Properties

Label 669.2.a.g.1.3
Level $669$
Weight $2$
Character 669.1
Self dual yes
Analytic conductor $5.342$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} +1.00000 q^{3} +0.193937 q^{4} -3.48119 q^{5} +1.48119 q^{6} -1.19394 q^{7} -2.67513 q^{8} +1.00000 q^{9} -5.15633 q^{10} -4.15633 q^{11} +0.193937 q^{12} -2.80606 q^{13} -1.76845 q^{14} -3.48119 q^{15} -4.35026 q^{16} +4.54420 q^{17} +1.48119 q^{18} -5.19394 q^{19} -0.675131 q^{20} -1.19394 q^{21} -6.15633 q^{22} +3.76845 q^{23} -2.67513 q^{24} +7.11871 q^{25} -4.15633 q^{26} +1.00000 q^{27} -0.231548 q^{28} +7.35026 q^{29} -5.15633 q^{30} -4.80606 q^{31} -1.09332 q^{32} -4.15633 q^{33} +6.73084 q^{34} +4.15633 q^{35} +0.193937 q^{36} -0.224254 q^{37} -7.69323 q^{38} -2.80606 q^{39} +9.31265 q^{40} +5.27504 q^{41} -1.76845 q^{42} -9.50659 q^{43} -0.806063 q^{44} -3.48119 q^{45} +5.58181 q^{46} +3.24965 q^{47} -4.35026 q^{48} -5.57452 q^{49} +10.5442 q^{50} +4.54420 q^{51} -0.544198 q^{52} -6.46898 q^{53} +1.48119 q^{54} +14.4690 q^{55} +3.19394 q^{56} -5.19394 q^{57} +10.8872 q^{58} -14.7005 q^{59} -0.675131 q^{60} -1.42548 q^{61} -7.11871 q^{62} -1.19394 q^{63} +7.08110 q^{64} +9.76845 q^{65} -6.15633 q^{66} -5.31265 q^{67} +0.881286 q^{68} +3.76845 q^{69} +6.15633 q^{70} +3.03761 q^{71} -2.67513 q^{72} -2.68735 q^{73} -0.332163 q^{74} +7.11871 q^{75} -1.00729 q^{76} +4.96239 q^{77} -4.15633 q^{78} +11.7308 q^{79} +15.1441 q^{80} +1.00000 q^{81} +7.81336 q^{82} -0.100615 q^{83} -0.231548 q^{84} -15.8192 q^{85} -14.0811 q^{86} +7.35026 q^{87} +11.1187 q^{88} -0.775746 q^{89} -5.15633 q^{90} +3.35026 q^{91} +0.730841 q^{92} -4.80606 q^{93} +4.81336 q^{94} +18.0811 q^{95} -1.09332 q^{96} -15.5369 q^{97} -8.25694 q^{98} -4.15633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + q^{4} - 5 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + 3 q^{9} - 5 q^{10} - 2 q^{11} + q^{12} - 8 q^{13} + 6 q^{14} - 5 q^{15} - 3 q^{16} + 4 q^{17} - q^{18} - 16 q^{19} + 3 q^{20} - 4 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.193937 0.0969683
\(5\) −3.48119 −1.55684 −0.778419 0.627745i \(-0.783978\pi\)
−0.778419 + 0.627745i \(0.783978\pi\)
\(6\) 1.48119 0.604695
\(7\) −1.19394 −0.451266 −0.225633 0.974212i \(-0.572445\pi\)
−0.225633 + 0.974212i \(0.572445\pi\)
\(8\) −2.67513 −0.945802
\(9\) 1.00000 0.333333
\(10\) −5.15633 −1.63057
\(11\) −4.15633 −1.25318 −0.626590 0.779349i \(-0.715550\pi\)
−0.626590 + 0.779349i \(0.715550\pi\)
\(12\) 0.193937 0.0559847
\(13\) −2.80606 −0.778262 −0.389131 0.921182i \(-0.627225\pi\)
−0.389131 + 0.921182i \(0.627225\pi\)
\(14\) −1.76845 −0.472639
\(15\) −3.48119 −0.898841
\(16\) −4.35026 −1.08757
\(17\) 4.54420 1.10213 0.551065 0.834462i \(-0.314222\pi\)
0.551065 + 0.834462i \(0.314222\pi\)
\(18\) 1.48119 0.349121
\(19\) −5.19394 −1.19157 −0.595785 0.803144i \(-0.703159\pi\)
−0.595785 + 0.803144i \(0.703159\pi\)
\(20\) −0.675131 −0.150964
\(21\) −1.19394 −0.260538
\(22\) −6.15633 −1.31253
\(23\) 3.76845 0.785777 0.392888 0.919586i \(-0.371476\pi\)
0.392888 + 0.919586i \(0.371476\pi\)
\(24\) −2.67513 −0.546059
\(25\) 7.11871 1.42374
\(26\) −4.15633 −0.815122
\(27\) 1.00000 0.192450
\(28\) −0.231548 −0.0437585
\(29\) 7.35026 1.36491 0.682455 0.730928i \(-0.260912\pi\)
0.682455 + 0.730928i \(0.260912\pi\)
\(30\) −5.15633 −0.941412
\(31\) −4.80606 −0.863194 −0.431597 0.902066i \(-0.642050\pi\)
−0.431597 + 0.902066i \(0.642050\pi\)
\(32\) −1.09332 −0.193274
\(33\) −4.15633 −0.723523
\(34\) 6.73084 1.15433
\(35\) 4.15633 0.702547
\(36\) 0.193937 0.0323228
\(37\) −0.224254 −0.0368671 −0.0184335 0.999830i \(-0.505868\pi\)
−0.0184335 + 0.999830i \(0.505868\pi\)
\(38\) −7.69323 −1.24801
\(39\) −2.80606 −0.449330
\(40\) 9.31265 1.47246
\(41\) 5.27504 0.823823 0.411911 0.911224i \(-0.364861\pi\)
0.411911 + 0.911224i \(0.364861\pi\)
\(42\) −1.76845 −0.272878
\(43\) −9.50659 −1.44974 −0.724870 0.688885i \(-0.758100\pi\)
−0.724870 + 0.688885i \(0.758100\pi\)
\(44\) −0.806063 −0.121519
\(45\) −3.48119 −0.518946
\(46\) 5.58181 0.822993
\(47\) 3.24965 0.474010 0.237005 0.971508i \(-0.423834\pi\)
0.237005 + 0.971508i \(0.423834\pi\)
\(48\) −4.35026 −0.627906
\(49\) −5.57452 −0.796359
\(50\) 10.5442 1.49117
\(51\) 4.54420 0.636315
\(52\) −0.544198 −0.0754667
\(53\) −6.46898 −0.888582 −0.444291 0.895882i \(-0.646544\pi\)
−0.444291 + 0.895882i \(0.646544\pi\)
\(54\) 1.48119 0.201565
\(55\) 14.4690 1.95100
\(56\) 3.19394 0.426808
\(57\) −5.19394 −0.687954
\(58\) 10.8872 1.42955
\(59\) −14.7005 −1.91385 −0.956923 0.290343i \(-0.906231\pi\)
−0.956923 + 0.290343i \(0.906231\pi\)
\(60\) −0.675131 −0.0871590
\(61\) −1.42548 −0.182515 −0.0912573 0.995827i \(-0.529089\pi\)
−0.0912573 + 0.995827i \(0.529089\pi\)
\(62\) −7.11871 −0.904078
\(63\) −1.19394 −0.150422
\(64\) 7.08110 0.885138
\(65\) 9.76845 1.21163
\(66\) −6.15633 −0.757791
\(67\) −5.31265 −0.649044 −0.324522 0.945878i \(-0.605203\pi\)
−0.324522 + 0.945878i \(0.605203\pi\)
\(68\) 0.881286 0.106872
\(69\) 3.76845 0.453668
\(70\) 6.15633 0.735822
\(71\) 3.03761 0.360498 0.180249 0.983621i \(-0.442310\pi\)
0.180249 + 0.983621i \(0.442310\pi\)
\(72\) −2.67513 −0.315267
\(73\) −2.68735 −0.314530 −0.157265 0.987556i \(-0.550268\pi\)
−0.157265 + 0.987556i \(0.550268\pi\)
\(74\) −0.332163 −0.0386132
\(75\) 7.11871 0.821998
\(76\) −1.00729 −0.115545
\(77\) 4.96239 0.565517
\(78\) −4.15633 −0.470611
\(79\) 11.7308 1.31982 0.659911 0.751343i \(-0.270594\pi\)
0.659911 + 0.751343i \(0.270594\pi\)
\(80\) 15.1441 1.69316
\(81\) 1.00000 0.111111
\(82\) 7.81336 0.862841
\(83\) −0.100615 −0.0110440 −0.00552199 0.999985i \(-0.501758\pi\)
−0.00552199 + 0.999985i \(0.501758\pi\)
\(84\) −0.231548 −0.0252640
\(85\) −15.8192 −1.71584
\(86\) −14.0811 −1.51840
\(87\) 7.35026 0.788031
\(88\) 11.1187 1.18526
\(89\) −0.775746 −0.0822289 −0.0411145 0.999154i \(-0.513091\pi\)
−0.0411145 + 0.999154i \(0.513091\pi\)
\(90\) −5.15633 −0.543524
\(91\) 3.35026 0.351203
\(92\) 0.730841 0.0761954
\(93\) −4.80606 −0.498366
\(94\) 4.81336 0.496460
\(95\) 18.0811 1.85508
\(96\) −1.09332 −0.111587
\(97\) −15.5369 −1.57753 −0.788767 0.614693i \(-0.789280\pi\)
−0.788767 + 0.614693i \(0.789280\pi\)
\(98\) −8.25694 −0.834077
\(99\) −4.15633 −0.417726
\(100\) 1.38058 0.138058
\(101\) 14.4690 1.43972 0.719858 0.694121i \(-0.244207\pi\)
0.719858 + 0.694121i \(0.244207\pi\)
\(102\) 6.73084 0.666453
\(103\) 4.22425 0.416228 0.208114 0.978105i \(-0.433267\pi\)
0.208114 + 0.978105i \(0.433267\pi\)
\(104\) 7.50659 0.736081
\(105\) 4.15633 0.405616
\(106\) −9.58181 −0.930668
\(107\) −4.18664 −0.404738 −0.202369 0.979309i \(-0.564864\pi\)
−0.202369 + 0.979309i \(0.564864\pi\)
\(108\) 0.193937 0.0186616
\(109\) 4.76845 0.456735 0.228367 0.973575i \(-0.426661\pi\)
0.228367 + 0.973575i \(0.426661\pi\)
\(110\) 21.4314 2.04340
\(111\) −0.224254 −0.0212852
\(112\) 5.19394 0.490781
\(113\) −8.39375 −0.789618 −0.394809 0.918763i \(-0.629189\pi\)
−0.394809 + 0.918763i \(0.629189\pi\)
\(114\) −7.69323 −0.720537
\(115\) −13.1187 −1.22333
\(116\) 1.42548 0.132353
\(117\) −2.80606 −0.259421
\(118\) −21.7743 −2.00449
\(119\) −5.42548 −0.497353
\(120\) 9.31265 0.850125
\(121\) 6.27504 0.570458
\(122\) −2.11142 −0.191159
\(123\) 5.27504 0.475634
\(124\) −0.932071 −0.0837025
\(125\) −7.37565 −0.659699
\(126\) −1.76845 −0.157546
\(127\) −2.77575 −0.246308 −0.123154 0.992388i \(-0.539301\pi\)
−0.123154 + 0.992388i \(0.539301\pi\)
\(128\) 12.6751 1.12033
\(129\) −9.50659 −0.837008
\(130\) 14.4690 1.26901
\(131\) −22.3380 −1.95168 −0.975842 0.218478i \(-0.929891\pi\)
−0.975842 + 0.218478i \(0.929891\pi\)
\(132\) −0.806063 −0.0701588
\(133\) 6.20123 0.537715
\(134\) −7.86907 −0.679784
\(135\) −3.48119 −0.299614
\(136\) −12.1563 −1.04240
\(137\) −10.0254 −0.856527 −0.428264 0.903654i \(-0.640875\pi\)
−0.428264 + 0.903654i \(0.640875\pi\)
\(138\) 5.58181 0.475155
\(139\) 13.5574 1.14992 0.574961 0.818181i \(-0.305017\pi\)
0.574961 + 0.818181i \(0.305017\pi\)
\(140\) 0.806063 0.0681248
\(141\) 3.24965 0.273670
\(142\) 4.49929 0.377572
\(143\) 11.6629 0.975302
\(144\) −4.35026 −0.362522
\(145\) −25.5877 −2.12494
\(146\) −3.98049 −0.329427
\(147\) −5.57452 −0.459778
\(148\) −0.0434910 −0.00357494
\(149\) −2.15633 −0.176653 −0.0883265 0.996092i \(-0.528152\pi\)
−0.0883265 + 0.996092i \(0.528152\pi\)
\(150\) 10.5442 0.860930
\(151\) −0.693229 −0.0564142 −0.0282071 0.999602i \(-0.508980\pi\)
−0.0282071 + 0.999602i \(0.508980\pi\)
\(152\) 13.8945 1.12699
\(153\) 4.54420 0.367377
\(154\) 7.35026 0.592301
\(155\) 16.7308 1.34385
\(156\) −0.544198 −0.0435707
\(157\) −9.69323 −0.773604 −0.386802 0.922163i \(-0.626420\pi\)
−0.386802 + 0.922163i \(0.626420\pi\)
\(158\) 17.3757 1.38233
\(159\) −6.46898 −0.513023
\(160\) 3.80606 0.300896
\(161\) −4.49929 −0.354594
\(162\) 1.48119 0.116374
\(163\) −4.38058 −0.343113 −0.171557 0.985174i \(-0.554880\pi\)
−0.171557 + 0.985174i \(0.554880\pi\)
\(164\) 1.02302 0.0798847
\(165\) 14.4690 1.12641
\(166\) −0.149031 −0.0115670
\(167\) −7.27504 −0.562959 −0.281480 0.959567i \(-0.590825\pi\)
−0.281480 + 0.959567i \(0.590825\pi\)
\(168\) 3.19394 0.246418
\(169\) −5.12601 −0.394308
\(170\) −23.4314 −1.79710
\(171\) −5.19394 −0.397190
\(172\) −1.84367 −0.140579
\(173\) 14.7259 1.11959 0.559795 0.828631i \(-0.310880\pi\)
0.559795 + 0.828631i \(0.310880\pi\)
\(174\) 10.8872 0.825354
\(175\) −8.49929 −0.642486
\(176\) 18.0811 1.36291
\(177\) −14.7005 −1.10496
\(178\) −1.14903 −0.0861235
\(179\) 17.9805 1.34392 0.671962 0.740585i \(-0.265452\pi\)
0.671962 + 0.740585i \(0.265452\pi\)
\(180\) −0.675131 −0.0503213
\(181\) −16.0435 −1.19250 −0.596252 0.802798i \(-0.703344\pi\)
−0.596252 + 0.802798i \(0.703344\pi\)
\(182\) 4.96239 0.367837
\(183\) −1.42548 −0.105375
\(184\) −10.0811 −0.743189
\(185\) 0.780671 0.0573961
\(186\) −7.11871 −0.521969
\(187\) −18.8872 −1.38117
\(188\) 0.630225 0.0459639
\(189\) −1.19394 −0.0868461
\(190\) 26.7816 1.94294
\(191\) −2.78163 −0.201271 −0.100636 0.994923i \(-0.532088\pi\)
−0.100636 + 0.994923i \(0.532088\pi\)
\(192\) 7.08110 0.511035
\(193\) 20.6253 1.48464 0.742321 0.670045i \(-0.233725\pi\)
0.742321 + 0.670045i \(0.233725\pi\)
\(194\) −23.0132 −1.65225
\(195\) 9.76845 0.699533
\(196\) −1.08110 −0.0772216
\(197\) 3.24472 0.231177 0.115588 0.993297i \(-0.463125\pi\)
0.115588 + 0.993297i \(0.463125\pi\)
\(198\) −6.15633 −0.437511
\(199\) 12.5139 0.887086 0.443543 0.896253i \(-0.353721\pi\)
0.443543 + 0.896253i \(0.353721\pi\)
\(200\) −19.0435 −1.34658
\(201\) −5.31265 −0.374725
\(202\) 21.4314 1.50791
\(203\) −8.77575 −0.615937
\(204\) 0.881286 0.0617024
\(205\) −18.3634 −1.28256
\(206\) 6.25694 0.435942
\(207\) 3.76845 0.261926
\(208\) 12.2071 0.846411
\(209\) 21.5877 1.49325
\(210\) 6.15633 0.424827
\(211\) −21.7440 −1.49692 −0.748460 0.663180i \(-0.769206\pi\)
−0.748460 + 0.663180i \(0.769206\pi\)
\(212\) −1.25457 −0.0861643
\(213\) 3.03761 0.208134
\(214\) −6.20123 −0.423907
\(215\) 33.0943 2.25701
\(216\) −2.67513 −0.182020
\(217\) 5.73813 0.389530
\(218\) 7.06300 0.478367
\(219\) −2.68735 −0.181594
\(220\) 2.80606 0.189185
\(221\) −12.7513 −0.857746
\(222\) −0.332163 −0.0222933
\(223\) 1.00000 0.0669650
\(224\) 1.30536 0.0872178
\(225\) 7.11871 0.474581
\(226\) −12.4328 −0.827016
\(227\) 25.1949 1.67224 0.836122 0.548544i \(-0.184818\pi\)
0.836122 + 0.548544i \(0.184818\pi\)
\(228\) −1.00729 −0.0667097
\(229\) 26.0059 1.71852 0.859258 0.511542i \(-0.170925\pi\)
0.859258 + 0.511542i \(0.170925\pi\)
\(230\) −19.4314 −1.28127
\(231\) 4.96239 0.326501
\(232\) −19.6629 −1.29093
\(233\) 4.41819 0.289445 0.144723 0.989472i \(-0.453771\pi\)
0.144723 + 0.989472i \(0.453771\pi\)
\(234\) −4.15633 −0.271707
\(235\) −11.3127 −0.737956
\(236\) −2.85097 −0.185582
\(237\) 11.7308 0.762000
\(238\) −8.03620 −0.520909
\(239\) −2.16125 −0.139800 −0.0698998 0.997554i \(-0.522268\pi\)
−0.0698998 + 0.997554i \(0.522268\pi\)
\(240\) 15.1441 0.977548
\(241\) −17.7513 −1.14346 −0.571731 0.820441i \(-0.693728\pi\)
−0.571731 + 0.820441i \(0.693728\pi\)
\(242\) 9.29455 0.597476
\(243\) 1.00000 0.0641500
\(244\) −0.276454 −0.0176981
\(245\) 19.4060 1.23980
\(246\) 7.81336 0.498161
\(247\) 14.5745 0.927354
\(248\) 12.8568 0.816411
\(249\) −0.100615 −0.00637624
\(250\) −10.9248 −0.690944
\(251\) −23.5926 −1.48915 −0.744576 0.667537i \(-0.767348\pi\)
−0.744576 + 0.667537i \(0.767348\pi\)
\(252\) −0.231548 −0.0145862
\(253\) −15.6629 −0.984719
\(254\) −4.11142 −0.257973
\(255\) −15.8192 −0.990639
\(256\) 4.61213 0.288258
\(257\) 22.5296 1.40536 0.702679 0.711507i \(-0.251987\pi\)
0.702679 + 0.711507i \(0.251987\pi\)
\(258\) −14.0811 −0.876651
\(259\) 0.267745 0.0166368
\(260\) 1.89446 0.117489
\(261\) 7.35026 0.454970
\(262\) −33.0870 −2.04412
\(263\) 19.2301 1.18578 0.592890 0.805283i \(-0.297987\pi\)
0.592890 + 0.805283i \(0.297987\pi\)
\(264\) 11.1187 0.684310
\(265\) 22.5198 1.38338
\(266\) 9.18523 0.563182
\(267\) −0.775746 −0.0474749
\(268\) −1.03032 −0.0629366
\(269\) −28.3987 −1.73150 −0.865749 0.500479i \(-0.833157\pi\)
−0.865749 + 0.500479i \(0.833157\pi\)
\(270\) −5.15633 −0.313804
\(271\) −19.4763 −1.18310 −0.591550 0.806269i \(-0.701484\pi\)
−0.591550 + 0.806269i \(0.701484\pi\)
\(272\) −19.7685 −1.19864
\(273\) 3.35026 0.202767
\(274\) −14.8496 −0.897094
\(275\) −29.5877 −1.78420
\(276\) 0.730841 0.0439914
\(277\) −13.2750 −0.797620 −0.398810 0.917034i \(-0.630577\pi\)
−0.398810 + 0.917034i \(0.630577\pi\)
\(278\) 20.0811 1.20438
\(279\) −4.80606 −0.287731
\(280\) −11.1187 −0.664470
\(281\) 13.2447 0.790114 0.395057 0.918657i \(-0.370725\pi\)
0.395057 + 0.918657i \(0.370725\pi\)
\(282\) 4.81336 0.286631
\(283\) −33.2203 −1.97474 −0.987370 0.158428i \(-0.949357\pi\)
−0.987370 + 0.158428i \(0.949357\pi\)
\(284\) 0.589104 0.0349569
\(285\) 18.0811 1.07103
\(286\) 17.2750 1.02149
\(287\) −6.29806 −0.371763
\(288\) −1.09332 −0.0644246
\(289\) 3.64974 0.214690
\(290\) −37.9003 −2.22558
\(291\) −15.5369 −0.910789
\(292\) −0.521175 −0.0304995
\(293\) −26.1925 −1.53018 −0.765092 0.643921i \(-0.777306\pi\)
−0.765092 + 0.643921i \(0.777306\pi\)
\(294\) −8.25694 −0.481555
\(295\) 51.1754 2.97955
\(296\) 0.599908 0.0348689
\(297\) −4.15633 −0.241174
\(298\) −3.19394 −0.185020
\(299\) −10.5745 −0.611540
\(300\) 1.38058 0.0797078
\(301\) 11.3503 0.654218
\(302\) −1.02681 −0.0590861
\(303\) 14.4690 0.831221
\(304\) 22.5950 1.29591
\(305\) 4.96239 0.284146
\(306\) 6.73084 0.384777
\(307\) 14.6326 0.835126 0.417563 0.908648i \(-0.362884\pi\)
0.417563 + 0.908648i \(0.362884\pi\)
\(308\) 0.962389 0.0548372
\(309\) 4.22425 0.240309
\(310\) 24.7816 1.40750
\(311\) −20.5296 −1.16413 −0.582064 0.813143i \(-0.697755\pi\)
−0.582064 + 0.813143i \(0.697755\pi\)
\(312\) 7.50659 0.424977
\(313\) 26.4749 1.49645 0.748224 0.663447i \(-0.230907\pi\)
0.748224 + 0.663447i \(0.230907\pi\)
\(314\) −14.3576 −0.810244
\(315\) 4.15633 0.234182
\(316\) 2.27504 0.127981
\(317\) −2.52373 −0.141747 −0.0708734 0.997485i \(-0.522579\pi\)
−0.0708734 + 0.997485i \(0.522579\pi\)
\(318\) −9.58181 −0.537321
\(319\) −30.5501 −1.71048
\(320\) −24.6507 −1.37802
\(321\) −4.18664 −0.233676
\(322\) −6.66433 −0.371388
\(323\) −23.6023 −1.31327
\(324\) 0.193937 0.0107743
\(325\) −19.9756 −1.10804
\(326\) −6.48849 −0.359364
\(327\) 4.76845 0.263696
\(328\) −14.1114 −0.779173
\(329\) −3.87987 −0.213904
\(330\) 21.4314 1.17976
\(331\) 30.4894 1.67585 0.837926 0.545784i \(-0.183768\pi\)
0.837926 + 0.545784i \(0.183768\pi\)
\(332\) −0.0195130 −0.00107092
\(333\) −0.224254 −0.0122890
\(334\) −10.7757 −0.589623
\(335\) 18.4944 1.01046
\(336\) 5.19394 0.283352
\(337\) −29.6932 −1.61749 −0.808747 0.588157i \(-0.799854\pi\)
−0.808747 + 0.588157i \(0.799854\pi\)
\(338\) −7.59261 −0.412984
\(339\) −8.39375 −0.455886
\(340\) −3.06793 −0.166382
\(341\) 19.9756 1.08174
\(342\) −7.69323 −0.416002
\(343\) 15.0132 0.810635
\(344\) 25.4314 1.37117
\(345\) −13.1187 −0.706288
\(346\) 21.8119 1.17262
\(347\) 16.9076 0.907649 0.453825 0.891091i \(-0.350059\pi\)
0.453825 + 0.891091i \(0.350059\pi\)
\(348\) 1.42548 0.0764140
\(349\) 23.0870 1.23582 0.617909 0.786250i \(-0.287980\pi\)
0.617909 + 0.786250i \(0.287980\pi\)
\(350\) −12.5891 −0.672916
\(351\) −2.80606 −0.149777
\(352\) 4.54420 0.242207
\(353\) −33.4069 −1.77807 −0.889036 0.457838i \(-0.848624\pi\)
−0.889036 + 0.457838i \(0.848624\pi\)
\(354\) −21.7743 −1.15729
\(355\) −10.5745 −0.561237
\(356\) −0.150446 −0.00797360
\(357\) −5.42548 −0.287147
\(358\) 26.6326 1.40758
\(359\) 4.99271 0.263505 0.131752 0.991283i \(-0.457940\pi\)
0.131752 + 0.991283i \(0.457940\pi\)
\(360\) 9.31265 0.490820
\(361\) 7.97698 0.419841
\(362\) −23.7635 −1.24898
\(363\) 6.27504 0.329354
\(364\) 0.649738 0.0340555
\(365\) 9.35519 0.489673
\(366\) −2.11142 −0.110366
\(367\) −15.9003 −0.829991 −0.414995 0.909823i \(-0.636217\pi\)
−0.414995 + 0.909823i \(0.636217\pi\)
\(368\) −16.3938 −0.854583
\(369\) 5.27504 0.274608
\(370\) 1.15633 0.0601145
\(371\) 7.72355 0.400987
\(372\) −0.932071 −0.0483257
\(373\) 5.67276 0.293724 0.146862 0.989157i \(-0.453083\pi\)
0.146862 + 0.989157i \(0.453083\pi\)
\(374\) −27.9756 −1.44658
\(375\) −7.37565 −0.380877
\(376\) −8.69323 −0.448319
\(377\) −20.6253 −1.06226
\(378\) −1.76845 −0.0909594
\(379\) 7.35614 0.377860 0.188930 0.981991i \(-0.439498\pi\)
0.188930 + 0.981991i \(0.439498\pi\)
\(380\) 3.50659 0.179884
\(381\) −2.77575 −0.142206
\(382\) −4.12013 −0.210804
\(383\) −33.7948 −1.72683 −0.863417 0.504491i \(-0.831680\pi\)
−0.863417 + 0.504491i \(0.831680\pi\)
\(384\) 12.6751 0.646825
\(385\) −17.2750 −0.880418
\(386\) 30.5501 1.55496
\(387\) −9.50659 −0.483247
\(388\) −3.01317 −0.152971
\(389\) 34.7718 1.76300 0.881500 0.472185i \(-0.156535\pi\)
0.881500 + 0.472185i \(0.156535\pi\)
\(390\) 14.4690 0.732665
\(391\) 17.1246 0.866028
\(392\) 14.9126 0.753198
\(393\) −22.3380 −1.12681
\(394\) 4.80606 0.242126
\(395\) −40.8373 −2.05475
\(396\) −0.806063 −0.0405062
\(397\) −22.7572 −1.14215 −0.571075 0.820898i \(-0.693474\pi\)
−0.571075 + 0.820898i \(0.693474\pi\)
\(398\) 18.5355 0.929100
\(399\) 6.20123 0.310450
\(400\) −30.9683 −1.54841
\(401\) 38.0263 1.89895 0.949473 0.313850i \(-0.101619\pi\)
0.949473 + 0.313850i \(0.101619\pi\)
\(402\) −7.86907 −0.392473
\(403\) 13.4861 0.671791
\(404\) 2.80606 0.139607
\(405\) −3.48119 −0.172982
\(406\) −12.9986 −0.645109
\(407\) 0.932071 0.0462011
\(408\) −12.1563 −0.601828
\(409\) −5.21440 −0.257836 −0.128918 0.991655i \(-0.541150\pi\)
−0.128918 + 0.991655i \(0.541150\pi\)
\(410\) −27.1998 −1.34330
\(411\) −10.0254 −0.494516
\(412\) 0.819237 0.0403609
\(413\) 17.5515 0.863652
\(414\) 5.58181 0.274331
\(415\) 0.350262 0.0171937
\(416\) 3.06793 0.150418
\(417\) 13.5574 0.663907
\(418\) 31.9756 1.56398
\(419\) −25.8945 −1.26503 −0.632514 0.774549i \(-0.717977\pi\)
−0.632514 + 0.774549i \(0.717977\pi\)
\(420\) 0.806063 0.0393319
\(421\) 14.4690 0.705175 0.352587 0.935779i \(-0.385302\pi\)
0.352587 + 0.935779i \(0.385302\pi\)
\(422\) −32.2071 −1.56782
\(423\) 3.24965 0.158003
\(424\) 17.3054 0.840422
\(425\) 32.3488 1.56915
\(426\) 4.49929 0.217991
\(427\) 1.70194 0.0823626
\(428\) −0.811943 −0.0392467
\(429\) 11.6629 0.563091
\(430\) 49.0191 2.36391
\(431\) −33.2955 −1.60379 −0.801894 0.597466i \(-0.796174\pi\)
−0.801894 + 0.597466i \(0.796174\pi\)
\(432\) −4.35026 −0.209302
\(433\) 24.7948 1.19156 0.595781 0.803147i \(-0.296843\pi\)
0.595781 + 0.803147i \(0.296843\pi\)
\(434\) 8.49929 0.407979
\(435\) −25.5877 −1.22684
\(436\) 0.924777 0.0442888
\(437\) −19.5731 −0.936308
\(438\) −3.98049 −0.190195
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) −38.7064 −1.84526
\(441\) −5.57452 −0.265453
\(442\) −18.8872 −0.898371
\(443\) 11.0835 0.526592 0.263296 0.964715i \(-0.415190\pi\)
0.263296 + 0.964715i \(0.415190\pi\)
\(444\) −0.0434910 −0.00206399
\(445\) 2.70052 0.128017
\(446\) 1.48119 0.0701366
\(447\) −2.15633 −0.101991
\(448\) −8.45439 −0.399432
\(449\) 11.6180 0.548288 0.274144 0.961689i \(-0.411606\pi\)
0.274144 + 0.961689i \(0.411606\pi\)
\(450\) 10.5442 0.497058
\(451\) −21.9248 −1.03240
\(452\) −1.62786 −0.0765679
\(453\) −0.693229 −0.0325708
\(454\) 37.3185 1.75145
\(455\) −11.6629 −0.546766
\(456\) 13.8945 0.650668
\(457\) −9.89446 −0.462843 −0.231422 0.972854i \(-0.574338\pi\)
−0.231422 + 0.972854i \(0.574338\pi\)
\(458\) 38.5198 1.79991
\(459\) 4.54420 0.212105
\(460\) −2.54420 −0.118624
\(461\) 7.17935 0.334376 0.167188 0.985925i \(-0.446531\pi\)
0.167188 + 0.985925i \(0.446531\pi\)
\(462\) 7.35026 0.341965
\(463\) 20.2981 0.943331 0.471665 0.881778i \(-0.343653\pi\)
0.471665 + 0.881778i \(0.343653\pi\)
\(464\) −31.9756 −1.48443
\(465\) 16.7308 0.775874
\(466\) 6.54420 0.303154
\(467\) 9.73813 0.450627 0.225314 0.974286i \(-0.427659\pi\)
0.225314 + 0.974286i \(0.427659\pi\)
\(468\) −0.544198 −0.0251556
\(469\) 6.34297 0.292891
\(470\) −16.7562 −0.772907
\(471\) −9.69323 −0.446640
\(472\) 39.3258 1.81012
\(473\) 39.5125 1.81679
\(474\) 17.3757 0.798090
\(475\) −36.9741 −1.69649
\(476\) −1.05220 −0.0482275
\(477\) −6.46898 −0.296194
\(478\) −3.20123 −0.146421
\(479\) −31.1939 −1.42529 −0.712644 0.701526i \(-0.752502\pi\)
−0.712644 + 0.701526i \(0.752502\pi\)
\(480\) 3.80606 0.173722
\(481\) 0.629270 0.0286923
\(482\) −26.2931 −1.19762
\(483\) −4.49929 −0.204725
\(484\) 1.21696 0.0553163
\(485\) 54.0870 2.45596
\(486\) 1.48119 0.0671883
\(487\) −21.1187 −0.956980 −0.478490 0.878093i \(-0.658816\pi\)
−0.478490 + 0.878093i \(0.658816\pi\)
\(488\) 3.81336 0.172623
\(489\) −4.38058 −0.198097
\(490\) 28.7440 1.29852
\(491\) −30.8423 −1.39189 −0.695946 0.718094i \(-0.745015\pi\)
−0.695946 + 0.718094i \(0.745015\pi\)
\(492\) 1.02302 0.0461214
\(493\) 33.4010 1.50431
\(494\) 21.5877 0.971276
\(495\) 14.4690 0.650332
\(496\) 20.9076 0.938780
\(497\) −3.62672 −0.162680
\(498\) −0.149031 −0.00667824
\(499\) 16.5745 0.741977 0.370989 0.928637i \(-0.379019\pi\)
0.370989 + 0.928637i \(0.379019\pi\)
\(500\) −1.43041 −0.0639698
\(501\) −7.27504 −0.325025
\(502\) −34.9452 −1.55968
\(503\) −26.8021 −1.19505 −0.597523 0.801852i \(-0.703848\pi\)
−0.597523 + 0.801852i \(0.703848\pi\)
\(504\) 3.19394 0.142269
\(505\) −50.3693 −2.24141
\(506\) −23.1998 −1.03136
\(507\) −5.12601 −0.227654
\(508\) −0.538319 −0.0238840
\(509\) −0.207110 −0.00918001 −0.00459000 0.999989i \(-0.501461\pi\)
−0.00459000 + 0.999989i \(0.501461\pi\)
\(510\) −23.4314 −1.03756
\(511\) 3.20853 0.141937
\(512\) −18.5188 −0.818423
\(513\) −5.19394 −0.229318
\(514\) 33.3707 1.47192
\(515\) −14.7054 −0.647999
\(516\) −1.84367 −0.0811633
\(517\) −13.5066 −0.594019
\(518\) 0.396582 0.0174248
\(519\) 14.7259 0.646396
\(520\) −26.1319 −1.14596
\(521\) −22.1270 −0.969400 −0.484700 0.874681i \(-0.661071\pi\)
−0.484700 + 0.874681i \(0.661071\pi\)
\(522\) 10.8872 0.476518
\(523\) −35.1147 −1.53546 −0.767730 0.640773i \(-0.778614\pi\)
−0.767730 + 0.640773i \(0.778614\pi\)
\(524\) −4.33216 −0.189251
\(525\) −8.49929 −0.370940
\(526\) 28.4836 1.24194
\(527\) −21.8397 −0.951353
\(528\) 18.0811 0.786879
\(529\) −8.79877 −0.382555
\(530\) 33.3561 1.44890
\(531\) −14.7005 −0.637948
\(532\) 1.20265 0.0521413
\(533\) −14.8021 −0.641150
\(534\) −1.14903 −0.0497234
\(535\) 14.5745 0.630111
\(536\) 14.2120 0.613866
\(537\) 17.9805 0.775915
\(538\) −42.0640 −1.81351
\(539\) 23.1695 0.997981
\(540\) −0.675131 −0.0290530
\(541\) −16.2619 −0.699152 −0.349576 0.936908i \(-0.613674\pi\)
−0.349576 + 0.936908i \(0.613674\pi\)
\(542\) −28.8481 −1.23913
\(543\) −16.0435 −0.688492
\(544\) −4.96827 −0.213013
\(545\) −16.5999 −0.711062
\(546\) 4.96239 0.212371
\(547\) 2.80606 0.119979 0.0599893 0.998199i \(-0.480893\pi\)
0.0599893 + 0.998199i \(0.480893\pi\)
\(548\) −1.94429 −0.0830560
\(549\) −1.42548 −0.0608382
\(550\) −43.8251 −1.86871
\(551\) −38.1768 −1.62639
\(552\) −10.0811 −0.429080
\(553\) −14.0059 −0.595591
\(554\) −19.6629 −0.835397
\(555\) 0.780671 0.0331376
\(556\) 2.62927 0.111506
\(557\) 2.75035 0.116536 0.0582681 0.998301i \(-0.481442\pi\)
0.0582681 + 0.998301i \(0.481442\pi\)
\(558\) −7.11871 −0.301359
\(559\) 26.6761 1.12828
\(560\) −18.0811 −0.764066
\(561\) −18.8872 −0.797417
\(562\) 19.6180 0.827536
\(563\) −6.16617 −0.259873 −0.129937 0.991522i \(-0.541477\pi\)
−0.129937 + 0.991522i \(0.541477\pi\)
\(564\) 0.630225 0.0265373
\(565\) 29.2203 1.22931
\(566\) −49.2057 −2.06827
\(567\) −1.19394 −0.0501406
\(568\) −8.12601 −0.340960
\(569\) 23.9053 1.00216 0.501080 0.865401i \(-0.332936\pi\)
0.501080 + 0.865401i \(0.332936\pi\)
\(570\) 26.7816 1.12176
\(571\) 30.5183 1.27715 0.638577 0.769558i \(-0.279524\pi\)
0.638577 + 0.769558i \(0.279524\pi\)
\(572\) 2.26187 0.0945733
\(573\) −2.78163 −0.116204
\(574\) −9.32865 −0.389370
\(575\) 26.8265 1.11874
\(576\) 7.08110 0.295046
\(577\) 24.4069 1.01607 0.508037 0.861335i \(-0.330371\pi\)
0.508037 + 0.861335i \(0.330371\pi\)
\(578\) 5.40597 0.224859
\(579\) 20.6253 0.857158
\(580\) −4.96239 −0.206052
\(581\) 0.120128 0.00498377
\(582\) −23.0132 −0.953927
\(583\) 26.8872 1.11355
\(584\) 7.18901 0.297483
\(585\) 9.76845 0.403876
\(586\) −38.7962 −1.60266
\(587\) 37.9307 1.56557 0.782783 0.622295i \(-0.213800\pi\)
0.782783 + 0.622295i \(0.213800\pi\)
\(588\) −1.08110 −0.0445839
\(589\) 24.9624 1.02856
\(590\) 75.8007 3.12066
\(591\) 3.24472 0.133470
\(592\) 0.975562 0.0400954
\(593\) 8.54324 0.350829 0.175414 0.984495i \(-0.443873\pi\)
0.175414 + 0.984495i \(0.443873\pi\)
\(594\) −6.15633 −0.252597
\(595\) 18.8872 0.774298
\(596\) −0.418190 −0.0171297
\(597\) 12.5139 0.512159
\(598\) −15.6629 −0.640504
\(599\) 9.43136 0.385355 0.192678 0.981262i \(-0.438283\pi\)
0.192678 + 0.981262i \(0.438283\pi\)
\(600\) −19.0435 −0.777447
\(601\) 13.7381 0.560390 0.280195 0.959943i \(-0.409601\pi\)
0.280195 + 0.959943i \(0.409601\pi\)
\(602\) 16.8119 0.685204
\(603\) −5.31265 −0.216348
\(604\) −0.134443 −0.00547039
\(605\) −21.8446 −0.888110
\(606\) 21.4314 0.870590
\(607\) −8.70308 −0.353247 −0.176624 0.984278i \(-0.556518\pi\)
−0.176624 + 0.984278i \(0.556518\pi\)
\(608\) 5.67864 0.230299
\(609\) −8.77575 −0.355611
\(610\) 7.35026 0.297603
\(611\) −9.11871 −0.368904
\(612\) 0.881286 0.0356239
\(613\) 13.6180 0.550026 0.275013 0.961440i \(-0.411318\pi\)
0.275013 + 0.961440i \(0.411318\pi\)
\(614\) 21.6737 0.874680
\(615\) −18.3634 −0.740485
\(616\) −13.2750 −0.534867
\(617\) 14.8510 0.597878 0.298939 0.954272i \(-0.403367\pi\)
0.298939 + 0.954272i \(0.403367\pi\)
\(618\) 6.25694 0.251691
\(619\) −15.5296 −0.624188 −0.312094 0.950051i \(-0.601030\pi\)
−0.312094 + 0.950051i \(0.601030\pi\)
\(620\) 3.24472 0.130311
\(621\) 3.76845 0.151223
\(622\) −30.4083 −1.21926
\(623\) 0.926192 0.0371071
\(624\) 12.2071 0.488676
\(625\) −9.91748 −0.396699
\(626\) 39.2144 1.56732
\(627\) 21.5877 0.862129
\(628\) −1.87987 −0.0750150
\(629\) −1.01905 −0.0406323
\(630\) 6.15633 0.245274
\(631\) 2.38646 0.0950034 0.0475017 0.998871i \(-0.484874\pi\)
0.0475017 + 0.998871i \(0.484874\pi\)
\(632\) −31.3815 −1.24829
\(633\) −21.7440 −0.864247
\(634\) −3.73813 −0.148460
\(635\) 9.66291 0.383461
\(636\) −1.25457 −0.0497470
\(637\) 15.6424 0.619776
\(638\) −45.2506 −1.79149
\(639\) 3.03761 0.120166
\(640\) −44.1246 −1.74418
\(641\) 6.05571 0.239186 0.119593 0.992823i \(-0.461841\pi\)
0.119593 + 0.992823i \(0.461841\pi\)
\(642\) −6.20123 −0.244743
\(643\) 36.0625 1.42217 0.711084 0.703107i \(-0.248205\pi\)
0.711084 + 0.703107i \(0.248205\pi\)
\(644\) −0.872577 −0.0343844
\(645\) 33.0943 1.30309
\(646\) −34.9596 −1.37547
\(647\) −0.432779 −0.0170143 −0.00850714 0.999964i \(-0.502708\pi\)
−0.00850714 + 0.999964i \(0.502708\pi\)
\(648\) −2.67513 −0.105089
\(649\) 61.1002 2.39839
\(650\) −29.5877 −1.16052
\(651\) 5.73813 0.224895
\(652\) −0.849554 −0.0332711
\(653\) 47.5936 1.86248 0.931240 0.364406i \(-0.118728\pi\)
0.931240 + 0.364406i \(0.118728\pi\)
\(654\) 7.06300 0.276185
\(655\) 77.7631 3.03845
\(656\) −22.9478 −0.895961
\(657\) −2.68735 −0.104843
\(658\) −5.74684 −0.224035
\(659\) 33.9403 1.32213 0.661064 0.750330i \(-0.270105\pi\)
0.661064 + 0.750330i \(0.270105\pi\)
\(660\) 2.80606 0.109226
\(661\) 0.0956908 0.00372194 0.00186097 0.999998i \(-0.499408\pi\)
0.00186097 + 0.999998i \(0.499408\pi\)
\(662\) 45.1608 1.75522
\(663\) −12.7513 −0.495220
\(664\) 0.269159 0.0104454
\(665\) −21.5877 −0.837135
\(666\) −0.332163 −0.0128711
\(667\) 27.6991 1.07251
\(668\) −1.41090 −0.0545892
\(669\) 1.00000 0.0386622
\(670\) 27.3938 1.05831
\(671\) 5.92478 0.228723
\(672\) 1.30536 0.0503552
\(673\) −0.700523 −0.0270032 −0.0135016 0.999909i \(-0.504298\pi\)
−0.0135016 + 0.999909i \(0.504298\pi\)
\(674\) −43.9814 −1.69410
\(675\) 7.11871 0.273999
\(676\) −0.994120 −0.0382354
\(677\) 43.1998 1.66030 0.830152 0.557537i \(-0.188254\pi\)
0.830152 + 0.557537i \(0.188254\pi\)
\(678\) −12.4328 −0.477478
\(679\) 18.5501 0.711887
\(680\) 42.3185 1.62284
\(681\) 25.1949 0.965470
\(682\) 29.5877 1.13297
\(683\) −0.981902 −0.0375714 −0.0187857 0.999824i \(-0.505980\pi\)
−0.0187857 + 0.999824i \(0.505980\pi\)
\(684\) −1.00729 −0.0385149
\(685\) 34.9003 1.33347
\(686\) 22.2374 0.849029
\(687\) 26.0059 0.992186
\(688\) 41.3561 1.57669
\(689\) 18.1524 0.691550
\(690\) −19.4314 −0.739739
\(691\) −28.9003 −1.09942 −0.549710 0.835355i \(-0.685262\pi\)
−0.549710 + 0.835355i \(0.685262\pi\)
\(692\) 2.85589 0.108565
\(693\) 4.96239 0.188506
\(694\) 25.0435 0.950638
\(695\) −47.1958 −1.79024
\(696\) −19.6629 −0.745321
\(697\) 23.9708 0.907960
\(698\) 34.1963 1.29435
\(699\) 4.41819 0.167111
\(700\) −1.64832 −0.0623008
\(701\) 38.5052 1.45432 0.727160 0.686468i \(-0.240840\pi\)
0.727160 + 0.686468i \(0.240840\pi\)
\(702\) −4.15633 −0.156870
\(703\) 1.16476 0.0439297
\(704\) −29.4314 −1.10924
\(705\) −11.3127 −0.426059
\(706\) −49.4821 −1.86229
\(707\) −17.2750 −0.649695
\(708\) −2.85097 −0.107146
\(709\) −40.7875 −1.53181 −0.765903 0.642956i \(-0.777708\pi\)
−0.765903 + 0.642956i \(0.777708\pi\)
\(710\) −15.6629 −0.587819
\(711\) 11.7308 0.439941
\(712\) 2.07522 0.0777723
\(713\) −18.1114 −0.678278
\(714\) −8.03620 −0.300747
\(715\) −40.6009 −1.51839
\(716\) 3.48707 0.130318
\(717\) −2.16125 −0.0807134
\(718\) 7.39517 0.275985
\(719\) 48.9937 1.82716 0.913578 0.406664i \(-0.133308\pi\)
0.913578 + 0.406664i \(0.133308\pi\)
\(720\) 15.1441 0.564388
\(721\) −5.04349 −0.187829
\(722\) 11.8155 0.439726
\(723\) −17.7513 −0.660178
\(724\) −3.11142 −0.115635
\(725\) 52.3244 1.94328
\(726\) 9.29455 0.344953
\(727\) 17.8594 0.662369 0.331184 0.943566i \(-0.392552\pi\)
0.331184 + 0.943566i \(0.392552\pi\)
\(728\) −8.96239 −0.332168
\(729\) 1.00000 0.0370370
\(730\) 13.8568 0.512865
\(731\) −43.1998 −1.59780
\(732\) −0.276454 −0.0102180
\(733\) 10.1260 0.374013 0.187006 0.982359i \(-0.440122\pi\)
0.187006 + 0.982359i \(0.440122\pi\)
\(734\) −23.5515 −0.869301
\(735\) 19.4060 0.715800
\(736\) −4.12013 −0.151870
\(737\) 22.0811 0.813368
\(738\) 7.81336 0.287614
\(739\) −7.26187 −0.267132 −0.133566 0.991040i \(-0.542643\pi\)
−0.133566 + 0.991040i \(0.542643\pi\)
\(740\) 0.151401 0.00556560
\(741\) 14.5745 0.535408
\(742\) 11.4401 0.419978
\(743\) −47.3914 −1.73862 −0.869311 0.494266i \(-0.835437\pi\)
−0.869311 + 0.494266i \(0.835437\pi\)
\(744\) 12.8568 0.471355
\(745\) 7.50659 0.275020
\(746\) 8.40246 0.307636
\(747\) −0.100615 −0.00368132
\(748\) −3.66291 −0.133929
\(749\) 4.99859 0.182644
\(750\) −10.9248 −0.398916
\(751\) −8.42407 −0.307399 −0.153699 0.988118i \(-0.549119\pi\)
−0.153699 + 0.988118i \(0.549119\pi\)
\(752\) −14.1368 −0.515516
\(753\) −23.5926 −0.859763
\(754\) −30.5501 −1.11257
\(755\) 2.41327 0.0878277
\(756\) −0.231548 −0.00842132
\(757\) −25.1187 −0.912955 −0.456478 0.889735i \(-0.650889\pi\)
−0.456478 + 0.889735i \(0.650889\pi\)
\(758\) 10.8959 0.395756
\(759\) −15.6629 −0.568528
\(760\) −48.3693 −1.75454
\(761\) −16.6751 −0.604473 −0.302237 0.953233i \(-0.597733\pi\)
−0.302237 + 0.953233i \(0.597733\pi\)
\(762\) −4.11142 −0.148941
\(763\) −5.69323 −0.206109
\(764\) −0.539459 −0.0195169
\(765\) −15.8192 −0.571946
\(766\) −50.0567 −1.80862
\(767\) 41.2506 1.48947
\(768\) 4.61213 0.166426
\(769\) −29.6385 −1.06879 −0.534395 0.845235i \(-0.679461\pi\)
−0.534395 + 0.845235i \(0.679461\pi\)
\(770\) −25.5877 −0.922116
\(771\) 22.5296 0.811384
\(772\) 4.00000 0.143963
\(773\) 20.3938 0.733512 0.366756 0.930317i \(-0.380468\pi\)
0.366756 + 0.930317i \(0.380468\pi\)
\(774\) −14.0811 −0.506135
\(775\) −34.2130 −1.22897
\(776\) 41.5633 1.49203
\(777\) 0.267745 0.00960529
\(778\) 51.5038 1.84650
\(779\) −27.3982 −0.981643
\(780\) 1.89446 0.0678326
\(781\) −12.6253 −0.451769
\(782\) 25.3649 0.907045
\(783\) 7.35026 0.262677
\(784\) 24.2506 0.866093
\(785\) 33.7440 1.20438
\(786\) −33.0870 −1.18017
\(787\) −41.5647 −1.48162 −0.740810 0.671714i \(-0.765558\pi\)
−0.740810 + 0.671714i \(0.765558\pi\)
\(788\) 0.629270 0.0224168
\(789\) 19.2301 0.684611
\(790\) −60.4880 −2.15207
\(791\) 10.0216 0.356327
\(792\) 11.1187 0.395086
\(793\) 4.00000 0.142044
\(794\) −33.7078 −1.19625
\(795\) 22.5198 0.798694
\(796\) 2.42690 0.0860192
\(797\) 24.1173 0.854279 0.427139 0.904186i \(-0.359521\pi\)
0.427139 + 0.904186i \(0.359521\pi\)
\(798\) 9.18523 0.325154
\(799\) 14.7670 0.522420
\(800\) −7.78304 −0.275172
\(801\) −0.775746 −0.0274096
\(802\) 56.3244 1.98888
\(803\) 11.1695 0.394163
\(804\) −1.03032 −0.0363365
\(805\) 15.6629 0.552045
\(806\) 19.9756 0.703609
\(807\) −28.3987 −0.999681
\(808\) −38.7064 −1.36169
\(809\) 25.1587 0.884533 0.442266 0.896884i \(-0.354175\pi\)
0.442266 + 0.896884i \(0.354175\pi\)
\(810\) −5.15633 −0.181175
\(811\) −7.03761 −0.247124 −0.123562 0.992337i \(-0.539432\pi\)
−0.123562 + 0.992337i \(0.539432\pi\)
\(812\) −1.70194 −0.0597263
\(813\) −19.4763 −0.683063
\(814\) 1.38058 0.0483893
\(815\) 15.2496 0.534172
\(816\) −19.7685 −0.692034
\(817\) 49.3766 1.72747
\(818\) −7.72355 −0.270047
\(819\) 3.35026 0.117068
\(820\) −3.56134 −0.124367
\(821\) −6.55879 −0.228903 −0.114452 0.993429i \(-0.536511\pi\)
−0.114452 + 0.993429i \(0.536511\pi\)
\(822\) −14.8496 −0.517938
\(823\) −46.0092 −1.60378 −0.801890 0.597472i \(-0.796172\pi\)
−0.801890 + 0.597472i \(0.796172\pi\)
\(824\) −11.3004 −0.393669
\(825\) −29.5877 −1.03011
\(826\) 25.9972 0.904557
\(827\) −6.20711 −0.215842 −0.107921 0.994159i \(-0.534419\pi\)
−0.107921 + 0.994159i \(0.534419\pi\)
\(828\) 0.730841 0.0253985
\(829\) −15.4518 −0.536664 −0.268332 0.963326i \(-0.586472\pi\)
−0.268332 + 0.963326i \(0.586472\pi\)
\(830\) 0.518806 0.0180080
\(831\) −13.2750 −0.460506
\(832\) −19.8700 −0.688869
\(833\) −25.3317 −0.877692
\(834\) 20.0811 0.695352
\(835\) 25.3258 0.876436
\(836\) 4.18664 0.144798
\(837\) −4.80606 −0.166122
\(838\) −38.3547 −1.32494
\(839\) −28.2374 −0.974864 −0.487432 0.873161i \(-0.662066\pi\)
−0.487432 + 0.873161i \(0.662066\pi\)
\(840\) −11.1187 −0.383632
\(841\) 25.0263 0.862978
\(842\) 21.4314 0.738574
\(843\) 13.2447 0.456172
\(844\) −4.21696 −0.145154
\(845\) 17.8446 0.613874
\(846\) 4.81336 0.165487
\(847\) −7.49200 −0.257428
\(848\) 28.1417 0.966391
\(849\) −33.2203 −1.14012
\(850\) 47.9149 1.64347
\(851\) −0.845089 −0.0289693
\(852\) 0.589104 0.0201824
\(853\) 38.6516 1.32341 0.661704 0.749766i \(-0.269834\pi\)
0.661704 + 0.749766i \(0.269834\pi\)
\(854\) 2.52090 0.0862635
\(855\) 18.0811 0.618361
\(856\) 11.1998 0.382802
\(857\) −20.3693 −0.695803 −0.347901 0.937531i \(-0.613106\pi\)
−0.347901 + 0.937531i \(0.613106\pi\)
\(858\) 17.2750 0.589760
\(859\) −16.0825 −0.548728 −0.274364 0.961626i \(-0.588467\pi\)
−0.274364 + 0.961626i \(0.588467\pi\)
\(860\) 6.41819 0.218858
\(861\) −6.29806 −0.214637
\(862\) −49.3171 −1.67975
\(863\) 17.8397 0.607271 0.303635 0.952788i \(-0.401800\pi\)
0.303635 + 0.952788i \(0.401800\pi\)
\(864\) −1.09332 −0.0371955
\(865\) −51.2638 −1.74302
\(866\) 36.7259 1.24800
\(867\) 3.64974 0.123952
\(868\) 1.11283 0.0377721
\(869\) −48.7572 −1.65397
\(870\) −37.9003 −1.28494
\(871\) 14.9076 0.505126
\(872\) −12.7562 −0.431981
\(873\) −15.5369 −0.525845
\(874\) −28.9916 −0.980654
\(875\) 8.80606 0.297699
\(876\) −0.521175 −0.0176089
\(877\) 21.1841 0.715336 0.357668 0.933849i \(-0.383572\pi\)
0.357668 + 0.933849i \(0.383572\pi\)
\(878\) −1.48119 −0.0499879
\(879\) −26.1925 −0.883452
\(880\) −62.9438 −2.12184
\(881\) −47.9716 −1.61620 −0.808102 0.589043i \(-0.799505\pi\)
−0.808102 + 0.589043i \(0.799505\pi\)
\(882\) −8.25694 −0.278026
\(883\) 28.8799 0.971885 0.485943 0.873991i \(-0.338476\pi\)
0.485943 + 0.873991i \(0.338476\pi\)
\(884\) −2.47295 −0.0831741
\(885\) 51.1754 1.72024
\(886\) 16.4168 0.551532
\(887\) −44.7972 −1.50414 −0.752071 0.659082i \(-0.770945\pi\)
−0.752071 + 0.659082i \(0.770945\pi\)
\(888\) 0.599908 0.0201316
\(889\) 3.31406 0.111150
\(890\) 4.00000 0.134080
\(891\) −4.15633 −0.139242
\(892\) 0.193937 0.00649348
\(893\) −16.8785 −0.564816
\(894\) −3.19394 −0.106821
\(895\) −62.5936 −2.09227
\(896\) −15.1333 −0.505568
\(897\) −10.5745 −0.353073
\(898\) 17.2085 0.574256
\(899\) −35.3258 −1.17818
\(900\) 1.38058 0.0460193
\(901\) −29.3963 −0.979333
\(902\) −32.4749 −1.08129
\(903\) 11.3503 0.377713
\(904\) 22.4544 0.746822
\(905\) 55.8505 1.85653
\(906\) −1.02681 −0.0341134
\(907\) 4.06651 0.135026 0.0675132 0.997718i \(-0.478494\pi\)
0.0675132 + 0.997718i \(0.478494\pi\)
\(908\) 4.88621 0.162155
\(909\) 14.4690 0.479906
\(910\) −17.2750 −0.572662
\(911\) −55.7489 −1.84704 −0.923522 0.383545i \(-0.874703\pi\)
−0.923522 + 0.383545i \(0.874703\pi\)
\(912\) 22.5950 0.748195
\(913\) 0.418190 0.0138401
\(914\) −14.6556 −0.484765
\(915\) 4.96239 0.164052
\(916\) 5.04349 0.166642
\(917\) 26.6702 0.880728
\(918\) 6.73084 0.222151
\(919\) 36.2882 1.19704 0.598519 0.801109i \(-0.295756\pi\)
0.598519 + 0.801109i \(0.295756\pi\)
\(920\) 35.0943 1.15702
\(921\) 14.6326 0.482160
\(922\) 10.6340 0.350212
\(923\) −8.52373 −0.280562
\(924\) 0.962389 0.0316603
\(925\) −1.59640 −0.0524892
\(926\) 30.0654 0.988009
\(927\) 4.22425 0.138743
\(928\) −8.03620 −0.263801
\(929\) −6.46898 −0.212240 −0.106120 0.994353i \(-0.533843\pi\)
−0.106120 + 0.994353i \(0.533843\pi\)
\(930\) 24.7816 0.812622
\(931\) 28.9537 0.948919
\(932\) 0.856849 0.0280670
\(933\) −20.5296 −0.672109
\(934\) 14.4241 0.471970
\(935\) 65.7499 2.15025
\(936\) 7.50659 0.245360
\(937\) −16.7163 −0.546096 −0.273048 0.962000i \(-0.588032\pi\)
−0.273048 + 0.962000i \(0.588032\pi\)
\(938\) 9.39517 0.306763
\(939\) 26.4749 0.863974
\(940\) −2.19394 −0.0715583
\(941\) 1.59166 0.0518866 0.0259433 0.999663i \(-0.491741\pi\)
0.0259433 + 0.999663i \(0.491741\pi\)
\(942\) −14.3576 −0.467794
\(943\) 19.8787 0.647341
\(944\) 63.9511 2.08143
\(945\) 4.15633 0.135205
\(946\) 58.5256 1.90283
\(947\) 36.8061 1.19604 0.598018 0.801483i \(-0.295955\pi\)
0.598018 + 0.801483i \(0.295955\pi\)
\(948\) 2.27504 0.0738898
\(949\) 7.54087 0.244787
\(950\) −54.7659 −1.77684
\(951\) −2.52373 −0.0818376
\(952\) 14.5139 0.470398
\(953\) −3.69815 −0.119795 −0.0598975 0.998205i \(-0.519077\pi\)
−0.0598975 + 0.998205i \(0.519077\pi\)
\(954\) −9.58181 −0.310223
\(955\) 9.68338 0.313347
\(956\) −0.419145 −0.0135561
\(957\) −30.5501 −0.987544
\(958\) −46.2043 −1.49279
\(959\) 11.9697 0.386521
\(960\) −24.6507 −0.795598
\(961\) −7.90175 −0.254895
\(962\) 0.932071 0.0300512
\(963\) −4.18664 −0.134913
\(964\) −3.44263 −0.110880
\(965\) −71.8007 −2.31135
\(966\) −6.66433 −0.214421
\(967\) 25.4010 0.816843 0.408421 0.912794i \(-0.366079\pi\)
0.408421 + 0.912794i \(0.366079\pi\)
\(968\) −16.7866 −0.539540
\(969\) −23.6023 −0.758214
\(970\) 80.1133 2.57228
\(971\) −22.1622 −0.711219 −0.355609 0.934635i \(-0.615727\pi\)
−0.355609 + 0.934635i \(0.615727\pi\)
\(972\) 0.193937 0.00622052
\(973\) −16.1866 −0.518920
\(974\) −31.2809 −1.00231
\(975\) −19.9756 −0.639730
\(976\) 6.20123 0.198497
\(977\) −10.5550 −0.337684 −0.168842 0.985643i \(-0.554003\pi\)
−0.168842 + 0.985643i \(0.554003\pi\)
\(978\) −6.48849 −0.207479
\(979\) 3.22425 0.103048
\(980\) 3.76353 0.120221
\(981\) 4.76845 0.152245
\(982\) −45.6834 −1.45782
\(983\) 53.1900 1.69650 0.848248 0.529599i \(-0.177658\pi\)
0.848248 + 0.529599i \(0.177658\pi\)
\(984\) −14.1114 −0.449856
\(985\) −11.2955 −0.359905
\(986\) 49.4734 1.57556
\(987\) −3.87987 −0.123498
\(988\) 2.82653 0.0899239
\(989\) −35.8251 −1.13917
\(990\) 21.4314 0.681133
\(991\) −61.0348 −1.93883 −0.969417 0.245420i \(-0.921074\pi\)
−0.969417 + 0.245420i \(0.921074\pi\)
\(992\) 5.25457 0.166833
\(993\) 30.4894 0.967553
\(994\) −5.37187 −0.170385
\(995\) −43.5633 −1.38105
\(996\) −0.0195130 −0.000618293 0
\(997\) −9.24331 −0.292738 −0.146369 0.989230i \(-0.546759\pi\)
−0.146369 + 0.989230i \(0.546759\pi\)
\(998\) 24.5501 0.777119
\(999\) −0.224254 −0.00709507
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.2.a.g.1.3 3
3.2 odd 2 2007.2.a.f.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.2.a.g.1.3 3 1.1 even 1 trivial
2007.2.a.f.1.1 3 3.2 odd 2