Properties

Label 669.2
Level 669
Weight 2
Dimension 12209
Nonzero newspaces 8
Newform subspaces 23
Sturm bound 66304
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 669 = 3 \cdot 223 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 23 \)
Sturm bound: \(66304\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(669))\).

Total New Old
Modular forms 17020 12653 4367
Cusp forms 16133 12209 3924
Eisenstein series 887 444 443

Trace form

\( 12209 q - 3 q^{2} - 112 q^{3} - 229 q^{4} - 6 q^{5} - 114 q^{6} - 230 q^{7} - 15 q^{8} - 112 q^{9} - 240 q^{10} - 12 q^{11} - 118 q^{12} - 236 q^{13} - 24 q^{14} - 117 q^{15} - 253 q^{16} - 18 q^{17} - 114 q^{18}+ \cdots - 123 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(669))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
669.2.a \(\chi_{669}(1, \cdot)\) 669.2.a.a 1 1
669.2.a.b 2
669.2.a.c 2
669.2.a.d 2
669.2.a.e 3
669.2.a.f 3
669.2.a.g 3
669.2.a.h 7
669.2.a.i 14
669.2.c \(\chi_{669}(668, \cdot)\) 669.2.c.a 72 1
669.2.e \(\chi_{669}(262, \cdot)\) 669.2.e.a 2 2
669.2.e.b 4
669.2.e.c 30
669.2.e.d 38
669.2.f \(\chi_{669}(263, \cdot)\) 669.2.f.a 2 2
669.2.f.b 144
669.2.i \(\chi_{669}(4, \cdot)\) 669.2.i.a 648 36
669.2.i.b 720
669.2.k \(\chi_{669}(26, \cdot)\) 669.2.k.a 2592 36
669.2.m \(\chi_{669}(19, \cdot)\) 669.2.m.a 1296 72
669.2.m.b 1368
669.2.p \(\chi_{669}(5, \cdot)\) 669.2.p.a 72 72
669.2.p.b 5184

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(669))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(669)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(223))\)\(^{\oplus 2}\)