Properties

Label 672.3.bh.a.577.1
Level $672$
Weight $3$
Character 672.577
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-24,0,0,0,-12,0,24,0,-12,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 76 x^{14} - 392 x^{13} + 1982 x^{12} - 7160 x^{11} + 23796 x^{10} - 61736 x^{9} + \cdots + 16807 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{18}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.1
Root \(0.500000 - 3.21278i\) of defining polynomial
Character \(\chi\) \(=\) 672.577
Dual form 672.3.bh.a.481.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-7.21243 + 4.16410i) q^{5} +(-5.15876 + 4.73151i) q^{7} +(1.50000 + 2.59808i) q^{9} +(-7.36661 + 12.7593i) q^{11} +8.49148i q^{13} +14.4249 q^{15} +(17.8626 + 10.3130i) q^{17} +(9.53028 - 5.50231i) q^{19} +(11.8357 - 2.62965i) q^{21} +(-15.4788 - 26.8101i) q^{23} +(22.1794 - 38.4158i) q^{25} -5.19615i q^{27} -47.0132 q^{29} +(-38.7720 - 22.3850i) q^{31} +(22.0998 - 12.7593i) q^{33} +(17.5047 - 55.6072i) q^{35} +(4.49322 + 7.78248i) q^{37} +(7.35384 - 12.7372i) q^{39} +60.5425i q^{41} -1.11577 q^{43} +(-21.6373 - 12.4923i) q^{45} +(66.1896 - 38.2146i) q^{47} +(4.22557 - 48.8175i) q^{49} +(-17.8626 - 30.9389i) q^{51} +(-52.4136 + 90.7831i) q^{53} -122.701i q^{55} -19.0606 q^{57} +(-42.3384 - 24.4441i) q^{59} +(88.9552 - 51.3583i) q^{61} +(-20.0310 - 6.30558i) q^{63} +(-35.3594 - 61.2442i) q^{65} +(10.2674 - 17.7837i) q^{67} +53.6203i q^{69} -8.79832 q^{71} +(17.1084 + 9.87756i) q^{73} +(-66.5382 + 38.4158i) q^{75} +(-22.3684 - 100.678i) q^{77} +(17.9401 + 31.0731i) q^{79} +(-4.50000 + 7.79423i) q^{81} +4.30830i q^{83} -171.777 q^{85} +(70.5198 + 40.7147i) q^{87} +(70.8903 - 40.9286i) q^{89} +(-40.1776 - 43.8055i) q^{91} +(38.7720 + 67.1551i) q^{93} +(-45.8243 + 79.3700i) q^{95} -62.7407i q^{97} -44.1997 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 12 q^{7} + 24 q^{9} - 12 q^{11} - 48 q^{17} - 60 q^{19} + 24 q^{21} - 48 q^{23} + 52 q^{25} - 64 q^{29} - 60 q^{31} + 36 q^{33} - 4 q^{37} + 12 q^{39} + 72 q^{43} + 120 q^{47} - 8 q^{49}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) 0 0
\(5\) −7.21243 + 4.16410i −1.44249 + 0.832819i −0.998015 0.0629746i \(-0.979941\pi\)
−0.444470 + 0.895794i \(0.646608\pi\)
\(6\) 0 0
\(7\) −5.15876 + 4.73151i −0.736965 + 0.675930i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −7.36661 + 12.7593i −0.669692 + 1.15994i 0.308298 + 0.951290i \(0.400240\pi\)
−0.977990 + 0.208651i \(0.933093\pi\)
\(12\) 0 0
\(13\) 8.49148i 0.653191i 0.945164 + 0.326596i \(0.105901\pi\)
−0.945164 + 0.326596i \(0.894099\pi\)
\(14\) 0 0
\(15\) 14.4249 0.961657
\(16\) 0 0
\(17\) 17.8626 + 10.3130i 1.05074 + 0.606646i 0.922857 0.385143i \(-0.125848\pi\)
0.127885 + 0.991789i \(0.459181\pi\)
\(18\) 0 0
\(19\) 9.53028 5.50231i 0.501594 0.289595i −0.227778 0.973713i \(-0.573146\pi\)
0.729371 + 0.684118i \(0.239813\pi\)
\(20\) 0 0
\(21\) 11.8357 2.62965i 0.563607 0.125222i
\(22\) 0 0
\(23\) −15.4788 26.8101i −0.672993 1.16566i −0.977051 0.213004i \(-0.931675\pi\)
0.304058 0.952653i \(-0.401658\pi\)
\(24\) 0 0
\(25\) 22.1794 38.4158i 0.887175 1.53663i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −47.0132 −1.62115 −0.810573 0.585638i \(-0.800844\pi\)
−0.810573 + 0.585638i \(0.800844\pi\)
\(30\) 0 0
\(31\) −38.7720 22.3850i −1.25071 0.722097i −0.279459 0.960158i \(-0.590155\pi\)
−0.971250 + 0.238060i \(0.923488\pi\)
\(32\) 0 0
\(33\) 22.0998 12.7593i 0.669692 0.386647i
\(34\) 0 0
\(35\) 17.5047 55.6072i 0.500134 1.58878i
\(36\) 0 0
\(37\) 4.49322 + 7.78248i 0.121438 + 0.210337i 0.920335 0.391131i \(-0.127916\pi\)
−0.798897 + 0.601468i \(0.794583\pi\)
\(38\) 0 0
\(39\) 7.35384 12.7372i 0.188560 0.326596i
\(40\) 0 0
\(41\) 60.5425i 1.47665i 0.674447 + 0.738323i \(0.264382\pi\)
−0.674447 + 0.738323i \(0.735618\pi\)
\(42\) 0 0
\(43\) −1.11577 −0.0259481 −0.0129740 0.999916i \(-0.504130\pi\)
−0.0129740 + 0.999916i \(0.504130\pi\)
\(44\) 0 0
\(45\) −21.6373 12.4923i −0.480828 0.277606i
\(46\) 0 0
\(47\) 66.1896 38.2146i 1.40829 0.813076i 0.413065 0.910701i \(-0.364458\pi\)
0.995223 + 0.0976256i \(0.0311248\pi\)
\(48\) 0 0
\(49\) 4.22557 48.8175i 0.0862362 0.996275i
\(50\) 0 0
\(51\) −17.8626 30.9389i −0.350247 0.606646i
\(52\) 0 0
\(53\) −52.4136 + 90.7831i −0.988936 + 1.71289i −0.366002 + 0.930614i \(0.619274\pi\)
−0.622934 + 0.782274i \(0.714060\pi\)
\(54\) 0 0
\(55\) 122.701i 2.23093i
\(56\) 0 0
\(57\) −19.0606 −0.334396
\(58\) 0 0
\(59\) −42.3384 24.4441i −0.717600 0.414307i 0.0962686 0.995355i \(-0.469309\pi\)
−0.813869 + 0.581049i \(0.802643\pi\)
\(60\) 0 0
\(61\) 88.9552 51.3583i 1.45828 0.841939i 0.459354 0.888253i \(-0.348081\pi\)
0.998927 + 0.0463140i \(0.0147475\pi\)
\(62\) 0 0
\(63\) −20.0310 6.30558i −0.317952 0.100089i
\(64\) 0 0
\(65\) −35.3594 61.2442i −0.543990 0.942218i
\(66\) 0 0
\(67\) 10.2674 17.7837i 0.153245 0.265428i −0.779174 0.626808i \(-0.784361\pi\)
0.932419 + 0.361380i \(0.117694\pi\)
\(68\) 0 0
\(69\) 53.6203i 0.777105i
\(70\) 0 0
\(71\) −8.79832 −0.123920 −0.0619600 0.998079i \(-0.519735\pi\)
−0.0619600 + 0.998079i \(0.519735\pi\)
\(72\) 0 0
\(73\) 17.1084 + 9.87756i 0.234362 + 0.135309i 0.612583 0.790406i \(-0.290131\pi\)
−0.378221 + 0.925715i \(0.623464\pi\)
\(74\) 0 0
\(75\) −66.5382 + 38.4158i −0.887175 + 0.512211i
\(76\) 0 0
\(77\) −22.3684 100.678i −0.290499 1.30750i
\(78\) 0 0
\(79\) 17.9401 + 31.0731i 0.227089 + 0.393330i 0.956944 0.290272i \(-0.0937457\pi\)
−0.729855 + 0.683602i \(0.760412\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 4.30830i 0.0519072i 0.999663 + 0.0259536i \(0.00826221\pi\)
−0.999663 + 0.0259536i \(0.991738\pi\)
\(84\) 0 0
\(85\) −171.777 −2.02090
\(86\) 0 0
\(87\) 70.5198 + 40.7147i 0.810573 + 0.467984i
\(88\) 0 0
\(89\) 70.8903 40.9286i 0.796521 0.459871i −0.0457323 0.998954i \(-0.514562\pi\)
0.842253 + 0.539082i \(0.181229\pi\)
\(90\) 0 0
\(91\) −40.1776 43.8055i −0.441512 0.481379i
\(92\) 0 0
\(93\) 38.7720 + 67.1551i 0.416903 + 0.722097i
\(94\) 0 0
\(95\) −45.8243 + 79.3700i −0.482361 + 0.835474i
\(96\) 0 0
\(97\) 62.7407i 0.646812i −0.946260 0.323406i \(-0.895172\pi\)
0.946260 0.323406i \(-0.104828\pi\)
\(98\) 0 0
\(99\) −44.1997 −0.446461
\(100\) 0 0
\(101\) 113.394 + 65.4682i 1.12272 + 0.648200i 0.942093 0.335353i \(-0.108855\pi\)
0.180622 + 0.983553i \(0.442189\pi\)
\(102\) 0 0
\(103\) −6.51425 + 3.76101i −0.0632452 + 0.0365146i −0.531289 0.847191i \(-0.678292\pi\)
0.468044 + 0.883705i \(0.344959\pi\)
\(104\) 0 0
\(105\) −74.4143 + 68.2514i −0.708708 + 0.650013i
\(106\) 0 0
\(107\) −38.8373 67.2683i −0.362966 0.628675i 0.625482 0.780239i \(-0.284903\pi\)
−0.988448 + 0.151564i \(0.951569\pi\)
\(108\) 0 0
\(109\) 50.7763 87.9471i 0.465837 0.806854i −0.533402 0.845862i \(-0.679087\pi\)
0.999239 + 0.0390082i \(0.0124199\pi\)
\(110\) 0 0
\(111\) 15.5650i 0.140225i
\(112\) 0 0
\(113\) 6.89019 0.0609751 0.0304876 0.999535i \(-0.490294\pi\)
0.0304876 + 0.999535i \(0.490294\pi\)
\(114\) 0 0
\(115\) 223.280 + 128.911i 1.94156 + 1.12096i
\(116\) 0 0
\(117\) −22.0615 + 12.7372i −0.188560 + 0.108865i
\(118\) 0 0
\(119\) −140.945 + 31.3150i −1.18441 + 0.263151i
\(120\) 0 0
\(121\) −48.0339 83.1971i −0.396974 0.687580i
\(122\) 0 0
\(123\) 52.4313 90.8138i 0.426271 0.738323i
\(124\) 0 0
\(125\) 161.224i 1.28979i
\(126\) 0 0
\(127\) −104.898 −0.825970 −0.412985 0.910738i \(-0.635514\pi\)
−0.412985 + 0.910738i \(0.635514\pi\)
\(128\) 0 0
\(129\) 1.67365 + 0.966282i 0.0129740 + 0.00749056i
\(130\) 0 0
\(131\) 20.8066 12.0127i 0.158829 0.0917000i −0.418479 0.908227i \(-0.637437\pi\)
0.577308 + 0.816527i \(0.304103\pi\)
\(132\) 0 0
\(133\) −23.1302 + 73.4777i −0.173911 + 0.552464i
\(134\) 0 0
\(135\) 21.6373 + 37.4769i 0.160276 + 0.277606i
\(136\) 0 0
\(137\) 40.8638 70.7782i 0.298276 0.516630i −0.677465 0.735555i \(-0.736922\pi\)
0.975742 + 0.218925i \(0.0702550\pi\)
\(138\) 0 0
\(139\) 57.8997i 0.416544i −0.978071 0.208272i \(-0.933216\pi\)
0.978071 0.208272i \(-0.0667840\pi\)
\(140\) 0 0
\(141\) −132.379 −0.938859
\(142\) 0 0
\(143\) −108.346 62.5535i −0.757663 0.437437i
\(144\) 0 0
\(145\) 339.079 195.768i 2.33848 1.35012i
\(146\) 0 0
\(147\) −48.6155 + 69.5667i −0.330718 + 0.473243i
\(148\) 0 0
\(149\) −1.29307 2.23966i −0.00867830 0.0150313i 0.861654 0.507497i \(-0.169429\pi\)
−0.870332 + 0.492466i \(0.836096\pi\)
\(150\) 0 0
\(151\) 72.2937 125.216i 0.478766 0.829247i −0.520938 0.853595i \(-0.674418\pi\)
0.999704 + 0.0243477i \(0.00775089\pi\)
\(152\) 0 0
\(153\) 61.8779i 0.404431i
\(154\) 0 0
\(155\) 372.853 2.40551
\(156\) 0 0
\(157\) −108.354 62.5579i −0.690150 0.398458i 0.113518 0.993536i \(-0.463788\pi\)
−0.803668 + 0.595078i \(0.797121\pi\)
\(158\) 0 0
\(159\) 157.241 90.7831i 0.988936 0.570963i
\(160\) 0 0
\(161\) 206.704 + 65.0687i 1.28388 + 0.404153i
\(162\) 0 0
\(163\) −107.403 186.028i −0.658915 1.14128i −0.980897 0.194529i \(-0.937682\pi\)
0.321981 0.946746i \(-0.395651\pi\)
\(164\) 0 0
\(165\) −106.262 + 184.052i −0.644014 + 1.11546i
\(166\) 0 0
\(167\) 15.6536i 0.0937341i −0.998901 0.0468670i \(-0.985076\pi\)
0.998901 0.0468670i \(-0.0149237\pi\)
\(168\) 0 0
\(169\) 96.8947 0.573341
\(170\) 0 0
\(171\) 28.5908 + 16.5069i 0.167198 + 0.0965317i
\(172\) 0 0
\(173\) −71.2931 + 41.1611i −0.412099 + 0.237925i −0.691691 0.722193i \(-0.743134\pi\)
0.279592 + 0.960119i \(0.409801\pi\)
\(174\) 0 0
\(175\) 67.3469 + 303.120i 0.384839 + 1.73211i
\(176\) 0 0
\(177\) 42.3384 + 73.3323i 0.239200 + 0.414307i
\(178\) 0 0
\(179\) −149.734 + 259.347i −0.836504 + 1.44887i 0.0562959 + 0.998414i \(0.482071\pi\)
−0.892800 + 0.450453i \(0.851262\pi\)
\(180\) 0 0
\(181\) 144.379i 0.797672i 0.917022 + 0.398836i \(0.130586\pi\)
−0.917022 + 0.398836i \(0.869414\pi\)
\(182\) 0 0
\(183\) −177.910 −0.972188
\(184\) 0 0
\(185\) −64.8140 37.4204i −0.350346 0.202272i
\(186\) 0 0
\(187\) −263.174 + 151.943i −1.40735 + 0.812531i
\(188\) 0 0
\(189\) 24.5857 + 26.8057i 0.130083 + 0.141829i
\(190\) 0 0
\(191\) 151.589 + 262.559i 0.793658 + 1.37466i 0.923688 + 0.383146i \(0.125159\pi\)
−0.130030 + 0.991510i \(0.541507\pi\)
\(192\) 0 0
\(193\) −95.3663 + 165.179i −0.494126 + 0.855851i −0.999977 0.00676941i \(-0.997845\pi\)
0.505851 + 0.862621i \(0.331179\pi\)
\(194\) 0 0
\(195\) 122.488i 0.628146i
\(196\) 0 0
\(197\) −155.533 −0.789509 −0.394754 0.918787i \(-0.629170\pi\)
−0.394754 + 0.918787i \(0.629170\pi\)
\(198\) 0 0
\(199\) 198.410 + 114.552i 0.997037 + 0.575640i 0.907370 0.420332i \(-0.138086\pi\)
0.0896670 + 0.995972i \(0.471420\pi\)
\(200\) 0 0
\(201\) −30.8022 + 17.7837i −0.153245 + 0.0884759i
\(202\) 0 0
\(203\) 242.530 222.444i 1.19473 1.09578i
\(204\) 0 0
\(205\) −252.105 436.658i −1.22978 2.13004i
\(206\) 0 0
\(207\) 46.4365 80.4304i 0.224331 0.388553i
\(208\) 0 0
\(209\) 162.133i 0.775758i
\(210\) 0 0
\(211\) −35.4502 −0.168011 −0.0840053 0.996465i \(-0.526771\pi\)
−0.0840053 + 0.996465i \(0.526771\pi\)
\(212\) 0 0
\(213\) 13.1975 + 7.61957i 0.0619600 + 0.0357726i
\(214\) 0 0
\(215\) 8.04738 4.64616i 0.0374297 0.0216100i
\(216\) 0 0
\(217\) 305.930 67.9713i 1.40982 0.313232i
\(218\) 0 0
\(219\) −17.1084 29.6327i −0.0781207 0.135309i
\(220\) 0 0
\(221\) −87.5725 + 151.680i −0.396256 + 0.686335i
\(222\) 0 0
\(223\) 246.335i 1.10464i 0.833631 + 0.552322i \(0.186258\pi\)
−0.833631 + 0.552322i \(0.813742\pi\)
\(224\) 0 0
\(225\) 133.076 0.591450
\(226\) 0 0
\(227\) 54.0164 + 31.1864i 0.237958 + 0.137385i 0.614238 0.789121i \(-0.289464\pi\)
−0.376280 + 0.926506i \(0.622797\pi\)
\(228\) 0 0
\(229\) 176.412 101.851i 0.770356 0.444765i −0.0626456 0.998036i \(-0.519954\pi\)
0.833002 + 0.553271i \(0.186620\pi\)
\(230\) 0 0
\(231\) −53.6367 + 170.388i −0.232193 + 0.737610i
\(232\) 0 0
\(233\) −174.464 302.181i −0.748774 1.29691i −0.948411 0.317044i \(-0.897310\pi\)
0.199637 0.979870i \(-0.436024\pi\)
\(234\) 0 0
\(235\) −318.258 + 551.239i −1.35429 + 2.34570i
\(236\) 0 0
\(237\) 62.1462i 0.262220i
\(238\) 0 0
\(239\) −137.867 −0.576850 −0.288425 0.957503i \(-0.593132\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(240\) 0 0
\(241\) −231.221 133.496i −0.959425 0.553924i −0.0634289 0.997986i \(-0.520204\pi\)
−0.895996 + 0.444062i \(0.853537\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) 172.804 + 369.688i 0.705322 + 1.50893i
\(246\) 0 0
\(247\) 46.7228 + 80.9262i 0.189161 + 0.327636i
\(248\) 0 0
\(249\) 3.73109 6.46244i 0.0149843 0.0259536i
\(250\) 0 0
\(251\) 175.586i 0.699548i 0.936834 + 0.349774i \(0.113742\pi\)
−0.936834 + 0.349774i \(0.886258\pi\)
\(252\) 0 0
\(253\) 456.106 1.80279
\(254\) 0 0
\(255\) 257.665 + 148.763i 1.01045 + 0.583385i
\(256\) 0 0
\(257\) −222.197 + 128.285i −0.864579 + 0.499165i −0.865543 0.500835i \(-0.833026\pi\)
0.000964281 1.00000i \(0.499693\pi\)
\(258\) 0 0
\(259\) −60.0024 18.8882i −0.231669 0.0729275i
\(260\) 0 0
\(261\) −70.5198 122.144i −0.270191 0.467984i
\(262\) 0 0
\(263\) −224.162 + 388.259i −0.852326 + 1.47627i 0.0267784 + 0.999641i \(0.491475\pi\)
−0.879104 + 0.476630i \(0.841858\pi\)
\(264\) 0 0
\(265\) 873.021i 3.29442i
\(266\) 0 0
\(267\) −141.781 −0.531014
\(268\) 0 0
\(269\) −291.914 168.537i −1.08518 0.626530i −0.152892 0.988243i \(-0.548859\pi\)
−0.932290 + 0.361713i \(0.882192\pi\)
\(270\) 0 0
\(271\) 148.371 85.6621i 0.547495 0.316096i −0.200616 0.979670i \(-0.564294\pi\)
0.748111 + 0.663574i \(0.230961\pi\)
\(272\) 0 0
\(273\) 22.3297 + 100.503i 0.0817936 + 0.368143i
\(274\) 0 0
\(275\) 326.774 + 565.989i 1.18827 + 2.05814i
\(276\) 0 0
\(277\) 48.6768 84.3106i 0.175728 0.304370i −0.764685 0.644405i \(-0.777105\pi\)
0.940413 + 0.340034i \(0.110439\pi\)
\(278\) 0 0
\(279\) 134.310i 0.481398i
\(280\) 0 0
\(281\) 76.4885 0.272201 0.136101 0.990695i \(-0.456543\pi\)
0.136101 + 0.990695i \(0.456543\pi\)
\(282\) 0 0
\(283\) −189.018 109.129i −0.667906 0.385616i 0.127376 0.991854i \(-0.459344\pi\)
−0.795283 + 0.606238i \(0.792678\pi\)
\(284\) 0 0
\(285\) 137.473 79.3700i 0.482361 0.278491i
\(286\) 0 0
\(287\) −286.458 312.324i −0.998110 1.08824i
\(288\) 0 0
\(289\) 68.2151 + 118.152i 0.236038 + 0.408830i
\(290\) 0 0
\(291\) −54.3351 + 94.1111i −0.186718 + 0.323406i
\(292\) 0 0
\(293\) 85.1258i 0.290532i −0.989393 0.145266i \(-0.953596\pi\)
0.989393 0.145266i \(-0.0464038\pi\)
\(294\) 0 0
\(295\) 407.150 1.38017
\(296\) 0 0
\(297\) 66.2995 + 38.2780i 0.223231 + 0.128882i
\(298\) 0 0
\(299\) 227.658 131.438i 0.761397 0.439593i
\(300\) 0 0
\(301\) 5.75597 5.27926i 0.0191228 0.0175391i
\(302\) 0 0
\(303\) −113.394 196.405i −0.374238 0.648200i
\(304\) 0 0
\(305\) −427.722 + 740.836i −1.40237 + 2.42897i
\(306\) 0 0
\(307\) 153.436i 0.499793i −0.968273 0.249896i \(-0.919603\pi\)
0.968273 0.249896i \(-0.0803965\pi\)
\(308\) 0 0
\(309\) 13.0285 0.0421635
\(310\) 0 0
\(311\) −492.222 284.184i −1.58271 0.913776i −0.994462 0.105093i \(-0.966486\pi\)
−0.588244 0.808683i \(-0.700181\pi\)
\(312\) 0 0
\(313\) −332.299 + 191.853i −1.06166 + 0.612949i −0.925891 0.377792i \(-0.876684\pi\)
−0.135768 + 0.990741i \(0.543350\pi\)
\(314\) 0 0
\(315\) 170.729 37.9324i 0.541996 0.120420i
\(316\) 0 0
\(317\) −7.71140 13.3565i −0.0243262 0.0421342i 0.853606 0.520919i \(-0.174411\pi\)
−0.877932 + 0.478785i \(0.841077\pi\)
\(318\) 0 0
\(319\) 346.328 599.858i 1.08567 1.88043i
\(320\) 0 0
\(321\) 134.537i 0.419117i
\(322\) 0 0
\(323\) 226.981 0.702727
\(324\) 0 0
\(325\) 326.207 + 188.336i 1.00371 + 0.579495i
\(326\) 0 0
\(327\) −152.329 + 87.9471i −0.465837 + 0.268951i
\(328\) 0 0
\(329\) −160.643 + 510.316i −0.488277 + 1.55111i
\(330\) 0 0
\(331\) −108.876 188.579i −0.328930 0.569724i 0.653370 0.757039i \(-0.273355\pi\)
−0.982300 + 0.187315i \(0.940021\pi\)
\(332\) 0 0
\(333\) −13.4797 + 23.3475i −0.0404795 + 0.0701125i
\(334\) 0 0
\(335\) 171.018i 0.510501i
\(336\) 0 0
\(337\) −421.037 −1.24937 −0.624683 0.780878i \(-0.714772\pi\)
−0.624683 + 0.780878i \(0.714772\pi\)
\(338\) 0 0
\(339\) −10.3353 5.96708i −0.0304876 0.0176020i
\(340\) 0 0
\(341\) 571.236 329.803i 1.67518 0.967165i
\(342\) 0 0
\(343\) 209.182 + 271.831i 0.609859 + 0.792510i
\(344\) 0 0
\(345\) −223.280 386.732i −0.647188 1.12096i
\(346\) 0 0
\(347\) 146.946 254.519i 0.423477 0.733484i −0.572800 0.819695i \(-0.694143\pi\)
0.996277 + 0.0862116i \(0.0274761\pi\)
\(348\) 0 0
\(349\) 142.089i 0.407132i 0.979061 + 0.203566i \(0.0652532\pi\)
−0.979061 + 0.203566i \(0.934747\pi\)
\(350\) 0 0
\(351\) 44.1230 0.125707
\(352\) 0 0
\(353\) 36.2907 + 20.9524i 0.102806 + 0.0593553i 0.550522 0.834821i \(-0.314429\pi\)
−0.447715 + 0.894176i \(0.647762\pi\)
\(354\) 0 0
\(355\) 63.4572 36.6370i 0.178753 0.103203i
\(356\) 0 0
\(357\) 238.537 + 75.0894i 0.668170 + 0.210334i
\(358\) 0 0
\(359\) −110.578 191.527i −0.308017 0.533501i 0.669911 0.742441i \(-0.266332\pi\)
−0.977929 + 0.208940i \(0.932999\pi\)
\(360\) 0 0
\(361\) −119.949 + 207.758i −0.332269 + 0.575507i
\(362\) 0 0
\(363\) 166.394i 0.458386i
\(364\) 0 0
\(365\) −164.524 −0.450752
\(366\) 0 0
\(367\) −58.9333 34.0252i −0.160581 0.0927117i 0.417556 0.908651i \(-0.362887\pi\)
−0.578137 + 0.815940i \(0.696220\pi\)
\(368\) 0 0
\(369\) −157.294 + 90.8138i −0.426271 + 0.246108i
\(370\) 0 0
\(371\) −159.152 716.324i −0.428981 1.93079i
\(372\) 0 0
\(373\) −357.885 619.875i −0.959478 1.66186i −0.723771 0.690040i \(-0.757593\pi\)
−0.235707 0.971824i \(-0.575740\pi\)
\(374\) 0 0
\(375\) 139.624 241.835i 0.372330 0.644894i
\(376\) 0 0
\(377\) 399.212i 1.05892i
\(378\) 0 0
\(379\) 386.176 1.01893 0.509467 0.860490i \(-0.329843\pi\)
0.509467 + 0.860490i \(0.329843\pi\)
\(380\) 0 0
\(381\) 157.347 + 90.8445i 0.412985 + 0.238437i
\(382\) 0 0
\(383\) −308.271 + 177.980i −0.804886 + 0.464701i −0.845177 0.534487i \(-0.820505\pi\)
0.0402911 + 0.999188i \(0.487171\pi\)
\(384\) 0 0
\(385\) 580.562 + 632.985i 1.50795 + 1.64412i
\(386\) 0 0
\(387\) −1.67365 2.89885i −0.00432468 0.00749056i
\(388\) 0 0
\(389\) 1.73326 3.00210i 0.00445569 0.00771748i −0.863789 0.503854i \(-0.831915\pi\)
0.868245 + 0.496136i \(0.165248\pi\)
\(390\) 0 0
\(391\) 638.532i 1.63307i
\(392\) 0 0
\(393\) −41.6132 −0.105886
\(394\) 0 0
\(395\) −258.783 149.408i −0.655146 0.378249i
\(396\) 0 0
\(397\) 434.505 250.861i 1.09447 0.631893i 0.159707 0.987164i \(-0.448945\pi\)
0.934763 + 0.355272i \(0.115612\pi\)
\(398\) 0 0
\(399\) 98.3288 90.1853i 0.246438 0.226028i
\(400\) 0 0
\(401\) −128.281 222.189i −0.319903 0.554088i 0.660565 0.750769i \(-0.270317\pi\)
−0.980468 + 0.196681i \(0.936984\pi\)
\(402\) 0 0
\(403\) 190.082 329.232i 0.471668 0.816952i
\(404\) 0 0
\(405\) 74.9537i 0.185071i
\(406\) 0 0
\(407\) −132.399 −0.325305
\(408\) 0 0
\(409\) −59.6169 34.4198i −0.145763 0.0841561i 0.425345 0.905031i \(-0.360153\pi\)
−0.571108 + 0.820875i \(0.693486\pi\)
\(410\) 0 0
\(411\) −122.592 + 70.7782i −0.298276 + 0.172210i
\(412\) 0 0
\(413\) 334.071 74.2236i 0.808889 0.179718i
\(414\) 0 0
\(415\) −17.9402 31.0733i −0.0432293 0.0748753i
\(416\) 0 0
\(417\) −50.1426 + 86.8495i −0.120246 + 0.208272i
\(418\) 0 0
\(419\) 494.854i 1.18103i 0.807025 + 0.590517i \(0.201076\pi\)
−0.807025 + 0.590517i \(0.798924\pi\)
\(420\) 0 0
\(421\) 405.990 0.964347 0.482173 0.876076i \(-0.339847\pi\)
0.482173 + 0.876076i \(0.339847\pi\)
\(422\) 0 0
\(423\) 198.569 + 114.644i 0.469430 + 0.271025i
\(424\) 0 0
\(425\) 792.363 457.471i 1.86438 1.07640i
\(426\) 0 0
\(427\) −215.896 + 685.837i −0.505611 + 1.60618i
\(428\) 0 0
\(429\) 108.346 + 187.660i 0.252554 + 0.437437i
\(430\) 0 0
\(431\) 91.4270 158.356i 0.212128 0.367416i −0.740253 0.672329i \(-0.765294\pi\)
0.952380 + 0.304913i \(0.0986274\pi\)
\(432\) 0 0
\(433\) 731.022i 1.68827i 0.536129 + 0.844136i \(0.319886\pi\)
−0.536129 + 0.844136i \(0.680114\pi\)
\(434\) 0 0
\(435\) −678.159 −1.55899
\(436\) 0 0
\(437\) −295.035 170.339i −0.675138 0.389791i
\(438\) 0 0
\(439\) −568.087 + 327.985i −1.29405 + 0.747119i −0.979369 0.202080i \(-0.935230\pi\)
−0.314678 + 0.949198i \(0.601897\pi\)
\(440\) 0 0
\(441\) 133.170 62.2478i 0.301972 0.141152i
\(442\) 0 0
\(443\) −206.680 357.980i −0.466545 0.808080i 0.532724 0.846289i \(-0.321168\pi\)
−0.999270 + 0.0382085i \(0.987835\pi\)
\(444\) 0 0
\(445\) −340.861 + 590.388i −0.765980 + 1.32672i
\(446\) 0 0
\(447\) 4.47932i 0.0100208i
\(448\) 0 0
\(449\) 372.607 0.829860 0.414930 0.909853i \(-0.363806\pi\)
0.414930 + 0.909853i \(0.363806\pi\)
\(450\) 0 0
\(451\) −772.483 445.993i −1.71282 0.988898i
\(452\) 0 0
\(453\) −216.881 + 125.216i −0.478766 + 0.276416i
\(454\) 0 0
\(455\) 472.188 + 148.641i 1.03778 + 0.326683i
\(456\) 0 0
\(457\) −13.3793 23.1737i −0.0292764 0.0507082i 0.851016 0.525140i \(-0.175987\pi\)
−0.880292 + 0.474432i \(0.842654\pi\)
\(458\) 0 0
\(459\) 53.5878 92.8168i 0.116749 0.202215i
\(460\) 0 0
\(461\) 679.215i 1.47335i −0.676246 0.736676i \(-0.736394\pi\)
0.676246 0.736676i \(-0.263606\pi\)
\(462\) 0 0
\(463\) −761.698 −1.64514 −0.822568 0.568666i \(-0.807460\pi\)
−0.822568 + 0.568666i \(0.807460\pi\)
\(464\) 0 0
\(465\) −559.280 322.901i −1.20275 0.694410i
\(466\) 0 0
\(467\) 650.561 375.602i 1.39306 0.804286i 0.399412 0.916772i \(-0.369214\pi\)
0.993653 + 0.112485i \(0.0358811\pi\)
\(468\) 0 0
\(469\) 31.1766 + 140.322i 0.0664746 + 0.299194i
\(470\) 0 0
\(471\) 108.354 + 187.674i 0.230050 + 0.398458i
\(472\) 0 0
\(473\) 8.21941 14.2364i 0.0173772 0.0300982i
\(474\) 0 0
\(475\) 488.151i 1.02769i
\(476\) 0 0
\(477\) −314.482 −0.659291
\(478\) 0 0
\(479\) 703.994 + 406.451i 1.46972 + 0.848541i 0.999423 0.0339692i \(-0.0108148\pi\)
0.470293 + 0.882510i \(0.344148\pi\)
\(480\) 0 0
\(481\) −66.0848 + 38.1541i −0.137391 + 0.0793225i
\(482\) 0 0
\(483\) −253.705 276.614i −0.525269 0.572700i
\(484\) 0 0
\(485\) 261.258 + 452.513i 0.538677 + 0.933016i
\(486\) 0 0
\(487\) 67.8036 117.439i 0.139227 0.241149i −0.787977 0.615705i \(-0.788872\pi\)
0.927204 + 0.374556i \(0.122205\pi\)
\(488\) 0 0
\(489\) 372.056i 0.760850i
\(490\) 0 0
\(491\) 157.798 0.321380 0.160690 0.987005i \(-0.448628\pi\)
0.160690 + 0.987005i \(0.448628\pi\)
\(492\) 0 0
\(493\) −839.779 484.846i −1.70340 0.983461i
\(494\) 0 0
\(495\) 318.787 184.052i 0.644014 0.371821i
\(496\) 0 0
\(497\) 45.3884 41.6294i 0.0913247 0.0837613i
\(498\) 0 0
\(499\) 178.980 + 310.002i 0.358677 + 0.621247i 0.987740 0.156107i \(-0.0498946\pi\)
−0.629063 + 0.777354i \(0.716561\pi\)
\(500\) 0 0
\(501\) −13.5564 + 23.4804i −0.0270587 + 0.0468670i
\(502\) 0 0
\(503\) 423.704i 0.842353i −0.906979 0.421176i \(-0.861617\pi\)
0.906979 0.421176i \(-0.138383\pi\)
\(504\) 0 0
\(505\) −1090.46 −2.15933
\(506\) 0 0
\(507\) −145.342 83.9133i −0.286671 0.165509i
\(508\) 0 0
\(509\) 716.114 413.449i 1.40690 0.812277i 0.411816 0.911267i \(-0.364895\pi\)
0.995088 + 0.0989903i \(0.0315613\pi\)
\(510\) 0 0
\(511\) −134.994 + 29.9928i −0.264176 + 0.0586944i
\(512\) 0 0
\(513\) −28.5908 49.5208i −0.0557326 0.0965317i
\(514\) 0 0
\(515\) 31.3224 54.2520i 0.0608202 0.105344i
\(516\) 0 0
\(517\) 1126.05i 2.17804i
\(518\) 0 0
\(519\) 142.586 0.274733
\(520\) 0 0
\(521\) −86.7574 50.0894i −0.166521 0.0961409i 0.414423 0.910084i \(-0.363983\pi\)
−0.580944 + 0.813943i \(0.697317\pi\)
\(522\) 0 0
\(523\) −72.5028 + 41.8595i −0.138629 + 0.0800373i −0.567710 0.823228i \(-0.692171\pi\)
0.429082 + 0.903266i \(0.358837\pi\)
\(524\) 0 0
\(525\) 161.489 513.004i 0.307599 0.977151i
\(526\) 0 0
\(527\) −461.712 799.709i −0.876115 1.51748i
\(528\) 0 0
\(529\) −214.689 + 371.852i −0.405839 + 0.702933i
\(530\) 0 0
\(531\) 146.665i 0.276204i
\(532\) 0 0
\(533\) −514.096 −0.964532
\(534\) 0 0
\(535\) 560.223 + 323.445i 1.04715 + 0.604570i
\(536\) 0 0
\(537\) 449.203 259.347i 0.836504 0.482956i
\(538\) 0 0
\(539\) 591.751 + 413.535i 1.09787 + 0.767226i
\(540\) 0 0
\(541\) −138.738 240.301i −0.256447 0.444179i 0.708841 0.705369i \(-0.249218\pi\)
−0.965287 + 0.261190i \(0.915885\pi\)
\(542\) 0 0
\(543\) 125.036 216.568i 0.230268 0.398836i
\(544\) 0 0
\(545\) 845.749i 1.55183i
\(546\) 0 0
\(547\) 477.875 0.873629 0.436815 0.899552i \(-0.356107\pi\)
0.436815 + 0.899552i \(0.356107\pi\)
\(548\) 0 0
\(549\) 266.865 + 154.075i 0.486094 + 0.280646i
\(550\) 0 0
\(551\) −448.049 + 258.681i −0.813156 + 0.469476i
\(552\) 0 0
\(553\) −239.571 75.4150i −0.433221 0.136374i
\(554\) 0 0
\(555\) 64.8140 + 112.261i 0.116782 + 0.202272i
\(556\) 0 0
\(557\) 383.386 664.045i 0.688306 1.19218i −0.284080 0.958801i \(-0.591688\pi\)
0.972386 0.233380i \(-0.0749786\pi\)
\(558\) 0 0
\(559\) 9.47451i 0.0169490i
\(560\) 0 0
\(561\) 526.347 0.938231
\(562\) 0 0
\(563\) −850.985 491.316i −1.51152 0.872675i −0.999909 0.0134564i \(-0.995717\pi\)
−0.511608 0.859219i \(-0.670950\pi\)
\(564\) 0 0
\(565\) −49.6950 + 28.6914i −0.0879557 + 0.0507813i
\(566\) 0 0
\(567\) −13.6641 61.5003i −0.0240989 0.108466i
\(568\) 0 0
\(569\) −420.773 728.800i −0.739495 1.28084i −0.952723 0.303841i \(-0.901731\pi\)
0.213227 0.977003i \(-0.431602\pi\)
\(570\) 0 0
\(571\) −100.734 + 174.477i −0.176417 + 0.305564i −0.940651 0.339376i \(-0.889784\pi\)
0.764234 + 0.644940i \(0.223117\pi\)
\(572\) 0 0
\(573\) 525.118i 0.916437i
\(574\) 0 0
\(575\) −1373.24 −2.38825
\(576\) 0 0
\(577\) 837.034 + 483.262i 1.45067 + 0.837542i 0.998519 0.0544018i \(-0.0173252\pi\)
0.452146 + 0.891944i \(0.350659\pi\)
\(578\) 0 0
\(579\) 286.099 165.179i 0.494126 0.285284i
\(580\) 0 0
\(581\) −20.3848 22.2255i −0.0350856 0.0382538i
\(582\) 0 0
\(583\) −772.222 1337.53i −1.32457 2.29421i
\(584\) 0 0
\(585\) 106.078 183.733i 0.181330 0.314073i
\(586\) 0 0
\(587\) 824.078i 1.40388i −0.712236 0.701940i \(-0.752317\pi\)
0.712236 0.701940i \(-0.247683\pi\)
\(588\) 0 0
\(589\) −492.677 −0.836464
\(590\) 0 0
\(591\) 233.300 + 134.696i 0.394754 + 0.227911i
\(592\) 0 0
\(593\) −29.3431 + 16.9413i −0.0494825 + 0.0285687i −0.524537 0.851388i \(-0.675762\pi\)
0.475055 + 0.879956i \(0.342428\pi\)
\(594\) 0 0
\(595\) 886.156 812.765i 1.48934 1.36599i
\(596\) 0 0
\(597\) −198.410 343.657i −0.332346 0.575640i
\(598\) 0 0
\(599\) 529.215 916.627i 0.883497 1.53026i 0.0360702 0.999349i \(-0.488516\pi\)
0.847427 0.530912i \(-0.178151\pi\)
\(600\) 0 0
\(601\) 162.013i 0.269572i 0.990875 + 0.134786i \(0.0430347\pi\)
−0.990875 + 0.134786i \(0.956965\pi\)
\(602\) 0 0
\(603\) 61.6044 0.102163
\(604\) 0 0
\(605\) 692.882 + 400.035i 1.14526 + 0.661216i
\(606\) 0 0
\(607\) −205.690 + 118.755i −0.338863 + 0.195643i −0.659769 0.751468i \(-0.729346\pi\)
0.320906 + 0.947111i \(0.396013\pi\)
\(608\) 0 0
\(609\) −556.437 + 123.629i −0.913689 + 0.203002i
\(610\) 0 0
\(611\) 324.498 + 562.048i 0.531094 + 0.919882i
\(612\) 0 0
\(613\) −20.5512 + 35.5957i −0.0335255 + 0.0580680i −0.882301 0.470685i \(-0.844007\pi\)
0.848776 + 0.528753i \(0.177340\pi\)
\(614\) 0 0
\(615\) 873.317i 1.42003i
\(616\) 0 0
\(617\) −707.669 −1.14695 −0.573476 0.819222i \(-0.694405\pi\)
−0.573476 + 0.819222i \(0.694405\pi\)
\(618\) 0 0
\(619\) −689.396 398.023i −1.11373 0.643010i −0.173934 0.984757i \(-0.555648\pi\)
−0.939792 + 0.341748i \(0.888981\pi\)
\(620\) 0 0
\(621\) −139.310 + 80.4304i −0.224331 + 0.129518i
\(622\) 0 0
\(623\) −172.052 + 546.559i −0.276167 + 0.877302i
\(624\) 0 0
\(625\) −116.866 202.417i −0.186985 0.323868i
\(626\) 0 0
\(627\) 140.412 243.200i 0.223942 0.387879i
\(628\) 0 0
\(629\) 185.354i 0.294680i
\(630\) 0 0
\(631\) 925.600 1.46688 0.733439 0.679755i \(-0.237914\pi\)
0.733439 + 0.679755i \(0.237914\pi\)
\(632\) 0 0
\(633\) 53.1753 + 30.7008i 0.0840053 + 0.0485005i
\(634\) 0 0
\(635\) 756.570 436.806i 1.19145 0.687884i
\(636\) 0 0
\(637\) 414.533 + 35.8814i 0.650758 + 0.0563287i
\(638\) 0 0
\(639\) −13.1975 22.8587i −0.0206533 0.0357726i
\(640\) 0 0
\(641\) 315.870 547.102i 0.492776 0.853514i −0.507189 0.861835i \(-0.669315\pi\)
0.999965 + 0.00832113i \(0.00264873\pi\)
\(642\) 0 0
\(643\) 270.185i 0.420194i 0.977681 + 0.210097i \(0.0673780\pi\)
−0.977681 + 0.210097i \(0.932622\pi\)
\(644\) 0 0
\(645\) −16.0948 −0.0249531
\(646\) 0 0
\(647\) 556.635 + 321.373i 0.860332 + 0.496713i 0.864124 0.503280i \(-0.167873\pi\)
−0.00379117 + 0.999993i \(0.501207\pi\)
\(648\) 0 0
\(649\) 623.781 360.140i 0.961142 0.554915i
\(650\) 0 0
\(651\) −517.760 162.987i −0.795331 0.250363i
\(652\) 0 0
\(653\) −575.070 996.050i −0.880658 1.52534i −0.850611 0.525796i \(-0.823767\pi\)
−0.0300475 0.999548i \(-0.509566\pi\)
\(654\) 0 0
\(655\) −100.044 + 173.281i −0.152739 + 0.264552i
\(656\) 0 0
\(657\) 59.2653i 0.0902060i
\(658\) 0 0
\(659\) −350.787 −0.532303 −0.266151 0.963931i \(-0.585752\pi\)
−0.266151 + 0.963931i \(0.585752\pi\)
\(660\) 0 0
\(661\) 1061.60 + 612.918i 1.60606 + 0.927258i 0.990240 + 0.139370i \(0.0445078\pi\)
0.615818 + 0.787888i \(0.288826\pi\)
\(662\) 0 0
\(663\) 262.717 151.680i 0.396256 0.228778i
\(664\) 0 0
\(665\) −139.144 626.269i −0.209239 0.941757i
\(666\) 0 0
\(667\) 727.710 + 1260.43i 1.09102 + 1.88970i
\(668\) 0 0
\(669\) 213.333 369.503i 0.318883 0.552322i
\(670\) 0 0
\(671\) 1513.35i 2.25536i
\(672\) 0 0
\(673\) −885.582 −1.31587 −0.657936 0.753074i \(-0.728570\pi\)
−0.657936 + 0.753074i \(0.728570\pi\)
\(674\) 0 0
\(675\) −199.614 115.247i −0.295725 0.170737i
\(676\) 0 0
\(677\) 627.726 362.418i 0.927218 0.535329i 0.0412871 0.999147i \(-0.486854\pi\)
0.885931 + 0.463818i \(0.153521\pi\)
\(678\) 0 0
\(679\) 296.859 + 323.664i 0.437200 + 0.476678i
\(680\) 0 0
\(681\) −54.0164 93.5591i −0.0793192 0.137385i
\(682\) 0 0
\(683\) −454.674 + 787.518i −0.665701 + 1.15303i 0.313393 + 0.949623i \(0.398534\pi\)
−0.979095 + 0.203405i \(0.934799\pi\)
\(684\) 0 0
\(685\) 680.644i 0.993640i
\(686\) 0 0
\(687\) −352.823 −0.513571
\(688\) 0 0
\(689\) −770.883 445.070i −1.11884 0.645964i
\(690\) 0 0
\(691\) −595.946 + 344.070i −0.862440 + 0.497930i −0.864829 0.502067i \(-0.832573\pi\)
0.00238851 + 0.999997i \(0.499240\pi\)
\(692\) 0 0
\(693\) 228.015 209.131i 0.329026 0.301777i
\(694\) 0 0
\(695\) 241.100 + 417.597i 0.346906 + 0.600859i
\(696\) 0 0
\(697\) −624.374 + 1081.45i −0.895801 + 1.55157i
\(698\) 0 0
\(699\) 604.362i 0.864609i
\(700\) 0 0
\(701\) −689.466 −0.983546 −0.491773 0.870723i \(-0.663651\pi\)
−0.491773 + 0.870723i \(0.663651\pi\)
\(702\) 0 0
\(703\) 85.6433 + 49.4462i 0.121825 + 0.0703359i
\(704\) 0 0
\(705\) 954.775 551.239i 1.35429 0.781900i
\(706\) 0 0
\(707\) −894.737 + 198.792i −1.26554 + 0.281176i
\(708\) 0 0
\(709\) 334.179 + 578.814i 0.471338 + 0.816381i 0.999462 0.0327858i \(-0.0104379\pi\)
−0.528125 + 0.849167i \(0.677105\pi\)
\(710\) 0 0
\(711\) −53.8202 + 93.2193i −0.0756965 + 0.131110i
\(712\) 0 0
\(713\) 1385.98i 1.94387i
\(714\) 0 0
\(715\) 1041.91 1.45722
\(716\) 0 0
\(717\) 206.801 + 119.396i 0.288425 + 0.166522i
\(718\) 0 0
\(719\) 164.703 95.0912i 0.229072 0.132255i −0.381072 0.924545i \(-0.624445\pi\)
0.610144 + 0.792291i \(0.291112\pi\)
\(720\) 0 0
\(721\) 15.8102 50.2244i 0.0219282 0.0696594i
\(722\) 0 0
\(723\) 231.221 + 400.487i 0.319808 + 0.553924i
\(724\) 0 0
\(725\) −1042.72 + 1806.05i −1.43824 + 2.49111i
\(726\) 0 0
\(727\) 95.5969i 0.131495i 0.997836 + 0.0657475i \(0.0209432\pi\)
−0.997836 + 0.0657475i \(0.979057\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −19.9305 11.5069i −0.0272647 0.0157413i
\(732\) 0 0
\(733\) 497.529 287.249i 0.678758 0.391881i −0.120629 0.992698i \(-0.538491\pi\)
0.799387 + 0.600817i \(0.205158\pi\)
\(734\) 0 0
\(735\) 60.9532 704.185i 0.0829296 0.958074i
\(736\) 0 0
\(737\) 151.272 + 262.011i 0.205254 + 0.355510i
\(738\) 0 0
\(739\) −442.421 + 766.296i −0.598676 + 1.03694i 0.394341 + 0.918964i \(0.370973\pi\)
−0.993017 + 0.117973i \(0.962360\pi\)
\(740\) 0 0
\(741\) 161.852i 0.218424i
\(742\) 0 0
\(743\) −245.958 −0.331033 −0.165517 0.986207i \(-0.552929\pi\)
−0.165517 + 0.986207i \(0.552929\pi\)
\(744\) 0 0
\(745\) 18.6523 + 10.7689i 0.0250366 + 0.0144549i
\(746\) 0 0
\(747\) −11.1933 + 6.46244i −0.0149843 + 0.00865120i
\(748\) 0 0
\(749\) 518.633 + 163.261i 0.692434 + 0.217972i
\(750\) 0 0
\(751\) −7.33995 12.7132i −0.00977357 0.0169283i 0.861097 0.508440i \(-0.169778\pi\)
−0.870871 + 0.491512i \(0.836444\pi\)
\(752\) 0 0
\(753\) 152.062 263.380i 0.201942 0.349774i
\(754\) 0 0
\(755\) 1204.15i 1.59490i
\(756\) 0 0
\(757\) 41.6269 0.0549893 0.0274947 0.999622i \(-0.491247\pi\)
0.0274947 + 0.999622i \(0.491247\pi\)
\(758\) 0 0
\(759\) −684.159 395.000i −0.901396 0.520421i
\(760\) 0 0
\(761\) −626.101 + 361.479i −0.822734 + 0.475006i −0.851358 0.524584i \(-0.824221\pi\)
0.0286243 + 0.999590i \(0.490887\pi\)
\(762\) 0 0
\(763\) 154.180 + 693.946i 0.202071 + 0.909497i
\(764\) 0 0
\(765\) −257.665 446.290i −0.336817 0.583385i
\(766\) 0 0
\(767\) 207.567 359.516i 0.270621 0.468730i
\(768\) 0 0
\(769\) 298.436i 0.388083i −0.980993 0.194042i \(-0.937840\pi\)
0.980993 0.194042i \(-0.0621597\pi\)
\(770\) 0 0
\(771\) 444.393 0.576386
\(772\) 0 0
\(773\) 53.9583 + 31.1529i 0.0698038 + 0.0403013i 0.534496 0.845171i \(-0.320502\pi\)
−0.464692 + 0.885472i \(0.653835\pi\)
\(774\) 0 0
\(775\) −1719.88 + 992.972i −2.21920 + 1.28125i
\(776\) 0 0
\(777\) 73.6458 + 80.2959i 0.0947823 + 0.103341i
\(778\) 0 0
\(779\) 333.124 + 576.987i 0.427630 + 0.740676i
\(780\) 0 0
\(781\) 64.8138 112.261i 0.0829882 0.143740i
\(782\) 0 0
\(783\) 244.288i 0.311990i
\(784\) 0 0
\(785\) 1041.99 1.32737
\(786\) 0 0
\(787\) −276.770 159.793i −0.351678 0.203041i 0.313746 0.949507i \(-0.398416\pi\)
−0.665424 + 0.746466i \(0.731749\pi\)
\(788\) 0 0
\(789\) 672.485 388.259i 0.852326 0.492090i
\(790\) 0 0
\(791\) −35.5448 + 32.6010i −0.0449366 + 0.0412150i
\(792\) 0 0
\(793\) 436.108 + 755.361i 0.549947 + 0.952536i
\(794\) 0 0
\(795\) −756.059 + 1309.53i −0.951017 + 1.64721i
\(796\) 0 0
\(797\) 267.732i 0.335924i 0.985793 + 0.167962i \(0.0537186\pi\)
−0.985793 + 0.167962i \(0.946281\pi\)
\(798\) 0 0
\(799\) 1576.42 1.97300
\(800\) 0 0
\(801\) 212.671 + 122.786i 0.265507 + 0.153290i
\(802\) 0 0
\(803\) −252.062 + 145.528i −0.313901 + 0.181231i
\(804\) 0 0
\(805\) −1761.79 + 391.433i −2.18856 + 0.486252i
\(806\) 0 0
\(807\) 291.914 + 505.610i 0.361727 + 0.626530i
\(808\) 0 0
\(809\) 280.552 485.930i 0.346788 0.600655i −0.638889 0.769299i \(-0.720606\pi\)
0.985677 + 0.168644i \(0.0539390\pi\)
\(810\) 0 0
\(811\) 1190.74i 1.46824i −0.679018 0.734121i \(-0.737594\pi\)
0.679018 0.734121i \(-0.262406\pi\)
\(812\) 0 0
\(813\) −296.742 −0.364997
\(814\) 0 0
\(815\) 1549.28 + 894.475i 1.90095 + 1.09751i
\(816\) 0 0
\(817\) −10.6336 + 6.13929i −0.0130154 + 0.00751443i
\(818\) 0 0
\(819\) 53.5437 170.093i 0.0653769 0.207683i
\(820\) 0 0
\(821\) 307.564 + 532.716i 0.374621 + 0.648862i 0.990270 0.139158i \(-0.0444396\pi\)
−0.615649 + 0.788020i \(0.711106\pi\)
\(822\) 0 0
\(823\) −635.998 + 1101.58i −0.772780 + 1.33849i 0.163254 + 0.986584i \(0.447801\pi\)
−0.936034 + 0.351910i \(0.885532\pi\)
\(824\) 0 0
\(825\) 1131.98i 1.37209i
\(826\) 0 0
\(827\) 598.318 0.723480 0.361740 0.932279i \(-0.382183\pi\)
0.361740 + 0.932279i \(0.382183\pi\)
\(828\) 0 0
\(829\) −1264.54 730.085i −1.52538 0.880681i −0.999547 0.0300958i \(-0.990419\pi\)
−0.525837 0.850585i \(-0.676248\pi\)
\(830\) 0 0
\(831\) −146.030 + 84.3106i −0.175728 + 0.101457i
\(832\) 0 0
\(833\) 578.933 828.429i 0.694998 0.994512i
\(834\) 0 0
\(835\) 65.1831 + 112.900i 0.0780635 + 0.135210i
\(836\) 0 0
\(837\) −116.316 + 201.465i −0.138968 + 0.240699i
\(838\) 0 0
\(839\) 189.331i 0.225663i −0.993614 0.112832i \(-0.964008\pi\)
0.993614 0.112832i \(-0.0359921\pi\)
\(840\) 0 0
\(841\) 1369.24 1.62811
\(842\) 0 0
\(843\) −114.733 66.2410i −0.136101 0.0785777i
\(844\) 0 0
\(845\) −698.846 + 403.479i −0.827036 + 0.477490i
\(846\) 0 0
\(847\) 641.444 + 201.921i 0.757312 + 0.238395i
\(848\) 0 0
\(849\) 189.018 + 327.388i 0.222635 + 0.385616i
\(850\) 0 0
\(851\) 139.100 240.928i 0.163454 0.283111i
\(852\) 0 0
\(853\) 426.767i 0.500313i 0.968205 + 0.250157i \(0.0804821\pi\)
−0.968205 + 0.250157i \(0.919518\pi\)
\(854\) 0 0
\(855\) −274.946 −0.321574
\(856\) 0 0
\(857\) 764.302 + 441.270i 0.891834 + 0.514900i 0.874542 0.484950i \(-0.161162\pi\)
0.0172919 + 0.999850i \(0.494496\pi\)
\(858\) 0 0
\(859\) 346.399 199.994i 0.403259 0.232822i −0.284630 0.958637i \(-0.591871\pi\)
0.687889 + 0.725816i \(0.258538\pi\)
\(860\) 0 0
\(861\) 159.206 + 716.566i 0.184908 + 0.832248i
\(862\) 0 0
\(863\) −469.793 813.706i −0.544372 0.942880i −0.998646 0.0520183i \(-0.983435\pi\)
0.454274 0.890862i \(-0.349899\pi\)
\(864\) 0 0
\(865\) 342.797 593.743i 0.396298 0.686408i
\(866\) 0 0
\(867\) 236.304i 0.272554i
\(868\) 0 0
\(869\) −528.630 −0.608320
\(870\) 0 0
\(871\) 151.010 + 87.1855i 0.173375 + 0.100098i
\(872\) 0 0
\(873\) 163.005 94.1111i 0.186718 0.107802i
\(874\) 0 0
\(875\) −762.831 831.713i −0.871807 0.950529i
\(876\) 0 0
\(877\) 162.256 + 281.036i 0.185013 + 0.320451i 0.943581 0.331142i \(-0.107434\pi\)
−0.758568 + 0.651594i \(0.774101\pi\)
\(878\) 0 0
\(879\) −73.7211 + 127.689i −0.0838693 + 0.145266i
\(880\) 0 0
\(881\) 810.382i 0.919844i −0.887959 0.459922i \(-0.847877\pi\)
0.887959 0.459922i \(-0.152123\pi\)
\(882\) 0 0
\(883\) −225.207 −0.255048 −0.127524 0.991835i \(-0.540703\pi\)
−0.127524 + 0.991835i \(0.540703\pi\)
\(884\) 0 0
\(885\) −610.725 352.602i −0.690085 0.398421i
\(886\) 0 0
\(887\) −111.660 + 64.4668i −0.125885 + 0.0726796i −0.561620 0.827395i \(-0.689822\pi\)
0.435735 + 0.900075i \(0.356488\pi\)
\(888\) 0 0
\(889\) 541.144 496.327i 0.608711 0.558298i
\(890\) 0 0
\(891\) −66.2995 114.834i −0.0744102 0.128882i
\(892\) 0 0
\(893\) 420.537 728.391i 0.470926 0.815667i
\(894\) 0 0
\(895\) 2494.03i 2.78663i
\(896\) 0 0
\(897\) −455.316 −0.507598
\(898\) 0 0
\(899\) 1822.80 + 1052.39i 2.02758 + 1.17063i
\(900\) 0 0
\(901\) −1872.49 + 1081.08i −2.07823 + 1.19987i
\(902\) 0 0
\(903\) −13.2059 + 2.93408i −0.0146245 + 0.00324926i
\(904\) 0 0
\(905\) −601.206 1041.32i −0.664316 1.15063i
\(906\) 0 0
\(907\) −656.138 + 1136.46i −0.723415 + 1.25299i 0.236208 + 0.971703i \(0.424095\pi\)
−0.959623 + 0.281289i \(0.909238\pi\)
\(908\) 0 0
\(909\) 392.809i 0.432133i
\(910\) 0 0
\(911\) −1496.33 −1.64251 −0.821256 0.570559i \(-0.806727\pi\)
−0.821256 + 0.570559i \(0.806727\pi\)
\(912\) 0 0
\(913\) −54.9710 31.7375i −0.0602092 0.0347618i
\(914\) 0 0
\(915\) 1283.16 740.836i 1.40237 0.809656i
\(916\) 0 0
\(917\) −50.4980 + 160.417i −0.0550687 + 0.174937i
\(918\) 0 0
\(919\) 897.082 + 1553.79i 0.976150 + 1.69074i 0.676086 + 0.736822i \(0.263675\pi\)
0.300064 + 0.953919i \(0.402992\pi\)
\(920\) 0 0
\(921\) −132.880 + 230.154i −0.144278 + 0.249896i
\(922\) 0 0
\(923\) 74.7108i 0.0809434i
\(924\) 0 0
\(925\) 398.627 0.430949
\(926\) 0 0
\(927\) −19.5428 11.2830i −0.0210817 0.0121715i
\(928\) 0 0
\(929\) 192.764 111.292i 0.207496 0.119798i −0.392651 0.919688i \(-0.628442\pi\)
0.600147 + 0.799890i \(0.295109\pi\)
\(930\) 0 0
\(931\) −228.338 488.494i −0.245261 0.524699i
\(932\) 0 0
\(933\) 492.222 + 852.553i 0.527569 + 0.913776i
\(934\) 0 0
\(935\) 1265.41 2191.76i 1.35338 2.34413i
\(936\) 0 0
\(937\) 276.806i 0.295418i −0.989031 0.147709i \(-0.952810\pi\)
0.989031 0.147709i \(-0.0471898\pi\)
\(938\) 0 0
\(939\) 664.598 0.707772
\(940\) 0 0
\(941\) −1025.60 592.133i −1.08991 0.629259i −0.156356 0.987701i \(-0.549975\pi\)
−0.933552 + 0.358442i \(0.883308\pi\)
\(942\) 0 0
\(943\) 1623.15 937.127i 1.72126 0.993772i
\(944\) 0 0
\(945\) −288.944 90.9570i −0.305761 0.0962508i
\(946\) 0 0
\(947\) 23.0435 + 39.9124i 0.0243331 + 0.0421462i 0.877936 0.478779i \(-0.158920\pi\)
−0.853602 + 0.520925i \(0.825587\pi\)
\(948\) 0 0
\(949\) −83.8751 + 145.276i −0.0883826 + 0.153083i
\(950\) 0 0
\(951\) 26.7131i 0.0280894i
\(952\) 0 0
\(953\) 245.731 0.257850 0.128925 0.991654i \(-0.458847\pi\)
0.128925 + 0.991654i \(0.458847\pi\)
\(954\) 0 0
\(955\) −2186.64 1262.46i −2.28968 1.32195i
\(956\) 0 0
\(957\) −1038.98 + 599.858i −1.08567 + 0.626811i
\(958\) 0 0
\(959\) 124.082 + 558.476i 0.129386 + 0.582352i
\(960\) 0 0
\(961\) 521.678 + 903.573i 0.542849 + 0.940242i
\(962\) 0 0
\(963\) 116.512 201.805i 0.120989 0.209558i
\(964\) 0 0
\(965\) 1588.46i 1.64607i
\(966\) 0 0
\(967\) −199.613 −0.206425 −0.103213 0.994659i \(-0.532912\pi\)
−0.103213 + 0.994659i \(0.532912\pi\)
\(968\) 0 0
\(969\) −340.471 196.571i −0.351363 0.202860i
\(970\) 0 0
\(971\) −1001.62 + 578.285i −1.03153 + 0.595556i −0.917424 0.397912i \(-0.869735\pi\)
−0.114110 + 0.993468i \(0.536402\pi\)
\(972\) 0 0
\(973\) 273.953 + 298.690i 0.281555 + 0.306979i
\(974\) 0 0
\(975\) −326.207 565.008i −0.334572 0.579495i
\(976\) 0 0
\(977\) 551.486 955.202i 0.564469 0.977689i −0.432630 0.901572i \(-0.642414\pi\)
0.997099 0.0761175i \(-0.0242524\pi\)
\(978\) 0 0
\(979\) 1206.02i 1.23189i
\(980\) 0 0
\(981\) 304.658 0.310558
\(982\) 0 0
\(983\) 425.583 + 245.710i 0.432943 + 0.249960i 0.700600 0.713555i \(-0.252916\pi\)
−0.267657 + 0.963514i \(0.586249\pi\)
\(984\) 0 0
\(985\) 1121.77 647.655i 1.13885 0.657518i
\(986\) 0 0
\(987\) 682.912 626.354i 0.691907 0.634603i
\(988\) 0 0
\(989\) 17.2708 + 29.9138i 0.0174629 + 0.0302466i
\(990\) 0 0
\(991\) −401.403 + 695.251i −0.405049 + 0.701565i −0.994327 0.106365i \(-0.966079\pi\)
0.589279 + 0.807930i \(0.299412\pi\)
\(992\) 0 0
\(993\) 377.157i 0.379816i
\(994\) 0 0
\(995\) −1908.03 −1.91762
\(996\) 0 0
\(997\) −425.562 245.698i −0.426842 0.246437i 0.271158 0.962535i \(-0.412593\pi\)
−0.698000 + 0.716097i \(0.745927\pi\)
\(998\) 0 0
\(999\) 40.4390 23.3475i 0.0404795 0.0233708i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.a.577.1 yes 16
4.3 odd 2 672.3.bh.c.577.1 yes 16
7.5 odd 6 inner 672.3.bh.a.481.1 16
28.19 even 6 672.3.bh.c.481.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.a.481.1 16 7.5 odd 6 inner
672.3.bh.a.577.1 yes 16 1.1 even 1 trivial
672.3.bh.c.481.1 yes 16 28.19 even 6
672.3.bh.c.577.1 yes 16 4.3 odd 2