\(213\) −137.269 79.2522i −0.644455 0.372076i
\(214\) 0 0
\(215\) 11.8983 6.86946i 0.0553407 0.0319510i
\(216\) 0 0
\(217\) 145.459 286.598i 0.670316 1.32073i
\(218\) 0 0
\(219\) 93.7022 + 162.297i 0.427864 + 0.741082i
\(220\) 0 0
\(221\) 157.727 273.192i 0.713698 1.23616i
\(222\) 0 0
\(223\) 86.0826i 0.386021i 0.981197 + 0.193010i \(0.0618251\pi\)
−0.981197 + 0.193010i \(0.938175\pi\)
\(224\) 0 0
\(225\) −72.4185 −0.321860
\(226\) 0 0
\(227\) −216.852 125.199i −0.955294 0.551539i −0.0605724 0.998164i \(-0.519293\pi\)
−0.894721 + 0.446625i \(0.852626\pi\)
\(228\) 0 0
\(229\) 111.215 64.2100i 0.485655 0.280393i −0.237115 0.971482i \(-0.576202\pi\)
0.722770 + 0.691088i \(0.242869\pi\)
\(230\) 0 0
\(231\) −96.4188 147.959i −0.417397 0.640515i
\(232\) 0 0
\(233\) 96.6534 + 167.409i 0.414822 + 0.718492i 0.995410 0.0957053i \(-0.0305106\pi\)
−0.580588 + 0.814197i \(0.697177\pi\)
\(234\) 0 0
\(235\) 13.2368 22.9268i 0.0563267 0.0975607i
\(236\) 0 0
\(237\) 69.6798i 0.294008i
\(238\) 0 0
\(239\) 308.972 1.29277 0.646386 0.763011i \(-0.276280\pi\)
0.646386 + 0.763011i \(0.276280\pi\)
\(240\) 0 0
\(241\) 32.5677 + 18.8029i 0.135136 + 0.0780205i 0.566044 0.824375i \(-0.308473\pi\)
−0.430908 + 0.902396i \(0.641807\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 36.6885 26.8334i 0.149749 0.109524i
\(246\) 0 0
\(247\) 72.6898 + 125.902i 0.294291 + 0.509726i
\(248\) 0 0
\(249\) −10.3098 + 17.8571i −0.0414048 + 0.0717152i
\(250\) 0 0
\(251\) 165.618i 0.659833i −0.944010 0.329916i \(-0.892979\pi\)
0.944010 0.329916i \(-0.107021\pi\)
\(252\) 0 0
\(253\) 77.4319 0.306055
\(254\) 0 0
\(255\) −30.3090 17.4989i −0.118859 0.0686233i
\(256\) 0 0
\(257\) −100.539 + 58.0462i −0.391202 + 0.225861i −0.682681 0.730717i \(-0.739186\pi\)
0.291479 + 0.956577i \(0.405853\pi\)
\(258\) 0 0
\(259\) −221.381 + 144.265i −0.854753 + 0.557007i
\(260\) 0 0
\(261\) −12.8939 22.3328i −0.0494017 0.0855663i
\(262\) 0 0
\(263\) −7.36005 + 12.7480i −0.0279850 + 0.0484714i −0.879679 0.475568i \(-0.842242\pi\)
0.851694 + 0.524040i \(0.175576\pi\)
\(264\) 0 0
\(265\) 76.6881i 0.289389i
\(266\) 0 0
\(267\) 131.036 0.490772
\(268\) 0 0
\(269\) −141.670 81.7935i −0.526656 0.304065i 0.212998 0.977053i \(-0.431677\pi\)
−0.739654 + 0.672988i \(0.765011\pi\)
\(270\) 0 0
\(271\) −234.623 + 135.460i −0.865767 + 0.499851i −0.865939 0.500149i \(-0.833279\pi\)
0.000171980 1.00000i \(0.499945\pi\)
\(272\) 0 0
\(273\) 156.575 + 79.4672i 0.573534 + 0.291089i
\(274\) 0 0
\(275\) 175.807 + 304.507i 0.639299 + 1.10730i
\(276\) 0 0
\(277\) −101.203 + 175.289i −0.365355 + 0.632813i −0.988833 0.149028i \(-0.952386\pi\)
0.623478 + 0.781841i \(0.285719\pi\)
\(278\) 0 0
\(279\) 137.742i 0.493699i
\(280\) 0 0
\(281\) 334.869 1.19171 0.595853 0.803093i \(-0.296814\pi\)
0.595853 + 0.803093i \(0.296814\pi\)
\(282\) 0 0
\(283\) 451.162 + 260.479i 1.59421 + 0.920420i 0.992573 + 0.121653i \(0.0388195\pi\)
0.601641 + 0.798767i \(0.294514\pi\)
\(284\) 0 0
\(285\) 13.9681 8.06451i 0.0490110 0.0282965i
\(286\) 0 0
\(287\) −288.952 + 15.6016i −1.00680 + 0.0543611i
\(288\) 0 0
\(289\) 92.7343 + 160.621i 0.320880 + 0.555780i
\(290\) 0 0
\(291\) 132.669 229.789i 0.455906 0.789652i
\(292\) 0 0
\(293\) 90.1677i 0.307740i 0.988091 + 0.153870i \(0.0491736\pi\)
−0.988091 + 0.153870i \(0.950826\pi\)
\(294\) 0 0
\(295\) −52.3636 −0.177504
\(296\) 0 0
\(297\) −65.5467 37.8434i −0.220696 0.127419i
\(298\) 0 0
\(299\) −66.6723 + 38.4933i −0.222984 + 0.128740i
\(300\) 0 0
\(301\) −5.58966 103.524i −0.0185703 0.343934i
\(302\) 0 0
\(303\) −19.9204 34.5032i −0.0657440 0.113872i
\(304\) 0 0
\(305\) 18.0253 31.2208i 0.0590994 0.102363i
\(306\) 0 0
\(307\) 55.1367i 0.179598i −0.995960 0.0897992i \(-0.971377\pi\)
0.995960 0.0897992i \(-0.0286225\pi\)
\(308\) 0 0
\(309\) 309.407 1.00132
\(310\) 0 0
\(311\) 283.214 + 163.513i 0.910654 + 0.525767i 0.880642 0.473783i \(-0.157112\pi\)
0.0300128 + 0.999550i \(0.490445\pi\)
\(312\) 0 0
\(313\) 489.375 282.541i 1.56350 0.902687i 0.566600 0.823993i \(-0.308258\pi\)
0.996899 0.0786936i \(-0.0250749\pi\)
\(314\) 0 0
\(315\) 8.81642 17.3711i 0.0279887 0.0551463i
\(316\) 0 0
\(317\) −190.180 329.402i −0.599938 1.03912i −0.992830 0.119538i \(-0.961859\pi\)
0.392892 0.919585i \(-0.371475\pi\)
\(318\) 0 0
\(319\) −62.6036 + 108.433i −0.196250 + 0.339914i
\(320\) 0 0
\(321\) 210.018i 0.654263i
\(322\) 0 0
\(323\) −218.662 −0.676973
\(324\) 0 0
\(325\) −302.755 174.796i −0.931555 0.537834i
\(326\) 0 0
\(327\) −267.417 + 154.393i −0.817789 + 0.472151i
\(328\) 0 0
\(329\) −109.068 167.370i −0.331514 0.508723i
\(330\) 0 0
\(331\) −24.4903 42.4185i −0.0739890 0.128153i 0.826657 0.562706i \(-0.190240\pi\)
−0.900646 + 0.434553i \(0.856906\pi\)
\(332\) 0 0
\(333\) −56.6225 + 98.0731i −0.170038 + 0.294514i
\(334\) 0 0
\(335\) 58.5366i 0.174736i
\(336\) 0 0
\(337\) −483.294 −1.43411 −0.717054 0.697018i \(-0.754510\pi\)
−0.717054 + 0.697018i \(0.754510\pi\)
\(338\) 0 0
\(339\) 260.356 + 150.316i 0.768011 + 0.443411i
\(340\) 0 0
\(341\) −579.181 + 334.390i −1.69848 + 0.980616i
\(342\) 0 0
\(343\) −55.2638 338.519i −0.161119 0.986935i
\(344\) 0 0
\(345\) 4.27060 + 7.39690i 0.0123786 + 0.0214403i
\(346\) 0 0
\(347\) 238.871 413.738i 0.688390 1.19233i −0.283968 0.958834i \(-0.591651\pi\)
0.972358 0.233493i \(-0.0750157\pi\)
\(348\) 0 0
\(349\) 231.968i 0.664664i −0.943162 0.332332i \(-0.892165\pi\)
0.943162 0.332332i \(-0.107835\pi\)
\(350\) 0 0
\(351\) 75.2515 0.214392
\(352\) 0 0
\(353\) 188.059 + 108.576i 0.532745 + 0.307581i 0.742134 0.670252i \(-0.233814\pi\)
−0.209388 + 0.977833i \(0.567147\pi\)
\(354\) 0 0
\(355\) −73.5172 + 42.4452i −0.207091 + 0.119564i
\(356\) 0 0
\(357\) −221.262 + 144.187i −0.619782 + 0.403886i
\(358\) 0 0
\(359\) 274.439 + 475.343i 0.764455 + 1.32407i 0.940534 + 0.339699i \(0.110325\pi\)
−0.176079 + 0.984376i \(0.556342\pi\)
\(360\) 0 0
\(361\) −130.114 + 225.364i −0.360427 + 0.624277i
\(362\) 0 0
\(363\) 157.905i 0.434999i
\(364\) 0 0
\(365\) 100.368 0.274981
\(366\) 0 0
\(367\) −273.519 157.916i −0.745282 0.430289i 0.0787045 0.996898i \(-0.474922\pi\)
−0.823987 + 0.566609i \(0.808255\pi\)
\(368\) 0 0
\(369\) −107.402 + 62.0085i −0.291062 + 0.168045i
\(370\) 0 0
\(371\) −516.035 261.906i −1.39093 0.705945i
\(372\) 0 0
\(373\) 69.2168 + 119.887i 0.185568 + 0.321413i 0.943768 0.330609i \(-0.107254\pi\)
−0.758200 + 0.652022i \(0.773921\pi\)
\(374\) 0 0
\(375\) −39.4765 + 68.3753i −0.105271 + 0.182334i
\(376\) 0 0
\(377\) 124.487i 0.330205i
\(378\) 0 0
\(379\) 219.084 0.578058 0.289029 0.957320i \(-0.406668\pi\)
0.289029 + 0.957320i \(0.406668\pi\)
\(380\) 0 0
\(381\) 122.948 + 70.9838i 0.322697 + 0.186309i
\(382\) 0 0
\(383\) −16.8847 + 9.74836i −0.0440853 + 0.0254526i −0.521881 0.853019i \(-0.674769\pi\)
0.477795 + 0.878471i \(0.341436\pi\)
\(384\) 0 0
\(385\) −94.4455 + 5.09947i −0.245313 + 0.0132454i
\(386\) 0 0
\(387\) −22.2160 38.4793i −0.0574058 0.0994298i
\(388\) 0 0
\(389\) −356.540 + 617.545i −0.916555 + 1.58752i −0.111947 + 0.993714i \(0.535709\pi\)
−0.804608 + 0.593806i \(0.797625\pi\)
\(390\) 0 0
\(391\) 115.794i 0.296148i
\(392\) 0 0
\(393\) 274.577 0.698668
\(394\) 0 0
\(395\) −32.3187 18.6592i −0.0818195 0.0472385i
\(396\) 0 0
\(397\) −45.1763 + 26.0826i −0.113794 + 0.0656992i −0.555817 0.831305i \(-0.687594\pi\)
0.442023 + 0.897004i \(0.354261\pi\)
\(398\) 0 0
\(399\) −6.56207 121.534i −0.0164463 0.304596i
\(400\) 0 0
\(401\) 155.741 + 269.752i 0.388382 + 0.672697i 0.992232 0.124401i \(-0.0397008\pi\)
−0.603850 + 0.797098i \(0.706367\pi\)
\(402\) 0 0
\(403\) 332.467 575.850i 0.824980 1.42891i
\(404\) 0 0
\(405\) 8.34872i 0.0206141i
\(406\) 0 0
\(407\) 549.840 1.35096
\(408\) 0 0
\(409\) 521.110 + 300.863i 1.27411 + 0.735607i 0.975759 0.218850i \(-0.0702304\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(410\) 0 0
\(411\) −246.716 + 142.442i −0.600282 + 0.346573i
\(412\) 0 0
\(413\) −178.833 + 352.355i −0.433009 + 0.853161i
\(414\) 0 0
\(415\) 5.52162 + 9.56372i 0.0133051 + 0.0230451i
\(416\) 0 0
\(417\) −62.5743 + 108.382i −0.150058 + 0.259908i
\(418\) 0 0
\(419\) 308.844i 0.737099i −0.929608 0.368549i \(-0.879855\pi\)
0.929608 0.368549i \(-0.120145\pi\)
\(420\) 0 0
\(421\) −782.558 −1.85881 −0.929404 0.369064i \(-0.879678\pi\)
−0.929404 + 0.369064i \(0.879678\pi\)
\(422\) 0 0
\(423\) −74.1458 42.8081i −0.175286 0.101201i
\(424\) 0 0
\(425\) 455.368 262.907i 1.07145 0.618604i
\(426\) 0 0
\(427\) −148.525 227.918i −0.347833 0.533765i
\(428\) 0 0
\(429\) −182.685 316.419i −0.425838 0.737574i
\(430\) 0 0
\(431\) 67.0084 116.062i 0.155472 0.269285i −0.777759 0.628563i \(-0.783644\pi\)
0.933231 + 0.359278i \(0.116977\pi\)
\(432\) 0 0
\(433\) 700.146i 1.61697i 0.588519 + 0.808483i \(0.299711\pi\)
−0.588519 + 0.808483i \(0.700289\pi\)
\(434\) 0 0
\(435\) −13.8111 −0.0317497
\(436\) 0 0
\(437\) 46.2149 + 26.6822i 0.105755 + 0.0610576i
\(438\) 0 0
\(439\) −401.282 + 231.680i −0.914083 + 0.527746i −0.881743 0.471731i \(-0.843629\pi\)
−0.0323403 + 0.999477i \(0.510296\pi\)
\(440\) 0 0
\(441\) −86.7802 118.652i −0.196780 0.269051i
\(442\) 0 0
\(443\) −48.2414 83.5566i −0.108897 0.188615i 0.806427 0.591334i \(-0.201399\pi\)
−0.915324 + 0.402719i \(0.868065\pi\)
\(444\) 0 0
\(445\) 35.0895 60.7768i 0.0788528 0.136577i
\(446\) 0 0
\(447\) 4.11982i 0.00921661i
\(448\) 0 0
\(449\) −208.259 −0.463828 −0.231914 0.972736i \(-0.574499\pi\)
−0.231914 + 0.972736i \(0.574499\pi\)
\(450\) 0 0
\(451\) 521.470 + 301.071i 1.15625 + 0.667563i
\(452\) 0 0
\(453\) −130.908 + 75.5798i −0.288980 + 0.166843i
\(454\) 0 0
\(455\) 78.7867 51.3420i 0.173158 0.112840i
\(456\) 0 0
\(457\) 77.9698 + 135.048i 0.170612 + 0.295509i 0.938634 0.344915i \(-0.112092\pi\)
−0.768022 + 0.640424i \(0.778759\pi\)
\(458\) 0 0
\(459\) −56.5921 + 98.0204i −0.123294 + 0.213552i
\(460\) 0 0
\(461\) 125.104i 0.271375i −0.990752 0.135688i \(-0.956676\pi\)
0.990752 0.135688i \(-0.0433244\pi\)
\(462\) 0 0
\(463\) 725.921 1.56786 0.783932 0.620846i \(-0.213211\pi\)
0.783932 + 0.620846i \(0.213211\pi\)
\(464\) 0 0
\(465\) −63.8872 36.8853i −0.137392 0.0793232i
\(466\) 0 0
\(467\) −695.521 + 401.559i −1.48934 + 0.859870i −0.999926 0.0121816i \(-0.996122\pi\)
−0.489413 + 0.872052i \(0.662789\pi\)
\(468\) 0 0
\(469\) −393.893 199.914i −0.839857 0.426257i
\(470\) 0 0
\(471\) −121.900 211.137i −0.258811 0.448273i
\(472\) 0 0
\(473\) −107.866 + 186.829i −0.228046 + 0.394987i
\(474\) 0 0
\(475\) 242.325i 0.510158i
\(476\) 0 0
\(477\) −248.012 −0.519940
\(478\) 0 0
\(479\) −743.964 429.528i −1.55316 0.896718i −0.997882 0.0650537i \(-0.979278\pi\)
−0.555279 0.831664i \(-0.687389\pi\)
\(480\) 0 0
\(481\) −473.436 + 273.339i −0.984275 + 0.568272i
\(482\) 0 0
\(483\) 64.3588 3.47498i 0.133248 0.00719457i
\(484\) 0 0
\(485\) −71.0534 123.068i −0.146502 0.253749i
\(486\) 0 0
\(487\) 211.745 366.754i 0.434795 0.753087i −0.562484 0.826808i \(-0.690154\pi\)
0.997279 + 0.0737210i \(0.0234874\pi\)
\(488\) 0 0
\(489\) 342.936i 0.701300i
\(490\) 0 0
\(491\) −523.819 −1.06684 −0.533421 0.845850i \(-0.679094\pi\)
−0.533421 + 0.845850i \(0.679094\pi\)
\(492\) 0 0
\(493\) 162.153 + 93.6193i 0.328911 + 0.189897i
\(494\) 0 0
\(495\) −35.1049 + 20.2678i −0.0709189 + 0.0409451i
\(496\) 0 0
\(497\) 34.5375 + 639.657i 0.0694920 + 1.28704i
\(498\) 0 0
\(499\) 281.331 + 487.279i 0.563789 + 0.976511i 0.997161 + 0.0752960i \(0.0239902\pi\)
−0.433372 + 0.901215i \(0.642677\pi\)
\(500\) 0 0
\(501\) 4.99617 8.65362i 0.00997240 0.0172727i
\(502\) 0 0
\(503\) 265.960i 0.528748i 0.964420 + 0.264374i \(0.0851653\pi\)
−0.964420 + 0.264374i \(0.914835\pi\)
\(504\) 0 0
\(505\) −21.3376 −0.0422526
\(506\) 0 0
\(507\) 61.0992 + 35.2757i 0.120511 + 0.0695772i
\(508\) 0 0
\(509\) −328.983 + 189.939i −0.646333 + 0.373160i −0.787050 0.616890i \(-0.788393\pi\)
0.140717 + 0.990050i \(0.455059\pi\)
\(510\) 0 0
\(511\) 342.778 675.378i 0.670799 1.32168i
\(512\) 0 0
\(513\) −26.0809 45.1734i −0.0508399 0.0880573i
\(514\) 0 0
\(515\) 82.8545 143.508i 0.160883 0.278657i
\(516\) 0 0
\(517\) 415.693i 0.804049i
\(518\) 0 0
\(519\) −303.457 −0.584696
\(520\) 0 0
\(521\) 153.871 + 88.8376i 0.295338 + 0.170514i 0.640347 0.768086i \(-0.278791\pi\)
−0.345009 + 0.938600i \(0.612124\pi\)
\(522\) 0 0
\(523\) −503.405 + 290.641i −0.962534 + 0.555719i −0.896952 0.442128i \(-0.854224\pi\)
−0.0655817 + 0.997847i \(0.520890\pi\)
\(524\) 0 0
\(525\) 159.791 + 245.206i 0.304363 + 0.467059i
\(526\) 0 0
\(527\) 500.056 + 866.123i 0.948874 + 1.64350i
\(528\) 0 0
\(529\) 250.370 433.654i 0.473290 0.819762i
\(530\) 0 0
\(531\) 169.346i 0.318918i
\(532\) 0 0
\(533\) −598.678 −1.12322
\(534\) 0 0
\(535\) 97.4103 + 56.2398i 0.182075 + 0.105121i
\(536\) 0 0
\(537\) −481.147 + 277.791i −0.895991 + 0.517301i
\(538\) 0 0
\(539\) −288.236 + 652.940i −0.534762 + 1.21139i
\(540\) 0 0
\(541\) 277.646 + 480.897i 0.513209 + 0.888905i 0.999883 + 0.0153206i \(0.00487690\pi\)
−0.486673 + 0.873584i \(0.661790\pi\)
\(542\) 0 0
\(543\) 28.9468 50.1373i 0.0533090 0.0923338i
\(544\) 0 0
\(545\) 165.377i 0.303444i
\(546\) 0 0
\(547\) 598.458 1.09407 0.547036 0.837109i \(-0.315756\pi\)
0.547036 + 0.837109i \(0.315756\pi\)
\(548\) 0 0
\(549\) −100.969 58.2944i −0.183914 0.106183i
\(550\) 0 0
\(551\) −74.7295 + 43.1451i −0.135625 + 0.0783033i
\(552\) 0 0
\(553\) −235.933 + 153.748i −0.426642 + 0.278025i
\(554\) 0 0
\(555\) 30.3253 + 52.5250i 0.0546402 + 0.0946397i
\(556\) 0 0
\(557\) 122.186 211.632i 0.219364 0.379950i −0.735249 0.677797i \(-0.762935\pi\)
0.954614 + 0.297846i \(0.0962683\pi\)
\(558\) 0 0
\(559\) 214.491i 0.383705i
\(560\) 0 0
\(561\) 549.544 0.979580
\(562\) 0 0
\(563\) 583.333 + 336.787i 1.03611 + 0.598201i 0.918730 0.394886i \(-0.129216\pi\)
0.117384 + 0.993087i \(0.462549\pi\)
\(564\) 0 0
\(565\) 139.439 80.5050i 0.246794 0.142487i
\(566\) 0 0
\(567\) −56.1786 28.5126i −0.0990804 0.0502867i
\(568\) 0 0
\(569\) −413.759 716.651i −0.727168 1.25949i −0.958075 0.286516i \(-0.907503\pi\)
0.230907 0.972976i \(-0.425831\pi\)
\(570\) 0 0
\(571\) 164.966 285.729i 0.288907 0.500401i −0.684642 0.728879i \(-0.740042\pi\)
0.973549 + 0.228478i \(0.0733749\pi\)
\(572\) 0 0
\(573\) 470.883i 0.821785i
\(574\) 0 0
\(575\) −128.325 −0.223173
\(576\) 0 0
\(577\) 459.266 + 265.157i 0.795955 + 0.459545i 0.842055 0.539392i \(-0.181346\pi\)
−0.0460996 + 0.998937i \(0.514679\pi\)
\(578\) 0 0
\(579\) −131.630 + 75.9966i −0.227340 + 0.131255i
\(580\) 0 0
\(581\) 83.2118 4.49292i 0.143222 0.00773309i
\(582\) 0 0
\(583\) 602.087 + 1042.84i 1.03274 + 1.78876i
\(584\) 0 0
\(585\) 20.1512 34.9030i 0.0344466 0.0596632i
\(586\) 0 0
\(587\) 647.575i 1.10319i −0.834111 0.551597i \(-0.814019\pi\)
0.834111 0.551597i \(-0.185981\pi\)
\(588\) 0 0
\(589\) −460.909 −0.782528
\(590\) 0 0
\(591\) −343.321 198.216i −0.580915 0.335391i
\(592\) 0 0
\(593\) 199.413 115.131i 0.336278 0.194150i −0.322347 0.946622i \(-0.604472\pi\)
0.658625 + 0.752471i \(0.271138\pi\)
\(594\) 0 0
\(595\) 7.62590 + 141.236i 0.0128166 + 0.237372i
\(596\) 0 0
\(597\) 283.498 + 491.033i 0.474871 + 0.822501i
\(598\) 0 0
\(599\) −178.277 + 308.785i −0.297624 + 0.515500i −0.975592 0.219591i \(-0.929528\pi\)
0.677968 + 0.735092i \(0.262861\pi\)
\(600\) 0 0
\(601\) 124.839i 0.207720i 0.994592 + 0.103860i \(0.0331193\pi\)
−0.994592 + 0.103860i \(0.966881\pi\)
\(602\) 0 0
\(603\) −189.309 −0.313945
\(604\) 0 0
\(605\) 73.2390 + 42.2845i 0.121056 + 0.0698918i
\(606\) 0 0
\(607\) 533.565 308.054i 0.879020 0.507502i 0.00868458 0.999962i \(-0.497236\pi\)
0.870335 + 0.492460i \(0.163902\pi\)
\(608\) 0 0
\(609\) −47.1679 + 92.9352i −0.0774513 + 0.152603i
\(610\) 0 0
\(611\) −206.651 357.931i −0.338218 0.585811i
\(612\) 0 0
\(613\) −531.540 + 920.654i −0.867112 + 1.50188i −0.00217812 + 0.999998i \(0.500693\pi\)
−0.864934 + 0.501885i \(0.832640\pi\)
\(614\) 0 0
\(615\) 66.4199i 0.108000i
\(616\) 0 0
\(617\) 575.402 0.932580 0.466290 0.884632i \(-0.345590\pi\)
0.466290 + 0.884632i \(0.345590\pi\)
\(618\) 0 0
\(619\) −9.06057 5.23112i −0.0146374 0.00845093i 0.492663 0.870220i \(-0.336023\pi\)
−0.507301 + 0.861769i \(0.669357\pi\)
\(620\) 0 0
\(621\) 23.9218 13.8113i 0.0385214 0.0222404i
\(622\) 0 0
\(623\) −289.130 443.683i −0.464093 0.712171i
\(624\) 0 0
\(625\) −280.601 486.016i −0.448962 0.777625i
\(626\) 0 0
\(627\) −126.631 + 219.331i −0.201963 + 0.349810i
\(628\) 0 0
\(629\) 822.246i 1.30723i
\(630\) 0 0
\(631\) 432.829 0.685942 0.342971 0.939346i \(-0.388567\pi\)
0.342971 + 0.939346i \(0.388567\pi\)
\(632\) 0 0
\(633\) 226.955 + 131.033i 0.358539 + 0.207003i
\(634\) 0 0
\(635\) 65.8470 38.0168i 0.103696 0.0598690i
\(636\) 0 0
\(637\) −76.4080 705.500i −0.119950 1.10754i
\(638\) 0 0
\(639\) 137.269 + 237.757i 0.214818 + 0.372076i
\(640\) 0 0
\(641\) −514.252 + 890.710i −0.802264 + 1.38956i 0.115858 + 0.993266i \(0.463038\pi\)
−0.918122 + 0.396297i \(0.870295\pi\)
\(642\) 0 0
\(643\) 1139.29i 1.77183i −0.463846 0.885916i \(-0.653531\pi\)
0.463846 0.885916i \(-0.346469\pi\)
\(644\) 0 0
\(645\) −23.7965 −0.0368938
\(646\) 0 0
\(647\) −323.493 186.769i −0.499989 0.288669i 0.228720 0.973492i \(-0.426546\pi\)
−0.728709 + 0.684823i \(0.759879\pi\)
\(648\) 0 0
\(649\) 712.068 411.113i 1.09718 0.633456i
\(650\) 0 0
\(651\) −466.389 + 303.926i −0.716420 + 0.466861i
\(652\) 0 0
\(653\) −140.836 243.935i −0.215675 0.373560i 0.737806 0.675013i \(-0.235862\pi\)
−0.953481 + 0.301453i \(0.902528\pi\)
\(654\) 0 0
\(655\) 73.5276 127.353i 0.112256 0.194433i
\(656\) 0 0
\(657\) 324.594i 0.494055i
\(658\) 0 0
\(659\) −827.336 −1.25544 −0.627721 0.778438i \(-0.716012\pi\)
−0.627721 + 0.778438i \(0.716012\pi\)
\(660\) 0 0
\(661\) 377.510 + 217.955i 0.571119 + 0.329736i 0.757596 0.652724i \(-0.226374\pi\)
−0.186477 + 0.982459i \(0.559707\pi\)
\(662\) 0 0
\(663\) −473.182 + 273.192i −0.713698 + 0.412054i
\(664\) 0 0
\(665\) −58.1267 29.5013i −0.0874085 0.0443629i
\(666\) 0 0
\(667\) −22.8477 39.5734i −0.0342545 0.0593305i
\(668\) 0 0
\(669\) 74.5497 129.124i 0.111435 0.193010i
\(670\) 0 0
\(671\) 566.075i 0.843629i
\(672\) 0 0
\(673\) 283.719 0.421574 0.210787 0.977532i \(-0.432397\pi\)
0.210787 + 0.977532i \(0.432397\pi\)
\(674\) 0 0
\(675\) 108.628 + 62.7162i 0.160930 + 0.0929130i
\(676\) 0 0
\(677\) 17.7669 10.2577i 0.0262436 0.0151517i −0.486821 0.873502i \(-0.661844\pi\)
0.513064 + 0.858350i \(0.328510\pi\)
\(678\) 0 0
\(679\) −1070.79 + 57.8159i −1.57701 + 0.0851486i
\(680\) 0 0
\(681\) 216.852 + 375.598i 0.318431 + 0.551539i
\(682\) 0 0
\(683\) 293.050 507.577i 0.429063 0.743159i −0.567727 0.823217i \(-0.692177\pi\)
0.996790 + 0.0800579i \(0.0255105\pi\)
\(684\) 0 0
\(685\) 152.575i 0.222737i
\(686\) 0 0
\(687\) −222.430 −0.323770
\(688\) 0 0
\(689\) −1036.85 598.624i −1.50486 0.868830i
\(690\) 0 0
\(691\) 418.908 241.857i 0.606235 0.350010i −0.165256 0.986251i \(-0.552845\pi\)
0.771490 + 0.636241i \(0.219512\pi\)
\(692\) 0 0
\(693\) 16.4919 + 305.440i 0.0237978 + 0.440750i
\(694\) 0 0
\(695\) 33.5129 + 58.0461i 0.0482200 + 0.0835195i
\(696\) 0 0
\(697\) 450.230 779.820i 0.645953 1.11882i
\(698\) 0 0
\(699\) 334.817i 0.478995i
\(700\) 0 0
\(701\) 1298.30 1.85207 0.926036 0.377435i \(-0.123194\pi\)
0.926036 + 0.377435i \(0.123194\pi\)
\(702\) 0 0
\(703\) 328.170 + 189.469i 0.466813 + 0.269515i
\(704\) 0 0
\(705\) −39.7103 + 22.9268i −0.0563267 + 0.0325202i
\(706\) 0 0
\(707\) −72.8722 + 143.581i −0.103072 + 0.203084i
\(708\) 0 0
\(709\) −313.580 543.136i −0.442285 0.766059i 0.555574 0.831467i \(-0.312499\pi\)
−0.997859 + 0.0654077i \(0.979165\pi\)
\(710\) 0 0
\(711\) −60.3445 + 104.520i −0.0848727 + 0.147004i
\(712\) 0 0
\(713\) 244.077i 0.342324i
\(714\) 0 0
\(715\) −195.681 −0.273680
\(716\) 0 0
\(717\) −463.459 267.578i −0.646386 0.373191i
\(718\) 0 0
\(719\) −448.725 + 259.072i −0.624097 + 0.360322i −0.778462 0.627691i \(-0.784000\pi\)
0.154366 + 0.988014i \(0.450667\pi\)
\(720\) 0 0
\(721\) −682.703 1047.64i −0.946883 1.45304i
\(722\) 0 0
\(723\) −32.5677 56.4088i −0.0450452 0.0780205i
\(724\) 0 0
\(725\) 103.750 179.701i 0.143104 0.247863i
\(726\) 0 0
\(727\) 630.122i 0.866742i −0.901216 0.433371i \(-0.857324\pi\)
0.901216 0.433371i \(-0.142676\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 279.389 + 161.306i 0.382202 + 0.220664i
\(732\) 0 0
\(733\) 1128.34 651.450i 1.53935 0.888745i 0.540475 0.841360i \(-0.318245\pi\)
0.998877 0.0473848i \(-0.0150887\pi\)
\(734\) 0 0
\(735\) −78.2711 + 8.47703i −0.106491 + 0.0115334i
\(736\) 0 0
\(737\) 459.577 + 796.011i 0.623578 + 1.08007i
\(738\) 0 0
\(739\) 666.314 1154.09i 0.901643 1.56169i 0.0762820 0.997086i \(-0.475695\pi\)
0.825361 0.564605i \(-0.190972\pi\)
\(740\) 0 0
\(741\) 251.805i 0.339817i
\(742\) 0 0
\(743\) 1288.12 1.73368 0.866840 0.498586i \(-0.166147\pi\)
0.866840 + 0.498586i \(0.166147\pi\)
\(744\) 0 0
\(745\) −1.91085 1.10323i −0.00256489 0.00148084i
\(746\) 0 0
\(747\) 30.9294 17.8571i 0.0414048 0.0239051i
\(748\) 0 0
\(749\) 711.114 463.404i 0.949419 0.618697i
\(750\) 0 0
\(751\) −298.030 516.202i −0.396844 0.687353i 0.596491 0.802620i \(-0.296561\pi\)
−0.993335 + 0.115267i \(0.963228\pi\)
\(752\) 0 0
\(753\) −143.429 + 248.427i −0.190477 + 0.329916i
\(754\) 0 0
\(755\) 80.9566i 0.107227i
\(756\) 0 0
\(757\) 439.074 0.580019 0.290009 0.957024i \(-0.406342\pi\)
0.290009 + 0.957024i \(0.406342\pi\)
\(758\) 0 0
\(759\) −116.148 67.0580i −0.153027 0.0883504i
\(760\) 0 0
\(761\) 207.931 120.049i 0.273235 0.157752i −0.357122 0.934058i \(-0.616242\pi\)
0.630357 + 0.776306i \(0.282909\pi\)
\(762\) 0 0
\(763\) 1112.82 + 564.796i 1.45848 + 0.740231i
\(764\) 0 0
\(765\) 30.3090 + 52.4968i 0.0396197 + 0.0686233i
\(766\) 0 0
\(767\) −408.748 + 707.973i −0.532918 + 0.923042i
\(768\) 0 0
\(769\) 524.552i 0.682122i 0.940041 + 0.341061i \(0.110786\pi\)
−0.940041 + 0.341061i \(0.889214\pi\)
\(770\) 0 0
\(771\) 201.078 0.260801
\(772\) 0 0
\(773\) 713.035 + 411.671i 0.922425 + 0.532562i 0.884408 0.466715i \(-0.154563\pi\)
0.0380172 + 0.999277i \(0.487896\pi\)
\(774\) 0 0
\(775\) 959.851 554.171i 1.23852 0.715059i
\(776\) 0 0
\(777\) 457.009 24.6756i 0.588171 0.0317576i
\(778\) 0 0
\(779\) 207.491 + 359.386i 0.266356 + 0.461342i
\(780\) 0 0
\(781\) 666.483 1154.38i 0.853372 1.47808i
\(782\) 0 0
\(783\) 44.6656i 0.0570442i
\(784\) 0 0
\(785\) −130.572 −0.166333
\(786\) 0 0
\(787\) 615.173 + 355.170i 0.781668 + 0.451296i 0.837021 0.547171i \(-0.184295\pi\)
−0.0553531 + 0.998467i \(0.517628\pi\)
\(788\) 0 0
\(789\) 22.0801 12.7480i 0.0279850 0.0161571i
\(790\) 0 0
\(791\) −65.5067 1213.23i −0.0828151 1.53379i
\(792\) 0 0
\(793\) −281.410 487.416i −0.354867 0.614648i
\(794\) 0 0
\(795\) −66.4138 + 115.032i −0.0835394 + 0.144694i
\(796\) 0 0
\(797\) 30.1730i 0.0378582i −0.999821 0.0189291i \(-0.993974\pi\)
0.999821 0.0189291i \(-0.00602569\pi\)
\(798\) 0 0
\(799\) 621.640 0.778022
\(800\) 0 0
\(801\) −196.554 113.481i −0.245386 0.141674i
\(802\) 0 0
\(803\) −1364.86 + 788.002i −1.69970 + 0.981322i
\(804\) 0 0
\(805\) 15.6226 30.7813i 0.0194069 0.0382376i
\(806\) 0 0
\(807\) 141.670 + 245.380i 0.175552 + 0.304065i
\(808\) 0 0
\(809\) 339.811 588.569i 0.420038 0.727527i −0.575905 0.817517i \(-0.695350\pi\)
0.995943 + 0.0899899i \(0.0286835\pi\)
\(810\) 0 0
\(811\) 899.207i 1.10876i 0.832263 + 0.554382i \(0.187045\pi\)
−0.832263 + 0.554382i \(0.812955\pi\)
\(812\) 0 0
\(813\) 469.246 0.577178
\(814\) 0 0
\(815\) −159.060 91.8330i −0.195165 0.112679i
\(816\) 0 0
\(817\) −128.759 + 74.3388i −0.157599 + 0.0909900i
\(818\) 0 0
\(819\) −166.042 254.799i −0.202737 0.311109i
\(820\) 0 0
\(821\) 314.955 + 545.518i 0.383624 + 0.664456i 0.991577 0.129517i \(-0.0413427\pi\)
−0.607954 + 0.793973i \(0.708009\pi\)
\(822\) 0 0
\(823\) −770.412 + 1334.39i −0.936102 + 1.62138i −0.163446 + 0.986552i \(0.552261\pi\)
−0.772657 + 0.634824i \(0.781073\pi\)
\(824\) 0 0
\(825\) 609.014i 0.738198i
\(826\) 0 0
\(827\) 812.768 0.982791 0.491396 0.870936i \(-0.336487\pi\)
0.491396 + 0.870936i \(0.336487\pi\)
\(828\) 0 0
\(829\) −604.000 348.720i −0.728589 0.420651i 0.0893166 0.996003i \(-0.471532\pi\)
−0.817906 + 0.575352i \(0.804865\pi\)
\(830\) 0 0
\(831\) 303.610 175.289i 0.365355 0.210938i
\(832\) 0 0
\(833\) 976.425 + 431.037i 1.17218 + 0.517451i
\(834\) 0 0
\(835\) −2.67580 4.63462i −0.00320455 0.00555045i
\(836\) 0 0
\(837\) −119.288 + 206.613i −0.142519 + 0.246850i
\(838\) 0 0
\(839\) 731.636i 0.872034i −0.899938 0.436017i \(-0.856389\pi\)
0.899938 0.436017i \(-0.143611\pi\)
\(840\) 0 0
\(841\) −767.110 −0.912141
\(842\) 0 0
\(843\) −502.304 290.005i −0.595853 0.344016i
\(844\) 0 0
\(845\) 32.7229 18.8926i 0.0387254 0.0223581i
\(846\) 0 0
\(847\) 534.659 348.415i 0.631239 0.411352i
\(848\) 0 0
\(849\) −451.162 781.436i −0.531405 0.920420i
\(850\) 0 0
\(851\) −100.334 + 173.784i −0.117902 + 0.204212i
\(852\) 0 0
\(853\) 1525.90i 1.78886i 0.447207 + 0.894430i \(0.352419\pi\)
−0.447207 + 0.894430i \(0.647581\pi\)
\(854\) 0 0
\(855\) −27.9363 −0.0326740
\(856\) 0 0
\(857\) −853.233 492.614i −0.995605 0.574813i −0.0886598 0.996062i \(-0.528258\pi\)
−0.906945 + 0.421249i \(0.861592\pi\)
\(858\) 0 0
\(859\) 246.510 142.322i 0.286973 0.165684i −0.349603 0.936898i \(-0.613684\pi\)
0.636576 + 0.771214i \(0.280350\pi\)
\(860\) 0 0
\(861\) 446.940 + 226.838i 0.519094 + 0.263458i
\(862\) 0 0
\(863\) −514.903 891.839i −0.596644 1.03342i −0.993313 0.115455i \(-0.963167\pi\)
0.396669 0.917962i \(-0.370166\pi\)
\(864\) 0 0
\(865\) −81.2613 + 140.749i −0.0939437 + 0.162715i
\(866\) 0 0
\(867\) 321.241i 0.370520i
\(868\) 0 0
\(869\) 585.982 0.674318
\(870\) 0 0
\(871\) −791.433 456.934i −0.908648 0.524608i
\(872\) 0 0
\(873\) −398.006 + 229.789i −0.455906 + 0.263217i
\(874\) 0 0
\(875\) 318.621 17.2035i 0.364138 0.0196612i
\(876\) 0 0
\(877\) 254.000 + 439.941i 0.289624 + 0.501643i 0.973720 0.227749i \(-0.0731365\pi\)
−0.684096 + 0.729392i \(0.739803\pi\)
\(878\) 0 0
\(879\) 78.0875 135.252i 0.0888368 0.153870i
\(880\) 0 0
\(881\) 1681.72i 1.90888i −0.298402 0.954440i \(-0.596454\pi\)
0.298402 0.954440i \(-0.403546\pi\)
\(882\) 0 0
\(883\) −921.458 −1.04355 −0.521777 0.853082i \(-0.674731\pi\)
−0.521777 + 0.853082i \(0.674731\pi\)
\(884\) 0 0
\(885\) 78.5455 + 45.3482i 0.0887519 + 0.0512410i
\(886\) 0 0
\(887\) −514.831 + 297.238i −0.580419 + 0.335105i −0.761300 0.648400i \(-0.775438\pi\)
0.180881 + 0.983505i \(0.442105\pi\)
\(888\) 0 0
\(889\) −30.9342 572.921i −0.0347966 0.644455i
\(890\) 0 0
\(891\) 65.5467 + 113.530i 0.0735653 + 0.127419i
\(892\) 0 0
\(893\) −143.244 + 248.105i −0.160407 + 0.277833i
\(894\) 0 0
\(895\) 297.553i 0.332461i
\(896\) 0 0
\(897\) 133.345 0.148656
\(898\) 0 0
\(899\) 341.796 + 197.336i 0.380196 + 0.219506i
\(900\) 0 0
\(901\) 1559.50 900.377i 1.73085 0.999309i
\(902\) 0 0
\(903\) −81.2700 + 160.127i −0.0900000 + 0.177328i
\(904\) 0 0
\(905\) −15.5030 26.8520i −0.0171304 0.0296708i
\(906\) 0 0
\(907\) 575.946 997.568i 0.635002 1.09985i −0.351513 0.936183i \(-0.614333\pi\)
0.986515 0.163672i \(-0.0523339\pi\)
\(908\) 0 0
\(909\) 69.0064i 0.0759146i
\(910\) 0 0
\(911\) −1393.09 −1.52919 −0.764595 0.644511i \(-0.777061\pi\)
−0.764595 + 0.644511i \(0.777061\pi\)
\(912\) 0 0
\(913\) −150.172 86.7017i −0.164482 0.0949635i
\(914\) 0 0
\(915\) −54.0759 + 31.2208i −0.0590994 + 0.0341211i
\(916\) 0 0
\(917\) −605.851 929.706i −0.660688 1.01386i
\(918\) 0 0
\(919\) 166.446 + 288.292i 0.181116 + 0.313702i 0.942261 0.334880i \(-0.108696\pi\)
−0.761145 + 0.648582i \(0.775362\pi\)
\(920\) 0 0
\(921\) −47.7498 + 82.7051i −0.0518456 + 0.0897992i
\(922\) 0 0
\(923\) 1325.30i 1.43586i
\(924\) 0 0
\(925\) −911.226 −0.985109
\(926\) 0 0
\(927\) −464.110 267.954i −0.500658 0.289055i
\(928\) 0 0
\(929\) −543.880 + 314.009i −0.585447 + 0.338008i −0.763295 0.646050i \(-0.776420\pi\)
0.177848 + 0.984058i \(0.443086\pi\)
\(930\) 0 0
\(931\) −397.029 + 290.382i −0.426454 + 0.311903i
\(932\) 0 0
\(933\) −283.214 490.540i −0.303551 0.525767i
\(934\) 0 0
\(935\) 147.160 254.888i 0.157390 0.272608i
\(936\) 0 0
\(937\) 750.509i 0.800970i 0.916303 + 0.400485i \(0.131158\pi\)
−0.916303 + 0.400485i \(0.868842\pi\)
\(938\) 0 0
\(939\) −978.750 −1.04233
\(940\) 0 0
\(941\) 296.607 + 171.246i 0.315205 + 0.181983i 0.649253 0.760572i \(-0.275082\pi\)
−0.334049 + 0.942556i \(0.608415\pi\)
\(942\) 0 0
\(943\) −190.315 + 109.878i −0.201818 + 0.116520i
\(944\) 0 0
\(945\) −28.2684 + 18.4214i −0.0299137 + 0.0194935i
\(946\) 0 0
\(947\) −791.417 1370.78i −0.835710 1.44749i −0.893451 0.449161i \(-0.851723\pi\)
0.0577411 0.998332i \(-0.481610\pi\)
\(948\) 0 0
\(949\) 783.470 1357.01i 0.825574 1.42994i
\(950\) 0 0
\(951\) 658.804i 0.692749i
\(952\) 0 0
\(953\) −208.540 −0.218824 −0.109412 0.993996i \(-0.534897\pi\)
−0.109412 + 0.993996i \(0.534897\pi\)
\(954\) 0 0
\(955\) −218.404 126.095i −0.228695 0.132037i
\(956\) 0 0
\(957\) 187.811 108.433i 0.196250 0.113305i
\(958\) 0 0
\(959\) 1026.68 + 521.075i 1.07057 + 0.543352i
\(960\) 0 0
\(961\) 573.548 + 993.415i 0.596824 + 1.03373i
\(962\) 0 0
\(963\) 181.881 315.028i 0.188870 0.327132i
\(964\) 0 0
\(965\) 81.4030i 0.0843554i
\(966\) 0 0
\(967\) 777.868 0.804414 0.402207 0.915549i \(-0.368243\pi\)
0.402207 + 0.915549i \(0.368243\pi\)
\(968\) 0 0
\(969\) 327.993 + 189.367i 0.338486 + 0.195425i
\(970\) 0 0
\(971\) 860.430 496.770i 0.886128 0.511606i 0.0134541 0.999909i \(-0.495717\pi\)
0.872674 + 0.488303i \(0.162384\pi\)
\(972\) 0 0
\(973\) 505.046 27.2694i 0.519061 0.0280261i
\(974\) 0 0
\(975\) 302.755 + 524.388i 0.310518 + 0.537834i
\(976\) 0 0
\(977\) 273.883 474.380i 0.280331 0.485548i −0.691135 0.722726i \(-0.742889\pi\)
0.971466 + 0.237178i \(0.0762224\pi\)
\(978\) 0 0
\(979\) 1101.97i 1.12560i
\(980\) 0 0
\(981\) 534.834 0.545193
\(982\) 0 0
\(983\) −363.054 209.609i −0.369333 0.213234i 0.303834 0.952725i \(-0.401733\pi\)
−0.673167 + 0.739491i \(0.735066\pi\)
\(984\) 0 0
\(985\) −183.872 + 106.159i −0.186673 + 0.107775i
\(986\) 0 0
\(987\) 18.6554 + 345.511i 0.0189012 + 0.350061i
\(988\) 0 0
\(989\) −39.3665 68.1848i −0.0398044 0.0689432i
\(990\) 0 0
\(991\) −376.704 + 652.471i −0.380125 + 0.658396i −0.991080 0.133269i \(-0.957452\pi\)
0.610954 + 0.791666i \(0.290786\pi\)
\(992\) 0 0
\(993\) 84.8370i 0.0854351i
\(994\) 0 0
\(995\) 303.666 0.305192
\(996\) 0 0
\(997\) 1360.04 + 785.221i 1.36413 + 0.787584i 0.990171 0.139860i \(-0.0446652\pi\)
0.373963 + 0.927443i \(0.377999\pi\)
\(998\) 0 0
\(999\) 169.868 98.0731i 0.170038 0.0981712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.b.577.5 yes 16
4.3 odd 2 672.3.bh.d.577.5 yes 16
7.5 odd 6 inner 672.3.bh.b.481.5 16
28.19 even 6 672.3.bh.d.481.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.b.481.5 16 7.5 odd 6 inner
672.3.bh.b.577.5 yes 16 1.1 even 1 trivial
672.3.bh.d.481.5 yes 16 28.19 even 6
672.3.bh.d.577.5 yes 16 4.3 odd 2