Properties

Label 672.3.bh.a.481.6
Level $672$
Weight $3$
Character 672.481
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(481,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.481"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-24,0,0,0,-12,0,24,0,-12,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 76 x^{14} - 392 x^{13} + 1982 x^{12} - 7160 x^{11} + 23796 x^{10} - 61736 x^{9} + \cdots + 16807 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{18}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 481.6
Root \(0.500000 - 3.06833i\) of defining polynomial
Character \(\chi\) \(=\) 672.481
Dual form 672.3.bh.a.577.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{3} +(3.60807 + 2.08312i) q^{5} +(3.89168 + 5.81849i) q^{7} +(1.50000 - 2.59808i) q^{9} +(3.55841 + 6.16335i) q^{11} -2.34453i q^{13} -7.21615 q^{15} +(9.39685 - 5.42527i) q^{17} +(20.0614 + 11.5824i) q^{19} +(-10.8765 - 5.35743i) q^{21} +(-6.35184 + 11.0017i) q^{23} +(-3.82120 - 6.61851i) q^{25} +5.19615i q^{27} -2.42670 q^{29} +(-16.7915 + 9.69460i) q^{31} +(-10.6752 - 6.16335i) q^{33} +(1.92087 + 29.1004i) q^{35} +(2.81291 - 4.87210i) q^{37} +(2.03042 + 3.51679i) q^{39} -32.1282i q^{41} +0.536222 q^{43} +(10.8242 - 6.24937i) q^{45} +(2.50339 + 1.44533i) q^{47} +(-18.7096 + 45.2874i) q^{49} +(-9.39685 + 16.2758i) q^{51} +(26.9278 + 46.6404i) q^{53} +29.6505i q^{55} -40.1228 q^{57} +(-72.8315 + 42.0493i) q^{59} +(81.5996 + 47.1116i) q^{61} +(20.9544 - 1.38316i) q^{63} +(4.88394 - 8.45924i) q^{65} +(44.0928 + 76.3709i) q^{67} -22.0034i q^{69} +62.2297 q^{71} +(-45.3916 + 26.2069i) q^{73} +(11.4636 + 6.61851i) q^{75} +(-22.0132 + 44.6904i) q^{77} +(-42.1596 + 73.0225i) q^{79} +(-4.50000 - 7.79423i) q^{81} +77.3283i q^{83} +45.2060 q^{85} +(3.64004 - 2.10158i) q^{87} +(-123.331 - 71.2053i) q^{89} +(13.6416 - 9.12417i) q^{91} +(16.7915 - 29.0838i) q^{93} +(48.2553 + 83.5806i) q^{95} +38.0431i q^{97} +21.3505 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 12 q^{7} + 24 q^{9} - 12 q^{11} - 48 q^{17} - 60 q^{19} + 24 q^{21} - 48 q^{23} + 52 q^{25} - 64 q^{29} - 60 q^{31} + 36 q^{33} - 4 q^{37} + 12 q^{39} + 72 q^{43} + 120 q^{47} - 8 q^{49}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 3.60807 + 2.08312i 0.721615 + 0.416625i 0.815347 0.578973i \(-0.196546\pi\)
−0.0937318 + 0.995597i \(0.529880\pi\)
\(6\) 0 0
\(7\) 3.89168 + 5.81849i 0.555955 + 0.831212i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) 3.55841 + 6.16335i 0.323492 + 0.560305i 0.981206 0.192963i \(-0.0618097\pi\)
−0.657714 + 0.753268i \(0.728476\pi\)
\(12\) 0 0
\(13\) 2.34453i 0.180348i −0.995926 0.0901742i \(-0.971258\pi\)
0.995926 0.0901742i \(-0.0287424\pi\)
\(14\) 0 0
\(15\) −7.21615 −0.481077
\(16\) 0 0
\(17\) 9.39685 5.42527i 0.552756 0.319134i −0.197477 0.980308i \(-0.563275\pi\)
0.750233 + 0.661174i \(0.229941\pi\)
\(18\) 0 0
\(19\) 20.0614 + 11.5824i 1.05586 + 0.609602i 0.924285 0.381704i \(-0.124663\pi\)
0.131577 + 0.991306i \(0.457996\pi\)
\(20\) 0 0
\(21\) −10.8765 5.35743i −0.517928 0.255116i
\(22\) 0 0
\(23\) −6.35184 + 11.0017i −0.276167 + 0.478335i −0.970429 0.241387i \(-0.922398\pi\)
0.694262 + 0.719722i \(0.255731\pi\)
\(24\) 0 0
\(25\) −3.82120 6.61851i −0.152848 0.264740i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −2.42670 −0.0836792 −0.0418396 0.999124i \(-0.513322\pi\)
−0.0418396 + 0.999124i \(0.513322\pi\)
\(30\) 0 0
\(31\) −16.7915 + 9.69460i −0.541663 + 0.312729i −0.745753 0.666223i \(-0.767910\pi\)
0.204090 + 0.978952i \(0.434577\pi\)
\(32\) 0 0
\(33\) −10.6752 6.16335i −0.323492 0.186768i
\(34\) 0 0
\(35\) 1.92087 + 29.1004i 0.0548819 + 0.831440i
\(36\) 0 0
\(37\) 2.81291 4.87210i 0.0760245 0.131678i −0.825507 0.564392i \(-0.809111\pi\)
0.901531 + 0.432714i \(0.142444\pi\)
\(38\) 0 0
\(39\) 2.03042 + 3.51679i 0.0520621 + 0.0901742i
\(40\) 0 0
\(41\) 32.1282i 0.783614i −0.920047 0.391807i \(-0.871850\pi\)
0.920047 0.391807i \(-0.128150\pi\)
\(42\) 0 0
\(43\) 0.536222 0.0124703 0.00623514 0.999981i \(-0.498015\pi\)
0.00623514 + 0.999981i \(0.498015\pi\)
\(44\) 0 0
\(45\) 10.8242 6.24937i 0.240538 0.138875i
\(46\) 0 0
\(47\) 2.50339 + 1.44533i 0.0532636 + 0.0307518i 0.526395 0.850240i \(-0.323543\pi\)
−0.473132 + 0.880992i \(0.656877\pi\)
\(48\) 0 0
\(49\) −18.7096 + 45.2874i −0.381828 + 0.924233i
\(50\) 0 0
\(51\) −9.39685 + 16.2758i −0.184252 + 0.319134i
\(52\) 0 0
\(53\) 26.9278 + 46.6404i 0.508072 + 0.880007i 0.999956 + 0.00934631i \(0.00297507\pi\)
−0.491884 + 0.870661i \(0.663692\pi\)
\(54\) 0 0
\(55\) 29.6505i 0.539099i
\(56\) 0 0
\(57\) −40.1228 −0.703908
\(58\) 0 0
\(59\) −72.8315 + 42.0493i −1.23443 + 0.712700i −0.967951 0.251140i \(-0.919195\pi\)
−0.266482 + 0.963840i \(0.585861\pi\)
\(60\) 0 0
\(61\) 81.5996 + 47.1116i 1.33770 + 0.772321i 0.986466 0.163967i \(-0.0524292\pi\)
0.351233 + 0.936288i \(0.385763\pi\)
\(62\) 0 0
\(63\) 20.9544 1.38316i 0.332610 0.0219550i
\(64\) 0 0
\(65\) 4.88394 8.45924i 0.0751376 0.130142i
\(66\) 0 0
\(67\) 44.0928 + 76.3709i 0.658101 + 1.13986i 0.981107 + 0.193468i \(0.0619735\pi\)
−0.323005 + 0.946397i \(0.604693\pi\)
\(68\) 0 0
\(69\) 22.0034i 0.318890i
\(70\) 0 0
\(71\) 62.2297 0.876475 0.438238 0.898859i \(-0.355603\pi\)
0.438238 + 0.898859i \(0.355603\pi\)
\(72\) 0 0
\(73\) −45.3916 + 26.2069i −0.621803 + 0.358998i −0.777571 0.628795i \(-0.783548\pi\)
0.155767 + 0.987794i \(0.450215\pi\)
\(74\) 0 0
\(75\) 11.4636 + 6.61851i 0.152848 + 0.0882468i
\(76\) 0 0
\(77\) −22.0132 + 44.6904i −0.285885 + 0.580395i
\(78\) 0 0
\(79\) −42.1596 + 73.0225i −0.533666 + 0.924336i 0.465561 + 0.885016i \(0.345853\pi\)
−0.999227 + 0.0393201i \(0.987481\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 77.3283i 0.931666i 0.884873 + 0.465833i \(0.154245\pi\)
−0.884873 + 0.465833i \(0.845755\pi\)
\(84\) 0 0
\(85\) 45.2060 0.531836
\(86\) 0 0
\(87\) 3.64004 2.10158i 0.0418396 0.0241561i
\(88\) 0 0
\(89\) −123.331 71.2053i −1.38574 0.800059i −0.392911 0.919577i \(-0.628532\pi\)
−0.992832 + 0.119517i \(0.961865\pi\)
\(90\) 0 0
\(91\) 13.6416 9.12417i 0.149908 0.100266i
\(92\) 0 0
\(93\) 16.7915 29.0838i 0.180554 0.312729i
\(94\) 0 0
\(95\) 48.2553 + 83.5806i 0.507951 + 0.879796i
\(96\) 0 0
\(97\) 38.0431i 0.392197i 0.980584 + 0.196098i \(0.0628272\pi\)
−0.980584 + 0.196098i \(0.937173\pi\)
\(98\) 0 0
\(99\) 21.3505 0.215661
\(100\) 0 0
\(101\) 58.2112 33.6082i 0.576348 0.332755i −0.183333 0.983051i \(-0.558689\pi\)
0.759681 + 0.650296i \(0.225355\pi\)
\(102\) 0 0
\(103\) −41.7037 24.0776i −0.404890 0.233763i 0.283702 0.958913i \(-0.408437\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(104\) 0 0
\(105\) −28.0830 41.9871i −0.267457 0.399877i
\(106\) 0 0
\(107\) 47.3769 82.0592i 0.442775 0.766909i −0.555119 0.831771i \(-0.687327\pi\)
0.997894 + 0.0648621i \(0.0206608\pi\)
\(108\) 0 0
\(109\) 102.829 + 178.104i 0.943381 + 1.63398i 0.758961 + 0.651136i \(0.225707\pi\)
0.184420 + 0.982848i \(0.440959\pi\)
\(110\) 0 0
\(111\) 9.74420i 0.0877856i
\(112\) 0 0
\(113\) −123.000 −1.08849 −0.544246 0.838925i \(-0.683184\pi\)
−0.544246 + 0.838925i \(0.683184\pi\)
\(114\) 0 0
\(115\) −45.8358 + 26.4633i −0.398572 + 0.230116i
\(116\) 0 0
\(117\) −6.09127 3.51679i −0.0520621 0.0300581i
\(118\) 0 0
\(119\) 68.1365 + 33.5620i 0.572575 + 0.282033i
\(120\) 0 0
\(121\) 35.1754 60.9256i 0.290706 0.503517i
\(122\) 0 0
\(123\) 27.8238 + 48.1923i 0.226210 + 0.391807i
\(124\) 0 0
\(125\) 135.996i 1.08797i
\(126\) 0 0
\(127\) −119.560 −0.941416 −0.470708 0.882289i \(-0.656002\pi\)
−0.470708 + 0.882289i \(0.656002\pi\)
\(128\) 0 0
\(129\) −0.804332 + 0.464382i −0.00623514 + 0.00359986i
\(130\) 0 0
\(131\) −49.2137 28.4135i −0.375677 0.216897i 0.300259 0.953858i \(-0.402927\pi\)
−0.675936 + 0.736961i \(0.736260\pi\)
\(132\) 0 0
\(133\) 10.6803 + 161.802i 0.0803028 + 1.21656i
\(134\) 0 0
\(135\) −10.8242 + 18.7481i −0.0801794 + 0.138875i
\(136\) 0 0
\(137\) −66.7779 115.663i −0.487430 0.844254i 0.512465 0.858708i \(-0.328732\pi\)
−0.999896 + 0.0144542i \(0.995399\pi\)
\(138\) 0 0
\(139\) 169.452i 1.21908i −0.792756 0.609539i \(-0.791354\pi\)
0.792756 0.609539i \(-0.208646\pi\)
\(140\) 0 0
\(141\) −5.00678 −0.0355091
\(142\) 0 0
\(143\) 14.4502 8.34280i 0.101050 0.0583413i
\(144\) 0 0
\(145\) −8.75570 5.05511i −0.0603842 0.0348628i
\(146\) 0 0
\(147\) −11.1557 84.1341i −0.0758891 0.572341i
\(148\) 0 0
\(149\) 49.7596 86.1861i 0.333957 0.578430i −0.649327 0.760509i \(-0.724949\pi\)
0.983284 + 0.182079i \(0.0582827\pi\)
\(150\) 0 0
\(151\) 30.3637 + 52.5915i 0.201084 + 0.348288i 0.948878 0.315643i \(-0.102220\pi\)
−0.747794 + 0.663931i \(0.768887\pi\)
\(152\) 0 0
\(153\) 32.5516i 0.212756i
\(154\) 0 0
\(155\) −80.7802 −0.521163
\(156\) 0 0
\(157\) 163.990 94.6794i 1.04452 0.603054i 0.123410 0.992356i \(-0.460617\pi\)
0.921110 + 0.389302i \(0.127284\pi\)
\(158\) 0 0
\(159\) −80.7835 46.6404i −0.508072 0.293336i
\(160\) 0 0
\(161\) −88.7326 + 5.85709i −0.551134 + 0.0363794i
\(162\) 0 0
\(163\) 80.5783 139.566i 0.494345 0.856231i −0.505633 0.862748i \(-0.668741\pi\)
0.999979 + 0.00651719i \(0.00207450\pi\)
\(164\) 0 0
\(165\) −25.6780 44.4757i −0.155625 0.269550i
\(166\) 0 0
\(167\) 242.581i 1.45258i −0.687387 0.726291i \(-0.741242\pi\)
0.687387 0.726291i \(-0.258758\pi\)
\(168\) 0 0
\(169\) 163.503 0.967474
\(170\) 0 0
\(171\) 60.1841 34.7473i 0.351954 0.203201i
\(172\) 0 0
\(173\) −100.376 57.9522i −0.580209 0.334984i 0.181008 0.983482i \(-0.442064\pi\)
−0.761216 + 0.648498i \(0.775397\pi\)
\(174\) 0 0
\(175\) 23.6388 47.9907i 0.135079 0.274233i
\(176\) 0 0
\(177\) 72.8315 126.148i 0.411477 0.712700i
\(178\) 0 0
\(179\) −145.575 252.144i −0.813269 1.40862i −0.910564 0.413368i \(-0.864352\pi\)
0.0972946 0.995256i \(-0.468981\pi\)
\(180\) 0 0
\(181\) 323.162i 1.78543i 0.450626 + 0.892713i \(0.351201\pi\)
−0.450626 + 0.892713i \(0.648799\pi\)
\(182\) 0 0
\(183\) −163.199 −0.891799
\(184\) 0 0
\(185\) 20.2984 11.7193i 0.109721 0.0633474i
\(186\) 0 0
\(187\) 66.8757 + 38.6107i 0.357624 + 0.206474i
\(188\) 0 0
\(189\) −30.2337 + 20.2218i −0.159967 + 0.106994i
\(190\) 0 0
\(191\) 12.5181 21.6819i 0.0655397 0.113518i −0.831394 0.555684i \(-0.812456\pi\)
0.896933 + 0.442166i \(0.145790\pi\)
\(192\) 0 0
\(193\) 163.103 + 282.503i 0.845095 + 1.46375i 0.885539 + 0.464565i \(0.153789\pi\)
−0.0404445 + 0.999182i \(0.512877\pi\)
\(194\) 0 0
\(195\) 16.9185i 0.0867614i
\(196\) 0 0
\(197\) 150.710 0.765026 0.382513 0.923950i \(-0.375059\pi\)
0.382513 + 0.923950i \(0.375059\pi\)
\(198\) 0 0
\(199\) 265.167 153.094i 1.33250 0.769318i 0.346817 0.937933i \(-0.387263\pi\)
0.985682 + 0.168615i \(0.0539293\pi\)
\(200\) 0 0
\(201\) −132.278 76.3709i −0.658101 0.379955i
\(202\) 0 0
\(203\) −9.44394 14.1197i −0.0465219 0.0695552i
\(204\) 0 0
\(205\) 66.9269 115.921i 0.326473 0.565468i
\(206\) 0 0
\(207\) 19.0555 + 33.0051i 0.0920556 + 0.159445i
\(208\) 0 0
\(209\) 164.860i 0.788806i
\(210\) 0 0
\(211\) 3.55018 0.0168255 0.00841276 0.999965i \(-0.497322\pi\)
0.00841276 + 0.999965i \(0.497322\pi\)
\(212\) 0 0
\(213\) −93.3446 + 53.8925i −0.438238 + 0.253017i
\(214\) 0 0
\(215\) 1.93473 + 1.11702i 0.00899873 + 0.00519542i
\(216\) 0 0
\(217\) −121.755 59.9731i −0.561085 0.276374i
\(218\) 0 0
\(219\) 45.3916 78.6206i 0.207268 0.358998i
\(220\) 0 0
\(221\) −12.7197 22.0312i −0.0575553 0.0996886i
\(222\) 0 0
\(223\) 201.520i 0.903675i −0.892100 0.451838i \(-0.850769\pi\)
0.892100 0.451838i \(-0.149231\pi\)
\(224\) 0 0
\(225\) −22.9272 −0.101899
\(226\) 0 0
\(227\) −357.131 + 206.190i −1.57327 + 0.908325i −0.577500 + 0.816390i \(0.695972\pi\)
−0.995765 + 0.0919349i \(0.970695\pi\)
\(228\) 0 0
\(229\) −66.7344 38.5291i −0.291417 0.168250i 0.347164 0.937804i \(-0.387145\pi\)
−0.638581 + 0.769555i \(0.720478\pi\)
\(230\) 0 0
\(231\) −5.68328 86.0996i −0.0246030 0.372725i
\(232\) 0 0
\(233\) 85.9698 148.904i 0.368969 0.639073i −0.620436 0.784257i \(-0.713044\pi\)
0.989405 + 0.145184i \(0.0463775\pi\)
\(234\) 0 0
\(235\) 6.02162 + 10.4297i 0.0256239 + 0.0443819i
\(236\) 0 0
\(237\) 146.045i 0.616224i
\(238\) 0 0
\(239\) 315.877 1.32166 0.660830 0.750536i \(-0.270204\pi\)
0.660830 + 0.750536i \(0.270204\pi\)
\(240\) 0 0
\(241\) −51.0128 + 29.4522i −0.211671 + 0.122209i −0.602088 0.798430i \(-0.705664\pi\)
0.390417 + 0.920638i \(0.372331\pi\)
\(242\) 0 0
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −161.845 + 124.426i −0.660591 + 0.507862i
\(246\) 0 0
\(247\) 27.1554 47.0345i 0.109941 0.190423i
\(248\) 0 0
\(249\) −66.9682 115.992i −0.268949 0.465833i
\(250\) 0 0
\(251\) 162.195i 0.646195i −0.946366 0.323097i \(-0.895276\pi\)
0.946366 0.323097i \(-0.104724\pi\)
\(252\) 0 0
\(253\) −90.4099 −0.357351
\(254\) 0 0
\(255\) −67.8091 + 39.1496i −0.265918 + 0.153528i
\(256\) 0 0
\(257\) −372.367 214.986i −1.44890 0.836523i −0.450484 0.892784i \(-0.648749\pi\)
−0.998416 + 0.0562613i \(0.982082\pi\)
\(258\) 0 0
\(259\) 39.2952 2.59381i 0.151719 0.0100147i
\(260\) 0 0
\(261\) −3.64004 + 6.30474i −0.0139465 + 0.0241561i
\(262\) 0 0
\(263\) −85.5110 148.109i −0.325137 0.563154i 0.656403 0.754410i \(-0.272077\pi\)
−0.981540 + 0.191257i \(0.938744\pi\)
\(264\) 0 0
\(265\) 224.376i 0.846702i
\(266\) 0 0
\(267\) 246.662 0.923829
\(268\) 0 0
\(269\) −61.3494 + 35.4201i −0.228065 + 0.131673i −0.609679 0.792648i \(-0.708702\pi\)
0.381614 + 0.924322i \(0.375368\pi\)
\(270\) 0 0
\(271\) −211.309 121.999i −0.779736 0.450181i 0.0566006 0.998397i \(-0.481974\pi\)
−0.836337 + 0.548216i \(0.815307\pi\)
\(272\) 0 0
\(273\) −12.5607 + 25.5002i −0.0460097 + 0.0934075i
\(274\) 0 0
\(275\) 27.1948 47.1028i 0.0988902 0.171283i
\(276\) 0 0
\(277\) 164.231 + 284.457i 0.592892 + 1.02692i 0.993841 + 0.110819i \(0.0353473\pi\)
−0.400949 + 0.916101i \(0.631319\pi\)
\(278\) 0 0
\(279\) 58.1676i 0.208486i
\(280\) 0 0
\(281\) 451.831 1.60794 0.803970 0.594669i \(-0.202717\pi\)
0.803970 + 0.594669i \(0.202717\pi\)
\(282\) 0 0
\(283\) −60.1879 + 34.7495i −0.212678 + 0.122790i −0.602555 0.798077i \(-0.705851\pi\)
0.389877 + 0.920867i \(0.372517\pi\)
\(284\) 0 0
\(285\) −144.766 83.5806i −0.507951 0.293265i
\(286\) 0 0
\(287\) 186.937 125.033i 0.651350 0.435654i
\(288\) 0 0
\(289\) −85.6328 + 148.320i −0.296307 + 0.513219i
\(290\) 0 0
\(291\) −32.9463 57.0646i −0.113217 0.196098i
\(292\) 0 0
\(293\) 236.560i 0.807372i 0.914898 + 0.403686i \(0.132271\pi\)
−0.914898 + 0.403686i \(0.867729\pi\)
\(294\) 0 0
\(295\) −350.375 −1.18771
\(296\) 0 0
\(297\) −32.0257 + 18.4901i −0.107831 + 0.0622561i
\(298\) 0 0
\(299\) 25.7938 + 14.8921i 0.0862670 + 0.0498063i
\(300\) 0 0
\(301\) 2.08681 + 3.12000i 0.00693291 + 0.0103654i
\(302\) 0 0
\(303\) −58.2112 + 100.825i −0.192116 + 0.332755i
\(304\) 0 0
\(305\) 196.278 + 339.964i 0.643536 + 1.11464i
\(306\) 0 0
\(307\) 6.97393i 0.0227164i −0.999935 0.0113582i \(-0.996384\pi\)
0.999935 0.0113582i \(-0.00361550\pi\)
\(308\) 0 0
\(309\) 83.4073 0.269927
\(310\) 0 0
\(311\) 92.0662 53.1545i 0.296033 0.170915i −0.344626 0.938740i \(-0.611994\pi\)
0.640659 + 0.767825i \(0.278661\pi\)
\(312\) 0 0
\(313\) −273.310 157.796i −0.873195 0.504139i −0.00478623 0.999989i \(-0.501524\pi\)
−0.868409 + 0.495849i \(0.834857\pi\)
\(314\) 0 0
\(315\) 78.4863 + 38.6600i 0.249163 + 0.122730i
\(316\) 0 0
\(317\) 270.169 467.946i 0.852268 1.47617i −0.0268886 0.999638i \(-0.508560\pi\)
0.879157 0.476533i \(-0.158107\pi\)
\(318\) 0 0
\(319\) −8.63519 14.9566i −0.0270696 0.0468859i
\(320\) 0 0
\(321\) 164.118i 0.511272i
\(322\) 0 0
\(323\) 251.352 0.778178
\(324\) 0 0
\(325\) −15.5173 + 8.95891i −0.0477455 + 0.0275659i
\(326\) 0 0
\(327\) −308.486 178.104i −0.943381 0.544661i
\(328\) 0 0
\(329\) 1.33276 + 20.1907i 0.00405093 + 0.0613700i
\(330\) 0 0
\(331\) 30.7015 53.1766i 0.0927539 0.160654i −0.815915 0.578172i \(-0.803766\pi\)
0.908669 + 0.417517i \(0.137100\pi\)
\(332\) 0 0
\(333\) −8.43872 14.6163i −0.0253415 0.0438928i
\(334\) 0 0
\(335\) 367.403i 1.09672i
\(336\) 0 0
\(337\) 638.027 1.89326 0.946628 0.322329i \(-0.104466\pi\)
0.946628 + 0.322329i \(0.104466\pi\)
\(338\) 0 0
\(339\) 184.499 106.521i 0.544246 0.314221i
\(340\) 0 0
\(341\) −119.503 68.9948i −0.350447 0.202331i
\(342\) 0 0
\(343\) −336.316 + 67.3830i −0.980513 + 0.196452i
\(344\) 0 0
\(345\) 45.8358 79.3900i 0.132857 0.230116i
\(346\) 0 0
\(347\) −202.855 351.355i −0.584597 1.01255i −0.994926 0.100614i \(-0.967919\pi\)
0.410329 0.911938i \(-0.365414\pi\)
\(348\) 0 0
\(349\) 103.045i 0.295258i −0.989043 0.147629i \(-0.952836\pi\)
0.989043 0.147629i \(-0.0471642\pi\)
\(350\) 0 0
\(351\) 12.1825 0.0347081
\(352\) 0 0
\(353\) −21.1953 + 12.2371i −0.0600433 + 0.0346660i −0.529721 0.848172i \(-0.677703\pi\)
0.469678 + 0.882838i \(0.344370\pi\)
\(354\) 0 0
\(355\) 224.530 + 129.632i 0.632478 + 0.365161i
\(356\) 0 0
\(357\) −131.270 + 8.66492i −0.367704 + 0.0242715i
\(358\) 0 0
\(359\) 93.1536 161.347i 0.259481 0.449434i −0.706622 0.707591i \(-0.749782\pi\)
0.966103 + 0.258157i \(0.0831152\pi\)
\(360\) 0 0
\(361\) 87.8059 + 152.084i 0.243230 + 0.421286i
\(362\) 0 0
\(363\) 121.851i 0.335678i
\(364\) 0 0
\(365\) −218.369 −0.598270
\(366\) 0 0
\(367\) 88.8880 51.3195i 0.242202 0.139835i −0.373987 0.927434i \(-0.622009\pi\)
0.616188 + 0.787599i \(0.288676\pi\)
\(368\) 0 0
\(369\) −83.4715 48.1923i −0.226210 0.130602i
\(370\) 0 0
\(371\) −166.582 + 338.189i −0.449007 + 0.911560i
\(372\) 0 0
\(373\) 169.415 293.436i 0.454197 0.786692i −0.544445 0.838797i \(-0.683260\pi\)
0.998642 + 0.0521050i \(0.0165931\pi\)
\(374\) 0 0
\(375\) 117.776 + 203.994i 0.314070 + 0.543985i
\(376\) 0 0
\(377\) 5.68946i 0.0150914i
\(378\) 0 0
\(379\) −93.7837 −0.247451 −0.123725 0.992317i \(-0.539484\pi\)
−0.123725 + 0.992317i \(0.539484\pi\)
\(380\) 0 0
\(381\) 179.340 103.542i 0.470708 0.271763i
\(382\) 0 0
\(383\) 171.537 + 99.0368i 0.447877 + 0.258582i 0.706933 0.707281i \(-0.250078\pi\)
−0.259056 + 0.965862i \(0.583412\pi\)
\(384\) 0 0
\(385\) −172.521 + 115.390i −0.448106 + 0.299715i
\(386\) 0 0
\(387\) 0.804332 1.39314i 0.00207838 0.00359986i
\(388\) 0 0
\(389\) 173.187 + 299.969i 0.445211 + 0.771128i 0.998067 0.0621491i \(-0.0197954\pi\)
−0.552856 + 0.833277i \(0.686462\pi\)
\(390\) 0 0
\(391\) 137.842i 0.352537i
\(392\) 0 0
\(393\) 98.4273 0.250451
\(394\) 0 0
\(395\) −304.230 + 175.647i −0.770202 + 0.444676i
\(396\) 0 0
\(397\) −648.234 374.258i −1.63283 0.942715i −0.983215 0.182453i \(-0.941596\pi\)
−0.649616 0.760262i \(-0.725070\pi\)
\(398\) 0 0
\(399\) −156.145 233.454i −0.391341 0.585097i
\(400\) 0 0
\(401\) 134.341 232.686i 0.335015 0.580263i −0.648473 0.761238i \(-0.724592\pi\)
0.983488 + 0.180975i \(0.0579252\pi\)
\(402\) 0 0
\(403\) 22.7293 + 39.3683i 0.0564002 + 0.0976880i
\(404\) 0 0
\(405\) 37.4962i 0.0925832i
\(406\) 0 0
\(407\) 40.0380 0.0983734
\(408\) 0 0
\(409\) 274.742 158.622i 0.671741 0.387830i −0.124995 0.992157i \(-0.539892\pi\)
0.796736 + 0.604328i \(0.206558\pi\)
\(410\) 0 0
\(411\) 200.334 + 115.663i 0.487430 + 0.281418i
\(412\) 0 0
\(413\) −528.101 260.127i −1.27869 0.629846i
\(414\) 0 0
\(415\) −161.084 + 279.006i −0.388155 + 0.672304i
\(416\) 0 0
\(417\) 146.750 + 254.178i 0.351918 + 0.609539i
\(418\) 0 0
\(419\) 360.703i 0.860866i 0.902623 + 0.430433i \(0.141639\pi\)
−0.902623 + 0.430433i \(0.858361\pi\)
\(420\) 0 0
\(421\) −66.7260 −0.158494 −0.0792470 0.996855i \(-0.525252\pi\)
−0.0792470 + 0.996855i \(0.525252\pi\)
\(422\) 0 0
\(423\) 7.51017 4.33600i 0.0177545 0.0102506i
\(424\) 0 0
\(425\) −71.8144 41.4621i −0.168975 0.0975578i
\(426\) 0 0
\(427\) 43.4420 + 658.130i 0.101738 + 1.54129i
\(428\) 0 0
\(429\) −14.4502 + 25.0284i −0.0336834 + 0.0583413i
\(430\) 0 0
\(431\) 279.892 + 484.787i 0.649401 + 1.12480i 0.983266 + 0.182175i \(0.0583137\pi\)
−0.333865 + 0.942621i \(0.608353\pi\)
\(432\) 0 0
\(433\) 80.8669i 0.186760i 0.995631 + 0.0933798i \(0.0297671\pi\)
−0.995631 + 0.0933798i \(0.970233\pi\)
\(434\) 0 0
\(435\) 17.5114 0.0402561
\(436\) 0 0
\(437\) −254.853 + 147.140i −0.583188 + 0.336704i
\(438\) 0 0
\(439\) 547.230 + 315.943i 1.24654 + 0.719689i 0.970417 0.241434i \(-0.0776177\pi\)
0.276121 + 0.961123i \(0.410951\pi\)
\(440\) 0 0
\(441\) 89.5958 + 116.540i 0.203165 + 0.264263i
\(442\) 0 0
\(443\) −322.186 + 558.042i −0.727282 + 1.25969i 0.230746 + 0.973014i \(0.425883\pi\)
−0.958028 + 0.286675i \(0.907450\pi\)
\(444\) 0 0
\(445\) −296.659 513.828i −0.666649 1.15467i
\(446\) 0 0
\(447\) 172.372i 0.385620i
\(448\) 0 0
\(449\) 321.769 0.716635 0.358317 0.933600i \(-0.383351\pi\)
0.358317 + 0.933600i \(0.383351\pi\)
\(450\) 0 0
\(451\) 198.017 114.325i 0.439063 0.253493i
\(452\) 0 0
\(453\) −91.0912 52.5915i −0.201084 0.116096i
\(454\) 0 0
\(455\) 68.2267 4.50353i 0.149949 0.00989787i
\(456\) 0 0
\(457\) 304.964 528.213i 0.667318 1.15583i −0.311334 0.950301i \(-0.600776\pi\)
0.978651 0.205527i \(-0.0658910\pi\)
\(458\) 0 0
\(459\) 28.1905 + 48.8275i 0.0614173 + 0.106378i
\(460\) 0 0
\(461\) 187.544i 0.406821i −0.979094 0.203410i \(-0.934797\pi\)
0.979094 0.203410i \(-0.0652025\pi\)
\(462\) 0 0
\(463\) −533.296 −1.15183 −0.575913 0.817511i \(-0.695353\pi\)
−0.575913 + 0.817511i \(0.695353\pi\)
\(464\) 0 0
\(465\) 121.170 69.9577i 0.260581 0.150447i
\(466\) 0 0
\(467\) −222.902 128.692i −0.477306 0.275573i 0.241987 0.970279i \(-0.422201\pi\)
−0.719293 + 0.694707i \(0.755534\pi\)
\(468\) 0 0
\(469\) −272.768 + 553.765i −0.581595 + 1.18074i
\(470\) 0 0
\(471\) −163.990 + 284.038i −0.348173 + 0.603054i
\(472\) 0 0
\(473\) 1.90810 + 3.30492i 0.00403403 + 0.00698715i
\(474\) 0 0
\(475\) 177.035i 0.372706i
\(476\) 0 0
\(477\) 161.567 0.338715
\(478\) 0 0
\(479\) 576.578 332.888i 1.20371 0.694964i 0.242334 0.970193i \(-0.422087\pi\)
0.961379 + 0.275229i \(0.0887537\pi\)
\(480\) 0 0
\(481\) −11.4228 6.59495i −0.0237480 0.0137109i
\(482\) 0 0
\(483\) 128.027 85.6304i 0.265065 0.177289i
\(484\) 0 0
\(485\) −79.2484 + 137.262i −0.163399 + 0.283015i
\(486\) 0 0
\(487\) 450.640 + 780.531i 0.925338 + 1.60273i 0.791016 + 0.611795i \(0.209552\pi\)
0.134322 + 0.990938i \(0.457114\pi\)
\(488\) 0 0
\(489\) 279.131i 0.570821i
\(490\) 0 0
\(491\) −42.5398 −0.0866391 −0.0433195 0.999061i \(-0.513793\pi\)
−0.0433195 + 0.999061i \(0.513793\pi\)
\(492\) 0 0
\(493\) −22.8033 + 13.1655i −0.0462542 + 0.0267049i
\(494\) 0 0
\(495\) 77.0341 + 44.4757i 0.155625 + 0.0898499i
\(496\) 0 0
\(497\) 242.179 + 362.083i 0.487281 + 0.728537i
\(498\) 0 0
\(499\) 61.6165 106.723i 0.123480 0.213874i −0.797658 0.603110i \(-0.793928\pi\)
0.921138 + 0.389237i \(0.127261\pi\)
\(500\) 0 0
\(501\) 210.082 + 363.872i 0.419325 + 0.726291i
\(502\) 0 0
\(503\) 613.084i 1.21885i 0.792842 + 0.609427i \(0.208601\pi\)
−0.792842 + 0.609427i \(0.791399\pi\)
\(504\) 0 0
\(505\) 280.040 0.554535
\(506\) 0 0
\(507\) −245.255 + 141.598i −0.483737 + 0.279286i
\(508\) 0 0
\(509\) −452.131 261.038i −0.888274 0.512845i −0.0148964 0.999889i \(-0.504742\pi\)
−0.873378 + 0.487044i \(0.838075\pi\)
\(510\) 0 0
\(511\) −329.134 162.122i −0.644099 0.317264i
\(512\) 0 0
\(513\) −60.1841 + 104.242i −0.117318 + 0.203201i
\(514\) 0 0
\(515\) −100.313 173.748i −0.194783 0.337374i
\(516\) 0 0
\(517\) 20.5724i 0.0397918i
\(518\) 0 0
\(519\) 200.752 0.386806
\(520\) 0 0
\(521\) 386.266 223.011i 0.741394 0.428044i −0.0811821 0.996699i \(-0.525870\pi\)
0.822576 + 0.568655i \(0.192536\pi\)
\(522\) 0 0
\(523\) 584.557 + 337.494i 1.11770 + 0.645305i 0.940813 0.338926i \(-0.110064\pi\)
0.176888 + 0.984231i \(0.443397\pi\)
\(524\) 0 0
\(525\) 6.10299 + 92.4579i 0.0116247 + 0.176110i
\(526\) 0 0
\(527\) −105.192 + 182.197i −0.199605 + 0.345726i
\(528\) 0 0
\(529\) 183.808 + 318.365i 0.347464 + 0.601825i
\(530\) 0 0
\(531\) 252.296i 0.475133i
\(532\) 0 0
\(533\) −75.3255 −0.141324
\(534\) 0 0
\(535\) 341.879 197.384i 0.639026 0.368942i
\(536\) 0 0
\(537\) 436.726 + 252.144i 0.813269 + 0.469541i
\(538\) 0 0
\(539\) −345.699 + 45.8377i −0.641371 + 0.0850421i
\(540\) 0 0
\(541\) 287.306 497.629i 0.531065 0.919832i −0.468277 0.883582i \(-0.655125\pi\)
0.999343 0.0362508i \(-0.0115415\pi\)
\(542\) 0 0
\(543\) −279.866 484.743i −0.515408 0.892713i
\(544\) 0 0
\(545\) 856.818i 1.57214i
\(546\) 0 0
\(547\) 307.808 0.562721 0.281360 0.959602i \(-0.409214\pi\)
0.281360 + 0.959602i \(0.409214\pi\)
\(548\) 0 0
\(549\) 244.799 141.335i 0.445900 0.257440i
\(550\) 0 0
\(551\) −48.6829 28.1071i −0.0883537 0.0510110i
\(552\) 0 0
\(553\) −588.952 + 38.8757i −1.06501 + 0.0702997i
\(554\) 0 0
\(555\) −20.2984 + 35.1578i −0.0365736 + 0.0633474i
\(556\) 0 0
\(557\) 332.333 + 575.618i 0.596649 + 1.03343i 0.993312 + 0.115462i \(0.0368348\pi\)
−0.396663 + 0.917964i \(0.629832\pi\)
\(558\) 0 0
\(559\) 1.25719i 0.00224899i
\(560\) 0 0
\(561\) −133.751 −0.238416
\(562\) 0 0
\(563\) −485.470 + 280.286i −0.862291 + 0.497844i −0.864779 0.502153i \(-0.832541\pi\)
0.00248813 + 0.999997i \(0.499208\pi\)
\(564\) 0 0
\(565\) −443.792 256.223i −0.785473 0.453493i
\(566\) 0 0
\(567\) 27.8380 56.5159i 0.0490971 0.0996753i
\(568\) 0 0
\(569\) 252.749 437.774i 0.444198 0.769374i −0.553798 0.832651i \(-0.686822\pi\)
0.997996 + 0.0632770i \(0.0201552\pi\)
\(570\) 0 0
\(571\) −309.204 535.556i −0.541512 0.937927i −0.998817 0.0486171i \(-0.984519\pi\)
0.457305 0.889310i \(-0.348815\pi\)
\(572\) 0 0
\(573\) 43.3639i 0.0756787i
\(574\) 0 0
\(575\) 97.0865 0.168846
\(576\) 0 0
\(577\) −438.092 + 252.933i −0.759259 + 0.438358i −0.829030 0.559205i \(-0.811107\pi\)
0.0697707 + 0.997563i \(0.477773\pi\)
\(578\) 0 0
\(579\) −489.310 282.503i −0.845095 0.487916i
\(580\) 0 0
\(581\) −449.933 + 300.937i −0.774412 + 0.517964i
\(582\) 0 0
\(583\) −191.641 + 331.931i −0.328715 + 0.569351i
\(584\) 0 0
\(585\) −14.6518 25.3777i −0.0250459 0.0433807i
\(586\) 0 0
\(587\) 222.198i 0.378532i −0.981926 0.189266i \(-0.939389\pi\)
0.981926 0.189266i \(-0.0606108\pi\)
\(588\) 0 0
\(589\) −449.149 −0.762562
\(590\) 0 0
\(591\) −226.065 + 130.519i −0.382513 + 0.220844i
\(592\) 0 0
\(593\) 129.129 + 74.5527i 0.217756 + 0.125721i 0.604911 0.796293i \(-0.293209\pi\)
−0.387155 + 0.922015i \(0.626542\pi\)
\(594\) 0 0
\(595\) 175.928 + 263.031i 0.295677 + 0.442069i
\(596\) 0 0
\(597\) −265.167 + 459.283i −0.444166 + 0.769318i
\(598\) 0 0
\(599\) 107.113 + 185.525i 0.178819 + 0.309724i 0.941476 0.337079i \(-0.109439\pi\)
−0.762657 + 0.646803i \(0.776106\pi\)
\(600\) 0 0
\(601\) 886.830i 1.47559i −0.675024 0.737796i \(-0.735867\pi\)
0.675024 0.737796i \(-0.264133\pi\)
\(602\) 0 0
\(603\) 264.557 0.438734
\(604\) 0 0
\(605\) 253.831 146.549i 0.419555 0.242230i
\(606\) 0 0
\(607\) 94.4477 + 54.5294i 0.155598 + 0.0898343i 0.575777 0.817607i \(-0.304700\pi\)
−0.420180 + 0.907441i \(0.638033\pi\)
\(608\) 0 0
\(609\) 26.3939 + 13.0009i 0.0433398 + 0.0213479i
\(610\) 0 0
\(611\) 3.38863 5.86927i 0.00554603 0.00960601i
\(612\) 0 0
\(613\) −233.714 404.805i −0.381263 0.660367i 0.609980 0.792417i \(-0.291177\pi\)
−0.991243 + 0.132050i \(0.957844\pi\)
\(614\) 0 0
\(615\) 231.842i 0.376978i
\(616\) 0 0
\(617\) −832.398 −1.34911 −0.674553 0.738227i \(-0.735663\pi\)
−0.674553 + 0.738227i \(0.735663\pi\)
\(618\) 0 0
\(619\) 295.530 170.624i 0.477431 0.275645i −0.241914 0.970298i \(-0.577775\pi\)
0.719345 + 0.694653i \(0.244442\pi\)
\(620\) 0 0
\(621\) −57.1666 33.0051i −0.0920556 0.0531483i
\(622\) 0 0
\(623\) −65.6590 994.709i −0.105392 1.59664i
\(624\) 0 0
\(625\) 187.767 325.222i 0.300427 0.520355i
\(626\) 0 0
\(627\) −142.773 247.291i −0.227709 0.394403i
\(628\) 0 0
\(629\) 61.0432i 0.0970480i
\(630\) 0 0
\(631\) −1249.74 −1.98057 −0.990284 0.139063i \(-0.955591\pi\)
−0.990284 + 0.139063i \(0.955591\pi\)
\(632\) 0 0
\(633\) −5.32527 + 3.07455i −0.00841276 + 0.00485711i
\(634\) 0 0
\(635\) −431.381 249.058i −0.679340 0.392217i
\(636\) 0 0
\(637\) 106.178 + 43.8652i 0.166684 + 0.0688621i
\(638\) 0 0
\(639\) 93.3446 161.678i 0.146079 0.253017i
\(640\) 0 0
\(641\) 448.374 + 776.606i 0.699491 + 1.21155i 0.968643 + 0.248457i \(0.0799234\pi\)
−0.269152 + 0.963098i \(0.586743\pi\)
\(642\) 0 0
\(643\) 422.098i 0.656451i −0.944599 0.328225i \(-0.893549\pi\)
0.944599 0.328225i \(-0.106451\pi\)
\(644\) 0 0
\(645\) −3.86946 −0.00599916
\(646\) 0 0
\(647\) 390.884 225.677i 0.604148 0.348805i −0.166524 0.986037i \(-0.553254\pi\)
0.770672 + 0.637233i \(0.219921\pi\)
\(648\) 0 0
\(649\) −518.329 299.258i −0.798658 0.461106i
\(650\) 0 0
\(651\) 234.571 15.4836i 0.360324 0.0237844i
\(652\) 0 0
\(653\) 266.155 460.994i 0.407588 0.705964i −0.587031 0.809565i \(-0.699703\pi\)
0.994619 + 0.103601i \(0.0330365\pi\)
\(654\) 0 0
\(655\) −118.378 205.036i −0.180729 0.313032i
\(656\) 0 0
\(657\) 157.241i 0.239332i
\(658\) 0 0
\(659\) 1311.97 1.99085 0.995424 0.0955521i \(-0.0304616\pi\)
0.995424 + 0.0955521i \(0.0304616\pi\)
\(660\) 0 0
\(661\) 143.074 82.6039i 0.216451 0.124968i −0.387855 0.921720i \(-0.626784\pi\)
0.604306 + 0.796752i \(0.293450\pi\)
\(662\) 0 0
\(663\) 38.1591 + 22.0312i 0.0575553 + 0.0332295i
\(664\) 0 0
\(665\) −298.518 + 606.042i −0.448900 + 0.911342i
\(666\) 0 0
\(667\) 15.4140 26.6978i 0.0231094 0.0400267i
\(668\) 0 0
\(669\) 174.521 + 302.279i 0.260869 + 0.451838i
\(670\) 0 0
\(671\) 670.570i 0.999359i
\(672\) 0 0
\(673\) −917.460 −1.36324 −0.681620 0.731707i \(-0.738724\pi\)
−0.681620 + 0.731707i \(0.738724\pi\)
\(674\) 0 0
\(675\) 34.3908 19.8555i 0.0509493 0.0294156i
\(676\) 0 0
\(677\) 973.160 + 561.854i 1.43746 + 0.829918i 0.997673 0.0681842i \(-0.0217205\pi\)
0.439787 + 0.898102i \(0.355054\pi\)
\(678\) 0 0
\(679\) −221.353 + 148.052i −0.325999 + 0.218044i
\(680\) 0 0
\(681\) 357.131 618.569i 0.524422 0.908325i
\(682\) 0 0
\(683\) −297.019 514.452i −0.434874 0.753225i 0.562411 0.826858i \(-0.309874\pi\)
−0.997285 + 0.0736333i \(0.976541\pi\)
\(684\) 0 0
\(685\) 556.427i 0.812302i
\(686\) 0 0
\(687\) 133.469 0.194278
\(688\) 0 0
\(689\) 109.350 63.1331i 0.158708 0.0916300i
\(690\) 0 0
\(691\) −221.826 128.072i −0.321022 0.185342i 0.330826 0.943692i \(-0.392673\pi\)
−0.651848 + 0.758350i \(0.726006\pi\)
\(692\) 0 0
\(693\) 83.0893 + 124.227i 0.119898 + 0.179260i
\(694\) 0 0
\(695\) 352.989 611.395i 0.507898 0.879706i
\(696\) 0 0
\(697\) −174.304 301.904i −0.250078 0.433147i
\(698\) 0 0
\(699\) 297.808i 0.426049i
\(700\) 0 0
\(701\) 1035.70 1.47746 0.738732 0.674000i \(-0.235425\pi\)
0.738732 + 0.674000i \(0.235425\pi\)
\(702\) 0 0
\(703\) 112.862 65.1607i 0.160543 0.0926895i
\(704\) 0 0
\(705\) −18.0648 10.4297i −0.0256239 0.0147940i
\(706\) 0 0
\(707\) 422.089 + 207.908i 0.597014 + 0.294071i
\(708\) 0 0
\(709\) 123.811 214.447i 0.174627 0.302464i −0.765405 0.643549i \(-0.777461\pi\)
0.940032 + 0.341086i \(0.110795\pi\)
\(710\) 0 0
\(711\) 126.479 + 219.068i 0.177889 + 0.308112i
\(712\) 0 0
\(713\) 246.314i 0.345462i
\(714\) 0 0
\(715\) 69.5164 0.0972257
\(716\) 0 0
\(717\) −473.815 + 273.557i −0.660830 + 0.381530i
\(718\) 0 0
\(719\) 49.8292 + 28.7689i 0.0693035 + 0.0400124i 0.534251 0.845326i \(-0.320594\pi\)
−0.464948 + 0.885338i \(0.653927\pi\)
\(720\) 0 0
\(721\) −22.2022 336.355i −0.0307936 0.466511i
\(722\) 0 0
\(723\) 51.0128 88.3567i 0.0705571 0.122209i
\(724\) 0 0
\(725\) 9.27288 + 16.0611i 0.0127902 + 0.0221533i
\(726\) 0 0
\(727\) 1226.15i 1.68659i −0.537455 0.843293i \(-0.680614\pi\)
0.537455 0.843293i \(-0.319386\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 5.03879 2.90915i 0.00689301 0.00397968i
\(732\) 0 0
\(733\) −510.729 294.869i −0.696765 0.402277i 0.109376 0.994000i \(-0.465115\pi\)
−0.806141 + 0.591723i \(0.798448\pi\)
\(734\) 0 0
\(735\) 135.011 326.801i 0.183689 0.444627i
\(736\) 0 0
\(737\) −313.801 + 543.519i −0.425781 + 0.737475i
\(738\) 0 0
\(739\) −455.898 789.638i −0.616912 1.06852i −0.990046 0.140745i \(-0.955050\pi\)
0.373134 0.927777i \(-0.378283\pi\)
\(740\) 0 0
\(741\) 94.0690i 0.126949i
\(742\) 0 0
\(743\) −778.225 −1.04741 −0.523705 0.851900i \(-0.675450\pi\)
−0.523705 + 0.851900i \(0.675450\pi\)
\(744\) 0 0
\(745\) 359.072 207.311i 0.481976 0.278269i
\(746\) 0 0
\(747\) 200.905 + 115.992i 0.268949 + 0.155278i
\(748\) 0 0
\(749\) 661.837 43.6867i 0.883627 0.0583267i
\(750\) 0 0
\(751\) 330.897 573.130i 0.440608 0.763156i −0.557126 0.830428i \(-0.688096\pi\)
0.997735 + 0.0672717i \(0.0214294\pi\)
\(752\) 0 0
\(753\) 140.465 + 243.292i 0.186540 + 0.323097i
\(754\) 0 0
\(755\) 253.006i 0.335107i
\(756\) 0 0
\(757\) 227.313 0.300282 0.150141 0.988665i \(-0.452027\pi\)
0.150141 + 0.988665i \(0.452027\pi\)
\(758\) 0 0
\(759\) 135.615 78.2972i 0.178676 0.103158i
\(760\) 0 0
\(761\) −663.592 383.125i −0.872000 0.503450i −0.00398792 0.999992i \(-0.501269\pi\)
−0.868012 + 0.496542i \(0.834603\pi\)
\(762\) 0 0
\(763\) −636.121 + 1291.43i −0.833710 + 1.69257i
\(764\) 0 0
\(765\) 67.8091 117.449i 0.0886393 0.153528i
\(766\) 0 0
\(767\) 98.5858 + 170.756i 0.128534 + 0.222628i
\(768\) 0 0
\(769\) 455.642i 0.592512i −0.955109 0.296256i \(-0.904262\pi\)
0.955109 0.296256i \(-0.0957381\pi\)
\(770\) 0 0
\(771\) 744.735 0.965934
\(772\) 0 0
\(773\) 87.5476 50.5456i 0.113257 0.0653889i −0.442301 0.896866i \(-0.645838\pi\)
0.555558 + 0.831478i \(0.312505\pi\)
\(774\) 0 0
\(775\) 128.328 + 74.0900i 0.165584 + 0.0956000i
\(776\) 0 0
\(777\) −56.6965 + 37.9214i −0.0729685 + 0.0488048i
\(778\) 0 0
\(779\) 372.123 644.535i 0.477693 0.827388i
\(780\) 0 0
\(781\) 221.439 + 383.544i 0.283533 + 0.491093i
\(782\) 0 0
\(783\) 12.6095i 0.0161041i
\(784\) 0 0
\(785\) 788.916 1.00499
\(786\) 0 0
\(787\) −543.871 + 314.004i −0.691068 + 0.398988i −0.804012 0.594613i \(-0.797305\pi\)
0.112944 + 0.993601i \(0.463972\pi\)
\(788\) 0 0
\(789\) 256.533 + 148.109i 0.325137 + 0.187718i
\(790\) 0 0
\(791\) −478.676 715.672i −0.605153 0.904769i
\(792\) 0 0
\(793\) 110.454 191.313i 0.139287 0.241252i
\(794\) 0 0
\(795\) −194.315 336.564i −0.244422 0.423351i
\(796\) 0 0
\(797\) 420.720i 0.527880i 0.964539 + 0.263940i \(0.0850221\pi\)
−0.964539 + 0.263940i \(0.914978\pi\)
\(798\) 0 0
\(799\) 31.3653 0.0392557
\(800\) 0 0
\(801\) −369.993 + 213.616i −0.461914 + 0.266686i
\(802\) 0 0
\(803\) −323.044 186.510i −0.402297 0.232266i
\(804\) 0 0
\(805\) −332.355 163.708i −0.412863 0.203364i
\(806\) 0 0
\(807\) 61.3494 106.260i 0.0760216 0.131673i
\(808\) 0 0
\(809\) −288.910 500.406i −0.357120 0.618549i 0.630359 0.776304i \(-0.282908\pi\)
−0.987478 + 0.157755i \(0.949574\pi\)
\(810\) 0 0
\(811\) 1263.65i 1.55814i −0.626937 0.779070i \(-0.715692\pi\)
0.626937 0.779070i \(-0.284308\pi\)
\(812\) 0 0
\(813\) 422.617 0.519824
\(814\) 0 0
\(815\) 581.465 335.709i 0.713454 0.411913i
\(816\) 0 0
\(817\) 10.7573 + 6.21076i 0.0131669 + 0.00760190i
\(818\) 0 0
\(819\) −3.24287 49.1282i −0.00395955 0.0599856i
\(820\) 0 0
\(821\) 69.8461 120.977i 0.0850745 0.147353i −0.820348 0.571864i \(-0.806221\pi\)
0.905423 + 0.424511i \(0.139554\pi\)
\(822\) 0 0
\(823\) 200.176 + 346.716i 0.243228 + 0.421283i 0.961632 0.274343i \(-0.0884604\pi\)
−0.718404 + 0.695626i \(0.755127\pi\)
\(824\) 0 0
\(825\) 94.2055i 0.114189i
\(826\) 0 0
\(827\) −484.494 −0.585845 −0.292922 0.956136i \(-0.594628\pi\)
−0.292922 + 0.956136i \(0.594628\pi\)
\(828\) 0 0
\(829\) 322.222 186.035i 0.388687 0.224409i −0.292904 0.956142i \(-0.594622\pi\)
0.681591 + 0.731733i \(0.261288\pi\)
\(830\) 0 0
\(831\) −492.693 284.457i −0.592892 0.342306i
\(832\) 0 0
\(833\) 69.8856 + 527.064i 0.0838963 + 0.632730i
\(834\) 0 0
\(835\) 505.327 875.252i 0.605182 1.04821i
\(836\) 0 0
\(837\) −50.3746 87.2514i −0.0601848 0.104243i
\(838\) 0 0
\(839\) 1119.49i 1.33432i −0.744916 0.667159i \(-0.767510\pi\)
0.744916 0.667159i \(-0.232490\pi\)
\(840\) 0 0
\(841\) −835.111 −0.992998
\(842\) 0 0
\(843\) −677.747 + 391.297i −0.803970 + 0.464172i
\(844\) 0 0
\(845\) 589.932 + 340.597i 0.698144 + 0.403074i
\(846\) 0 0
\(847\) 491.386 32.4356i 0.580149 0.0382946i
\(848\) 0 0
\(849\) 60.1879 104.248i 0.0708926 0.122790i
\(850\) 0 0
\(851\) 35.7343 + 61.8936i 0.0419909 + 0.0727304i
\(852\) 0 0
\(853\) 511.521i 0.599673i 0.953991 + 0.299837i \(0.0969322\pi\)
−0.953991 + 0.299837i \(0.903068\pi\)
\(854\) 0 0
\(855\) 289.532 0.338634
\(856\) 0 0
\(857\) 750.430 433.261i 0.875648 0.505556i 0.00642697 0.999979i \(-0.497954\pi\)
0.869221 + 0.494424i \(0.164621\pi\)
\(858\) 0 0
\(859\) 1069.10 + 617.244i 1.24459 + 0.718562i 0.970024 0.243008i \(-0.0781341\pi\)
0.274561 + 0.961570i \(0.411467\pi\)
\(860\) 0 0
\(861\) −172.125 + 349.442i −0.199912 + 0.405856i
\(862\) 0 0
\(863\) −687.116 + 1190.12i −0.796194 + 1.37905i 0.125884 + 0.992045i \(0.459823\pi\)
−0.922078 + 0.387004i \(0.873510\pi\)
\(864\) 0 0
\(865\) −241.443 418.192i −0.279125 0.483458i
\(866\) 0 0
\(867\) 296.641i 0.342146i
\(868\) 0 0
\(869\) −600.085 −0.690546
\(870\) 0 0
\(871\) 179.054 103.377i 0.205573 0.118688i
\(872\) 0 0
\(873\) 98.8388 + 57.0646i 0.113217 + 0.0653661i
\(874\) 0 0
\(875\) 791.292 529.255i 0.904334 0.604862i
\(876\) 0 0
\(877\) −124.971 + 216.456i −0.142499 + 0.246815i −0.928437 0.371490i \(-0.878847\pi\)
0.785938 + 0.618305i \(0.212180\pi\)
\(878\) 0 0
\(879\) −204.867 354.840i −0.233068 0.403686i
\(880\) 0 0
\(881\) 1070.84i 1.21548i −0.794135 0.607742i \(-0.792076\pi\)
0.794135 0.607742i \(-0.207924\pi\)
\(882\) 0 0
\(883\) −1034.20 −1.17123 −0.585614 0.810590i \(-0.699147\pi\)
−0.585614 + 0.810590i \(0.699147\pi\)
\(884\) 0 0
\(885\) 525.563 303.434i 0.593857 0.342863i
\(886\) 0 0
\(887\) −1407.11 812.396i −1.58637 0.915891i −0.993898 0.110300i \(-0.964819\pi\)
−0.592472 0.805591i \(-0.701848\pi\)
\(888\) 0 0
\(889\) −465.289 695.658i −0.523385 0.782517i
\(890\) 0 0
\(891\) 32.0257 55.4702i 0.0359436 0.0622561i
\(892\) 0 0
\(893\) 33.4810 + 57.9908i 0.0374927 + 0.0649393i
\(894\) 0 0
\(895\) 1213.00i 1.35531i
\(896\) 0 0
\(897\) −51.5877 −0.0575113
\(898\) 0 0
\(899\) 40.7480 23.5259i 0.0453259 0.0261689i
\(900\) 0 0
\(901\) 506.074 + 292.182i 0.561680 + 0.324286i
\(902\) 0 0
\(903\) −5.83221 2.87277i −0.00645870 0.00318136i
\(904\) 0 0
\(905\) −673.186 + 1165.99i −0.743852 + 1.28839i
\(906\) 0 0
\(907\) 192.221 + 332.937i 0.211931 + 0.367075i 0.952319 0.305105i \(-0.0986915\pi\)
−0.740388 + 0.672180i \(0.765358\pi\)
\(908\) 0 0
\(909\) 201.649i 0.221837i
\(910\) 0 0
\(911\) −528.605 −0.580247 −0.290123 0.956989i \(-0.593696\pi\)
−0.290123 + 0.956989i \(0.593696\pi\)
\(912\) 0 0
\(913\) −476.601 + 275.166i −0.522017 + 0.301387i
\(914\) 0 0
\(915\) −588.835 339.964i −0.643536 0.371545i
\(916\) 0 0
\(917\) −26.2004 396.926i −0.0285718 0.432852i
\(918\) 0 0
\(919\) 616.329 1067.51i 0.670652 1.16160i −0.307068 0.951688i \(-0.599348\pi\)
0.977720 0.209915i \(-0.0673188\pi\)
\(920\) 0 0
\(921\) 6.03960 + 10.4609i 0.00655766 + 0.0113582i
\(922\) 0 0
\(923\) 145.899i 0.158071i
\(924\) 0 0
\(925\) −42.9947 −0.0464808
\(926\) 0 0
\(927\) −125.111 + 72.2329i −0.134963 + 0.0779211i
\(928\) 0 0
\(929\) −672.470 388.251i −0.723865 0.417924i 0.0923087 0.995730i \(-0.470575\pi\)
−0.816173 + 0.577807i \(0.803909\pi\)
\(930\) 0 0
\(931\) −899.879 + 691.826i −0.966572 + 0.743100i
\(932\) 0 0
\(933\) −92.0662 + 159.463i −0.0986776 + 0.170915i
\(934\) 0 0
\(935\) 160.862 + 278.621i 0.172045 + 0.297990i
\(936\) 0 0
\(937\) 4.02080i 0.00429114i 0.999998 + 0.00214557i \(0.000682957\pi\)
−0.999998 + 0.00214557i \(0.999317\pi\)
\(938\) 0 0
\(939\) 546.620 0.582130
\(940\) 0 0
\(941\) −1404.37 + 810.814i −1.49242 + 0.861651i −0.999962 0.00868298i \(-0.997236\pi\)
−0.492461 + 0.870334i \(0.663903\pi\)
\(942\) 0 0
\(943\) 353.465 + 204.073i 0.374830 + 0.216408i
\(944\) 0 0
\(945\) −151.210 + 9.98112i −0.160011 + 0.0105620i
\(946\) 0 0
\(947\) 58.0509 100.547i 0.0612998 0.106174i −0.833747 0.552147i \(-0.813809\pi\)
0.895047 + 0.445973i \(0.147142\pi\)
\(948\) 0 0
\(949\) 61.4428 + 106.422i 0.0647448 + 0.112141i
\(950\) 0 0
\(951\) 935.893i 0.984114i
\(952\) 0 0
\(953\) 118.987 0.124855 0.0624274 0.998050i \(-0.480116\pi\)
0.0624274 + 0.998050i \(0.480116\pi\)
\(954\) 0 0
\(955\) 90.3323 52.1534i 0.0945888 0.0546109i
\(956\) 0 0
\(957\) 25.9056 + 14.9566i 0.0270696 + 0.0156286i
\(958\) 0 0
\(959\) 413.104 838.669i 0.430765 0.874525i
\(960\) 0 0
\(961\) −292.529 + 506.676i −0.304401 + 0.527238i
\(962\) 0 0
\(963\) −142.131 246.178i −0.147592 0.255636i
\(964\) 0 0
\(965\) 1359.06i 1.40835i
\(966\) 0 0
\(967\) −470.206 −0.486253 −0.243126 0.969995i \(-0.578173\pi\)
−0.243126 + 0.969995i \(0.578173\pi\)
\(968\) 0 0
\(969\) −377.027 + 217.677i −0.389089 + 0.224641i
\(970\) 0 0
\(971\) 254.174 + 146.748i 0.261766 + 0.151130i 0.625140 0.780513i \(-0.285042\pi\)
−0.363374 + 0.931643i \(0.618375\pi\)
\(972\) 0 0
\(973\) 985.954 659.454i 1.01331 0.677753i
\(974\) 0 0
\(975\) 15.5173 26.8767i 0.0159152 0.0275659i
\(976\) 0 0
\(977\) −551.134 954.592i −0.564109 0.977065i −0.997132 0.0756821i \(-0.975887\pi\)
0.433023 0.901383i \(-0.357447\pi\)
\(978\) 0 0
\(979\) 1013.51i 1.03525i
\(980\) 0 0
\(981\) 616.971 0.628921
\(982\) 0 0
\(983\) −179.042 + 103.370i −0.182138 + 0.105157i −0.588297 0.808645i \(-0.700201\pi\)
0.406159 + 0.913803i \(0.366868\pi\)
\(984\) 0 0
\(985\) 543.774 + 313.948i 0.552054 + 0.318729i
\(986\) 0 0
\(987\) −19.4848 29.1319i −0.0197415 0.0295156i
\(988\) 0 0
\(989\) −3.40599 + 5.89935i −0.00344388 + 0.00596497i
\(990\) 0 0
\(991\) 607.808 + 1052.75i 0.613328 + 1.06232i 0.990675 + 0.136244i \(0.0435030\pi\)
−0.377347 + 0.926072i \(0.623164\pi\)
\(992\) 0 0
\(993\) 106.353i 0.107103i
\(994\) 0 0
\(995\) 1275.66 1.28207
\(996\) 0 0
\(997\) 52.2095 30.1432i 0.0523666 0.0302339i −0.473588 0.880746i \(-0.657041\pi\)
0.525955 + 0.850513i \(0.323708\pi\)
\(998\) 0 0
\(999\) 25.3162 + 14.6163i 0.0253415 + 0.0146309i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.bh.a.481.6 16
4.3 odd 2 672.3.bh.c.481.6 yes 16
7.3 odd 6 inner 672.3.bh.a.577.6 yes 16
28.3 even 6 672.3.bh.c.577.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.bh.a.481.6 16 1.1 even 1 trivial
672.3.bh.a.577.6 yes 16 7.3 odd 6 inner
672.3.bh.c.481.6 yes 16 4.3 odd 2
672.3.bh.c.577.6 yes 16 28.3 even 6