Properties

Label 669.2.a.i.1.10
Level $669$
Weight $2$
Character 669.1
Self dual yes
Analytic conductor $5.342$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 22 x^{12} - x^{11} + 187 x^{10} + 14 x^{9} - 774 x^{8} - 70 x^{7} + 1622 x^{6} + 168 x^{5} + \cdots - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-1.24204\) of defining polynomial
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24204 q^{2} +1.00000 q^{3} -0.457333 q^{4} -3.85024 q^{5} +1.24204 q^{6} +4.21468 q^{7} -3.05211 q^{8} +1.00000 q^{9} -4.78216 q^{10} +6.03056 q^{11} -0.457333 q^{12} +4.16401 q^{13} +5.23480 q^{14} -3.85024 q^{15} -2.87618 q^{16} -1.01812 q^{17} +1.24204 q^{18} +5.83769 q^{19} +1.76084 q^{20} +4.21468 q^{21} +7.49021 q^{22} -1.26052 q^{23} -3.05211 q^{24} +9.82438 q^{25} +5.17187 q^{26} +1.00000 q^{27} -1.92751 q^{28} -7.96642 q^{29} -4.78216 q^{30} -3.24626 q^{31} +2.53189 q^{32} +6.03056 q^{33} -1.26455 q^{34} -16.2275 q^{35} -0.457333 q^{36} -5.67490 q^{37} +7.25065 q^{38} +4.16401 q^{39} +11.7514 q^{40} +11.6923 q^{41} +5.23480 q^{42} +5.87065 q^{43} -2.75798 q^{44} -3.85024 q^{45} -1.56562 q^{46} -8.13978 q^{47} -2.87618 q^{48} +10.7635 q^{49} +12.2023 q^{50} -1.01812 q^{51} -1.90434 q^{52} +1.36163 q^{53} +1.24204 q^{54} -23.2191 q^{55} -12.8637 q^{56} +5.83769 q^{57} -9.89462 q^{58} -5.69357 q^{59} +1.76084 q^{60} +1.05393 q^{61} -4.03198 q^{62} +4.21468 q^{63} +8.89707 q^{64} -16.0325 q^{65} +7.49021 q^{66} -12.4984 q^{67} +0.465621 q^{68} -1.26052 q^{69} -20.1553 q^{70} +8.17083 q^{71} -3.05211 q^{72} -9.89152 q^{73} -7.04847 q^{74} +9.82438 q^{75} -2.66977 q^{76} +25.4169 q^{77} +5.17187 q^{78} -12.1893 q^{79} +11.0740 q^{80} +1.00000 q^{81} +14.5223 q^{82} -0.115461 q^{83} -1.92751 q^{84} +3.92002 q^{85} +7.29159 q^{86} -7.96642 q^{87} -18.4059 q^{88} -4.35186 q^{89} -4.78216 q^{90} +17.5500 q^{91} +0.576478 q^{92} -3.24626 q^{93} -10.1099 q^{94} -22.4765 q^{95} +2.53189 q^{96} +0.792677 q^{97} +13.3687 q^{98} +6.03056 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{3} + 16 q^{4} + q^{5} + 14 q^{7} - 3 q^{8} + 14 q^{9} + 4 q^{10} + 13 q^{11} + 16 q^{12} + 10 q^{13} + q^{15} + 12 q^{16} + q^{17} + 32 q^{19} - 10 q^{20} + 14 q^{21} - 3 q^{22} - 7 q^{23}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24204 0.878256 0.439128 0.898425i \(-0.355287\pi\)
0.439128 + 0.898425i \(0.355287\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.457333 −0.228667
\(5\) −3.85024 −1.72188 −0.860941 0.508705i \(-0.830124\pi\)
−0.860941 + 0.508705i \(0.830124\pi\)
\(6\) 1.24204 0.507061
\(7\) 4.21468 1.59300 0.796499 0.604640i \(-0.206683\pi\)
0.796499 + 0.604640i \(0.206683\pi\)
\(8\) −3.05211 −1.07908
\(9\) 1.00000 0.333333
\(10\) −4.78216 −1.51225
\(11\) 6.03056 1.81828 0.909142 0.416487i \(-0.136739\pi\)
0.909142 + 0.416487i \(0.136739\pi\)
\(12\) −0.457333 −0.132021
\(13\) 4.16401 1.15489 0.577445 0.816430i \(-0.304050\pi\)
0.577445 + 0.816430i \(0.304050\pi\)
\(14\) 5.23480 1.39906
\(15\) −3.85024 −0.994129
\(16\) −2.87618 −0.719045
\(17\) −1.01812 −0.246931 −0.123465 0.992349i \(-0.539401\pi\)
−0.123465 + 0.992349i \(0.539401\pi\)
\(18\) 1.24204 0.292752
\(19\) 5.83769 1.33926 0.669629 0.742696i \(-0.266453\pi\)
0.669629 + 0.742696i \(0.266453\pi\)
\(20\) 1.76084 0.393737
\(21\) 4.21468 0.919718
\(22\) 7.49021 1.59692
\(23\) −1.26052 −0.262837 −0.131418 0.991327i \(-0.541953\pi\)
−0.131418 + 0.991327i \(0.541953\pi\)
\(24\) −3.05211 −0.623009
\(25\) 9.82438 1.96488
\(26\) 5.17187 1.01429
\(27\) 1.00000 0.192450
\(28\) −1.92751 −0.364266
\(29\) −7.96642 −1.47933 −0.739664 0.672977i \(-0.765015\pi\)
−0.739664 + 0.672977i \(0.765015\pi\)
\(30\) −4.78216 −0.873099
\(31\) −3.24626 −0.583045 −0.291522 0.956564i \(-0.594162\pi\)
−0.291522 + 0.956564i \(0.594162\pi\)
\(32\) 2.53189 0.447578
\(33\) 6.03056 1.04979
\(34\) −1.26455 −0.216869
\(35\) −16.2275 −2.74295
\(36\) −0.457333 −0.0762222
\(37\) −5.67490 −0.932949 −0.466474 0.884535i \(-0.654476\pi\)
−0.466474 + 0.884535i \(0.654476\pi\)
\(38\) 7.25065 1.17621
\(39\) 4.16401 0.666776
\(40\) 11.7514 1.85805
\(41\) 11.6923 1.82603 0.913016 0.407923i \(-0.133747\pi\)
0.913016 + 0.407923i \(0.133747\pi\)
\(42\) 5.23480 0.807748
\(43\) 5.87065 0.895265 0.447633 0.894218i \(-0.352267\pi\)
0.447633 + 0.894218i \(0.352267\pi\)
\(44\) −2.75798 −0.415781
\(45\) −3.85024 −0.573960
\(46\) −1.56562 −0.230838
\(47\) −8.13978 −1.18731 −0.593654 0.804720i \(-0.702315\pi\)
−0.593654 + 0.804720i \(0.702315\pi\)
\(48\) −2.87618 −0.415141
\(49\) 10.7635 1.53764
\(50\) 12.2023 1.72566
\(51\) −1.01812 −0.142566
\(52\) −1.90434 −0.264085
\(53\) 1.36163 0.187034 0.0935168 0.995618i \(-0.470189\pi\)
0.0935168 + 0.995618i \(0.470189\pi\)
\(54\) 1.24204 0.169020
\(55\) −23.2191 −3.13087
\(56\) −12.8637 −1.71898
\(57\) 5.83769 0.773221
\(58\) −9.89462 −1.29923
\(59\) −5.69357 −0.741240 −0.370620 0.928785i \(-0.620855\pi\)
−0.370620 + 0.928785i \(0.620855\pi\)
\(60\) 1.76084 0.227324
\(61\) 1.05393 0.134942 0.0674708 0.997721i \(-0.478507\pi\)
0.0674708 + 0.997721i \(0.478507\pi\)
\(62\) −4.03198 −0.512062
\(63\) 4.21468 0.530999
\(64\) 8.89707 1.11213
\(65\) −16.0325 −1.98858
\(66\) 7.49021 0.921981
\(67\) −12.4984 −1.52692 −0.763461 0.645854i \(-0.776501\pi\)
−0.763461 + 0.645854i \(0.776501\pi\)
\(68\) 0.465621 0.0564649
\(69\) −1.26052 −0.151749
\(70\) −20.1553 −2.40901
\(71\) 8.17083 0.969699 0.484850 0.874598i \(-0.338874\pi\)
0.484850 + 0.874598i \(0.338874\pi\)
\(72\) −3.05211 −0.359695
\(73\) −9.89152 −1.15771 −0.578857 0.815429i \(-0.696501\pi\)
−0.578857 + 0.815429i \(0.696501\pi\)
\(74\) −7.04847 −0.819367
\(75\) 9.82438 1.13442
\(76\) −2.66977 −0.306244
\(77\) 25.4169 2.89652
\(78\) 5.17187 0.585600
\(79\) −12.1893 −1.37140 −0.685701 0.727884i \(-0.740504\pi\)
−0.685701 + 0.727884i \(0.740504\pi\)
\(80\) 11.0740 1.23811
\(81\) 1.00000 0.111111
\(82\) 14.5223 1.60372
\(83\) −0.115461 −0.0126735 −0.00633676 0.999980i \(-0.502017\pi\)
−0.00633676 + 0.999980i \(0.502017\pi\)
\(84\) −1.92751 −0.210309
\(85\) 3.92002 0.425186
\(86\) 7.29159 0.786272
\(87\) −7.96642 −0.854090
\(88\) −18.4059 −1.96208
\(89\) −4.35186 −0.461296 −0.230648 0.973037i \(-0.574085\pi\)
−0.230648 + 0.973037i \(0.574085\pi\)
\(90\) −4.78216 −0.504084
\(91\) 17.5500 1.83974
\(92\) 0.576478 0.0601020
\(93\) −3.24626 −0.336621
\(94\) −10.1099 −1.04276
\(95\) −22.4765 −2.30604
\(96\) 2.53189 0.258409
\(97\) 0.792677 0.0804842 0.0402421 0.999190i \(-0.487187\pi\)
0.0402421 + 0.999190i \(0.487187\pi\)
\(98\) 13.3687 1.35044
\(99\) 6.03056 0.606094
\(100\) −4.49302 −0.449302
\(101\) 3.40873 0.339182 0.169591 0.985515i \(-0.445755\pi\)
0.169591 + 0.985515i \(0.445755\pi\)
\(102\) −1.26455 −0.125209
\(103\) −6.58517 −0.648856 −0.324428 0.945910i \(-0.605172\pi\)
−0.324428 + 0.945910i \(0.605172\pi\)
\(104\) −12.7090 −1.24622
\(105\) −16.2275 −1.58364
\(106\) 1.69120 0.164263
\(107\) 5.56837 0.538315 0.269157 0.963096i \(-0.413255\pi\)
0.269157 + 0.963096i \(0.413255\pi\)
\(108\) −0.457333 −0.0440069
\(109\) 6.92395 0.663194 0.331597 0.943421i \(-0.392413\pi\)
0.331597 + 0.943421i \(0.392413\pi\)
\(110\) −28.8391 −2.74970
\(111\) −5.67490 −0.538638
\(112\) −12.1222 −1.14544
\(113\) 4.36248 0.410388 0.205194 0.978721i \(-0.434217\pi\)
0.205194 + 0.978721i \(0.434217\pi\)
\(114\) 7.25065 0.679086
\(115\) 4.85331 0.452574
\(116\) 3.64331 0.338273
\(117\) 4.16401 0.384963
\(118\) −7.07165 −0.650998
\(119\) −4.29106 −0.393361
\(120\) 11.7514 1.07275
\(121\) 25.3677 2.30615
\(122\) 1.30902 0.118513
\(123\) 11.6923 1.05426
\(124\) 1.48462 0.133323
\(125\) −18.5750 −1.66140
\(126\) 5.23480 0.466353
\(127\) −15.7561 −1.39812 −0.699062 0.715061i \(-0.746399\pi\)
−0.699062 + 0.715061i \(0.746399\pi\)
\(128\) 5.98675 0.529159
\(129\) 5.87065 0.516882
\(130\) −19.9130 −1.74648
\(131\) 4.54645 0.397225 0.198612 0.980078i \(-0.436357\pi\)
0.198612 + 0.980078i \(0.436357\pi\)
\(132\) −2.75798 −0.240051
\(133\) 24.6040 2.13343
\(134\) −15.5235 −1.34103
\(135\) −3.85024 −0.331376
\(136\) 3.10742 0.266459
\(137\) −22.0581 −1.88455 −0.942277 0.334835i \(-0.891319\pi\)
−0.942277 + 0.334835i \(0.891319\pi\)
\(138\) −1.56562 −0.133274
\(139\) 4.87787 0.413736 0.206868 0.978369i \(-0.433673\pi\)
0.206868 + 0.978369i \(0.433673\pi\)
\(140\) 7.42139 0.627222
\(141\) −8.13978 −0.685493
\(142\) 10.1485 0.851644
\(143\) 25.1113 2.09992
\(144\) −2.87618 −0.239682
\(145\) 30.6727 2.54723
\(146\) −12.2857 −1.01677
\(147\) 10.7635 0.887758
\(148\) 2.59532 0.213334
\(149\) −6.70478 −0.549277 −0.274638 0.961548i \(-0.588558\pi\)
−0.274638 + 0.961548i \(0.588558\pi\)
\(150\) 12.2023 0.996312
\(151\) 12.7339 1.03627 0.518135 0.855299i \(-0.326627\pi\)
0.518135 + 0.855299i \(0.326627\pi\)
\(152\) −17.8173 −1.44517
\(153\) −1.01812 −0.0823103
\(154\) 31.5688 2.54389
\(155\) 12.4989 1.00393
\(156\) −1.90434 −0.152469
\(157\) 17.3303 1.38311 0.691556 0.722323i \(-0.256926\pi\)
0.691556 + 0.722323i \(0.256926\pi\)
\(158\) −15.1396 −1.20444
\(159\) 1.36163 0.107984
\(160\) −9.74838 −0.770677
\(161\) −5.31269 −0.418698
\(162\) 1.24204 0.0975840
\(163\) −8.71687 −0.682758 −0.341379 0.939926i \(-0.610894\pi\)
−0.341379 + 0.939926i \(0.610894\pi\)
\(164\) −5.34729 −0.417553
\(165\) −23.2191 −1.80761
\(166\) −0.143408 −0.0111306
\(167\) 25.4657 1.97059 0.985297 0.170853i \(-0.0546522\pi\)
0.985297 + 0.170853i \(0.0546522\pi\)
\(168\) −12.8637 −0.992453
\(169\) 4.33900 0.333769
\(170\) 4.86883 0.373422
\(171\) 5.83769 0.446419
\(172\) −2.68484 −0.204717
\(173\) −4.53163 −0.344533 −0.172267 0.985050i \(-0.555109\pi\)
−0.172267 + 0.985050i \(0.555109\pi\)
\(174\) −9.89462 −0.750109
\(175\) 41.4066 3.13004
\(176\) −17.3450 −1.30743
\(177\) −5.69357 −0.427955
\(178\) −5.40518 −0.405136
\(179\) −16.5057 −1.23370 −0.616849 0.787082i \(-0.711591\pi\)
−0.616849 + 0.787082i \(0.711591\pi\)
\(180\) 1.76084 0.131246
\(181\) 12.4340 0.924212 0.462106 0.886825i \(-0.347094\pi\)
0.462106 + 0.886825i \(0.347094\pi\)
\(182\) 21.7978 1.61576
\(183\) 1.05393 0.0779086
\(184\) 3.84725 0.283623
\(185\) 21.8498 1.60643
\(186\) −4.03198 −0.295639
\(187\) −6.13985 −0.448990
\(188\) 3.72259 0.271498
\(189\) 4.21468 0.306573
\(190\) −27.9168 −2.02530
\(191\) −20.0815 −1.45305 −0.726523 0.687142i \(-0.758865\pi\)
−0.726523 + 0.687142i \(0.758865\pi\)
\(192\) 8.89707 0.642090
\(193\) 7.52880 0.541935 0.270967 0.962589i \(-0.412656\pi\)
0.270967 + 0.962589i \(0.412656\pi\)
\(194\) 0.984538 0.0706857
\(195\) −16.0325 −1.14811
\(196\) −4.92251 −0.351608
\(197\) −7.97060 −0.567882 −0.283941 0.958842i \(-0.591642\pi\)
−0.283941 + 0.958842i \(0.591642\pi\)
\(198\) 7.49021 0.532306
\(199\) −16.6235 −1.17841 −0.589203 0.807985i \(-0.700558\pi\)
−0.589203 + 0.807985i \(0.700558\pi\)
\(200\) −29.9851 −2.12026
\(201\) −12.4984 −0.881568
\(202\) 4.23379 0.297888
\(203\) −33.5759 −2.35657
\(204\) 0.465621 0.0326000
\(205\) −45.0183 −3.14421
\(206\) −8.17906 −0.569862
\(207\) −1.26052 −0.0876122
\(208\) −11.9764 −0.830417
\(209\) 35.2045 2.43515
\(210\) −20.1553 −1.39085
\(211\) −10.4919 −0.722294 −0.361147 0.932509i \(-0.617615\pi\)
−0.361147 + 0.932509i \(0.617615\pi\)
\(212\) −0.622717 −0.0427684
\(213\) 8.17083 0.559856
\(214\) 6.91615 0.472778
\(215\) −22.6034 −1.54154
\(216\) −3.05211 −0.207670
\(217\) −13.6819 −0.928789
\(218\) 8.59983 0.582454
\(219\) −9.89152 −0.668407
\(220\) 10.6189 0.715925
\(221\) −4.23947 −0.285178
\(222\) −7.04847 −0.473062
\(223\) −1.00000 −0.0669650
\(224\) 10.6711 0.712991
\(225\) 9.82438 0.654958
\(226\) 5.41838 0.360426
\(227\) −11.2013 −0.743458 −0.371729 0.928341i \(-0.621235\pi\)
−0.371729 + 0.928341i \(0.621235\pi\)
\(228\) −2.66977 −0.176810
\(229\) −0.976014 −0.0644968 −0.0322484 0.999480i \(-0.510267\pi\)
−0.0322484 + 0.999480i \(0.510267\pi\)
\(230\) 6.02801 0.397475
\(231\) 25.4169 1.67231
\(232\) 24.3144 1.59632
\(233\) −22.5946 −1.48022 −0.740109 0.672487i \(-0.765226\pi\)
−0.740109 + 0.672487i \(0.765226\pi\)
\(234\) 5.17187 0.338096
\(235\) 31.3401 2.04440
\(236\) 2.60386 0.169497
\(237\) −12.1893 −0.791779
\(238\) −5.32967 −0.345471
\(239\) −4.77427 −0.308822 −0.154411 0.988007i \(-0.549348\pi\)
−0.154411 + 0.988007i \(0.549348\pi\)
\(240\) 11.0740 0.714823
\(241\) −10.6322 −0.684878 −0.342439 0.939540i \(-0.611253\pi\)
−0.342439 + 0.939540i \(0.611253\pi\)
\(242\) 31.5077 2.02539
\(243\) 1.00000 0.0641500
\(244\) −0.481997 −0.0308567
\(245\) −41.4421 −2.64764
\(246\) 14.5223 0.925911
\(247\) 24.3082 1.54669
\(248\) 9.90793 0.629154
\(249\) −0.115461 −0.00731706
\(250\) −23.0709 −1.45913
\(251\) 17.1203 1.08063 0.540313 0.841464i \(-0.318306\pi\)
0.540313 + 0.841464i \(0.318306\pi\)
\(252\) −1.92751 −0.121422
\(253\) −7.60165 −0.477911
\(254\) −19.5697 −1.22791
\(255\) 3.92002 0.245481
\(256\) −10.3583 −0.647396
\(257\) 15.3556 0.957853 0.478927 0.877855i \(-0.341026\pi\)
0.478927 + 0.877855i \(0.341026\pi\)
\(258\) 7.29159 0.453954
\(259\) −23.9179 −1.48619
\(260\) 7.33218 0.454722
\(261\) −7.96642 −0.493109
\(262\) 5.64687 0.348865
\(263\) 14.3234 0.883219 0.441610 0.897207i \(-0.354408\pi\)
0.441610 + 0.897207i \(0.354408\pi\)
\(264\) −18.4059 −1.13281
\(265\) −5.24259 −0.322050
\(266\) 30.5591 1.87370
\(267\) −4.35186 −0.266329
\(268\) 5.71593 0.349156
\(269\) −10.0480 −0.612637 −0.306319 0.951929i \(-0.599097\pi\)
−0.306319 + 0.951929i \(0.599097\pi\)
\(270\) −4.78216 −0.291033
\(271\) −7.44161 −0.452046 −0.226023 0.974122i \(-0.572572\pi\)
−0.226023 + 0.974122i \(0.572572\pi\)
\(272\) 2.92830 0.177554
\(273\) 17.5500 1.06217
\(274\) −27.3971 −1.65512
\(275\) 59.2465 3.57270
\(276\) 0.576478 0.0346999
\(277\) 1.77535 0.106670 0.0533351 0.998577i \(-0.483015\pi\)
0.0533351 + 0.998577i \(0.483015\pi\)
\(278\) 6.05852 0.363366
\(279\) −3.24626 −0.194348
\(280\) 49.5282 2.95988
\(281\) −13.5754 −0.809839 −0.404919 0.914352i \(-0.632700\pi\)
−0.404919 + 0.914352i \(0.632700\pi\)
\(282\) −10.1099 −0.602038
\(283\) −7.44940 −0.442821 −0.221410 0.975181i \(-0.571066\pi\)
−0.221410 + 0.975181i \(0.571066\pi\)
\(284\) −3.73679 −0.221738
\(285\) −22.4765 −1.33139
\(286\) 31.1893 1.84426
\(287\) 49.2793 2.90887
\(288\) 2.53189 0.149193
\(289\) −15.9634 −0.939025
\(290\) 38.0967 2.23712
\(291\) 0.792677 0.0464676
\(292\) 4.52372 0.264731
\(293\) 8.94256 0.522430 0.261215 0.965281i \(-0.415877\pi\)
0.261215 + 0.965281i \(0.415877\pi\)
\(294\) 13.3687 0.779679
\(295\) 21.9216 1.27633
\(296\) 17.3204 1.00673
\(297\) 6.03056 0.349929
\(298\) −8.32761 −0.482406
\(299\) −5.24882 −0.303547
\(300\) −4.49302 −0.259404
\(301\) 24.7429 1.42616
\(302\) 15.8160 0.910109
\(303\) 3.40873 0.195827
\(304\) −16.7902 −0.962986
\(305\) −4.05788 −0.232354
\(306\) −1.26455 −0.0722895
\(307\) −6.95368 −0.396867 −0.198434 0.980114i \(-0.563585\pi\)
−0.198434 + 0.980114i \(0.563585\pi\)
\(308\) −11.6240 −0.662338
\(309\) −6.58517 −0.374617
\(310\) 15.5241 0.881711
\(311\) −29.6158 −1.67936 −0.839678 0.543085i \(-0.817256\pi\)
−0.839678 + 0.543085i \(0.817256\pi\)
\(312\) −12.7090 −0.719507
\(313\) −4.34447 −0.245564 −0.122782 0.992434i \(-0.539182\pi\)
−0.122782 + 0.992434i \(0.539182\pi\)
\(314\) 21.5250 1.21473
\(315\) −16.2275 −0.914318
\(316\) 5.57456 0.313594
\(317\) 1.94112 0.109024 0.0545122 0.998513i \(-0.482640\pi\)
0.0545122 + 0.998513i \(0.482640\pi\)
\(318\) 1.69120 0.0948375
\(319\) −48.0420 −2.68984
\(320\) −34.2559 −1.91496
\(321\) 5.56837 0.310796
\(322\) −6.59858 −0.367724
\(323\) −5.94348 −0.330704
\(324\) −0.457333 −0.0254074
\(325\) 40.9088 2.26921
\(326\) −10.8267 −0.599636
\(327\) 6.92395 0.382895
\(328\) −35.6862 −1.97044
\(329\) −34.3065 −1.89138
\(330\) −28.8391 −1.58754
\(331\) 4.00127 0.219930 0.109965 0.993935i \(-0.464926\pi\)
0.109965 + 0.993935i \(0.464926\pi\)
\(332\) 0.0528043 0.00289801
\(333\) −5.67490 −0.310983
\(334\) 31.6294 1.73068
\(335\) 48.1218 2.62918
\(336\) −12.1222 −0.661318
\(337\) −24.3150 −1.32452 −0.662261 0.749274i \(-0.730403\pi\)
−0.662261 + 0.749274i \(0.730403\pi\)
\(338\) 5.38921 0.293134
\(339\) 4.36248 0.236938
\(340\) −1.79276 −0.0972258
\(341\) −19.5767 −1.06014
\(342\) 7.25065 0.392070
\(343\) 15.8619 0.856464
\(344\) −17.9179 −0.966066
\(345\) 4.85331 0.261293
\(346\) −5.62847 −0.302588
\(347\) 34.9216 1.87469 0.937345 0.348402i \(-0.113275\pi\)
0.937345 + 0.348402i \(0.113275\pi\)
\(348\) 3.64331 0.195302
\(349\) −3.56263 −0.190703 −0.0953517 0.995444i \(-0.530398\pi\)
−0.0953517 + 0.995444i \(0.530398\pi\)
\(350\) 51.4287 2.74898
\(351\) 4.16401 0.222259
\(352\) 15.2687 0.813824
\(353\) 5.83845 0.310749 0.155375 0.987856i \(-0.450342\pi\)
0.155375 + 0.987856i \(0.450342\pi\)
\(354\) −7.07165 −0.375854
\(355\) −31.4597 −1.66971
\(356\) 1.99025 0.105483
\(357\) −4.29106 −0.227107
\(358\) −20.5008 −1.08350
\(359\) 7.51374 0.396560 0.198280 0.980145i \(-0.436464\pi\)
0.198280 + 0.980145i \(0.436464\pi\)
\(360\) 11.7514 0.619351
\(361\) 15.0786 0.793610
\(362\) 15.4435 0.811694
\(363\) 25.3677 1.33146
\(364\) −8.02618 −0.420686
\(365\) 38.0848 1.99345
\(366\) 1.30902 0.0684237
\(367\) 26.2868 1.37216 0.686081 0.727525i \(-0.259330\pi\)
0.686081 + 0.727525i \(0.259330\pi\)
\(368\) 3.62548 0.188991
\(369\) 11.6923 0.608678
\(370\) 27.1383 1.41085
\(371\) 5.73881 0.297944
\(372\) 1.48462 0.0769740
\(373\) 5.89586 0.305276 0.152638 0.988282i \(-0.451223\pi\)
0.152638 + 0.988282i \(0.451223\pi\)
\(374\) −7.62595 −0.394328
\(375\) −18.5750 −0.959210
\(376\) 24.8435 1.28121
\(377\) −33.1723 −1.70846
\(378\) 5.23480 0.269249
\(379\) 14.7995 0.760199 0.380100 0.924946i \(-0.375890\pi\)
0.380100 + 0.924946i \(0.375890\pi\)
\(380\) 10.2793 0.527315
\(381\) −15.7561 −0.807207
\(382\) −24.9421 −1.27615
\(383\) −4.68617 −0.239452 −0.119726 0.992807i \(-0.538202\pi\)
−0.119726 + 0.992807i \(0.538202\pi\)
\(384\) 5.98675 0.305510
\(385\) −97.8611 −4.98747
\(386\) 9.35108 0.475957
\(387\) 5.87065 0.298422
\(388\) −0.362518 −0.0184041
\(389\) 24.9398 1.26450 0.632250 0.774765i \(-0.282132\pi\)
0.632250 + 0.774765i \(0.282132\pi\)
\(390\) −19.9130 −1.00833
\(391\) 1.28336 0.0649025
\(392\) −32.8514 −1.65925
\(393\) 4.54645 0.229338
\(394\) −9.89981 −0.498745
\(395\) 46.9317 2.36139
\(396\) −2.75798 −0.138594
\(397\) 21.6004 1.08409 0.542046 0.840349i \(-0.317650\pi\)
0.542046 + 0.840349i \(0.317650\pi\)
\(398\) −20.6470 −1.03494
\(399\) 24.6040 1.23174
\(400\) −28.2567 −1.41283
\(401\) −22.9795 −1.14754 −0.573771 0.819016i \(-0.694520\pi\)
−0.573771 + 0.819016i \(0.694520\pi\)
\(402\) −15.5235 −0.774243
\(403\) −13.5174 −0.673352
\(404\) −1.55893 −0.0775596
\(405\) −3.85024 −0.191320
\(406\) −41.7026 −2.06967
\(407\) −34.2229 −1.69636
\(408\) 3.10742 0.153840
\(409\) 1.08253 0.0535275 0.0267637 0.999642i \(-0.491480\pi\)
0.0267637 + 0.999642i \(0.491480\pi\)
\(410\) −55.9145 −2.76142
\(411\) −22.0581 −1.08805
\(412\) 3.01162 0.148372
\(413\) −23.9966 −1.18079
\(414\) −1.56562 −0.0769459
\(415\) 0.444554 0.0218223
\(416\) 10.5428 0.516903
\(417\) 4.87787 0.238870
\(418\) 43.7255 2.13868
\(419\) 29.4075 1.43665 0.718326 0.695707i \(-0.244909\pi\)
0.718326 + 0.695707i \(0.244909\pi\)
\(420\) 7.42139 0.362127
\(421\) −3.06238 −0.149251 −0.0746257 0.997212i \(-0.523776\pi\)
−0.0746257 + 0.997212i \(0.523776\pi\)
\(422\) −13.0314 −0.634359
\(423\) −8.13978 −0.395770
\(424\) −4.15583 −0.201825
\(425\) −10.0024 −0.485189
\(426\) 10.1485 0.491697
\(427\) 4.44197 0.214962
\(428\) −2.54660 −0.123095
\(429\) 25.1113 1.21239
\(430\) −28.0744 −1.35387
\(431\) −29.7458 −1.43280 −0.716402 0.697688i \(-0.754212\pi\)
−0.716402 + 0.697688i \(0.754212\pi\)
\(432\) −2.87618 −0.138380
\(433\) −8.53399 −0.410117 −0.205059 0.978750i \(-0.565739\pi\)
−0.205059 + 0.978750i \(0.565739\pi\)
\(434\) −16.9935 −0.815714
\(435\) 30.6727 1.47064
\(436\) −3.16655 −0.151650
\(437\) −7.35852 −0.352006
\(438\) −12.2857 −0.587032
\(439\) 39.8526 1.90206 0.951030 0.309099i \(-0.100028\pi\)
0.951030 + 0.309099i \(0.100028\pi\)
\(440\) 70.8673 3.37847
\(441\) 10.7635 0.512548
\(442\) −5.26560 −0.250459
\(443\) −21.0487 −1.00005 −0.500027 0.866010i \(-0.666677\pi\)
−0.500027 + 0.866010i \(0.666677\pi\)
\(444\) 2.59532 0.123169
\(445\) 16.7557 0.794297
\(446\) −1.24204 −0.0588124
\(447\) −6.70478 −0.317125
\(448\) 37.4983 1.77163
\(449\) 22.5601 1.06468 0.532339 0.846531i \(-0.321313\pi\)
0.532339 + 0.846531i \(0.321313\pi\)
\(450\) 12.2023 0.575221
\(451\) 70.5112 3.32024
\(452\) −1.99511 −0.0938420
\(453\) 12.7339 0.598290
\(454\) −13.9125 −0.652947
\(455\) −67.5716 −3.16781
\(456\) −17.8173 −0.834370
\(457\) 4.96027 0.232032 0.116016 0.993247i \(-0.462988\pi\)
0.116016 + 0.993247i \(0.462988\pi\)
\(458\) −1.21225 −0.0566447
\(459\) −1.01812 −0.0475219
\(460\) −2.21958 −0.103489
\(461\) 7.09912 0.330639 0.165319 0.986240i \(-0.447134\pi\)
0.165319 + 0.986240i \(0.447134\pi\)
\(462\) 31.5688 1.46871
\(463\) 4.80537 0.223324 0.111662 0.993746i \(-0.464383\pi\)
0.111662 + 0.993746i \(0.464383\pi\)
\(464\) 22.9129 1.06370
\(465\) 12.4989 0.579621
\(466\) −28.0634 −1.30001
\(467\) −8.71811 −0.403426 −0.201713 0.979445i \(-0.564651\pi\)
−0.201713 + 0.979445i \(0.564651\pi\)
\(468\) −1.90434 −0.0880282
\(469\) −52.6767 −2.43238
\(470\) 38.9257 1.79551
\(471\) 17.3303 0.798540
\(472\) 17.3774 0.799860
\(473\) 35.4033 1.62785
\(474\) −15.1396 −0.695384
\(475\) 57.3516 2.63147
\(476\) 1.96244 0.0899485
\(477\) 1.36163 0.0623446
\(478\) −5.92984 −0.271224
\(479\) −4.02989 −0.184131 −0.0920653 0.995753i \(-0.529347\pi\)
−0.0920653 + 0.995753i \(0.529347\pi\)
\(480\) −9.74838 −0.444950
\(481\) −23.6304 −1.07745
\(482\) −13.2056 −0.601498
\(483\) −5.31269 −0.241736
\(484\) −11.6015 −0.527340
\(485\) −3.05200 −0.138584
\(486\) 1.24204 0.0563401
\(487\) −14.1758 −0.642368 −0.321184 0.947017i \(-0.604081\pi\)
−0.321184 + 0.947017i \(0.604081\pi\)
\(488\) −3.21670 −0.145613
\(489\) −8.71687 −0.394190
\(490\) −51.4728 −2.32530
\(491\) 29.1330 1.31475 0.657377 0.753561i \(-0.271666\pi\)
0.657377 + 0.753561i \(0.271666\pi\)
\(492\) −5.34729 −0.241074
\(493\) 8.11079 0.365292
\(494\) 30.1918 1.35839
\(495\) −23.2191 −1.04362
\(496\) 9.33681 0.419235
\(497\) 34.4374 1.54473
\(498\) −0.143408 −0.00642625
\(499\) 11.6823 0.522970 0.261485 0.965208i \(-0.415788\pi\)
0.261485 + 0.965208i \(0.415788\pi\)
\(500\) 8.49498 0.379907
\(501\) 25.4657 1.13772
\(502\) 21.2642 0.949067
\(503\) −16.1726 −0.721099 −0.360549 0.932740i \(-0.617411\pi\)
−0.360549 + 0.932740i \(0.617411\pi\)
\(504\) −12.8637 −0.572993
\(505\) −13.1245 −0.584031
\(506\) −9.44156 −0.419729
\(507\) 4.33900 0.192702
\(508\) 7.20577 0.319704
\(509\) −3.63261 −0.161012 −0.0805062 0.996754i \(-0.525654\pi\)
−0.0805062 + 0.996754i \(0.525654\pi\)
\(510\) 4.86883 0.215595
\(511\) −41.6895 −1.84424
\(512\) −24.8390 −1.09774
\(513\) 5.83769 0.257740
\(514\) 19.0722 0.841240
\(515\) 25.3545 1.11725
\(516\) −2.68484 −0.118194
\(517\) −49.0874 −2.15886
\(518\) −29.7070 −1.30525
\(519\) −4.53163 −0.198916
\(520\) 48.9328 2.14585
\(521\) 13.2882 0.582168 0.291084 0.956697i \(-0.405984\pi\)
0.291084 + 0.956697i \(0.405984\pi\)
\(522\) −9.89462 −0.433076
\(523\) −1.52769 −0.0668013 −0.0334006 0.999442i \(-0.510634\pi\)
−0.0334006 + 0.999442i \(0.510634\pi\)
\(524\) −2.07924 −0.0908321
\(525\) 41.4066 1.80713
\(526\) 17.7903 0.775692
\(527\) 3.30509 0.143972
\(528\) −17.3450 −0.754843
\(529\) −21.4111 −0.930917
\(530\) −6.51151 −0.282842
\(531\) −5.69357 −0.247080
\(532\) −11.2522 −0.487845
\(533\) 48.6869 2.10887
\(534\) −5.40518 −0.233905
\(535\) −21.4396 −0.926914
\(536\) 38.1465 1.64768
\(537\) −16.5057 −0.712276
\(538\) −12.4800 −0.538052
\(539\) 64.9100 2.79587
\(540\) 1.76084 0.0757747
\(541\) −30.3869 −1.30644 −0.653218 0.757170i \(-0.726582\pi\)
−0.653218 + 0.757170i \(0.726582\pi\)
\(542\) −9.24279 −0.397012
\(543\) 12.4340 0.533594
\(544\) −2.57777 −0.110521
\(545\) −26.6589 −1.14194
\(546\) 21.7978 0.932859
\(547\) −25.6247 −1.09563 −0.547816 0.836599i \(-0.684541\pi\)
−0.547816 + 0.836599i \(0.684541\pi\)
\(548\) 10.0879 0.430935
\(549\) 1.05393 0.0449806
\(550\) 73.5866 3.13774
\(551\) −46.5055 −1.98120
\(552\) 3.84725 0.163750
\(553\) −51.3739 −2.18464
\(554\) 2.20505 0.0936838
\(555\) 21.8498 0.927471
\(556\) −2.23081 −0.0946075
\(557\) −33.7751 −1.43110 −0.715548 0.698564i \(-0.753823\pi\)
−0.715548 + 0.698564i \(0.753823\pi\)
\(558\) −4.03198 −0.170687
\(559\) 24.4454 1.03393
\(560\) 46.6733 1.97231
\(561\) −6.13985 −0.259225
\(562\) −16.8612 −0.711246
\(563\) 35.0432 1.47690 0.738448 0.674310i \(-0.235559\pi\)
0.738448 + 0.674310i \(0.235559\pi\)
\(564\) 3.72259 0.156749
\(565\) −16.7966 −0.706639
\(566\) −9.25246 −0.388910
\(567\) 4.21468 0.177000
\(568\) −24.9383 −1.04639
\(569\) −10.0273 −0.420367 −0.210183 0.977662i \(-0.567406\pi\)
−0.210183 + 0.977662i \(0.567406\pi\)
\(570\) −27.9168 −1.16930
\(571\) −31.0401 −1.29899 −0.649493 0.760367i \(-0.725019\pi\)
−0.649493 + 0.760367i \(0.725019\pi\)
\(572\) −11.4843 −0.480181
\(573\) −20.0815 −0.838917
\(574\) 61.2070 2.55473
\(575\) −12.3838 −0.516441
\(576\) 8.89707 0.370711
\(577\) 22.7440 0.946845 0.473422 0.880835i \(-0.343018\pi\)
0.473422 + 0.880835i \(0.343018\pi\)
\(578\) −19.8272 −0.824704
\(579\) 7.52880 0.312886
\(580\) −14.0276 −0.582466
\(581\) −0.486632 −0.0201889
\(582\) 0.984538 0.0408104
\(583\) 8.21137 0.340080
\(584\) 30.1900 1.24927
\(585\) −16.0325 −0.662861
\(586\) 11.1070 0.458827
\(587\) 18.0123 0.743449 0.371725 0.928343i \(-0.378767\pi\)
0.371725 + 0.928343i \(0.378767\pi\)
\(588\) −4.92251 −0.203001
\(589\) −18.9506 −0.780847
\(590\) 27.2276 1.12094
\(591\) −7.97060 −0.327867
\(592\) 16.3220 0.670832
\(593\) −25.7411 −1.05706 −0.528531 0.848914i \(-0.677257\pi\)
−0.528531 + 0.848914i \(0.677257\pi\)
\(594\) 7.49021 0.307327
\(595\) 16.5216 0.677320
\(596\) 3.06632 0.125601
\(597\) −16.6235 −0.680353
\(598\) −6.51925 −0.266592
\(599\) 6.60009 0.269672 0.134836 0.990868i \(-0.456949\pi\)
0.134836 + 0.990868i \(0.456949\pi\)
\(600\) −29.9851 −1.22414
\(601\) 23.5244 0.959582 0.479791 0.877383i \(-0.340712\pi\)
0.479791 + 0.877383i \(0.340712\pi\)
\(602\) 30.7317 1.25253
\(603\) −12.4984 −0.508974
\(604\) −5.82363 −0.236960
\(605\) −97.6718 −3.97092
\(606\) 4.23379 0.171986
\(607\) −15.8131 −0.641833 −0.320917 0.947107i \(-0.603991\pi\)
−0.320917 + 0.947107i \(0.603991\pi\)
\(608\) 14.7804 0.599423
\(609\) −33.5759 −1.36056
\(610\) −5.04005 −0.204066
\(611\) −33.8941 −1.37121
\(612\) 0.465621 0.0188216
\(613\) 26.8396 1.08404 0.542021 0.840365i \(-0.317659\pi\)
0.542021 + 0.840365i \(0.317659\pi\)
\(614\) −8.63676 −0.348551
\(615\) −45.0183 −1.81531
\(616\) −77.5751 −3.12559
\(617\) 7.53575 0.303378 0.151689 0.988428i \(-0.451529\pi\)
0.151689 + 0.988428i \(0.451529\pi\)
\(618\) −8.17906 −0.329010
\(619\) −5.57969 −0.224267 −0.112133 0.993693i \(-0.535768\pi\)
−0.112133 + 0.993693i \(0.535768\pi\)
\(620\) −5.71615 −0.229566
\(621\) −1.26052 −0.0505829
\(622\) −36.7840 −1.47490
\(623\) −18.3417 −0.734843
\(624\) −11.9764 −0.479442
\(625\) 22.3965 0.895860
\(626\) −5.39601 −0.215668
\(627\) 35.2045 1.40593
\(628\) −7.92574 −0.316272
\(629\) 5.77775 0.230374
\(630\) −20.1553 −0.803005
\(631\) −30.2830 −1.20555 −0.602774 0.797912i \(-0.705938\pi\)
−0.602774 + 0.797912i \(0.705938\pi\)
\(632\) 37.2030 1.47986
\(633\) −10.4919 −0.417017
\(634\) 2.41096 0.0957513
\(635\) 60.6646 2.40740
\(636\) −0.622717 −0.0246923
\(637\) 44.8193 1.77581
\(638\) −59.6701 −2.36236
\(639\) 8.17083 0.323233
\(640\) −23.0505 −0.911149
\(641\) 46.2374 1.82627 0.913133 0.407662i \(-0.133656\pi\)
0.913133 + 0.407662i \(0.133656\pi\)
\(642\) 6.91615 0.272958
\(643\) −23.7884 −0.938123 −0.469061 0.883166i \(-0.655408\pi\)
−0.469061 + 0.883166i \(0.655408\pi\)
\(644\) 2.42967 0.0957424
\(645\) −22.6034 −0.890009
\(646\) −7.38205 −0.290443
\(647\) 6.97536 0.274230 0.137115 0.990555i \(-0.456217\pi\)
0.137115 + 0.990555i \(0.456217\pi\)
\(648\) −3.05211 −0.119898
\(649\) −34.3354 −1.34778
\(650\) 50.8104 1.99295
\(651\) −13.6819 −0.536237
\(652\) 3.98651 0.156124
\(653\) 22.9930 0.899784 0.449892 0.893083i \(-0.351462\pi\)
0.449892 + 0.893083i \(0.351462\pi\)
\(654\) 8.59983 0.336280
\(655\) −17.5049 −0.683974
\(656\) −33.6292 −1.31300
\(657\) −9.89152 −0.385905
\(658\) −42.6101 −1.66112
\(659\) 22.9604 0.894410 0.447205 0.894431i \(-0.352419\pi\)
0.447205 + 0.894431i \(0.352419\pi\)
\(660\) 10.6189 0.413340
\(661\) −19.5894 −0.761940 −0.380970 0.924587i \(-0.624410\pi\)
−0.380970 + 0.924587i \(0.624410\pi\)
\(662\) 4.96975 0.193155
\(663\) −4.23947 −0.164648
\(664\) 0.352400 0.0136758
\(665\) −94.7313 −3.67352
\(666\) −7.04847 −0.273122
\(667\) 10.0418 0.388821
\(668\) −11.6463 −0.450609
\(669\) −1.00000 −0.0386622
\(670\) 59.7693 2.30909
\(671\) 6.35578 0.245362
\(672\) 10.6711 0.411646
\(673\) 37.5925 1.44908 0.724542 0.689231i \(-0.242051\pi\)
0.724542 + 0.689231i \(0.242051\pi\)
\(674\) −30.2002 −1.16327
\(675\) 9.82438 0.378140
\(676\) −1.98437 −0.0763218
\(677\) −7.02104 −0.269841 −0.134920 0.990856i \(-0.543078\pi\)
−0.134920 + 0.990856i \(0.543078\pi\)
\(678\) 5.41838 0.208092
\(679\) 3.34088 0.128211
\(680\) −11.9643 −0.458811
\(681\) −11.2013 −0.429236
\(682\) −24.3151 −0.931074
\(683\) 13.7069 0.524478 0.262239 0.965003i \(-0.415539\pi\)
0.262239 + 0.965003i \(0.415539\pi\)
\(684\) −2.66977 −0.102081
\(685\) 84.9292 3.24498
\(686\) 19.7012 0.752194
\(687\) −0.976014 −0.0372373
\(688\) −16.8850 −0.643736
\(689\) 5.66983 0.216003
\(690\) 6.02801 0.229483
\(691\) 48.0004 1.82602 0.913010 0.407936i \(-0.133751\pi\)
0.913010 + 0.407936i \(0.133751\pi\)
\(692\) 2.07246 0.0787833
\(693\) 25.4169 0.965507
\(694\) 43.3741 1.64646
\(695\) −18.7810 −0.712404
\(696\) 24.3144 0.921635
\(697\) −11.9042 −0.450904
\(698\) −4.42494 −0.167486
\(699\) −22.5946 −0.854605
\(700\) −18.9366 −0.715736
\(701\) −8.92817 −0.337212 −0.168606 0.985684i \(-0.553927\pi\)
−0.168606 + 0.985684i \(0.553927\pi\)
\(702\) 5.17187 0.195200
\(703\) −33.1283 −1.24946
\(704\) 53.6543 2.02217
\(705\) 31.3401 1.18034
\(706\) 7.25160 0.272917
\(707\) 14.3667 0.540316
\(708\) 2.60386 0.0978590
\(709\) −10.4365 −0.391950 −0.195975 0.980609i \(-0.562787\pi\)
−0.195975 + 0.980609i \(0.562787\pi\)
\(710\) −39.0742 −1.46643
\(711\) −12.1893 −0.457134
\(712\) 13.2823 0.497777
\(713\) 4.09197 0.153246
\(714\) −5.32967 −0.199458
\(715\) −96.6848 −3.61580
\(716\) 7.54863 0.282106
\(717\) −4.77427 −0.178298
\(718\) 9.33237 0.348281
\(719\) −15.0662 −0.561875 −0.280938 0.959726i \(-0.590645\pi\)
−0.280938 + 0.959726i \(0.590645\pi\)
\(720\) 11.0740 0.412703
\(721\) −27.7544 −1.03363
\(722\) 18.7282 0.696993
\(723\) −10.6322 −0.395414
\(724\) −5.68648 −0.211336
\(725\) −78.2651 −2.90669
\(726\) 31.5077 1.16936
\(727\) 29.1221 1.08008 0.540039 0.841640i \(-0.318410\pi\)
0.540039 + 0.841640i \(0.318410\pi\)
\(728\) −53.5644 −1.98523
\(729\) 1.00000 0.0370370
\(730\) 47.3028 1.75076
\(731\) −5.97704 −0.221069
\(732\) −0.481997 −0.0178151
\(733\) −30.4951 −1.12636 −0.563181 0.826333i \(-0.690423\pi\)
−0.563181 + 0.826333i \(0.690423\pi\)
\(734\) 32.6493 1.20511
\(735\) −41.4421 −1.52861
\(736\) −3.19149 −0.117640
\(737\) −75.3723 −2.77638
\(738\) 14.5223 0.534575
\(739\) −38.6662 −1.42236 −0.711179 0.703011i \(-0.751839\pi\)
−0.711179 + 0.703011i \(0.751839\pi\)
\(740\) −9.99263 −0.367336
\(741\) 24.3082 0.892984
\(742\) 7.12784 0.261671
\(743\) −30.4187 −1.11595 −0.557977 0.829856i \(-0.688422\pi\)
−0.557977 + 0.829856i \(0.688422\pi\)
\(744\) 9.90793 0.363242
\(745\) 25.8150 0.945790
\(746\) 7.32291 0.268111
\(747\) −0.115461 −0.00422450
\(748\) 2.80796 0.102669
\(749\) 23.4689 0.857534
\(750\) −23.0709 −0.842432
\(751\) 25.3352 0.924494 0.462247 0.886751i \(-0.347043\pi\)
0.462247 + 0.886751i \(0.347043\pi\)
\(752\) 23.4115 0.853728
\(753\) 17.1203 0.623900
\(754\) −41.2013 −1.50046
\(755\) −49.0286 −1.78433
\(756\) −1.92751 −0.0701029
\(757\) 13.5289 0.491717 0.245858 0.969306i \(-0.420930\pi\)
0.245858 + 0.969306i \(0.420930\pi\)
\(758\) 18.3816 0.667650
\(759\) −7.60165 −0.275922
\(760\) 68.6008 2.48841
\(761\) 18.7406 0.679346 0.339673 0.940544i \(-0.389684\pi\)
0.339673 + 0.940544i \(0.389684\pi\)
\(762\) −19.5697 −0.708934
\(763\) 29.1822 1.05647
\(764\) 9.18394 0.332263
\(765\) 3.92002 0.141729
\(766\) −5.82041 −0.210300
\(767\) −23.7081 −0.856050
\(768\) −10.3583 −0.373774
\(769\) −9.27248 −0.334374 −0.167187 0.985925i \(-0.553468\pi\)
−0.167187 + 0.985925i \(0.553468\pi\)
\(770\) −121.548 −4.38027
\(771\) 15.3556 0.553017
\(772\) −3.44317 −0.123922
\(773\) 1.56721 0.0563688 0.0281844 0.999603i \(-0.491027\pi\)
0.0281844 + 0.999603i \(0.491027\pi\)
\(774\) 7.29159 0.262091
\(775\) −31.8924 −1.14561
\(776\) −2.41934 −0.0868492
\(777\) −23.9179 −0.858049
\(778\) 30.9763 1.11055
\(779\) 68.2561 2.44553
\(780\) 7.33218 0.262534
\(781\) 49.2747 1.76319
\(782\) 1.59399 0.0570010
\(783\) −7.96642 −0.284697
\(784\) −30.9578 −1.10563
\(785\) −66.7260 −2.38155
\(786\) 5.64687 0.201417
\(787\) 8.99683 0.320703 0.160351 0.987060i \(-0.448737\pi\)
0.160351 + 0.987060i \(0.448737\pi\)
\(788\) 3.64522 0.129856
\(789\) 14.3234 0.509927
\(790\) 58.2911 2.07390
\(791\) 18.3865 0.653747
\(792\) −18.4059 −0.654027
\(793\) 4.38857 0.155843
\(794\) 26.8286 0.952110
\(795\) −5.24259 −0.185936
\(796\) 7.60246 0.269462
\(797\) 19.0662 0.675358 0.337679 0.941261i \(-0.390358\pi\)
0.337679 + 0.941261i \(0.390358\pi\)
\(798\) 30.5591 1.08178
\(799\) 8.28729 0.293183
\(800\) 24.8742 0.879436
\(801\) −4.35186 −0.153765
\(802\) −28.5415 −1.00784
\(803\) −59.6514 −2.10505
\(804\) 5.71593 0.201585
\(805\) 20.4551 0.720949
\(806\) −16.7892 −0.591375
\(807\) −10.0480 −0.353706
\(808\) −10.4038 −0.366005
\(809\) 20.1912 0.709884 0.354942 0.934888i \(-0.384501\pi\)
0.354942 + 0.934888i \(0.384501\pi\)
\(810\) −4.78216 −0.168028
\(811\) 15.4880 0.543857 0.271929 0.962317i \(-0.412339\pi\)
0.271929 + 0.962317i \(0.412339\pi\)
\(812\) 15.3554 0.538868
\(813\) −7.44161 −0.260989
\(814\) −42.5062 −1.48984
\(815\) 33.5621 1.17563
\(816\) 2.92830 0.102511
\(817\) 34.2710 1.19899
\(818\) 1.34454 0.0470108
\(819\) 17.5500 0.613245
\(820\) 20.5884 0.718977
\(821\) 24.6436 0.860069 0.430034 0.902813i \(-0.358501\pi\)
0.430034 + 0.902813i \(0.358501\pi\)
\(822\) −27.3971 −0.955584
\(823\) −25.0087 −0.871749 −0.435875 0.900007i \(-0.643561\pi\)
−0.435875 + 0.900007i \(0.643561\pi\)
\(824\) 20.0987 0.700170
\(825\) 59.2465 2.06270
\(826\) −29.8047 −1.03704
\(827\) 9.12496 0.317306 0.158653 0.987334i \(-0.449285\pi\)
0.158653 + 0.987334i \(0.449285\pi\)
\(828\) 0.576478 0.0200340
\(829\) 47.0763 1.63503 0.817514 0.575909i \(-0.195352\pi\)
0.817514 + 0.575909i \(0.195352\pi\)
\(830\) 0.552154 0.0191656
\(831\) 1.77535 0.0615861
\(832\) 37.0475 1.28439
\(833\) −10.9586 −0.379692
\(834\) 6.05852 0.209789
\(835\) −98.0491 −3.39313
\(836\) −16.1002 −0.556837
\(837\) −3.24626 −0.112207
\(838\) 36.5254 1.26175
\(839\) −28.1790 −0.972848 −0.486424 0.873723i \(-0.661699\pi\)
−0.486424 + 0.873723i \(0.661699\pi\)
\(840\) 49.5282 1.70889
\(841\) 34.4639 1.18841
\(842\) −3.80360 −0.131081
\(843\) −13.5754 −0.467561
\(844\) 4.79831 0.165165
\(845\) −16.7062 −0.574710
\(846\) −10.1099 −0.347587
\(847\) 106.917 3.67370
\(848\) −3.91628 −0.134486
\(849\) −7.44940 −0.255663
\(850\) −12.4234 −0.426120
\(851\) 7.15333 0.245213
\(852\) −3.73679 −0.128020
\(853\) −13.6133 −0.466110 −0.233055 0.972464i \(-0.574872\pi\)
−0.233055 + 0.972464i \(0.574872\pi\)
\(854\) 5.51711 0.188791
\(855\) −22.4765 −0.768681
\(856\) −16.9953 −0.580887
\(857\) 2.34790 0.0802029 0.0401014 0.999196i \(-0.487232\pi\)
0.0401014 + 0.999196i \(0.487232\pi\)
\(858\) 31.1893 1.06479
\(859\) 20.3279 0.693577 0.346789 0.937943i \(-0.387272\pi\)
0.346789 + 0.937943i \(0.387272\pi\)
\(860\) 10.3373 0.352499
\(861\) 49.2793 1.67944
\(862\) −36.9455 −1.25837
\(863\) 9.80337 0.333711 0.166855 0.985981i \(-0.446639\pi\)
0.166855 + 0.985981i \(0.446639\pi\)
\(864\) 2.53189 0.0861365
\(865\) 17.4479 0.593245
\(866\) −10.5996 −0.360188
\(867\) −15.9634 −0.542146
\(868\) 6.25720 0.212383
\(869\) −73.5082 −2.49360
\(870\) 38.0967 1.29160
\(871\) −52.0434 −1.76342
\(872\) −21.1326 −0.715642
\(873\) 0.792677 0.0268281
\(874\) −9.13959 −0.309151
\(875\) −78.2877 −2.64661
\(876\) 4.52372 0.152842
\(877\) 5.95102 0.200952 0.100476 0.994940i \(-0.467964\pi\)
0.100476 + 0.994940i \(0.467964\pi\)
\(878\) 49.4985 1.67049
\(879\) 8.94256 0.301625
\(880\) 66.7824 2.25123
\(881\) −18.9288 −0.637728 −0.318864 0.947800i \(-0.603301\pi\)
−0.318864 + 0.947800i \(0.603301\pi\)
\(882\) 13.3687 0.450148
\(883\) −37.7029 −1.26880 −0.634402 0.773004i \(-0.718753\pi\)
−0.634402 + 0.773004i \(0.718753\pi\)
\(884\) 1.93885 0.0652107
\(885\) 21.9216 0.736888
\(886\) −26.1434 −0.878303
\(887\) −38.6759 −1.29861 −0.649305 0.760528i \(-0.724940\pi\)
−0.649305 + 0.760528i \(0.724940\pi\)
\(888\) 17.3204 0.581236
\(889\) −66.4067 −2.22721
\(890\) 20.8113 0.697596
\(891\) 6.03056 0.202031
\(892\) 0.457333 0.0153127
\(893\) −47.5175 −1.59011
\(894\) −8.32761 −0.278517
\(895\) 63.5511 2.12428
\(896\) 25.2322 0.842949
\(897\) −5.24882 −0.175253
\(898\) 28.0206 0.935060
\(899\) 25.8610 0.862514
\(900\) −4.49302 −0.149767
\(901\) −1.38630 −0.0461844
\(902\) 87.5779 2.91602
\(903\) 24.7429 0.823391
\(904\) −13.3148 −0.442843
\(905\) −47.8739 −1.59138
\(906\) 15.8160 0.525452
\(907\) −27.5035 −0.913238 −0.456619 0.889662i \(-0.650940\pi\)
−0.456619 + 0.889662i \(0.650940\pi\)
\(908\) 5.12274 0.170004
\(909\) 3.40873 0.113061
\(910\) −83.9268 −2.78215
\(911\) 18.9730 0.628603 0.314301 0.949323i \(-0.398230\pi\)
0.314301 + 0.949323i \(0.398230\pi\)
\(912\) −16.7902 −0.555980
\(913\) −0.696296 −0.0230440
\(914\) 6.16086 0.203783
\(915\) −4.05788 −0.134149
\(916\) 0.446364 0.0147483
\(917\) 19.1618 0.632778
\(918\) −1.26455 −0.0417364
\(919\) −21.1146 −0.696507 −0.348254 0.937400i \(-0.613225\pi\)
−0.348254 + 0.937400i \(0.613225\pi\)
\(920\) −14.8128 −0.488365
\(921\) −6.95368 −0.229131
\(922\) 8.81740 0.290386
\(923\) 34.0234 1.11990
\(924\) −11.6240 −0.382401
\(925\) −55.7524 −1.83313
\(926\) 5.96847 0.196136
\(927\) −6.58517 −0.216285
\(928\) −20.1701 −0.662115
\(929\) 23.3514 0.766134 0.383067 0.923721i \(-0.374868\pi\)
0.383067 + 0.923721i \(0.374868\pi\)
\(930\) 15.5241 0.509056
\(931\) 62.8339 2.05930
\(932\) 10.3332 0.338477
\(933\) −29.6158 −0.969577
\(934\) −10.8282 −0.354311
\(935\) 23.6399 0.773108
\(936\) −12.7090 −0.415407
\(937\) −12.6313 −0.412645 −0.206323 0.978484i \(-0.566150\pi\)
−0.206323 + 0.978484i \(0.566150\pi\)
\(938\) −65.4266 −2.13625
\(939\) −4.34447 −0.141776
\(940\) −14.3329 −0.467487
\(941\) 53.4167 1.74134 0.870668 0.491872i \(-0.163687\pi\)
0.870668 + 0.491872i \(0.163687\pi\)
\(942\) 21.5250 0.701322
\(943\) −14.7384 −0.479948
\(944\) 16.3757 0.532985
\(945\) −16.2275 −0.527882
\(946\) 43.9724 1.42967
\(947\) 58.5627 1.90303 0.951516 0.307598i \(-0.0995253\pi\)
0.951516 + 0.307598i \(0.0995253\pi\)
\(948\) 5.57456 0.181053
\(949\) −41.1884 −1.33703
\(950\) 71.2331 2.31111
\(951\) 1.94112 0.0629453
\(952\) 13.0968 0.424469
\(953\) −10.2980 −0.333587 −0.166793 0.985992i \(-0.553341\pi\)
−0.166793 + 0.985992i \(0.553341\pi\)
\(954\) 1.69120 0.0547545
\(955\) 77.3187 2.50197
\(956\) 2.18343 0.0706172
\(957\) −48.0420 −1.55298
\(958\) −5.00530 −0.161714
\(959\) −92.9679 −3.00209
\(960\) −34.2559 −1.10560
\(961\) −20.4618 −0.660059
\(962\) −29.3499 −0.946279
\(963\) 5.56837 0.179438
\(964\) 4.86244 0.156609
\(965\) −28.9877 −0.933147
\(966\) −6.59858 −0.212306
\(967\) −22.2539 −0.715636 −0.357818 0.933791i \(-0.616479\pi\)
−0.357818 + 0.933791i \(0.616479\pi\)
\(968\) −77.4250 −2.48853
\(969\) −5.94348 −0.190932
\(970\) −3.79071 −0.121712
\(971\) −1.22732 −0.0393865 −0.0196932 0.999806i \(-0.506269\pi\)
−0.0196932 + 0.999806i \(0.506269\pi\)
\(972\) −0.457333 −0.0146690
\(973\) 20.5586 0.659080
\(974\) −17.6070 −0.564164
\(975\) 40.9088 1.31013
\(976\) −3.03129 −0.0970291
\(977\) −10.0999 −0.323125 −0.161562 0.986862i \(-0.551653\pi\)
−0.161562 + 0.986862i \(0.551653\pi\)
\(978\) −10.8267 −0.346200
\(979\) −26.2441 −0.838766
\(980\) 18.9529 0.605427
\(981\) 6.92395 0.221065
\(982\) 36.1844 1.15469
\(983\) 15.0078 0.478675 0.239337 0.970936i \(-0.423070\pi\)
0.239337 + 0.970936i \(0.423070\pi\)
\(984\) −35.6862 −1.13764
\(985\) 30.6887 0.977825
\(986\) 10.0739 0.320820
\(987\) −34.3065 −1.09199
\(988\) −11.1170 −0.353677
\(989\) −7.40007 −0.235309
\(990\) −28.8391 −0.916568
\(991\) −7.47991 −0.237607 −0.118804 0.992918i \(-0.537906\pi\)
−0.118804 + 0.992918i \(0.537906\pi\)
\(992\) −8.21915 −0.260958
\(993\) 4.00127 0.126977
\(994\) 42.7727 1.35667
\(995\) 64.0044 2.02908
\(996\) 0.0528043 0.00167317
\(997\) 8.57285 0.271505 0.135753 0.990743i \(-0.456655\pi\)
0.135753 + 0.990743i \(0.456655\pi\)
\(998\) 14.5099 0.459302
\(999\) −5.67490 −0.179546
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.2.a.i.1.10 14
3.2 odd 2 2007.2.a.n.1.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.2.a.i.1.10 14 1.1 even 1 trivial
2007.2.a.n.1.5 14 3.2 odd 2