Properties

Label 669.2.a.h.1.3
Level $669$
Weight $2$
Character 669.1
Self dual yes
Analytic conductor $5.342$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,2,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 15x^{4} + 15x^{3} - 26x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.156720\) of defining polynomial
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.156720 q^{2} -1.00000 q^{3} -1.97544 q^{4} +2.84044 q^{5} +0.156720 q^{6} +2.12887 q^{7} +0.623032 q^{8} +1.00000 q^{9} -0.445154 q^{10} -1.54035 q^{11} +1.97544 q^{12} -2.19124 q^{13} -0.333637 q^{14} -2.84044 q^{15} +3.85324 q^{16} -2.31004 q^{17} -0.156720 q^{18} +3.87780 q^{19} -5.61111 q^{20} -2.12887 q^{21} +0.241405 q^{22} +6.13143 q^{23} -0.623032 q^{24} +3.06807 q^{25} +0.343412 q^{26} -1.00000 q^{27} -4.20545 q^{28} -1.33716 q^{29} +0.445154 q^{30} +5.18277 q^{31} -1.84995 q^{32} +1.54035 q^{33} +0.362030 q^{34} +6.04692 q^{35} -1.97544 q^{36} +4.11852 q^{37} -0.607730 q^{38} +2.19124 q^{39} +1.76968 q^{40} +8.48963 q^{41} +0.333637 q^{42} -2.54730 q^{43} +3.04287 q^{44} +2.84044 q^{45} -0.960921 q^{46} +5.81331 q^{47} -3.85324 q^{48} -2.46792 q^{49} -0.480830 q^{50} +2.31004 q^{51} +4.32866 q^{52} +14.1513 q^{53} +0.156720 q^{54} -4.37528 q^{55} +1.32635 q^{56} -3.87780 q^{57} +0.209561 q^{58} +3.25954 q^{59} +5.61111 q^{60} +9.61946 q^{61} -0.812246 q^{62} +2.12887 q^{63} -7.41655 q^{64} -6.22407 q^{65} -0.241405 q^{66} -0.700772 q^{67} +4.56334 q^{68} -6.13143 q^{69} -0.947675 q^{70} -1.01618 q^{71} +0.623032 q^{72} -11.7272 q^{73} -0.645456 q^{74} -3.06807 q^{75} -7.66035 q^{76} -3.27921 q^{77} -0.343412 q^{78} +2.71486 q^{79} +10.9449 q^{80} +1.00000 q^{81} -1.33050 q^{82} +11.2303 q^{83} +4.20545 q^{84} -6.56151 q^{85} +0.399214 q^{86} +1.33716 q^{87} -0.959690 q^{88} -9.83376 q^{89} -0.445154 q^{90} -4.66486 q^{91} -12.1123 q^{92} -5.18277 q^{93} -0.911064 q^{94} +11.0146 q^{95} +1.84995 q^{96} -8.34884 q^{97} +0.386773 q^{98} -1.54035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} - 7 q^{3} + 6 q^{4} + 3 q^{5} - 2 q^{6} - 2 q^{7} + 3 q^{8} + 7 q^{9} + 15 q^{11} - 6 q^{12} - 2 q^{13} + 4 q^{14} - 3 q^{15} + 5 q^{17} + 2 q^{18} + 20 q^{19} + 8 q^{20} + 2 q^{21} + 11 q^{22}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156720 −0.110818 −0.0554090 0.998464i \(-0.517646\pi\)
−0.0554090 + 0.998464i \(0.517646\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.97544 −0.987719
\(5\) 2.84044 1.27028 0.635141 0.772396i \(-0.280942\pi\)
0.635141 + 0.772396i \(0.280942\pi\)
\(6\) 0.156720 0.0639808
\(7\) 2.12887 0.804637 0.402318 0.915500i \(-0.368204\pi\)
0.402318 + 0.915500i \(0.368204\pi\)
\(8\) 0.623032 0.220275
\(9\) 1.00000 0.333333
\(10\) −0.445154 −0.140770
\(11\) −1.54035 −0.464434 −0.232217 0.972664i \(-0.574598\pi\)
−0.232217 + 0.972664i \(0.574598\pi\)
\(12\) 1.97544 0.570260
\(13\) −2.19124 −0.607740 −0.303870 0.952714i \(-0.598279\pi\)
−0.303870 + 0.952714i \(0.598279\pi\)
\(14\) −0.333637 −0.0891683
\(15\) −2.84044 −0.733397
\(16\) 3.85324 0.963309
\(17\) −2.31004 −0.560266 −0.280133 0.959961i \(-0.590379\pi\)
−0.280133 + 0.959961i \(0.590379\pi\)
\(18\) −0.156720 −0.0369394
\(19\) 3.87780 0.889628 0.444814 0.895623i \(-0.353270\pi\)
0.444814 + 0.895623i \(0.353270\pi\)
\(20\) −5.61111 −1.25468
\(21\) −2.12887 −0.464557
\(22\) 0.241405 0.0514677
\(23\) 6.13143 1.27849 0.639246 0.769002i \(-0.279246\pi\)
0.639246 + 0.769002i \(0.279246\pi\)
\(24\) −0.623032 −0.127176
\(25\) 3.06807 0.613615
\(26\) 0.343412 0.0673486
\(27\) −1.00000 −0.192450
\(28\) −4.20545 −0.794755
\(29\) −1.33716 −0.248305 −0.124153 0.992263i \(-0.539621\pi\)
−0.124153 + 0.992263i \(0.539621\pi\)
\(30\) 0.445154 0.0812737
\(31\) 5.18277 0.930853 0.465427 0.885086i \(-0.345901\pi\)
0.465427 + 0.885086i \(0.345901\pi\)
\(32\) −1.84995 −0.327027
\(33\) 1.54035 0.268141
\(34\) 0.362030 0.0620876
\(35\) 6.04692 1.02212
\(36\) −1.97544 −0.329240
\(37\) 4.11852 0.677081 0.338540 0.940952i \(-0.390067\pi\)
0.338540 + 0.940952i \(0.390067\pi\)
\(38\) −0.607730 −0.0985868
\(39\) 2.19124 0.350879
\(40\) 1.76968 0.279812
\(41\) 8.48963 1.32586 0.662929 0.748683i \(-0.269313\pi\)
0.662929 + 0.748683i \(0.269313\pi\)
\(42\) 0.333637 0.0514813
\(43\) −2.54730 −0.388459 −0.194230 0.980956i \(-0.562221\pi\)
−0.194230 + 0.980956i \(0.562221\pi\)
\(44\) 3.04287 0.458731
\(45\) 2.84044 0.423427
\(46\) −0.960921 −0.141680
\(47\) 5.81331 0.847958 0.423979 0.905672i \(-0.360633\pi\)
0.423979 + 0.905672i \(0.360633\pi\)
\(48\) −3.85324 −0.556167
\(49\) −2.46792 −0.352559
\(50\) −0.480830 −0.0679996
\(51\) 2.31004 0.323470
\(52\) 4.32866 0.600277
\(53\) 14.1513 1.94384 0.971918 0.235318i \(-0.0756131\pi\)
0.971918 + 0.235318i \(0.0756131\pi\)
\(54\) 0.156720 0.0213269
\(55\) −4.37528 −0.589962
\(56\) 1.32635 0.177242
\(57\) −3.87780 −0.513627
\(58\) 0.209561 0.0275167
\(59\) 3.25954 0.424356 0.212178 0.977231i \(-0.431944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(60\) 5.61111 0.724391
\(61\) 9.61946 1.23165 0.615823 0.787885i \(-0.288824\pi\)
0.615823 + 0.787885i \(0.288824\pi\)
\(62\) −0.812246 −0.103155
\(63\) 2.12887 0.268212
\(64\) −7.41655 −0.927068
\(65\) −6.22407 −0.772001
\(66\) −0.241405 −0.0297149
\(67\) −0.700772 −0.0856129 −0.0428065 0.999083i \(-0.513630\pi\)
−0.0428065 + 0.999083i \(0.513630\pi\)
\(68\) 4.56334 0.553386
\(69\) −6.13143 −0.738138
\(70\) −0.947675 −0.113269
\(71\) −1.01618 −0.120598 −0.0602990 0.998180i \(-0.519205\pi\)
−0.0602990 + 0.998180i \(0.519205\pi\)
\(72\) 0.623032 0.0734251
\(73\) −11.7272 −1.37257 −0.686284 0.727334i \(-0.740759\pi\)
−0.686284 + 0.727334i \(0.740759\pi\)
\(74\) −0.645456 −0.0750328
\(75\) −3.06807 −0.354271
\(76\) −7.66035 −0.878702
\(77\) −3.27921 −0.373701
\(78\) −0.343412 −0.0388837
\(79\) 2.71486 0.305445 0.152723 0.988269i \(-0.451196\pi\)
0.152723 + 0.988269i \(0.451196\pi\)
\(80\) 10.9449 1.22367
\(81\) 1.00000 0.111111
\(82\) −1.33050 −0.146929
\(83\) 11.2303 1.23269 0.616344 0.787477i \(-0.288613\pi\)
0.616344 + 0.787477i \(0.288613\pi\)
\(84\) 4.20545 0.458852
\(85\) −6.56151 −0.711696
\(86\) 0.399214 0.0430483
\(87\) 1.33716 0.143359
\(88\) −0.959690 −0.102303
\(89\) −9.83376 −1.04238 −0.521188 0.853442i \(-0.674511\pi\)
−0.521188 + 0.853442i \(0.674511\pi\)
\(90\) −0.445154 −0.0469234
\(91\) −4.66486 −0.489010
\(92\) −12.1123 −1.26279
\(93\) −5.18277 −0.537428
\(94\) −0.911064 −0.0939691
\(95\) 11.0146 1.13008
\(96\) 1.84995 0.188809
\(97\) −8.34884 −0.847696 −0.423848 0.905733i \(-0.639321\pi\)
−0.423848 + 0.905733i \(0.639321\pi\)
\(98\) 0.386773 0.0390700
\(99\) −1.54035 −0.154811
\(100\) −6.06079 −0.606079
\(101\) −8.46921 −0.842718 −0.421359 0.906894i \(-0.638447\pi\)
−0.421359 + 0.906894i \(0.638447\pi\)
\(102\) −0.362030 −0.0358463
\(103\) −14.5237 −1.43106 −0.715532 0.698580i \(-0.753816\pi\)
−0.715532 + 0.698580i \(0.753816\pi\)
\(104\) −1.36521 −0.133870
\(105\) −6.04692 −0.590119
\(106\) −2.21780 −0.215412
\(107\) 9.79683 0.947095 0.473548 0.880768i \(-0.342973\pi\)
0.473548 + 0.880768i \(0.342973\pi\)
\(108\) 1.97544 0.190087
\(109\) −10.4368 −0.999665 −0.499833 0.866122i \(-0.666605\pi\)
−0.499833 + 0.866122i \(0.666605\pi\)
\(110\) 0.685695 0.0653785
\(111\) −4.11852 −0.390913
\(112\) 8.20303 0.775114
\(113\) −12.0988 −1.13815 −0.569077 0.822284i \(-0.692700\pi\)
−0.569077 + 0.822284i \(0.692700\pi\)
\(114\) 0.607730 0.0569191
\(115\) 17.4159 1.62405
\(116\) 2.64149 0.245256
\(117\) −2.19124 −0.202580
\(118\) −0.510836 −0.0470263
\(119\) −4.91777 −0.450811
\(120\) −1.76968 −0.161549
\(121\) −8.62731 −0.784301
\(122\) −1.50757 −0.136489
\(123\) −8.48963 −0.765484
\(124\) −10.2382 −0.919422
\(125\) −5.48751 −0.490818
\(126\) −0.333637 −0.0297228
\(127\) −1.34751 −0.119572 −0.0597861 0.998211i \(-0.519042\pi\)
−0.0597861 + 0.998211i \(0.519042\pi\)
\(128\) 4.86222 0.429763
\(129\) 2.54730 0.224277
\(130\) 0.975439 0.0855516
\(131\) 11.5131 1.00591 0.502953 0.864314i \(-0.332247\pi\)
0.502953 + 0.864314i \(0.332247\pi\)
\(132\) −3.04287 −0.264848
\(133\) 8.25532 0.715827
\(134\) 0.109825 0.00948746
\(135\) −2.84044 −0.244466
\(136\) −1.43923 −0.123413
\(137\) 5.35345 0.457376 0.228688 0.973500i \(-0.426556\pi\)
0.228688 + 0.973500i \(0.426556\pi\)
\(138\) 0.960921 0.0817990
\(139\) 1.04031 0.0882379 0.0441190 0.999026i \(-0.485952\pi\)
0.0441190 + 0.999026i \(0.485952\pi\)
\(140\) −11.9453 −1.00956
\(141\) −5.81331 −0.489569
\(142\) 0.159256 0.0133644
\(143\) 3.37528 0.282255
\(144\) 3.85324 0.321103
\(145\) −3.79813 −0.315417
\(146\) 1.83790 0.152105
\(147\) 2.46792 0.203550
\(148\) −8.13589 −0.668766
\(149\) 0.386355 0.0316515 0.0158257 0.999875i \(-0.494962\pi\)
0.0158257 + 0.999875i \(0.494962\pi\)
\(150\) 0.480830 0.0392596
\(151\) 10.8108 0.879769 0.439885 0.898054i \(-0.355019\pi\)
0.439885 + 0.898054i \(0.355019\pi\)
\(152\) 2.41599 0.195963
\(153\) −2.31004 −0.186755
\(154\) 0.513920 0.0414128
\(155\) 14.7213 1.18245
\(156\) −4.32866 −0.346570
\(157\) −9.32975 −0.744595 −0.372297 0.928113i \(-0.621430\pi\)
−0.372297 + 0.928113i \(0.621430\pi\)
\(158\) −0.425473 −0.0338488
\(159\) −14.1513 −1.12227
\(160\) −5.25465 −0.415417
\(161\) 13.0530 1.02872
\(162\) −0.156720 −0.0123131
\(163\) −14.0026 −1.09677 −0.548383 0.836227i \(-0.684756\pi\)
−0.548383 + 0.836227i \(0.684756\pi\)
\(164\) −16.7707 −1.30957
\(165\) 4.37528 0.340615
\(166\) −1.76002 −0.136604
\(167\) 17.6253 1.36389 0.681945 0.731403i \(-0.261134\pi\)
0.681945 + 0.731403i \(0.261134\pi\)
\(168\) −1.32635 −0.102330
\(169\) −8.19848 −0.630652
\(170\) 1.02832 0.0788688
\(171\) 3.87780 0.296543
\(172\) 5.03203 0.383689
\(173\) 0.820392 0.0623733 0.0311866 0.999514i \(-0.490071\pi\)
0.0311866 + 0.999514i \(0.490071\pi\)
\(174\) −0.209561 −0.0158868
\(175\) 6.53153 0.493737
\(176\) −5.93535 −0.447394
\(177\) −3.25954 −0.245002
\(178\) 1.54115 0.115514
\(179\) −3.57848 −0.267468 −0.133734 0.991017i \(-0.542697\pi\)
−0.133734 + 0.991017i \(0.542697\pi\)
\(180\) −5.61111 −0.418227
\(181\) 4.90607 0.364666 0.182333 0.983237i \(-0.441635\pi\)
0.182333 + 0.983237i \(0.441635\pi\)
\(182\) 0.731079 0.0541911
\(183\) −9.61946 −0.711091
\(184\) 3.82008 0.281620
\(185\) 11.6984 0.860083
\(186\) 0.812246 0.0595568
\(187\) 3.55828 0.260207
\(188\) −11.4838 −0.837545
\(189\) −2.12887 −0.154852
\(190\) −1.72622 −0.125233
\(191\) 8.58557 0.621230 0.310615 0.950536i \(-0.399465\pi\)
0.310615 + 0.950536i \(0.399465\pi\)
\(192\) 7.41655 0.535243
\(193\) 14.2223 1.02375 0.511873 0.859061i \(-0.328952\pi\)
0.511873 + 0.859061i \(0.328952\pi\)
\(194\) 1.30843 0.0939400
\(195\) 6.22407 0.445715
\(196\) 4.87522 0.348230
\(197\) −6.37745 −0.454375 −0.227187 0.973851i \(-0.572953\pi\)
−0.227187 + 0.973851i \(0.572953\pi\)
\(198\) 0.241405 0.0171559
\(199\) −9.87698 −0.700161 −0.350080 0.936720i \(-0.613846\pi\)
−0.350080 + 0.936720i \(0.613846\pi\)
\(200\) 1.91151 0.135164
\(201\) 0.700772 0.0494287
\(202\) 1.32730 0.0933884
\(203\) −2.84665 −0.199795
\(204\) −4.56334 −0.319498
\(205\) 24.1142 1.68421
\(206\) 2.27616 0.158588
\(207\) 6.13143 0.426164
\(208\) −8.44335 −0.585441
\(209\) −5.97318 −0.413173
\(210\) 0.947675 0.0653958
\(211\) 2.07499 0.142848 0.0714242 0.997446i \(-0.477246\pi\)
0.0714242 + 0.997446i \(0.477246\pi\)
\(212\) −27.9551 −1.91997
\(213\) 1.01618 0.0696272
\(214\) −1.53536 −0.104955
\(215\) −7.23544 −0.493453
\(216\) −0.623032 −0.0423920
\(217\) 11.0334 0.748999
\(218\) 1.63566 0.110781
\(219\) 11.7272 0.792453
\(220\) 8.64309 0.582717
\(221\) 5.06184 0.340496
\(222\) 0.645456 0.0433202
\(223\) 1.00000 0.0669650
\(224\) −3.93829 −0.263138
\(225\) 3.06807 0.204538
\(226\) 1.89612 0.126128
\(227\) −0.624446 −0.0414459 −0.0207230 0.999785i \(-0.506597\pi\)
−0.0207230 + 0.999785i \(0.506597\pi\)
\(228\) 7.66035 0.507319
\(229\) 22.7596 1.50399 0.751997 0.659167i \(-0.229091\pi\)
0.751997 + 0.659167i \(0.229091\pi\)
\(230\) −2.72943 −0.179974
\(231\) 3.27921 0.215756
\(232\) −0.833097 −0.0546955
\(233\) −13.6963 −0.897275 −0.448638 0.893714i \(-0.648091\pi\)
−0.448638 + 0.893714i \(0.648091\pi\)
\(234\) 0.343412 0.0224495
\(235\) 16.5123 1.07715
\(236\) −6.43902 −0.419144
\(237\) −2.71486 −0.176349
\(238\) 0.770715 0.0499580
\(239\) −5.70450 −0.368993 −0.184497 0.982833i \(-0.559066\pi\)
−0.184497 + 0.982833i \(0.559066\pi\)
\(240\) −10.9449 −0.706488
\(241\) −26.0686 −1.67923 −0.839613 0.543184i \(-0.817218\pi\)
−0.839613 + 0.543184i \(0.817218\pi\)
\(242\) 1.35208 0.0869147
\(243\) −1.00000 −0.0641500
\(244\) −19.0026 −1.21652
\(245\) −7.00996 −0.447850
\(246\) 1.33050 0.0848295
\(247\) −8.49717 −0.540662
\(248\) 3.22904 0.205044
\(249\) −11.2303 −0.711693
\(250\) 0.860005 0.0543915
\(251\) −13.0234 −0.822032 −0.411016 0.911628i \(-0.634826\pi\)
−0.411016 + 0.911628i \(0.634826\pi\)
\(252\) −4.20545 −0.264918
\(253\) −9.44458 −0.593776
\(254\) 0.211182 0.0132508
\(255\) 6.56151 0.410898
\(256\) 14.0711 0.879443
\(257\) −11.5247 −0.718893 −0.359446 0.933166i \(-0.617034\pi\)
−0.359446 + 0.933166i \(0.617034\pi\)
\(258\) −0.399214 −0.0248540
\(259\) 8.76779 0.544804
\(260\) 12.2953 0.762520
\(261\) −1.33716 −0.0827684
\(262\) −1.80434 −0.111473
\(263\) −17.7196 −1.09264 −0.546319 0.837577i \(-0.683971\pi\)
−0.546319 + 0.837577i \(0.683971\pi\)
\(264\) 0.959690 0.0590649
\(265\) 40.1960 2.46922
\(266\) −1.29378 −0.0793266
\(267\) 9.83376 0.601816
\(268\) 1.38433 0.0845616
\(269\) −15.3018 −0.932966 −0.466483 0.884530i \(-0.654479\pi\)
−0.466483 + 0.884530i \(0.654479\pi\)
\(270\) 0.445154 0.0270912
\(271\) 31.7977 1.93157 0.965785 0.259343i \(-0.0835059\pi\)
0.965785 + 0.259343i \(0.0835059\pi\)
\(272\) −8.90112 −0.539710
\(273\) 4.66486 0.282330
\(274\) −0.838994 −0.0506855
\(275\) −4.72592 −0.284984
\(276\) 12.1123 0.729073
\(277\) 2.90409 0.174490 0.0872450 0.996187i \(-0.472194\pi\)
0.0872450 + 0.996187i \(0.472194\pi\)
\(278\) −0.163038 −0.00977835
\(279\) 5.18277 0.310284
\(280\) 3.76742 0.225147
\(281\) −4.67668 −0.278987 −0.139494 0.990223i \(-0.544548\pi\)
−0.139494 + 0.990223i \(0.544548\pi\)
\(282\) 0.911064 0.0542531
\(283\) −33.4138 −1.98624 −0.993122 0.117085i \(-0.962645\pi\)
−0.993122 + 0.117085i \(0.962645\pi\)
\(284\) 2.00739 0.119117
\(285\) −11.0146 −0.652450
\(286\) −0.528976 −0.0312790
\(287\) 18.0733 1.06683
\(288\) −1.84995 −0.109009
\(289\) −11.6637 −0.686102
\(290\) 0.595244 0.0349539
\(291\) 8.34884 0.489418
\(292\) 23.1664 1.35571
\(293\) −0.0381493 −0.00222870 −0.00111435 0.999999i \(-0.500355\pi\)
−0.00111435 + 0.999999i \(0.500355\pi\)
\(294\) −0.386773 −0.0225571
\(295\) 9.25851 0.539051
\(296\) 2.56597 0.149144
\(297\) 1.54035 0.0893804
\(298\) −0.0605498 −0.00350755
\(299\) −13.4354 −0.776991
\(300\) 6.06079 0.349920
\(301\) −5.42287 −0.312569
\(302\) −1.69427 −0.0974943
\(303\) 8.46921 0.486544
\(304\) 14.9421 0.856986
\(305\) 27.3234 1.56454
\(306\) 0.362030 0.0206959
\(307\) −20.2291 −1.15453 −0.577267 0.816555i \(-0.695881\pi\)
−0.577267 + 0.816555i \(0.695881\pi\)
\(308\) 6.47788 0.369112
\(309\) 14.5237 0.826225
\(310\) −2.30713 −0.131036
\(311\) 21.6980 1.23038 0.615191 0.788378i \(-0.289079\pi\)
0.615191 + 0.788378i \(0.289079\pi\)
\(312\) 1.36521 0.0772899
\(313\) −30.2241 −1.70837 −0.854184 0.519971i \(-0.825943\pi\)
−0.854184 + 0.519971i \(0.825943\pi\)
\(314\) 1.46216 0.0825146
\(315\) 6.04692 0.340705
\(316\) −5.36303 −0.301694
\(317\) 4.04047 0.226935 0.113468 0.993542i \(-0.463804\pi\)
0.113468 + 0.993542i \(0.463804\pi\)
\(318\) 2.21780 0.124368
\(319\) 2.05971 0.115321
\(320\) −21.0662 −1.17764
\(321\) −9.79683 −0.546806
\(322\) −2.04568 −0.114001
\(323\) −8.95786 −0.498428
\(324\) −1.97544 −0.109747
\(325\) −6.72288 −0.372918
\(326\) 2.19449 0.121541
\(327\) 10.4368 0.577157
\(328\) 5.28931 0.292053
\(329\) 12.3758 0.682298
\(330\) −0.685695 −0.0377463
\(331\) −32.3515 −1.77820 −0.889101 0.457711i \(-0.848669\pi\)
−0.889101 + 0.457711i \(0.848669\pi\)
\(332\) −22.1848 −1.21755
\(333\) 4.11852 0.225694
\(334\) −2.76225 −0.151144
\(335\) −1.99050 −0.108753
\(336\) −8.20303 −0.447512
\(337\) 23.5467 1.28267 0.641335 0.767261i \(-0.278381\pi\)
0.641335 + 0.767261i \(0.278381\pi\)
\(338\) 1.28487 0.0698877
\(339\) 12.0988 0.657114
\(340\) 12.9619 0.702956
\(341\) −7.98330 −0.432320
\(342\) −0.607730 −0.0328623
\(343\) −20.1560 −1.08832
\(344\) −1.58705 −0.0855680
\(345\) −17.4159 −0.937643
\(346\) −0.128572 −0.00691208
\(347\) 19.4827 1.04589 0.522944 0.852367i \(-0.324834\pi\)
0.522944 + 0.852367i \(0.324834\pi\)
\(348\) −2.64149 −0.141598
\(349\) 24.5994 1.31678 0.658388 0.752679i \(-0.271239\pi\)
0.658388 + 0.752679i \(0.271239\pi\)
\(350\) −1.02362 −0.0547150
\(351\) 2.19124 0.116960
\(352\) 2.84957 0.151883
\(353\) −19.2017 −1.02200 −0.511000 0.859581i \(-0.670725\pi\)
−0.511000 + 0.859581i \(0.670725\pi\)
\(354\) 0.510836 0.0271506
\(355\) −2.88638 −0.153193
\(356\) 19.4260 1.02958
\(357\) 4.91777 0.260276
\(358\) 0.560821 0.0296403
\(359\) 18.8736 0.996111 0.498056 0.867145i \(-0.334048\pi\)
0.498056 + 0.867145i \(0.334048\pi\)
\(360\) 1.76968 0.0932705
\(361\) −3.96269 −0.208563
\(362\) −0.768882 −0.0404115
\(363\) 8.62731 0.452816
\(364\) 9.21514 0.483005
\(365\) −33.3104 −1.74355
\(366\) 1.50757 0.0788017
\(367\) 14.5027 0.757034 0.378517 0.925594i \(-0.376434\pi\)
0.378517 + 0.925594i \(0.376434\pi\)
\(368\) 23.6259 1.23158
\(369\) 8.48963 0.441952
\(370\) −1.83338 −0.0953127
\(371\) 30.1264 1.56408
\(372\) 10.2382 0.530828
\(373\) 13.2613 0.686646 0.343323 0.939217i \(-0.388447\pi\)
0.343323 + 0.939217i \(0.388447\pi\)
\(374\) −0.557654 −0.0288356
\(375\) 5.48751 0.283374
\(376\) 3.62188 0.186784
\(377\) 2.93004 0.150905
\(378\) 0.333637 0.0171604
\(379\) 14.3019 0.734639 0.367320 0.930095i \(-0.380276\pi\)
0.367320 + 0.930095i \(0.380276\pi\)
\(380\) −21.7587 −1.11620
\(381\) 1.34751 0.0690350
\(382\) −1.34553 −0.0688435
\(383\) 0.863316 0.0441134 0.0220567 0.999757i \(-0.492979\pi\)
0.0220567 + 0.999757i \(0.492979\pi\)
\(384\) −4.86222 −0.248124
\(385\) −9.31439 −0.474705
\(386\) −2.22893 −0.113450
\(387\) −2.54730 −0.129486
\(388\) 16.4926 0.837286
\(389\) 33.7010 1.70871 0.854354 0.519691i \(-0.173953\pi\)
0.854354 + 0.519691i \(0.173953\pi\)
\(390\) −0.975439 −0.0493933
\(391\) −14.1638 −0.716296
\(392\) −1.53759 −0.0776601
\(393\) −11.5131 −0.580760
\(394\) 0.999477 0.0503529
\(395\) 7.71137 0.388001
\(396\) 3.04287 0.152910
\(397\) −2.37071 −0.118983 −0.0594913 0.998229i \(-0.518948\pi\)
−0.0594913 + 0.998229i \(0.518948\pi\)
\(398\) 1.54792 0.0775904
\(399\) −8.25532 −0.413283
\(400\) 11.8220 0.591100
\(401\) 17.0184 0.849858 0.424929 0.905227i \(-0.360299\pi\)
0.424929 + 0.905227i \(0.360299\pi\)
\(402\) −0.109825 −0.00547759
\(403\) −11.3567 −0.565717
\(404\) 16.7304 0.832369
\(405\) 2.84044 0.141142
\(406\) 0.446128 0.0221409
\(407\) −6.34398 −0.314459
\(408\) 1.43923 0.0712524
\(409\) −23.0341 −1.13896 −0.569481 0.822004i \(-0.692856\pi\)
−0.569481 + 0.822004i \(0.692856\pi\)
\(410\) −3.77919 −0.186641
\(411\) −5.35345 −0.264066
\(412\) 28.6907 1.41349
\(413\) 6.93913 0.341452
\(414\) −0.960921 −0.0472267
\(415\) 31.8990 1.56586
\(416\) 4.05367 0.198748
\(417\) −1.04031 −0.0509442
\(418\) 0.936119 0.0457871
\(419\) −11.2079 −0.547542 −0.273771 0.961795i \(-0.588271\pi\)
−0.273771 + 0.961795i \(0.588271\pi\)
\(420\) 11.9453 0.582871
\(421\) 24.4933 1.19373 0.596865 0.802342i \(-0.296413\pi\)
0.596865 + 0.802342i \(0.296413\pi\)
\(422\) −0.325194 −0.0158302
\(423\) 5.81331 0.282653
\(424\) 8.81675 0.428179
\(425\) −7.08736 −0.343788
\(426\) −0.159256 −0.00771596
\(427\) 20.4786 0.991027
\(428\) −19.3530 −0.935464
\(429\) −3.37528 −0.162960
\(430\) 1.13394 0.0546835
\(431\) −4.20483 −0.202540 −0.101270 0.994859i \(-0.532291\pi\)
−0.101270 + 0.994859i \(0.532291\pi\)
\(432\) −3.85324 −0.185389
\(433\) −21.7297 −1.04426 −0.522131 0.852865i \(-0.674863\pi\)
−0.522131 + 0.852865i \(0.674863\pi\)
\(434\) −1.72917 −0.0830026
\(435\) 3.79813 0.182106
\(436\) 20.6173 0.987389
\(437\) 23.7765 1.13738
\(438\) −1.83790 −0.0878181
\(439\) 1.28769 0.0614579 0.0307290 0.999528i \(-0.490217\pi\)
0.0307290 + 0.999528i \(0.490217\pi\)
\(440\) −2.72594 −0.129954
\(441\) −2.46792 −0.117520
\(442\) −0.793294 −0.0377331
\(443\) −16.8760 −0.801804 −0.400902 0.916121i \(-0.631303\pi\)
−0.400902 + 0.916121i \(0.631303\pi\)
\(444\) 8.13589 0.386112
\(445\) −27.9322 −1.32411
\(446\) −0.156720 −0.00742093
\(447\) −0.386355 −0.0182740
\(448\) −15.7889 −0.745953
\(449\) −2.10530 −0.0993550 −0.0496775 0.998765i \(-0.515819\pi\)
−0.0496775 + 0.998765i \(0.515819\pi\)
\(450\) −0.480830 −0.0226665
\(451\) −13.0770 −0.615773
\(452\) 23.9003 1.12418
\(453\) −10.8108 −0.507935
\(454\) 0.0978635 0.00459296
\(455\) −13.2502 −0.621180
\(456\) −2.41599 −0.113139
\(457\) −16.0391 −0.750279 −0.375140 0.926968i \(-0.622405\pi\)
−0.375140 + 0.926968i \(0.622405\pi\)
\(458\) −3.56689 −0.166670
\(459\) 2.31004 0.107823
\(460\) −34.4041 −1.60410
\(461\) 4.40905 0.205350 0.102675 0.994715i \(-0.467260\pi\)
0.102675 + 0.994715i \(0.467260\pi\)
\(462\) −0.513920 −0.0239097
\(463\) 9.81635 0.456204 0.228102 0.973637i \(-0.426748\pi\)
0.228102 + 0.973637i \(0.426748\pi\)
\(464\) −5.15241 −0.239195
\(465\) −14.7213 −0.682685
\(466\) 2.14649 0.0994343
\(467\) −36.2465 −1.67729 −0.838643 0.544681i \(-0.816651\pi\)
−0.838643 + 0.544681i \(0.816651\pi\)
\(468\) 4.32866 0.200092
\(469\) −1.49185 −0.0688873
\(470\) −2.58782 −0.119367
\(471\) 9.32975 0.429892
\(472\) 2.03080 0.0934750
\(473\) 3.92374 0.180414
\(474\) 0.425473 0.0195426
\(475\) 11.8974 0.545889
\(476\) 9.71475 0.445275
\(477\) 14.1513 0.647946
\(478\) 0.894012 0.0408911
\(479\) −15.3898 −0.703178 −0.351589 0.936154i \(-0.614359\pi\)
−0.351589 + 0.936154i \(0.614359\pi\)
\(480\) 5.25465 0.239841
\(481\) −9.02466 −0.411489
\(482\) 4.08548 0.186089
\(483\) −13.0530 −0.593933
\(484\) 17.0427 0.774669
\(485\) −23.7143 −1.07681
\(486\) 0.156720 0.00710898
\(487\) −23.4118 −1.06089 −0.530445 0.847719i \(-0.677975\pi\)
−0.530445 + 0.847719i \(0.677975\pi\)
\(488\) 5.99323 0.271301
\(489\) 14.0026 0.633218
\(490\) 1.09860 0.0496298
\(491\) 27.3735 1.23535 0.617675 0.786434i \(-0.288075\pi\)
0.617675 + 0.786434i \(0.288075\pi\)
\(492\) 16.7707 0.756083
\(493\) 3.08890 0.139117
\(494\) 1.33168 0.0599151
\(495\) −4.37528 −0.196654
\(496\) 19.9704 0.896699
\(497\) −2.16331 −0.0970375
\(498\) 1.76002 0.0788684
\(499\) −7.38480 −0.330589 −0.165295 0.986244i \(-0.552857\pi\)
−0.165295 + 0.986244i \(0.552857\pi\)
\(500\) 10.8402 0.484791
\(501\) −17.6253 −0.787442
\(502\) 2.04104 0.0910960
\(503\) 10.7944 0.481299 0.240650 0.970612i \(-0.422639\pi\)
0.240650 + 0.970612i \(0.422639\pi\)
\(504\) 1.32635 0.0590805
\(505\) −24.0563 −1.07049
\(506\) 1.48016 0.0658011
\(507\) 8.19848 0.364107
\(508\) 2.66192 0.118104
\(509\) −6.92728 −0.307046 −0.153523 0.988145i \(-0.549062\pi\)
−0.153523 + 0.988145i \(0.549062\pi\)
\(510\) −1.02832 −0.0455349
\(511\) −24.9657 −1.10442
\(512\) −11.9297 −0.527221
\(513\) −3.87780 −0.171209
\(514\) 1.80616 0.0796663
\(515\) −41.2537 −1.81785
\(516\) −5.03203 −0.221523
\(517\) −8.95455 −0.393821
\(518\) −1.37409 −0.0603741
\(519\) −0.820392 −0.0360112
\(520\) −3.87780 −0.170053
\(521\) 24.2501 1.06241 0.531207 0.847242i \(-0.321739\pi\)
0.531207 + 0.847242i \(0.321739\pi\)
\(522\) 0.209561 0.00917223
\(523\) −10.4895 −0.458676 −0.229338 0.973347i \(-0.573656\pi\)
−0.229338 + 0.973347i \(0.573656\pi\)
\(524\) −22.7435 −0.993552
\(525\) −6.53153 −0.285059
\(526\) 2.77702 0.121084
\(527\) −11.9724 −0.521526
\(528\) 5.93535 0.258303
\(529\) 14.5945 0.634543
\(530\) −6.29953 −0.273634
\(531\) 3.25954 0.141452
\(532\) −16.3079 −0.707036
\(533\) −18.6028 −0.805776
\(534\) −1.54115 −0.0666921
\(535\) 27.8273 1.20308
\(536\) −0.436604 −0.0188584
\(537\) 3.57848 0.154423
\(538\) 2.39810 0.103390
\(539\) 3.80146 0.163741
\(540\) 5.61111 0.241464
\(541\) −27.8694 −1.19820 −0.599099 0.800675i \(-0.704474\pi\)
−0.599099 + 0.800675i \(0.704474\pi\)
\(542\) −4.98334 −0.214053
\(543\) −4.90607 −0.210540
\(544\) 4.27344 0.183222
\(545\) −29.6451 −1.26986
\(546\) −0.731079 −0.0312873
\(547\) −17.6178 −0.753284 −0.376642 0.926359i \(-0.622921\pi\)
−0.376642 + 0.926359i \(0.622921\pi\)
\(548\) −10.5754 −0.451759
\(549\) 9.61946 0.410548
\(550\) 0.740648 0.0315813
\(551\) −5.18525 −0.220899
\(552\) −3.82008 −0.162594
\(553\) 5.77957 0.245772
\(554\) −0.455131 −0.0193366
\(555\) −11.6984 −0.496569
\(556\) −2.05507 −0.0871543
\(557\) −26.7268 −1.13245 −0.566225 0.824251i \(-0.691597\pi\)
−0.566225 + 0.824251i \(0.691597\pi\)
\(558\) −0.812246 −0.0343851
\(559\) 5.58174 0.236082
\(560\) 23.3002 0.984613
\(561\) −3.55828 −0.150230
\(562\) 0.732932 0.0309169
\(563\) −12.6240 −0.532038 −0.266019 0.963968i \(-0.585708\pi\)
−0.266019 + 0.963968i \(0.585708\pi\)
\(564\) 11.4838 0.483557
\(565\) −34.3657 −1.44578
\(566\) 5.23662 0.220112
\(567\) 2.12887 0.0894041
\(568\) −0.633111 −0.0265647
\(569\) 33.1890 1.39136 0.695678 0.718354i \(-0.255104\pi\)
0.695678 + 0.718354i \(0.255104\pi\)
\(570\) 1.72622 0.0723033
\(571\) 29.3475 1.22816 0.614078 0.789246i \(-0.289528\pi\)
0.614078 + 0.789246i \(0.289528\pi\)
\(572\) −6.66766 −0.278789
\(573\) −8.58557 −0.358667
\(574\) −2.83246 −0.118224
\(575\) 18.8117 0.784502
\(576\) −7.41655 −0.309023
\(577\) −17.7792 −0.740157 −0.370079 0.929000i \(-0.620669\pi\)
−0.370079 + 0.929000i \(0.620669\pi\)
\(578\) 1.82794 0.0760325
\(579\) −14.2223 −0.591060
\(580\) 7.50297 0.311544
\(581\) 23.9079 0.991867
\(582\) −1.30843 −0.0542363
\(583\) −21.7981 −0.902784
\(584\) −7.30644 −0.302343
\(585\) −6.22407 −0.257334
\(586\) 0.00597877 0.000246981 0
\(587\) 16.0416 0.662106 0.331053 0.943612i \(-0.392596\pi\)
0.331053 + 0.943612i \(0.392596\pi\)
\(588\) −4.87522 −0.201051
\(589\) 20.0977 0.828113
\(590\) −1.45100 −0.0597366
\(591\) 6.37745 0.262333
\(592\) 15.8696 0.652238
\(593\) −7.41248 −0.304394 −0.152197 0.988350i \(-0.548635\pi\)
−0.152197 + 0.988350i \(0.548635\pi\)
\(594\) −0.241405 −0.00990496
\(595\) −13.9686 −0.572657
\(596\) −0.763221 −0.0312628
\(597\) 9.87698 0.404238
\(598\) 2.10561 0.0861046
\(599\) 3.17987 0.129926 0.0649630 0.997888i \(-0.479307\pi\)
0.0649630 + 0.997888i \(0.479307\pi\)
\(600\) −1.91151 −0.0780370
\(601\) 10.0473 0.409837 0.204918 0.978779i \(-0.434307\pi\)
0.204918 + 0.978779i \(0.434307\pi\)
\(602\) 0.849874 0.0346383
\(603\) −0.700772 −0.0285376
\(604\) −21.3560 −0.868965
\(605\) −24.5053 −0.996283
\(606\) −1.32730 −0.0539178
\(607\) 29.3393 1.19084 0.595422 0.803413i \(-0.296985\pi\)
0.595422 + 0.803413i \(0.296985\pi\)
\(608\) −7.17371 −0.290932
\(609\) 2.84665 0.115352
\(610\) −4.28214 −0.173379
\(611\) −12.7383 −0.515338
\(612\) 4.56334 0.184462
\(613\) 13.6002 0.549308 0.274654 0.961543i \(-0.411437\pi\)
0.274654 + 0.961543i \(0.411437\pi\)
\(614\) 3.17031 0.127943
\(615\) −24.1142 −0.972380
\(616\) −2.04306 −0.0823171
\(617\) −42.3473 −1.70484 −0.852420 0.522858i \(-0.824866\pi\)
−0.852420 + 0.522858i \(0.824866\pi\)
\(618\) −2.27616 −0.0915607
\(619\) 48.0817 1.93257 0.966284 0.257478i \(-0.0828914\pi\)
0.966284 + 0.257478i \(0.0828914\pi\)
\(620\) −29.0811 −1.16792
\(621\) −6.13143 −0.246046
\(622\) −3.40052 −0.136348
\(623\) −20.9348 −0.838735
\(624\) 8.44335 0.338005
\(625\) −30.9273 −1.23709
\(626\) 4.73674 0.189318
\(627\) 5.97318 0.238546
\(628\) 18.4303 0.735451
\(629\) −9.51394 −0.379346
\(630\) −0.947675 −0.0377563
\(631\) −44.6639 −1.77804 −0.889020 0.457868i \(-0.848613\pi\)
−0.889020 + 0.457868i \(0.848613\pi\)
\(632\) 1.69144 0.0672820
\(633\) −2.07499 −0.0824736
\(634\) −0.633224 −0.0251485
\(635\) −3.82751 −0.151890
\(636\) 27.9551 1.10849
\(637\) 5.40779 0.214264
\(638\) −0.322798 −0.0127797
\(639\) −1.01618 −0.0401993
\(640\) 13.8108 0.545920
\(641\) 48.6311 1.92081 0.960407 0.278600i \(-0.0898703\pi\)
0.960407 + 0.278600i \(0.0898703\pi\)
\(642\) 1.53536 0.0605960
\(643\) 33.1794 1.30847 0.654233 0.756293i \(-0.272992\pi\)
0.654233 + 0.756293i \(0.272992\pi\)
\(644\) −25.7854 −1.01609
\(645\) 7.23544 0.284895
\(646\) 1.40388 0.0552349
\(647\) −46.7208 −1.83679 −0.918393 0.395669i \(-0.870513\pi\)
−0.918393 + 0.395669i \(0.870513\pi\)
\(648\) 0.623032 0.0244750
\(649\) −5.02084 −0.197085
\(650\) 1.05361 0.0413261
\(651\) −11.0334 −0.432435
\(652\) 27.6612 1.08330
\(653\) 16.1343 0.631386 0.315693 0.948861i \(-0.397763\pi\)
0.315693 + 0.948861i \(0.397763\pi\)
\(654\) −1.63566 −0.0639594
\(655\) 32.7023 1.27778
\(656\) 32.7125 1.27721
\(657\) −11.7272 −0.457523
\(658\) −1.93954 −0.0756110
\(659\) 26.1096 1.01709 0.508543 0.861037i \(-0.330184\pi\)
0.508543 + 0.861037i \(0.330184\pi\)
\(660\) −8.64309 −0.336432
\(661\) 43.0870 1.67589 0.837944 0.545756i \(-0.183757\pi\)
0.837944 + 0.545756i \(0.183757\pi\)
\(662\) 5.07015 0.197057
\(663\) −5.06184 −0.196586
\(664\) 6.99686 0.271531
\(665\) 23.4487 0.909302
\(666\) −0.645456 −0.0250109
\(667\) −8.19873 −0.317456
\(668\) −34.8178 −1.34714
\(669\) −1.00000 −0.0386622
\(670\) 0.311952 0.0120517
\(671\) −14.8174 −0.572018
\(672\) 3.93829 0.151923
\(673\) −24.2241 −0.933770 −0.466885 0.884318i \(-0.654624\pi\)
−0.466885 + 0.884318i \(0.654624\pi\)
\(674\) −3.69025 −0.142143
\(675\) −3.06807 −0.118090
\(676\) 16.1956 0.622907
\(677\) 6.29496 0.241935 0.120968 0.992656i \(-0.461400\pi\)
0.120968 + 0.992656i \(0.461400\pi\)
\(678\) −1.89612 −0.0728201
\(679\) −17.7736 −0.682088
\(680\) −4.08803 −0.156769
\(681\) 0.624446 0.0239288
\(682\) 1.25115 0.0479089
\(683\) −31.3528 −1.19968 −0.599840 0.800120i \(-0.704769\pi\)
−0.599840 + 0.800120i \(0.704769\pi\)
\(684\) −7.66035 −0.292901
\(685\) 15.2061 0.580996
\(686\) 3.15885 0.120605
\(687\) −22.7596 −0.868331
\(688\) −9.81534 −0.374206
\(689\) −31.0090 −1.18135
\(690\) 2.72943 0.103908
\(691\) 4.09065 0.155616 0.0778079 0.996968i \(-0.475208\pi\)
0.0778079 + 0.996968i \(0.475208\pi\)
\(692\) −1.62063 −0.0616073
\(693\) −3.27921 −0.124567
\(694\) −3.05334 −0.115903
\(695\) 2.95493 0.112087
\(696\) 0.833097 0.0315784
\(697\) −19.6114 −0.742833
\(698\) −3.85523 −0.145922
\(699\) 13.6963 0.518042
\(700\) −12.9026 −0.487674
\(701\) −3.29031 −0.124273 −0.0621367 0.998068i \(-0.519791\pi\)
−0.0621367 + 0.998068i \(0.519791\pi\)
\(702\) −0.343412 −0.0129612
\(703\) 15.9708 0.602350
\(704\) 11.4241 0.430562
\(705\) −16.5123 −0.621890
\(706\) 3.00929 0.113256
\(707\) −18.0298 −0.678082
\(708\) 6.43902 0.241993
\(709\) −44.2140 −1.66049 −0.830246 0.557397i \(-0.811800\pi\)
−0.830246 + 0.557397i \(0.811800\pi\)
\(710\) 0.452355 0.0169766
\(711\) 2.71486 0.101815
\(712\) −6.12675 −0.229610
\(713\) 31.7778 1.19009
\(714\) −0.770715 −0.0288433
\(715\) 9.58727 0.358544
\(716\) 7.06907 0.264184
\(717\) 5.70450 0.213038
\(718\) −2.95788 −0.110387
\(719\) 2.88332 0.107530 0.0537648 0.998554i \(-0.482878\pi\)
0.0537648 + 0.998554i \(0.482878\pi\)
\(720\) 10.9449 0.407891
\(721\) −30.9191 −1.15149
\(722\) 0.621035 0.0231125
\(723\) 26.0686 0.969502
\(724\) −9.69165 −0.360187
\(725\) −4.10252 −0.152364
\(726\) −1.35208 −0.0501802
\(727\) −2.75667 −0.102239 −0.0511196 0.998693i \(-0.516279\pi\)
−0.0511196 + 0.998693i \(0.516279\pi\)
\(728\) −2.90636 −0.107717
\(729\) 1.00000 0.0370370
\(730\) 5.22042 0.193217
\(731\) 5.88436 0.217641
\(732\) 19.0026 0.702358
\(733\) 51.1848 1.89055 0.945276 0.326272i \(-0.105792\pi\)
0.945276 + 0.326272i \(0.105792\pi\)
\(734\) −2.27287 −0.0838930
\(735\) 7.00996 0.258566
\(736\) −11.3428 −0.418102
\(737\) 1.07944 0.0397616
\(738\) −1.33050 −0.0489763
\(739\) −11.2989 −0.415636 −0.207818 0.978168i \(-0.566636\pi\)
−0.207818 + 0.978168i \(0.566636\pi\)
\(740\) −23.1095 −0.849521
\(741\) 8.49717 0.312151
\(742\) −4.72142 −0.173329
\(743\) −41.9624 −1.53945 −0.769725 0.638376i \(-0.779607\pi\)
−0.769725 + 0.638376i \(0.779607\pi\)
\(744\) −3.22904 −0.118382
\(745\) 1.09742 0.0402063
\(746\) −2.07832 −0.0760928
\(747\) 11.2303 0.410896
\(748\) −7.02915 −0.257011
\(749\) 20.8562 0.762068
\(750\) −0.860005 −0.0314030
\(751\) 4.22921 0.154326 0.0771630 0.997018i \(-0.475414\pi\)
0.0771630 + 0.997018i \(0.475414\pi\)
\(752\) 22.4000 0.816846
\(753\) 13.0234 0.474601
\(754\) −0.459198 −0.0167230
\(755\) 30.7073 1.11755
\(756\) 4.20545 0.152951
\(757\) 35.9230 1.30564 0.652821 0.757512i \(-0.273585\pi\)
0.652821 + 0.757512i \(0.273585\pi\)
\(758\) −2.24140 −0.0814113
\(759\) 9.44458 0.342817
\(760\) 6.86247 0.248928
\(761\) 26.2321 0.950911 0.475456 0.879740i \(-0.342283\pi\)
0.475456 + 0.879740i \(0.342283\pi\)
\(762\) −0.211182 −0.00765033
\(763\) −22.2186 −0.804368
\(764\) −16.9603 −0.613601
\(765\) −6.56151 −0.237232
\(766\) −0.135299 −0.00488856
\(767\) −7.14242 −0.257898
\(768\) −14.0711 −0.507747
\(769\) −16.0013 −0.577022 −0.288511 0.957477i \(-0.593160\pi\)
−0.288511 + 0.957477i \(0.593160\pi\)
\(770\) 1.45976 0.0526059
\(771\) 11.5247 0.415053
\(772\) −28.0954 −1.01117
\(773\) −15.8343 −0.569522 −0.284761 0.958599i \(-0.591914\pi\)
−0.284761 + 0.958599i \(0.591914\pi\)
\(774\) 0.399214 0.0143494
\(775\) 15.9011 0.571185
\(776\) −5.20160 −0.186726
\(777\) −8.76779 −0.314543
\(778\) −5.28164 −0.189356
\(779\) 32.9210 1.17952
\(780\) −12.2953 −0.440241
\(781\) 1.56527 0.0560098
\(782\) 2.21976 0.0793786
\(783\) 1.33716 0.0477863
\(784\) −9.50946 −0.339624
\(785\) −26.5005 −0.945845
\(786\) 1.80434 0.0643587
\(787\) −21.0443 −0.750149 −0.375074 0.926995i \(-0.622383\pi\)
−0.375074 + 0.926995i \(0.622383\pi\)
\(788\) 12.5983 0.448795
\(789\) 17.7196 0.630834
\(790\) −1.20853 −0.0429976
\(791\) −25.7567 −0.915801
\(792\) −0.959690 −0.0341011
\(793\) −21.0785 −0.748520
\(794\) 0.371539 0.0131854
\(795\) −40.1960 −1.42560
\(796\) 19.5114 0.691562
\(797\) 34.8666 1.23504 0.617520 0.786555i \(-0.288137\pi\)
0.617520 + 0.786555i \(0.288137\pi\)
\(798\) 1.29378 0.0457992
\(799\) −13.4290 −0.475082
\(800\) −5.67577 −0.200669
\(801\) −9.83376 −0.347459
\(802\) −2.66713 −0.0941797
\(803\) 18.0641 0.637468
\(804\) −1.38433 −0.0488216
\(805\) 37.0763 1.30677
\(806\) 1.77982 0.0626916
\(807\) 15.3018 0.538648
\(808\) −5.27659 −0.185630
\(809\) −3.49115 −0.122742 −0.0613711 0.998115i \(-0.519547\pi\)
−0.0613711 + 0.998115i \(0.519547\pi\)
\(810\) −0.445154 −0.0156411
\(811\) 32.5362 1.14250 0.571251 0.820775i \(-0.306458\pi\)
0.571251 + 0.820775i \(0.306458\pi\)
\(812\) 5.62338 0.197342
\(813\) −31.7977 −1.11519
\(814\) 0.994231 0.0348478
\(815\) −39.7734 −1.39320
\(816\) 8.90112 0.311601
\(817\) −9.87791 −0.345584
\(818\) 3.60991 0.126218
\(819\) −4.66486 −0.163003
\(820\) −47.6362 −1.66353
\(821\) 16.8367 0.587603 0.293802 0.955866i \(-0.405079\pi\)
0.293802 + 0.955866i \(0.405079\pi\)
\(822\) 0.838994 0.0292633
\(823\) −50.9253 −1.77515 −0.887573 0.460667i \(-0.847610\pi\)
−0.887573 + 0.460667i \(0.847610\pi\)
\(824\) −9.04875 −0.315228
\(825\) 4.72592 0.164535
\(826\) −1.08750 −0.0378391
\(827\) −40.8458 −1.42035 −0.710173 0.704027i \(-0.751383\pi\)
−0.710173 + 0.704027i \(0.751383\pi\)
\(828\) −12.1123 −0.420931
\(829\) 15.8246 0.549610 0.274805 0.961500i \(-0.411387\pi\)
0.274805 + 0.961500i \(0.411387\pi\)
\(830\) −4.99923 −0.173526
\(831\) −2.90409 −0.100742
\(832\) 16.2514 0.563416
\(833\) 5.70098 0.197527
\(834\) 0.163038 0.00564554
\(835\) 50.0637 1.73252
\(836\) 11.7997 0.408099
\(837\) −5.18277 −0.179143
\(838\) 1.75651 0.0606776
\(839\) −8.20745 −0.283353 −0.141676 0.989913i \(-0.545249\pi\)
−0.141676 + 0.989913i \(0.545249\pi\)
\(840\) −3.76742 −0.129988
\(841\) −27.2120 −0.938345
\(842\) −3.83860 −0.132287
\(843\) 4.67668 0.161073
\(844\) −4.09902 −0.141094
\(845\) −23.2872 −0.801106
\(846\) −0.911064 −0.0313230
\(847\) −18.3664 −0.631077
\(848\) 54.5285 1.87252
\(849\) 33.4138 1.14676
\(850\) 1.11073 0.0380979
\(851\) 25.2524 0.865643
\(852\) −2.00739 −0.0687722
\(853\) −40.3568 −1.38179 −0.690895 0.722955i \(-0.742783\pi\)
−0.690895 + 0.722955i \(0.742783\pi\)
\(854\) −3.20941 −0.109824
\(855\) 11.0146 0.376692
\(856\) 6.10374 0.208622
\(857\) 46.2414 1.57958 0.789789 0.613379i \(-0.210190\pi\)
0.789789 + 0.613379i \(0.210190\pi\)
\(858\) 0.528976 0.0180589
\(859\) 30.2294 1.03141 0.515707 0.856765i \(-0.327529\pi\)
0.515707 + 0.856765i \(0.327529\pi\)
\(860\) 14.2932 0.487393
\(861\) −18.0733 −0.615937
\(862\) 0.658983 0.0224451
\(863\) 28.9509 0.985500 0.492750 0.870171i \(-0.335992\pi\)
0.492750 + 0.870171i \(0.335992\pi\)
\(864\) 1.84995 0.0629364
\(865\) 2.33027 0.0792316
\(866\) 3.40548 0.115723
\(867\) 11.6637 0.396121
\(868\) −21.7959 −0.739801
\(869\) −4.18184 −0.141859
\(870\) −0.595244 −0.0201807
\(871\) 1.53556 0.0520304
\(872\) −6.50247 −0.220201
\(873\) −8.34884 −0.282565
\(874\) −3.72626 −0.126043
\(875\) −11.6822 −0.394930
\(876\) −23.1664 −0.782721
\(877\) −32.0836 −1.08339 −0.541694 0.840576i \(-0.682217\pi\)
−0.541694 + 0.840576i \(0.682217\pi\)
\(878\) −0.201807 −0.00681065
\(879\) 0.0381493 0.00128674
\(880\) −16.8590 −0.568316
\(881\) −29.3594 −0.989142 −0.494571 0.869137i \(-0.664675\pi\)
−0.494571 + 0.869137i \(0.664675\pi\)
\(882\) 0.386773 0.0130233
\(883\) −3.21324 −0.108134 −0.0540671 0.998537i \(-0.517219\pi\)
−0.0540671 + 0.998537i \(0.517219\pi\)
\(884\) −9.99936 −0.336315
\(885\) −9.25851 −0.311221
\(886\) 2.64482 0.0888544
\(887\) 45.7389 1.53576 0.767881 0.640593i \(-0.221311\pi\)
0.767881 + 0.640593i \(0.221311\pi\)
\(888\) −2.56597 −0.0861084
\(889\) −2.86867 −0.0962122
\(890\) 4.37754 0.146736
\(891\) −1.54035 −0.0516038
\(892\) −1.97544 −0.0661426
\(893\) 22.5428 0.754367
\(894\) 0.0605498 0.00202509
\(895\) −10.1644 −0.339760
\(896\) 10.3510 0.345803
\(897\) 13.4354 0.448596
\(898\) 0.329943 0.0110103
\(899\) −6.93022 −0.231136
\(900\) −6.06079 −0.202026
\(901\) −32.6901 −1.08907
\(902\) 2.04944 0.0682388
\(903\) 5.42287 0.180462
\(904\) −7.53792 −0.250707
\(905\) 13.9354 0.463228
\(906\) 1.69427 0.0562884
\(907\) −15.0541 −0.499863 −0.249932 0.968263i \(-0.580408\pi\)
−0.249932 + 0.968263i \(0.580408\pi\)
\(908\) 1.23356 0.0409370
\(909\) −8.46921 −0.280906
\(910\) 2.07658 0.0688380
\(911\) −16.7890 −0.556243 −0.278121 0.960546i \(-0.589712\pi\)
−0.278121 + 0.960546i \(0.589712\pi\)
\(912\) −14.9421 −0.494781
\(913\) −17.2987 −0.572503
\(914\) 2.51366 0.0831445
\(915\) −27.3234 −0.903285
\(916\) −44.9601 −1.48552
\(917\) 24.5099 0.809389
\(918\) −0.362030 −0.0119488
\(919\) 23.5577 0.777095 0.388548 0.921429i \(-0.372977\pi\)
0.388548 + 0.921429i \(0.372977\pi\)
\(920\) 10.8507 0.357737
\(921\) 20.2291 0.666571
\(922\) −0.690989 −0.0227565
\(923\) 2.22668 0.0732922
\(924\) −6.47788 −0.213107
\(925\) 12.6359 0.415467
\(926\) −1.53842 −0.0505557
\(927\) −14.5237 −0.477021
\(928\) 2.47368 0.0812025
\(929\) 55.2016 1.81111 0.905553 0.424234i \(-0.139457\pi\)
0.905553 + 0.424234i \(0.139457\pi\)
\(930\) 2.30713 0.0756539
\(931\) −9.57008 −0.313647
\(932\) 27.0562 0.886256
\(933\) −21.6980 −0.710361
\(934\) 5.68056 0.185874
\(935\) 10.1071 0.330536
\(936\) −1.36521 −0.0446234
\(937\) 54.4519 1.77887 0.889433 0.457066i \(-0.151100\pi\)
0.889433 + 0.457066i \(0.151100\pi\)
\(938\) 0.233804 0.00763396
\(939\) 30.2241 0.986327
\(940\) −32.6191 −1.06392
\(941\) 2.78328 0.0907324 0.0453662 0.998970i \(-0.485555\pi\)
0.0453662 + 0.998970i \(0.485555\pi\)
\(942\) −1.46216 −0.0476398
\(943\) 52.0536 1.69510
\(944\) 12.5598 0.408786
\(945\) −6.04692 −0.196706
\(946\) −0.614930 −0.0199931
\(947\) −12.5947 −0.409273 −0.204636 0.978838i \(-0.565601\pi\)
−0.204636 + 0.978838i \(0.565601\pi\)
\(948\) 5.36303 0.174183
\(949\) 25.6971 0.834164
\(950\) −1.86456 −0.0604943
\(951\) −4.04047 −0.131021
\(952\) −3.06393 −0.0993025
\(953\) 37.1771 1.20428 0.602142 0.798389i \(-0.294314\pi\)
0.602142 + 0.798389i \(0.294314\pi\)
\(954\) −2.21780 −0.0718041
\(955\) 24.3867 0.789137
\(956\) 11.2689 0.364462
\(957\) −2.05971 −0.0665808
\(958\) 2.41190 0.0779248
\(959\) 11.3968 0.368021
\(960\) 21.0662 0.679909
\(961\) −4.13887 −0.133512
\(962\) 1.41435 0.0456004
\(963\) 9.79683 0.315698
\(964\) 51.4969 1.65860
\(965\) 40.3976 1.30045
\(966\) 2.04568 0.0658185
\(967\) 26.5973 0.855312 0.427656 0.903941i \(-0.359339\pi\)
0.427656 + 0.903941i \(0.359339\pi\)
\(968\) −5.37509 −0.172762
\(969\) 8.95786 0.287768
\(970\) 3.71652 0.119330
\(971\) 23.1102 0.741641 0.370821 0.928704i \(-0.379076\pi\)
0.370821 + 0.928704i \(0.379076\pi\)
\(972\) 1.97544 0.0633622
\(973\) 2.21468 0.0709995
\(974\) 3.66911 0.117566
\(975\) 6.72288 0.215304
\(976\) 37.0660 1.18645
\(977\) 30.7443 0.983599 0.491799 0.870709i \(-0.336339\pi\)
0.491799 + 0.870709i \(0.336339\pi\)
\(978\) −2.19449 −0.0701720
\(979\) 15.1475 0.484115
\(980\) 13.8477 0.442350
\(981\) −10.4368 −0.333222
\(982\) −4.28999 −0.136899
\(983\) 26.6052 0.848575 0.424287 0.905528i \(-0.360525\pi\)
0.424287 + 0.905528i \(0.360525\pi\)
\(984\) −5.28931 −0.168617
\(985\) −18.1147 −0.577184
\(986\) −0.484094 −0.0154167
\(987\) −12.3758 −0.393925
\(988\) 16.7856 0.534023
\(989\) −15.6186 −0.496642
\(990\) 0.685695 0.0217928
\(991\) −20.9542 −0.665632 −0.332816 0.942992i \(-0.607999\pi\)
−0.332816 + 0.942992i \(0.607999\pi\)
\(992\) −9.58785 −0.304414
\(993\) 32.3515 1.02665
\(994\) 0.339034 0.0107535
\(995\) −28.0549 −0.889401
\(996\) 22.1848 0.702953
\(997\) −1.04005 −0.0329386 −0.0164693 0.999864i \(-0.505243\pi\)
−0.0164693 + 0.999864i \(0.505243\pi\)
\(998\) 1.15735 0.0366352
\(999\) −4.11852 −0.130304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.2.a.h.1.3 7
3.2 odd 2 2007.2.a.l.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.2.a.h.1.3 7 1.1 even 1 trivial
2007.2.a.l.1.5 7 3.2 odd 2