Properties

Label 669.2.a.g.1.1
Level $669$
Weight $2$
Character 669.1
Self dual yes
Analytic conductor $5.342$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17009 q^{2} +1.00000 q^{3} +2.70928 q^{4} +0.170086 q^{5} -2.17009 q^{6} -3.70928 q^{7} -1.53919 q^{8} +1.00000 q^{9} -0.369102 q^{10} +0.630898 q^{11} +2.70928 q^{12} -0.290725 q^{13} +8.04945 q^{14} +0.170086 q^{15} -2.07838 q^{16} +4.78765 q^{17} -2.17009 q^{18} -7.70928 q^{19} +0.460811 q^{20} -3.70928 q^{21} -1.36910 q^{22} -6.04945 q^{23} -1.53919 q^{24} -4.97107 q^{25} +0.630898 q^{26} +1.00000 q^{27} -10.0494 q^{28} +5.07838 q^{29} -0.369102 q^{30} -2.29072 q^{31} +7.58864 q^{32} +0.630898 q^{33} -10.3896 q^{34} -0.630898 q^{35} +2.70928 q^{36} +9.83710 q^{37} +16.7298 q^{38} -0.290725 q^{39} -0.261795 q^{40} -11.6020 q^{41} +8.04945 q^{42} -2.44748 q^{43} +1.70928 q^{44} +0.170086 q^{45} +13.1278 q^{46} -10.2195 q^{47} -2.07838 q^{48} +6.75872 q^{49} +10.7877 q^{50} +4.78765 q^{51} -0.787653 q^{52} +7.89269 q^{53} -2.17009 q^{54} +0.107307 q^{55} +5.70928 q^{56} -7.70928 q^{57} -11.0205 q^{58} -10.1568 q^{59} +0.460811 q^{60} -13.7587 q^{61} +4.97107 q^{62} -3.70928 q^{63} -12.3112 q^{64} -0.0494483 q^{65} -1.36910 q^{66} +4.26180 q^{67} +12.9711 q^{68} -6.04945 q^{69} +1.36910 q^{70} +10.3402 q^{71} -1.53919 q^{72} -12.2618 q^{73} -21.3474 q^{74} -4.97107 q^{75} -20.8865 q^{76} -2.34017 q^{77} +0.630898 q^{78} -5.38962 q^{79} -0.353504 q^{80} +1.00000 q^{81} +25.1773 q^{82} -11.2979 q^{83} -10.0494 q^{84} +0.814315 q^{85} +5.31124 q^{86} +5.07838 q^{87} -0.971071 q^{88} -10.8371 q^{89} -0.369102 q^{90} +1.07838 q^{91} -16.3896 q^{92} -2.29072 q^{93} +22.1773 q^{94} -1.31124 q^{95} +7.58864 q^{96} +4.09890 q^{97} -14.6670 q^{98} +0.630898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + q^{4} - 5 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + 3 q^{9} - 5 q^{10} - 2 q^{11} + q^{12} - 8 q^{13} + 6 q^{14} - 5 q^{15} - 3 q^{16} + 4 q^{17} - q^{18} - 16 q^{19} + 3 q^{20} - 4 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17009 −1.53448 −0.767241 0.641358i \(-0.778371\pi\)
−0.767241 + 0.641358i \(0.778371\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.70928 1.35464
\(5\) 0.170086 0.0760650 0.0380325 0.999277i \(-0.487891\pi\)
0.0380325 + 0.999277i \(0.487891\pi\)
\(6\) −2.17009 −0.885934
\(7\) −3.70928 −1.40197 −0.700987 0.713174i \(-0.747257\pi\)
−0.700987 + 0.713174i \(0.747257\pi\)
\(8\) −1.53919 −0.544185
\(9\) 1.00000 0.333333
\(10\) −0.369102 −0.116720
\(11\) 0.630898 0.190223 0.0951114 0.995467i \(-0.469679\pi\)
0.0951114 + 0.995467i \(0.469679\pi\)
\(12\) 2.70928 0.782100
\(13\) −0.290725 −0.0806325 −0.0403163 0.999187i \(-0.512837\pi\)
−0.0403163 + 0.999187i \(0.512837\pi\)
\(14\) 8.04945 2.15131
\(15\) 0.170086 0.0439161
\(16\) −2.07838 −0.519594
\(17\) 4.78765 1.16118 0.580588 0.814197i \(-0.302823\pi\)
0.580588 + 0.814197i \(0.302823\pi\)
\(18\) −2.17009 −0.511494
\(19\) −7.70928 −1.76863 −0.884315 0.466892i \(-0.845374\pi\)
−0.884315 + 0.466892i \(0.845374\pi\)
\(20\) 0.460811 0.103041
\(21\) −3.70928 −0.809430
\(22\) −1.36910 −0.291894
\(23\) −6.04945 −1.26140 −0.630699 0.776028i \(-0.717232\pi\)
−0.630699 + 0.776028i \(0.717232\pi\)
\(24\) −1.53919 −0.314186
\(25\) −4.97107 −0.994214
\(26\) 0.630898 0.123729
\(27\) 1.00000 0.192450
\(28\) −10.0494 −1.89917
\(29\) 5.07838 0.943031 0.471516 0.881858i \(-0.343707\pi\)
0.471516 + 0.881858i \(0.343707\pi\)
\(30\) −0.369102 −0.0673886
\(31\) −2.29072 −0.411426 −0.205713 0.978612i \(-0.565951\pi\)
−0.205713 + 0.978612i \(0.565951\pi\)
\(32\) 7.58864 1.34149
\(33\) 0.630898 0.109825
\(34\) −10.3896 −1.78181
\(35\) −0.630898 −0.106641
\(36\) 2.70928 0.451546
\(37\) 9.83710 1.61721 0.808605 0.588352i \(-0.200223\pi\)
0.808605 + 0.588352i \(0.200223\pi\)
\(38\) 16.7298 2.71393
\(39\) −0.290725 −0.0465532
\(40\) −0.261795 −0.0413935
\(41\) −11.6020 −1.81192 −0.905962 0.423360i \(-0.860851\pi\)
−0.905962 + 0.423360i \(0.860851\pi\)
\(42\) 8.04945 1.24206
\(43\) −2.44748 −0.373237 −0.186619 0.982432i \(-0.559753\pi\)
−0.186619 + 0.982432i \(0.559753\pi\)
\(44\) 1.70928 0.257683
\(45\) 0.170086 0.0253550
\(46\) 13.1278 1.93559
\(47\) −10.2195 −1.49067 −0.745336 0.666689i \(-0.767711\pi\)
−0.745336 + 0.666689i \(0.767711\pi\)
\(48\) −2.07838 −0.299988
\(49\) 6.75872 0.965532
\(50\) 10.7877 1.52560
\(51\) 4.78765 0.670406
\(52\) −0.787653 −0.109228
\(53\) 7.89269 1.08414 0.542072 0.840332i \(-0.317640\pi\)
0.542072 + 0.840332i \(0.317640\pi\)
\(54\) −2.17009 −0.295311
\(55\) 0.107307 0.0144693
\(56\) 5.70928 0.762934
\(57\) −7.70928 −1.02112
\(58\) −11.0205 −1.44707
\(59\) −10.1568 −1.32230 −0.661148 0.750255i \(-0.729931\pi\)
−0.661148 + 0.750255i \(0.729931\pi\)
\(60\) 0.460811 0.0594905
\(61\) −13.7587 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(62\) 4.97107 0.631327
\(63\) −3.70928 −0.467325
\(64\) −12.3112 −1.53891
\(65\) −0.0494483 −0.00613331
\(66\) −1.36910 −0.168525
\(67\) 4.26180 0.520661 0.260331 0.965520i \(-0.416168\pi\)
0.260331 + 0.965520i \(0.416168\pi\)
\(68\) 12.9711 1.57297
\(69\) −6.04945 −0.728268
\(70\) 1.36910 0.163639
\(71\) 10.3402 1.22715 0.613576 0.789635i \(-0.289730\pi\)
0.613576 + 0.789635i \(0.289730\pi\)
\(72\) −1.53919 −0.181395
\(73\) −12.2618 −1.43513 −0.717567 0.696489i \(-0.754744\pi\)
−0.717567 + 0.696489i \(0.754744\pi\)
\(74\) −21.3474 −2.48158
\(75\) −4.97107 −0.574010
\(76\) −20.8865 −2.39585
\(77\) −2.34017 −0.266687
\(78\) 0.630898 0.0714351
\(79\) −5.38962 −0.606380 −0.303190 0.952930i \(-0.598052\pi\)
−0.303190 + 0.952930i \(0.598052\pi\)
\(80\) −0.353504 −0.0395229
\(81\) 1.00000 0.111111
\(82\) 25.1773 2.78036
\(83\) −11.2979 −1.24011 −0.620054 0.784560i \(-0.712889\pi\)
−0.620054 + 0.784560i \(0.712889\pi\)
\(84\) −10.0494 −1.09648
\(85\) 0.814315 0.0883249
\(86\) 5.31124 0.572726
\(87\) 5.07838 0.544459
\(88\) −0.971071 −0.103516
\(89\) −10.8371 −1.14873 −0.574365 0.818599i \(-0.694751\pi\)
−0.574365 + 0.818599i \(0.694751\pi\)
\(90\) −0.369102 −0.0389068
\(91\) 1.07838 0.113045
\(92\) −16.3896 −1.70874
\(93\) −2.29072 −0.237537
\(94\) 22.1773 2.28741
\(95\) −1.31124 −0.134531
\(96\) 7.58864 0.774512
\(97\) 4.09890 0.416180 0.208090 0.978110i \(-0.433275\pi\)
0.208090 + 0.978110i \(0.433275\pi\)
\(98\) −14.6670 −1.48159
\(99\) 0.630898 0.0634076
\(100\) −13.4680 −1.34680
\(101\) 0.107307 0.0106775 0.00533873 0.999986i \(-0.498301\pi\)
0.00533873 + 0.999986i \(0.498301\pi\)
\(102\) −10.3896 −1.02873
\(103\) −5.83710 −0.575147 −0.287573 0.957759i \(-0.592849\pi\)
−0.287573 + 0.957759i \(0.592849\pi\)
\(104\) 0.447480 0.0438790
\(105\) −0.630898 −0.0615693
\(106\) −17.1278 −1.66360
\(107\) 13.1773 1.27390 0.636948 0.770907i \(-0.280197\pi\)
0.636948 + 0.770907i \(0.280197\pi\)
\(108\) 2.70928 0.260700
\(109\) −5.04945 −0.483649 −0.241825 0.970320i \(-0.577746\pi\)
−0.241825 + 0.970320i \(0.577746\pi\)
\(110\) −0.232866 −0.0222029
\(111\) 9.83710 0.933696
\(112\) 7.70928 0.728458
\(113\) 20.5730 1.93535 0.967674 0.252203i \(-0.0811551\pi\)
0.967674 + 0.252203i \(0.0811551\pi\)
\(114\) 16.7298 1.56689
\(115\) −1.02893 −0.0959482
\(116\) 13.7587 1.27747
\(117\) −0.290725 −0.0268775
\(118\) 22.0410 2.02904
\(119\) −17.7587 −1.62794
\(120\) −0.261795 −0.0238985
\(121\) −10.6020 −0.963815
\(122\) 29.8576 2.70318
\(123\) −11.6020 −1.04611
\(124\) −6.20620 −0.557334
\(125\) −1.69594 −0.151690
\(126\) 8.04945 0.717102
\(127\) −12.8371 −1.13911 −0.569554 0.821954i \(-0.692884\pi\)
−0.569554 + 0.821954i \(0.692884\pi\)
\(128\) 11.5392 1.01993
\(129\) −2.44748 −0.215489
\(130\) 0.107307 0.00941146
\(131\) −9.35577 −0.817418 −0.408709 0.912665i \(-0.634021\pi\)
−0.408709 + 0.912665i \(0.634021\pi\)
\(132\) 1.70928 0.148773
\(133\) 28.5958 2.47957
\(134\) −9.24846 −0.798946
\(135\) 0.170086 0.0146387
\(136\) −7.36910 −0.631895
\(137\) −6.61757 −0.565377 −0.282688 0.959212i \(-0.591226\pi\)
−0.282688 + 0.959212i \(0.591226\pi\)
\(138\) 13.1278 1.11751
\(139\) −0.317387 −0.0269204 −0.0134602 0.999909i \(-0.504285\pi\)
−0.0134602 + 0.999909i \(0.504285\pi\)
\(140\) −1.70928 −0.144460
\(141\) −10.2195 −0.860640
\(142\) −22.4391 −1.88304
\(143\) −0.183417 −0.0153381
\(144\) −2.07838 −0.173198
\(145\) 0.863763 0.0717316
\(146\) 26.6092 2.20219
\(147\) 6.75872 0.557450
\(148\) 26.6514 2.19073
\(149\) 2.63090 0.215532 0.107766 0.994176i \(-0.465630\pi\)
0.107766 + 0.994176i \(0.465630\pi\)
\(150\) 10.7877 0.880808
\(151\) 23.7298 1.93110 0.965552 0.260212i \(-0.0837923\pi\)
0.965552 + 0.260212i \(0.0837923\pi\)
\(152\) 11.8660 0.962462
\(153\) 4.78765 0.387059
\(154\) 5.07838 0.409227
\(155\) −0.389621 −0.0312951
\(156\) −0.787653 −0.0630627
\(157\) 14.7298 1.17557 0.587783 0.809019i \(-0.300001\pi\)
0.587783 + 0.809019i \(0.300001\pi\)
\(158\) 11.6959 0.930479
\(159\) 7.89269 0.625931
\(160\) 1.29072 0.102041
\(161\) 22.4391 1.76845
\(162\) −2.17009 −0.170498
\(163\) 10.4680 0.819917 0.409958 0.912104i \(-0.365543\pi\)
0.409958 + 0.912104i \(0.365543\pi\)
\(164\) −31.4329 −2.45450
\(165\) 0.107307 0.00835385
\(166\) 24.5174 1.90292
\(167\) 9.60197 0.743023 0.371511 0.928428i \(-0.378840\pi\)
0.371511 + 0.928428i \(0.378840\pi\)
\(168\) 5.70928 0.440480
\(169\) −12.9155 −0.993498
\(170\) −1.76713 −0.135533
\(171\) −7.70928 −0.589543
\(172\) −6.63090 −0.505601
\(173\) 6.77432 0.515042 0.257521 0.966273i \(-0.417094\pi\)
0.257521 + 0.966273i \(0.417094\pi\)
\(174\) −11.0205 −0.835463
\(175\) 18.4391 1.39386
\(176\) −1.31124 −0.0988387
\(177\) −10.1568 −0.763428
\(178\) 23.5174 1.76271
\(179\) −12.6092 −0.942453 −0.471226 0.882012i \(-0.656188\pi\)
−0.471226 + 0.882012i \(0.656188\pi\)
\(180\) 0.460811 0.0343468
\(181\) 10.6514 0.791714 0.395857 0.918312i \(-0.370448\pi\)
0.395857 + 0.918312i \(0.370448\pi\)
\(182\) −2.34017 −0.173465
\(183\) −13.7587 −1.01707
\(184\) 9.31124 0.686434
\(185\) 1.67316 0.123013
\(186\) 4.97107 0.364497
\(187\) 3.02052 0.220882
\(188\) −27.6875 −2.01932
\(189\) −3.70928 −0.269810
\(190\) 2.84551 0.206435
\(191\) 21.1545 1.53069 0.765343 0.643623i \(-0.222570\pi\)
0.765343 + 0.643623i \(0.222570\pi\)
\(192\) −12.3112 −0.888487
\(193\) 1.47641 0.106274 0.0531371 0.998587i \(-0.483078\pi\)
0.0531371 + 0.998587i \(0.483078\pi\)
\(194\) −8.89496 −0.638621
\(195\) −0.0494483 −0.00354107
\(196\) 18.3112 1.30795
\(197\) −1.05559 −0.0752078 −0.0376039 0.999293i \(-0.511973\pi\)
−0.0376039 + 0.999293i \(0.511973\pi\)
\(198\) −1.36910 −0.0972979
\(199\) 25.3340 1.79588 0.897941 0.440116i \(-0.145063\pi\)
0.897941 + 0.440116i \(0.145063\pi\)
\(200\) 7.65142 0.541037
\(201\) 4.26180 0.300604
\(202\) −0.232866 −0.0163844
\(203\) −18.8371 −1.32211
\(204\) 12.9711 0.908157
\(205\) −1.97334 −0.137824
\(206\) 12.6670 0.882553
\(207\) −6.04945 −0.420466
\(208\) 0.604236 0.0418962
\(209\) −4.86376 −0.336434
\(210\) 1.36910 0.0944770
\(211\) 9.49466 0.653639 0.326820 0.945087i \(-0.394023\pi\)
0.326820 + 0.945087i \(0.394023\pi\)
\(212\) 21.3835 1.46862
\(213\) 10.3402 0.708497
\(214\) −28.5958 −1.95477
\(215\) −0.416283 −0.0283903
\(216\) −1.53919 −0.104729
\(217\) 8.49693 0.576809
\(218\) 10.9577 0.742152
\(219\) −12.2618 −0.828575
\(220\) 0.290725 0.0196007
\(221\) −1.39189 −0.0936286
\(222\) −21.3474 −1.43274
\(223\) 1.00000 0.0669650
\(224\) −28.1483 −1.88074
\(225\) −4.97107 −0.331405
\(226\) −44.6453 −2.96976
\(227\) 2.88163 0.191260 0.0956302 0.995417i \(-0.469513\pi\)
0.0956302 + 0.995417i \(0.469513\pi\)
\(228\) −20.8865 −1.38325
\(229\) −7.99159 −0.528099 −0.264050 0.964509i \(-0.585058\pi\)
−0.264050 + 0.964509i \(0.585058\pi\)
\(230\) 2.23287 0.147231
\(231\) −2.34017 −0.153972
\(232\) −7.81658 −0.513184
\(233\) −3.12783 −0.204911 −0.102455 0.994738i \(-0.532670\pi\)
−0.102455 + 0.994738i \(0.532670\pi\)
\(234\) 0.630898 0.0412431
\(235\) −1.73820 −0.113388
\(236\) −27.5174 −1.79123
\(237\) −5.38962 −0.350094
\(238\) 38.5380 2.49805
\(239\) 11.7948 0.762945 0.381472 0.924380i \(-0.375417\pi\)
0.381472 + 0.924380i \(0.375417\pi\)
\(240\) −0.353504 −0.0228186
\(241\) −6.39189 −0.411738 −0.205869 0.978580i \(-0.566002\pi\)
−0.205869 + 0.978580i \(0.566002\pi\)
\(242\) 23.0072 1.47896
\(243\) 1.00000 0.0641500
\(244\) −37.2762 −2.38636
\(245\) 1.14957 0.0734432
\(246\) 25.1773 1.60524
\(247\) 2.24128 0.142609
\(248\) 3.52586 0.223892
\(249\) −11.2979 −0.715976
\(250\) 3.68035 0.232766
\(251\) 12.0277 0.759182 0.379591 0.925154i \(-0.376065\pi\)
0.379591 + 0.925154i \(0.376065\pi\)
\(252\) −10.0494 −0.633056
\(253\) −3.81658 −0.239946
\(254\) 27.8576 1.74794
\(255\) 0.814315 0.0509944
\(256\) −0.418551 −0.0261594
\(257\) −16.9854 −1.05952 −0.529762 0.848147i \(-0.677719\pi\)
−0.529762 + 0.848147i \(0.677719\pi\)
\(258\) 5.31124 0.330664
\(259\) −36.4885 −2.26729
\(260\) −0.133969 −0.00830841
\(261\) 5.07838 0.314344
\(262\) 20.3028 1.25431
\(263\) −24.8287 −1.53100 −0.765501 0.643434i \(-0.777509\pi\)
−0.765501 + 0.643434i \(0.777509\pi\)
\(264\) −0.971071 −0.0597653
\(265\) 1.34244 0.0824655
\(266\) −62.0554 −3.80486
\(267\) −10.8371 −0.663220
\(268\) 11.5464 0.705307
\(269\) 9.73698 0.593674 0.296837 0.954928i \(-0.404068\pi\)
0.296837 + 0.954928i \(0.404068\pi\)
\(270\) −0.369102 −0.0224629
\(271\) −24.9939 −1.51827 −0.759134 0.650934i \(-0.774377\pi\)
−0.759134 + 0.650934i \(0.774377\pi\)
\(272\) −9.95055 −0.603341
\(273\) 1.07838 0.0652664
\(274\) 14.3607 0.867561
\(275\) −3.13624 −0.189122
\(276\) −16.3896 −0.986539
\(277\) 3.60197 0.216421 0.108211 0.994128i \(-0.465488\pi\)
0.108211 + 0.994128i \(0.465488\pi\)
\(278\) 0.688756 0.0413089
\(279\) −2.29072 −0.137142
\(280\) 0.971071 0.0580326
\(281\) 8.94441 0.533579 0.266789 0.963755i \(-0.414037\pi\)
0.266789 + 0.963755i \(0.414037\pi\)
\(282\) 22.1773 1.32064
\(283\) −7.49920 −0.445781 −0.222890 0.974843i \(-0.571549\pi\)
−0.222890 + 0.974843i \(0.571549\pi\)
\(284\) 28.0144 1.66235
\(285\) −1.31124 −0.0776714
\(286\) 0.398032 0.0235361
\(287\) 43.0349 2.54027
\(288\) 7.58864 0.447165
\(289\) 5.92162 0.348331
\(290\) −1.87444 −0.110071
\(291\) 4.09890 0.240282
\(292\) −33.2206 −1.94409
\(293\) 25.1689 1.47038 0.735190 0.677861i \(-0.237093\pi\)
0.735190 + 0.677861i \(0.237093\pi\)
\(294\) −14.6670 −0.855398
\(295\) −1.72753 −0.100581
\(296\) −15.1412 −0.880062
\(297\) 0.630898 0.0366084
\(298\) −5.70928 −0.330729
\(299\) 1.75872 0.101710
\(300\) −13.4680 −0.777575
\(301\) 9.07838 0.523269
\(302\) −51.4957 −2.96324
\(303\) 0.107307 0.00616464
\(304\) 16.0228 0.918970
\(305\) −2.34017 −0.133998
\(306\) −10.3896 −0.593935
\(307\) 15.3630 0.876810 0.438405 0.898777i \(-0.355543\pi\)
0.438405 + 0.898777i \(0.355543\pi\)
\(308\) −6.34017 −0.361265
\(309\) −5.83710 −0.332061
\(310\) 0.845512 0.0480219
\(311\) 18.9854 1.07657 0.538283 0.842764i \(-0.319073\pi\)
0.538283 + 0.842764i \(0.319073\pi\)
\(312\) 0.447480 0.0253336
\(313\) −21.8843 −1.23697 −0.618486 0.785796i \(-0.712254\pi\)
−0.618486 + 0.785796i \(0.712254\pi\)
\(314\) −31.9649 −1.80389
\(315\) −0.630898 −0.0355471
\(316\) −14.6020 −0.821425
\(317\) 2.99386 0.168152 0.0840759 0.996459i \(-0.473206\pi\)
0.0840759 + 0.996459i \(0.473206\pi\)
\(318\) −17.1278 −0.960481
\(319\) 3.20394 0.179386
\(320\) −2.09398 −0.117057
\(321\) 13.1773 0.735484
\(322\) −48.6947 −2.71365
\(323\) −36.9093 −2.05369
\(324\) 2.70928 0.150515
\(325\) 1.44521 0.0801660
\(326\) −22.7165 −1.25815
\(327\) −5.04945 −0.279235
\(328\) 17.8576 0.986022
\(329\) 37.9071 2.08988
\(330\) −0.232866 −0.0128188
\(331\) 21.8888 1.20312 0.601559 0.798828i \(-0.294546\pi\)
0.601559 + 0.798828i \(0.294546\pi\)
\(332\) −30.6092 −1.67990
\(333\) 9.83710 0.539070
\(334\) −20.8371 −1.14016
\(335\) 0.724874 0.0396041
\(336\) 7.70928 0.420575
\(337\) −5.27021 −0.287086 −0.143543 0.989644i \(-0.545850\pi\)
−0.143543 + 0.989644i \(0.545850\pi\)
\(338\) 28.0277 1.52451
\(339\) 20.5730 1.11737
\(340\) 2.20620 0.119648
\(341\) −1.44521 −0.0782627
\(342\) 16.7298 0.904644
\(343\) 0.894960 0.0483233
\(344\) 3.76713 0.203110
\(345\) −1.02893 −0.0553957
\(346\) −14.7009 −0.790323
\(347\) 0.760991 0.0408521 0.0204261 0.999791i \(-0.493498\pi\)
0.0204261 + 0.999791i \(0.493498\pi\)
\(348\) 13.7587 0.737545
\(349\) −30.3028 −1.62207 −0.811037 0.584995i \(-0.801096\pi\)
−0.811037 + 0.584995i \(0.801096\pi\)
\(350\) −40.0144 −2.13886
\(351\) −0.290725 −0.0155177
\(352\) 4.78765 0.255183
\(353\) 9.67808 0.515112 0.257556 0.966263i \(-0.417083\pi\)
0.257556 + 0.966263i \(0.417083\pi\)
\(354\) 22.0410 1.17147
\(355\) 1.75872 0.0933434
\(356\) −29.3607 −1.55611
\(357\) −17.7587 −0.939891
\(358\) 27.3630 1.44618
\(359\) −14.8865 −0.785682 −0.392841 0.919606i \(-0.628508\pi\)
−0.392841 + 0.919606i \(0.628508\pi\)
\(360\) −0.261795 −0.0137978
\(361\) 40.4329 2.12805
\(362\) −23.1145 −1.21487
\(363\) −10.6020 −0.556459
\(364\) 2.92162 0.153135
\(365\) −2.08557 −0.109163
\(366\) 29.8576 1.56068
\(367\) 20.1256 1.05055 0.525273 0.850934i \(-0.323963\pi\)
0.525273 + 0.850934i \(0.323963\pi\)
\(368\) 12.5730 0.655415
\(369\) −11.6020 −0.603974
\(370\) −3.63090 −0.188761
\(371\) −29.2762 −1.51994
\(372\) −6.20620 −0.321777
\(373\) −24.5113 −1.26915 −0.634574 0.772862i \(-0.718824\pi\)
−0.634574 + 0.772862i \(0.718824\pi\)
\(374\) −6.55479 −0.338940
\(375\) −1.69594 −0.0875782
\(376\) 15.7298 0.811202
\(377\) −1.47641 −0.0760390
\(378\) 8.04945 0.414019
\(379\) −28.9132 −1.48517 −0.742586 0.669751i \(-0.766401\pi\)
−0.742586 + 0.669751i \(0.766401\pi\)
\(380\) −3.55252 −0.182240
\(381\) −12.8371 −0.657665
\(382\) −45.9071 −2.34881
\(383\) 4.25953 0.217652 0.108826 0.994061i \(-0.465291\pi\)
0.108826 + 0.994061i \(0.465291\pi\)
\(384\) 11.5392 0.588857
\(385\) −0.398032 −0.0202856
\(386\) −3.20394 −0.163076
\(387\) −2.44748 −0.124412
\(388\) 11.1050 0.563773
\(389\) 29.1734 1.47915 0.739575 0.673074i \(-0.235027\pi\)
0.739575 + 0.673074i \(0.235027\pi\)
\(390\) 0.107307 0.00543371
\(391\) −28.9627 −1.46470
\(392\) −10.4030 −0.525428
\(393\) −9.35577 −0.471936
\(394\) 2.29072 0.115405
\(395\) −0.916702 −0.0461243
\(396\) 1.70928 0.0858943
\(397\) 22.5997 1.13425 0.567123 0.823633i \(-0.308056\pi\)
0.567123 + 0.823633i \(0.308056\pi\)
\(398\) −54.9770 −2.75575
\(399\) 28.5958 1.43158
\(400\) 10.3318 0.516588
\(401\) 9.78992 0.488885 0.244443 0.969664i \(-0.421395\pi\)
0.244443 + 0.969664i \(0.421395\pi\)
\(402\) −9.24846 −0.461271
\(403\) 0.665970 0.0331743
\(404\) 0.290725 0.0144641
\(405\) 0.170086 0.00845167
\(406\) 40.8781 2.02875
\(407\) 6.20620 0.307630
\(408\) −7.36910 −0.364825
\(409\) −13.4908 −0.667076 −0.333538 0.942737i \(-0.608243\pi\)
−0.333538 + 0.942737i \(0.608243\pi\)
\(410\) 4.28231 0.211488
\(411\) −6.61757 −0.326420
\(412\) −15.8143 −0.779115
\(413\) 37.6742 1.85383
\(414\) 13.1278 0.645197
\(415\) −1.92162 −0.0943287
\(416\) −2.20620 −0.108168
\(417\) −0.317387 −0.0155425
\(418\) 10.5548 0.516252
\(419\) −23.8660 −1.16593 −0.582966 0.812497i \(-0.698108\pi\)
−0.582966 + 0.812497i \(0.698108\pi\)
\(420\) −1.70928 −0.0834041
\(421\) 0.107307 0.00522983 0.00261492 0.999997i \(-0.499168\pi\)
0.00261492 + 0.999997i \(0.499168\pi\)
\(422\) −20.6042 −1.00300
\(423\) −10.2195 −0.496891
\(424\) −12.1483 −0.589976
\(425\) −23.7998 −1.15446
\(426\) −22.4391 −1.08718
\(427\) 51.0349 2.46975
\(428\) 35.7009 1.72567
\(429\) −0.183417 −0.00885548
\(430\) 0.903371 0.0435644
\(431\) −22.1795 −1.06835 −0.534175 0.845374i \(-0.679378\pi\)
−0.534175 + 0.845374i \(0.679378\pi\)
\(432\) −2.07838 −0.0999960
\(433\) −13.2595 −0.637212 −0.318606 0.947887i \(-0.603215\pi\)
−0.318606 + 0.947887i \(0.603215\pi\)
\(434\) −18.4391 −0.885104
\(435\) 0.863763 0.0414143
\(436\) −13.6803 −0.655170
\(437\) 46.6369 2.23094
\(438\) 26.6092 1.27143
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) −0.165166 −0.00787398
\(441\) 6.75872 0.321844
\(442\) 3.02052 0.143671
\(443\) 20.7392 0.985351 0.492676 0.870213i \(-0.336019\pi\)
0.492676 + 0.870213i \(0.336019\pi\)
\(444\) 26.6514 1.26482
\(445\) −1.84324 −0.0873782
\(446\) −2.17009 −0.102757
\(447\) 2.63090 0.124437
\(448\) 45.6658 2.15751
\(449\) −27.4101 −1.29356 −0.646782 0.762675i \(-0.723886\pi\)
−0.646782 + 0.762675i \(0.723886\pi\)
\(450\) 10.7877 0.508535
\(451\) −7.31965 −0.344669
\(452\) 55.7380 2.62170
\(453\) 23.7298 1.11492
\(454\) −6.25338 −0.293486
\(455\) 0.183417 0.00859874
\(456\) 11.8660 0.555678
\(457\) −7.86603 −0.367957 −0.183979 0.982930i \(-0.558898\pi\)
−0.183979 + 0.982930i \(0.558898\pi\)
\(458\) 17.3424 0.810359
\(459\) 4.78765 0.223469
\(460\) −2.78765 −0.129975
\(461\) −30.0638 −1.40021 −0.700106 0.714039i \(-0.746864\pi\)
−0.700106 + 0.714039i \(0.746864\pi\)
\(462\) 5.07838 0.236268
\(463\) −29.0349 −1.34937 −0.674683 0.738108i \(-0.735720\pi\)
−0.674683 + 0.738108i \(0.735720\pi\)
\(464\) −10.5548 −0.489994
\(465\) −0.389621 −0.0180683
\(466\) 6.78765 0.314432
\(467\) 12.4969 0.578289 0.289144 0.957285i \(-0.406629\pi\)
0.289144 + 0.957285i \(0.406629\pi\)
\(468\) −0.787653 −0.0364093
\(469\) −15.8082 −0.729954
\(470\) 3.77205 0.173992
\(471\) 14.7298 0.678713
\(472\) 15.6332 0.719575
\(473\) −1.54411 −0.0709982
\(474\) 11.6959 0.537213
\(475\) 38.3234 1.75840
\(476\) −48.1133 −2.20527
\(477\) 7.89269 0.361382
\(478\) −25.5958 −1.17073
\(479\) −33.7093 −1.54022 −0.770108 0.637913i \(-0.779798\pi\)
−0.770108 + 0.637913i \(0.779798\pi\)
\(480\) 1.29072 0.0589133
\(481\) −2.85989 −0.130400
\(482\) 13.8710 0.631805
\(483\) 22.4391 1.02101
\(484\) −28.7237 −1.30562
\(485\) 0.697167 0.0316567
\(486\) −2.17009 −0.0984371
\(487\) −9.02893 −0.409140 −0.204570 0.978852i \(-0.565580\pi\)
−0.204570 + 0.978852i \(0.565580\pi\)
\(488\) 21.1773 0.958650
\(489\) 10.4680 0.473379
\(490\) −2.49466 −0.112697
\(491\) 18.2472 0.823486 0.411743 0.911300i \(-0.364920\pi\)
0.411743 + 0.911300i \(0.364920\pi\)
\(492\) −31.4329 −1.41711
\(493\) 24.3135 1.09503
\(494\) −4.86376 −0.218831
\(495\) 0.107307 0.00482310
\(496\) 4.76099 0.213775
\(497\) −38.3545 −1.72044
\(498\) 24.5174 1.09865
\(499\) 4.24128 0.189866 0.0949328 0.995484i \(-0.469736\pi\)
0.0949328 + 0.995484i \(0.469736\pi\)
\(500\) −4.59478 −0.205485
\(501\) 9.60197 0.428984
\(502\) −26.1012 −1.16495
\(503\) −8.62702 −0.384660 −0.192330 0.981330i \(-0.561604\pi\)
−0.192330 + 0.981330i \(0.561604\pi\)
\(504\) 5.70928 0.254311
\(505\) 0.0182515 0.000812181 0
\(506\) 8.28231 0.368194
\(507\) −12.9155 −0.573597
\(508\) −34.7792 −1.54308
\(509\) 11.3958 0.505108 0.252554 0.967583i \(-0.418729\pi\)
0.252554 + 0.967583i \(0.418729\pi\)
\(510\) −1.76713 −0.0782500
\(511\) 45.4824 2.01202
\(512\) −22.1701 −0.979789
\(513\) −7.70928 −0.340373
\(514\) 36.8599 1.62582
\(515\) −0.992812 −0.0437485
\(516\) −6.63090 −0.291909
\(517\) −6.44748 −0.283560
\(518\) 79.1832 3.47911
\(519\) 6.77432 0.297360
\(520\) 0.0761103 0.00333766
\(521\) −5.08783 −0.222902 −0.111451 0.993770i \(-0.535550\pi\)
−0.111451 + 0.993770i \(0.535550\pi\)
\(522\) −11.0205 −0.482355
\(523\) −7.36523 −0.322059 −0.161029 0.986950i \(-0.551481\pi\)
−0.161029 + 0.986950i \(0.551481\pi\)
\(524\) −25.3474 −1.10730
\(525\) 18.4391 0.804747
\(526\) 53.8804 2.34930
\(527\) −10.9672 −0.477739
\(528\) −1.31124 −0.0570646
\(529\) 13.5958 0.591123
\(530\) −2.91321 −0.126542
\(531\) −10.1568 −0.440766
\(532\) 77.4740 3.35892
\(533\) 3.37298 0.146100
\(534\) 23.5174 1.01770
\(535\) 2.24128 0.0968988
\(536\) −6.55971 −0.283336
\(537\) −12.6092 −0.544125
\(538\) −21.1301 −0.910983
\(539\) 4.26406 0.183666
\(540\) 0.460811 0.0198302
\(541\) −13.5031 −0.580542 −0.290271 0.956944i \(-0.593746\pi\)
−0.290271 + 0.956944i \(0.593746\pi\)
\(542\) 54.2388 2.32976
\(543\) 10.6514 0.457096
\(544\) 36.3318 1.55771
\(545\) −0.858843 −0.0367888
\(546\) −2.34017 −0.100150
\(547\) 0.290725 0.0124305 0.00621524 0.999981i \(-0.498022\pi\)
0.00621524 + 0.999981i \(0.498022\pi\)
\(548\) −17.9288 −0.765881
\(549\) −13.7587 −0.587208
\(550\) 6.80590 0.290205
\(551\) −39.1506 −1.66787
\(552\) 9.31124 0.396313
\(553\) 19.9916 0.850129
\(554\) −7.81658 −0.332095
\(555\) 1.67316 0.0710216
\(556\) −0.859888 −0.0364674
\(557\) 16.2195 0.687244 0.343622 0.939108i \(-0.388346\pi\)
0.343622 + 0.939108i \(0.388346\pi\)
\(558\) 4.97107 0.210442
\(559\) 0.711543 0.0300951
\(560\) 1.31124 0.0554102
\(561\) 3.02052 0.127526
\(562\) −19.4101 −0.818767
\(563\) 16.9588 0.714728 0.357364 0.933965i \(-0.383676\pi\)
0.357364 + 0.933965i \(0.383676\pi\)
\(564\) −27.6875 −1.16586
\(565\) 3.49920 0.147212
\(566\) 16.2739 0.684043
\(567\) −3.70928 −0.155775
\(568\) −15.9155 −0.667799
\(569\) −21.2895 −0.892502 −0.446251 0.894908i \(-0.647241\pi\)
−0.446251 + 0.894908i \(0.647241\pi\)
\(570\) 2.84551 0.119185
\(571\) −44.5357 −1.86376 −0.931880 0.362765i \(-0.881833\pi\)
−0.931880 + 0.362765i \(0.881833\pi\)
\(572\) −0.496928 −0.0207776
\(573\) 21.1545 0.883741
\(574\) −93.3894 −3.89800
\(575\) 30.0722 1.25410
\(576\) −12.3112 −0.512968
\(577\) −18.6781 −0.777579 −0.388789 0.921327i \(-0.627107\pi\)
−0.388789 + 0.921327i \(0.627107\pi\)
\(578\) −12.8504 −0.534508
\(579\) 1.47641 0.0613575
\(580\) 2.34017 0.0971704
\(581\) 41.9071 1.73860
\(582\) −8.89496 −0.368708
\(583\) 4.97948 0.206229
\(584\) 18.8732 0.780979
\(585\) −0.0494483 −0.00204444
\(586\) −54.6186 −2.25627
\(587\) −10.6719 −0.440478 −0.220239 0.975446i \(-0.570684\pi\)
−0.220239 + 0.975446i \(0.570684\pi\)
\(588\) 18.3112 0.755143
\(589\) 17.6598 0.727660
\(590\) 3.74888 0.154339
\(591\) −1.05559 −0.0434212
\(592\) −20.4452 −0.840293
\(593\) 33.6153 1.38041 0.690207 0.723612i \(-0.257519\pi\)
0.690207 + 0.723612i \(0.257519\pi\)
\(594\) −1.36910 −0.0561750
\(595\) −3.02052 −0.123829
\(596\) 7.12783 0.291967
\(597\) 25.3340 1.03685
\(598\) −3.81658 −0.156072
\(599\) −12.2329 −0.499821 −0.249911 0.968269i \(-0.580401\pi\)
−0.249911 + 0.968269i \(0.580401\pi\)
\(600\) 7.65142 0.312368
\(601\) 16.4969 0.672924 0.336462 0.941697i \(-0.390770\pi\)
0.336462 + 0.941697i \(0.390770\pi\)
\(602\) −19.7009 −0.802947
\(603\) 4.26180 0.173554
\(604\) 64.2905 2.61595
\(605\) −1.80325 −0.0733126
\(606\) −0.232866 −0.00945953
\(607\) 34.0577 1.38236 0.691179 0.722683i \(-0.257091\pi\)
0.691179 + 0.722683i \(0.257091\pi\)
\(608\) −58.5029 −2.37261
\(609\) −18.8371 −0.763318
\(610\) 5.07838 0.205618
\(611\) 2.97107 0.120197
\(612\) 12.9711 0.524324
\(613\) −25.4101 −1.02631 −0.513153 0.858297i \(-0.671523\pi\)
−0.513153 + 0.858297i \(0.671523\pi\)
\(614\) −33.3390 −1.34545
\(615\) −1.97334 −0.0795727
\(616\) 3.60197 0.145127
\(617\) 39.5174 1.59091 0.795456 0.606011i \(-0.207231\pi\)
0.795456 + 0.606011i \(0.207231\pi\)
\(618\) 12.6670 0.509542
\(619\) 23.9854 0.964056 0.482028 0.876156i \(-0.339900\pi\)
0.482028 + 0.876156i \(0.339900\pi\)
\(620\) −1.05559 −0.0423936
\(621\) −6.04945 −0.242756
\(622\) −41.2001 −1.65197
\(623\) 40.1978 1.61049
\(624\) 0.604236 0.0241888
\(625\) 24.5669 0.982676
\(626\) 47.4908 1.89811
\(627\) −4.86376 −0.194240
\(628\) 39.9071 1.59247
\(629\) 47.0966 1.87787
\(630\) 1.36910 0.0545463
\(631\) −46.4596 −1.84953 −0.924764 0.380542i \(-0.875737\pi\)
−0.924764 + 0.380542i \(0.875737\pi\)
\(632\) 8.29565 0.329983
\(633\) 9.49466 0.377379
\(634\) −6.49693 −0.258026
\(635\) −2.18342 −0.0866463
\(636\) 21.3835 0.847910
\(637\) −1.96493 −0.0778533
\(638\) −6.95282 −0.275265
\(639\) 10.3402 0.409051
\(640\) 1.96266 0.0775810
\(641\) −9.92881 −0.392164 −0.196082 0.980587i \(-0.562822\pi\)
−0.196082 + 0.980587i \(0.562822\pi\)
\(642\) −28.5958 −1.12859
\(643\) −38.7480 −1.52807 −0.764037 0.645173i \(-0.776785\pi\)
−0.764037 + 0.645173i \(0.776785\pi\)
\(644\) 60.7936 2.39560
\(645\) −0.416283 −0.0163911
\(646\) 80.0965 3.15135
\(647\) −32.6453 −1.28342 −0.641709 0.766948i \(-0.721774\pi\)
−0.641709 + 0.766948i \(0.721774\pi\)
\(648\) −1.53919 −0.0604650
\(649\) −6.40787 −0.251531
\(650\) −3.13624 −0.123013
\(651\) 8.49693 0.333021
\(652\) 28.3607 1.11069
\(653\) −12.8554 −0.503069 −0.251534 0.967848i \(-0.580935\pi\)
−0.251534 + 0.967848i \(0.580935\pi\)
\(654\) 10.9577 0.428482
\(655\) −1.59129 −0.0621769
\(656\) 24.1133 0.941465
\(657\) −12.2618 −0.478378
\(658\) −82.2616 −3.20689
\(659\) 34.2651 1.33478 0.667390 0.744709i \(-0.267412\pi\)
0.667390 + 0.744709i \(0.267412\pi\)
\(660\) 0.290725 0.0113164
\(661\) 20.4619 0.795874 0.397937 0.917413i \(-0.369726\pi\)
0.397937 + 0.917413i \(0.369726\pi\)
\(662\) −47.5006 −1.84616
\(663\) −1.39189 −0.0540565
\(664\) 17.3896 0.674848
\(665\) 4.86376 0.188609
\(666\) −21.3474 −0.827193
\(667\) −30.7214 −1.18954
\(668\) 26.0144 1.00653
\(669\) 1.00000 0.0386622
\(670\) −1.57304 −0.0607718
\(671\) −8.68035 −0.335101
\(672\) −28.1483 −1.08585
\(673\) 3.84324 0.148146 0.0740731 0.997253i \(-0.476400\pi\)
0.0740731 + 0.997253i \(0.476400\pi\)
\(674\) 11.4368 0.440529
\(675\) −4.97107 −0.191337
\(676\) −34.9916 −1.34583
\(677\) 11.7177 0.450347 0.225174 0.974319i \(-0.427705\pi\)
0.225174 + 0.974319i \(0.427705\pi\)
\(678\) −44.6453 −1.71459
\(679\) −15.2039 −0.583474
\(680\) −1.25338 −0.0480651
\(681\) 2.88163 0.110424
\(682\) 3.13624 0.120093
\(683\) −24.2690 −0.928627 −0.464313 0.885671i \(-0.653699\pi\)
−0.464313 + 0.885671i \(0.653699\pi\)
\(684\) −20.8865 −0.798617
\(685\) −1.12556 −0.0430054
\(686\) −1.94214 −0.0741513
\(687\) −7.99159 −0.304898
\(688\) 5.08679 0.193932
\(689\) −2.29460 −0.0874173
\(690\) 2.23287 0.0850037
\(691\) 7.12556 0.271069 0.135535 0.990773i \(-0.456725\pi\)
0.135535 + 0.990773i \(0.456725\pi\)
\(692\) 18.3535 0.697696
\(693\) −2.34017 −0.0888958
\(694\) −1.65142 −0.0626869
\(695\) −0.0539832 −0.00204770
\(696\) −7.81658 −0.296287
\(697\) −55.5462 −2.10396
\(698\) 65.7598 2.48904
\(699\) −3.12783 −0.118305
\(700\) 49.9565 1.88818
\(701\) −22.4307 −0.847194 −0.423597 0.905851i \(-0.639233\pi\)
−0.423597 + 0.905851i \(0.639233\pi\)
\(702\) 0.630898 0.0238117
\(703\) −75.8369 −2.86024
\(704\) −7.76713 −0.292735
\(705\) −1.73820 −0.0654646
\(706\) −21.0023 −0.790431
\(707\) −0.398032 −0.0149695
\(708\) −27.5174 −1.03417
\(709\) 17.1461 0.643934 0.321967 0.946751i \(-0.395656\pi\)
0.321967 + 0.946751i \(0.395656\pi\)
\(710\) −3.81658 −0.143234
\(711\) −5.38962 −0.202127
\(712\) 16.6803 0.625122
\(713\) 13.8576 0.518972
\(714\) 38.5380 1.44225
\(715\) −0.0311968 −0.00116670
\(716\) −34.1617 −1.27668
\(717\) 11.7948 0.440486
\(718\) 32.3051 1.20562
\(719\) 4.28580 0.159834 0.0799168 0.996802i \(-0.474535\pi\)
0.0799168 + 0.996802i \(0.474535\pi\)
\(720\) −0.353504 −0.0131743
\(721\) 21.6514 0.806341
\(722\) −87.7429 −3.26545
\(723\) −6.39189 −0.237717
\(724\) 28.8576 1.07249
\(725\) −25.2450 −0.937575
\(726\) 23.0072 0.853877
\(727\) −29.6886 −1.10109 −0.550544 0.834806i \(-0.685580\pi\)
−0.550544 + 0.834806i \(0.685580\pi\)
\(728\) −1.65983 −0.0615173
\(729\) 1.00000 0.0370370
\(730\) 4.52586 0.167510
\(731\) −11.7177 −0.433394
\(732\) −37.2762 −1.37777
\(733\) 17.9155 0.661723 0.330862 0.943679i \(-0.392661\pi\)
0.330862 + 0.943679i \(0.392661\pi\)
\(734\) −43.6742 −1.61204
\(735\) 1.14957 0.0424024
\(736\) −45.9071 −1.69216
\(737\) 2.68876 0.0990416
\(738\) 25.1773 0.926788
\(739\) −4.50307 −0.165648 −0.0828241 0.996564i \(-0.526394\pi\)
−0.0828241 + 0.996564i \(0.526394\pi\)
\(740\) 4.53305 0.166638
\(741\) 2.24128 0.0823353
\(742\) 63.5318 2.33233
\(743\) 10.6235 0.389740 0.194870 0.980829i \(-0.437572\pi\)
0.194870 + 0.980829i \(0.437572\pi\)
\(744\) 3.52586 0.129264
\(745\) 0.447480 0.0163944
\(746\) 53.1917 1.94748
\(747\) −11.2979 −0.413369
\(748\) 8.18342 0.299215
\(749\) −48.8781 −1.78597
\(750\) 3.68035 0.134387
\(751\) 33.1194 1.20854 0.604272 0.796778i \(-0.293464\pi\)
0.604272 + 0.796778i \(0.293464\pi\)
\(752\) 21.2401 0.774545
\(753\) 12.0277 0.438314
\(754\) 3.20394 0.116680
\(755\) 4.03612 0.146889
\(756\) −10.0494 −0.365495
\(757\) −13.0289 −0.473544 −0.236772 0.971565i \(-0.576090\pi\)
−0.236772 + 0.971565i \(0.576090\pi\)
\(758\) 62.7442 2.27897
\(759\) −3.81658 −0.138533
\(760\) 2.01825 0.0732097
\(761\) −15.5392 −0.563295 −0.281648 0.959518i \(-0.590881\pi\)
−0.281648 + 0.959518i \(0.590881\pi\)
\(762\) 27.8576 1.00918
\(763\) 18.7298 0.678064
\(764\) 57.3133 2.07352
\(765\) 0.814315 0.0294416
\(766\) −9.24354 −0.333983
\(767\) 2.95282 0.106620
\(768\) −0.418551 −0.0151031
\(769\) 3.62863 0.130852 0.0654259 0.997857i \(-0.479159\pi\)
0.0654259 + 0.997857i \(0.479159\pi\)
\(770\) 0.863763 0.0311279
\(771\) −16.9854 −0.611716
\(772\) 4.00000 0.143963
\(773\) −8.57304 −0.308351 −0.154175 0.988043i \(-0.549272\pi\)
−0.154175 + 0.988043i \(0.549272\pi\)
\(774\) 5.31124 0.190909
\(775\) 11.3874 0.409046
\(776\) −6.30898 −0.226479
\(777\) −36.4885 −1.30902
\(778\) −63.3088 −2.26973
\(779\) 89.4428 3.20462
\(780\) −0.133969 −0.00479687
\(781\) 6.52359 0.233432
\(782\) 62.8515 2.24756
\(783\) 5.07838 0.181486
\(784\) −14.0472 −0.501685
\(785\) 2.50534 0.0894194
\(786\) 20.3028 0.724178
\(787\) −47.5692 −1.69566 −0.847829 0.530270i \(-0.822091\pi\)
−0.847829 + 0.530270i \(0.822091\pi\)
\(788\) −2.85989 −0.101879
\(789\) −24.8287 −0.883925
\(790\) 1.98932 0.0707769
\(791\) −76.3111 −2.71331
\(792\) −0.971071 −0.0345055
\(793\) 4.00000 0.142044
\(794\) −49.0433 −1.74048
\(795\) 1.34244 0.0476115
\(796\) 68.6369 2.43277
\(797\) −41.8492 −1.48238 −0.741188 0.671298i \(-0.765737\pi\)
−0.741188 + 0.671298i \(0.765737\pi\)
\(798\) −62.0554 −2.19674
\(799\) −48.9276 −1.73093
\(800\) −37.7237 −1.33373
\(801\) −10.8371 −0.382910
\(802\) −21.2450 −0.750186
\(803\) −7.73594 −0.272995
\(804\) 11.5464 0.407209
\(805\) 3.81658 0.134517
\(806\) −1.44521 −0.0509054
\(807\) 9.73698 0.342758
\(808\) −0.165166 −0.00581052
\(809\) 49.4196 1.73750 0.868750 0.495250i \(-0.164924\pi\)
0.868750 + 0.495250i \(0.164924\pi\)
\(810\) −0.369102 −0.0129689
\(811\) −14.3402 −0.503552 −0.251776 0.967786i \(-0.581015\pi\)
−0.251776 + 0.967786i \(0.581015\pi\)
\(812\) −51.0349 −1.79097
\(813\) −24.9939 −0.876573
\(814\) −13.4680 −0.472053
\(815\) 1.78047 0.0623670
\(816\) −9.95055 −0.348339
\(817\) 18.8683 0.660118
\(818\) 29.2762 1.02362
\(819\) 1.07838 0.0376816
\(820\) −5.34632 −0.186701
\(821\) −46.5608 −1.62498 −0.812491 0.582974i \(-0.801889\pi\)
−0.812491 + 0.582974i \(0.801889\pi\)
\(822\) 14.3607 0.500887
\(823\) −16.2313 −0.565786 −0.282893 0.959151i \(-0.591294\pi\)
−0.282893 + 0.959151i \(0.591294\pi\)
\(824\) 8.98440 0.312986
\(825\) −3.13624 −0.109190
\(826\) −81.7563 −2.84466
\(827\) 5.39576 0.187629 0.0938146 0.995590i \(-0.470094\pi\)
0.0938146 + 0.995590i \(0.470094\pi\)
\(828\) −16.3896 −0.569579
\(829\) 0.451356 0.0156762 0.00783812 0.999969i \(-0.497505\pi\)
0.00783812 + 0.999969i \(0.497505\pi\)
\(830\) 4.17009 0.144746
\(831\) 3.60197 0.124951
\(832\) 3.57918 0.124086
\(833\) 32.3584 1.12115
\(834\) 0.688756 0.0238497
\(835\) 1.63317 0.0565180
\(836\) −13.1773 −0.455746
\(837\) −2.29072 −0.0791790
\(838\) 51.7914 1.78910
\(839\) −4.05786 −0.140093 −0.0700464 0.997544i \(-0.522315\pi\)
−0.0700464 + 0.997544i \(0.522315\pi\)
\(840\) 0.971071 0.0335051
\(841\) −3.21008 −0.110692
\(842\) −0.232866 −0.00802509
\(843\) 8.94441 0.308062
\(844\) 25.7237 0.885445
\(845\) −2.19675 −0.0755704
\(846\) 22.1773 0.762470
\(847\) 39.3256 1.35124
\(848\) −16.4040 −0.563316
\(849\) −7.49920 −0.257372
\(850\) 51.6475 1.77150
\(851\) −59.5090 −2.03994
\(852\) 28.0144 0.959757
\(853\) −8.73367 −0.299035 −0.149518 0.988759i \(-0.547772\pi\)
−0.149518 + 0.988759i \(0.547772\pi\)
\(854\) −110.750 −3.78979
\(855\) −1.31124 −0.0448436
\(856\) −20.2823 −0.693235
\(857\) 30.0183 1.02540 0.512702 0.858567i \(-0.328645\pi\)
0.512702 + 0.858567i \(0.328645\pi\)
\(858\) 0.398032 0.0135886
\(859\) −50.5669 −1.72532 −0.862660 0.505784i \(-0.831203\pi\)
−0.862660 + 0.505784i \(0.831203\pi\)
\(860\) −1.12783 −0.0384586
\(861\) 43.0349 1.46663
\(862\) 48.1315 1.63937
\(863\) 6.96719 0.237166 0.118583 0.992944i \(-0.462165\pi\)
0.118583 + 0.992944i \(0.462165\pi\)
\(864\) 7.58864 0.258171
\(865\) 1.15222 0.0391767
\(866\) 28.7743 0.977791
\(867\) 5.92162 0.201109
\(868\) 23.0205 0.781367
\(869\) −3.40030 −0.115347
\(870\) −1.87444 −0.0635495
\(871\) −1.23901 −0.0419822
\(872\) 7.77205 0.263195
\(873\) 4.09890 0.138727
\(874\) −101.206 −3.42334
\(875\) 6.29072 0.212665
\(876\) −33.2206 −1.12242
\(877\) 42.0372 1.41949 0.709747 0.704457i \(-0.248809\pi\)
0.709747 + 0.704457i \(0.248809\pi\)
\(878\) 2.17009 0.0732369
\(879\) 25.1689 0.848925
\(880\) −0.223025 −0.00751816
\(881\) −10.8911 −0.366930 −0.183465 0.983026i \(-0.558731\pi\)
−0.183465 + 0.983026i \(0.558731\pi\)
\(882\) −14.6670 −0.493864
\(883\) −12.9071 −0.434357 −0.217179 0.976132i \(-0.569685\pi\)
−0.217179 + 0.976132i \(0.569685\pi\)
\(884\) −3.77101 −0.126833
\(885\) −1.72753 −0.0580702
\(886\) −45.0060 −1.51200
\(887\) −35.7910 −1.20174 −0.600872 0.799346i \(-0.705180\pi\)
−0.600872 + 0.799346i \(0.705180\pi\)
\(888\) −15.1412 −0.508104
\(889\) 47.6163 1.59700
\(890\) 4.00000 0.134080
\(891\) 0.630898 0.0211359
\(892\) 2.70928 0.0907132
\(893\) 78.7852 2.63645
\(894\) −5.70928 −0.190947
\(895\) −2.14465 −0.0716876
\(896\) −42.8020 −1.42992
\(897\) 1.75872 0.0587221
\(898\) 59.4824 1.98495
\(899\) −11.6332 −0.387988
\(900\) −13.4680 −0.448933
\(901\) 37.7875 1.25888
\(902\) 15.8843 0.528889
\(903\) 9.07838 0.302109
\(904\) −31.6658 −1.05319
\(905\) 1.81166 0.0602217
\(906\) −51.4957 −1.71083
\(907\) −55.0843 −1.82905 −0.914523 0.404534i \(-0.867434\pi\)
−0.914523 + 0.404534i \(0.867434\pi\)
\(908\) 7.80713 0.259089
\(909\) 0.107307 0.00355915
\(910\) −0.398032 −0.0131946
\(911\) −15.3414 −0.508283 −0.254142 0.967167i \(-0.581793\pi\)
−0.254142 + 0.967167i \(0.581793\pi\)
\(912\) 16.0228 0.530567
\(913\) −7.12783 −0.235897
\(914\) 17.0700 0.564624
\(915\) −2.34017 −0.0773637
\(916\) −21.6514 −0.715383
\(917\) 34.7031 1.14600
\(918\) −10.3896 −0.342909
\(919\) 5.29299 0.174600 0.0872998 0.996182i \(-0.472176\pi\)
0.0872998 + 0.996182i \(0.472176\pi\)
\(920\) 1.58372 0.0522136
\(921\) 15.3630 0.506227
\(922\) 65.2411 2.14860
\(923\) −3.00614 −0.0989484
\(924\) −6.34017 −0.208576
\(925\) −48.9009 −1.60785
\(926\) 63.0082 2.07058
\(927\) −5.83710 −0.191716
\(928\) 38.5380 1.26507
\(929\) 7.89269 0.258951 0.129475 0.991583i \(-0.458671\pi\)
0.129475 + 0.991583i \(0.458671\pi\)
\(930\) 0.845512 0.0277254
\(931\) −52.1049 −1.70767
\(932\) −8.47414 −0.277580
\(933\) 18.9854 0.621556
\(934\) −27.1194 −0.887374
\(935\) 0.513749 0.0168014
\(936\) 0.447480 0.0146263
\(937\) 40.1627 1.31206 0.656029 0.754735i \(-0.272235\pi\)
0.656029 + 0.754735i \(0.272235\pi\)
\(938\) 34.3051 1.12010
\(939\) −21.8843 −0.714167
\(940\) −4.70928 −0.153600
\(941\) −9.20006 −0.299913 −0.149957 0.988693i \(-0.547913\pi\)
−0.149957 + 0.988693i \(0.547913\pi\)
\(942\) −31.9649 −1.04147
\(943\) 70.1855 2.28555
\(944\) 21.1096 0.687058
\(945\) −0.630898 −0.0205231
\(946\) 3.35085 0.108946
\(947\) 34.2907 1.11430 0.557149 0.830412i \(-0.311895\pi\)
0.557149 + 0.830412i \(0.311895\pi\)
\(948\) −14.6020 −0.474250
\(949\) 3.56481 0.115718
\(950\) −83.1650 −2.69823
\(951\) 2.99386 0.0970825
\(952\) 27.3340 0.885901
\(953\) 29.8937 0.968353 0.484177 0.874970i \(-0.339119\pi\)
0.484177 + 0.874970i \(0.339119\pi\)
\(954\) −17.1278 −0.554534
\(955\) 3.59809 0.116432
\(956\) 31.9555 1.03351
\(957\) 3.20394 0.103569
\(958\) 73.1520 2.36344
\(959\) 24.5464 0.792644
\(960\) −2.09398 −0.0675828
\(961\) −25.7526 −0.830728
\(962\) 6.20620 0.200096
\(963\) 13.1773 0.424632
\(964\) −17.3174 −0.557755
\(965\) 0.251117 0.00808375
\(966\) −48.6947 −1.56673
\(967\) 16.3135 0.524607 0.262304 0.964985i \(-0.415518\pi\)
0.262304 + 0.964985i \(0.415518\pi\)
\(968\) 16.3184 0.524494
\(969\) −36.9093 −1.18570
\(970\) −1.51291 −0.0485767
\(971\) 16.6225 0.533441 0.266720 0.963774i \(-0.414060\pi\)
0.266720 + 0.963774i \(0.414060\pi\)
\(972\) 2.70928 0.0869000
\(973\) 1.17727 0.0377417
\(974\) 19.5936 0.627818
\(975\) 1.44521 0.0462838
\(976\) 28.5958 0.915330
\(977\) 32.3679 1.03554 0.517770 0.855520i \(-0.326762\pi\)
0.517770 + 0.855520i \(0.326762\pi\)
\(978\) −22.7165 −0.726392
\(979\) −6.83710 −0.218515
\(980\) 3.11450 0.0994889
\(981\) −5.04945 −0.161216
\(982\) −39.5981 −1.26363
\(983\) 40.0456 1.27726 0.638628 0.769516i \(-0.279502\pi\)
0.638628 + 0.769516i \(0.279502\pi\)
\(984\) 17.8576 0.569280
\(985\) −0.179542 −0.00572068
\(986\) −52.7624 −1.68030
\(987\) 37.9071 1.20660
\(988\) 6.07223 0.193184
\(989\) 14.8059 0.470800
\(990\) −0.232866 −0.00740096
\(991\) 39.4161 1.25209 0.626047 0.779785i \(-0.284672\pi\)
0.626047 + 0.779785i \(0.284672\pi\)
\(992\) −17.3835 −0.551926
\(993\) 21.8888 0.694621
\(994\) 83.2327 2.63998
\(995\) 4.30898 0.136604
\(996\) −30.6092 −0.969888
\(997\) 48.9337 1.54975 0.774873 0.632116i \(-0.217814\pi\)
0.774873 + 0.632116i \(0.217814\pi\)
\(998\) −9.20394 −0.291346
\(999\) 9.83710 0.311232
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.2.a.g.1.1 3
3.2 odd 2 2007.2.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.2.a.g.1.1 3 1.1 even 1 trivial
2007.2.a.f.1.3 3 3.2 odd 2