Properties

Label 669.2.a.f
Level $669$
Weight $2$
Character orbit 669.a
Self dual yes
Analytic conductor $5.342$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + 2 \beta_1 q^{5} + \beta_1 q^{6} - \beta_1 q^{7} - \beta_{2} q^{8} + q^{9} + ( - 2 \beta_{2} - 6) q^{10} + ( - 2 \beta_1 - 2) q^{11} + ( - \beta_{2} - 1) q^{12}+ \cdots + ( - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} + 3 q^{4} + 2 q^{5} + q^{6} - q^{7} + 3 q^{9} - 18 q^{10} - 8 q^{11} - 3 q^{12} - 4 q^{13} + 9 q^{14} - 2 q^{15} - 5 q^{16} - 5 q^{17} - q^{18} - 11 q^{19} + 4 q^{20} + q^{21}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.19869
0.713538
−1.91223
−2.19869 −1.00000 2.83424 4.39738 2.19869 −2.19869 −1.83424 1.00000 −9.66849
1.2 −0.713538 −1.00000 −1.49086 1.42708 0.713538 −0.713538 2.49086 1.00000 −1.01827
1.3 1.91223 −1.00000 1.65662 −3.82446 −1.91223 1.91223 −0.656620 1.00000 −7.31324
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(223\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 669.2.a.f 3
3.b odd 2 1 2007.2.a.g 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
669.2.a.f 3 1.a even 1 1 trivial
2007.2.a.g 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + T_{2}^{2} - 4T_{2} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(669))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 4T - 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 4T - 3 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$17$ \( T^{3} + 5 T^{2} + \cdots - 193 \) Copy content Toggle raw display
$19$ \( T^{3} + 11 T^{2} + \cdots + 19 \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$29$ \( T^{3} + 9 T^{2} + \cdots - 189 \) Copy content Toggle raw display
$31$ \( T^{3} - 13 T^{2} + \cdots - 25 \) Copy content Toggle raw display
$37$ \( T^{3} - T^{2} + \cdots - 15 \) Copy content Toggle raw display
$41$ \( T^{3} + 23 T^{2} + \cdots + 225 \) Copy content Toggle raw display
$43$ \( T^{3} - 7 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$47$ \( T^{3} + T^{2} + \cdots + 477 \) Copy content Toggle raw display
$53$ \( T^{3} + 19 T^{2} + \cdots + 201 \) Copy content Toggle raw display
$59$ \( T^{3} + 16 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$61$ \( T^{3} - 8 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$67$ \( T^{3} + 2 T^{2} + \cdots + 216 \) Copy content Toggle raw display
$71$ \( T^{3} + 20 T^{2} + \cdots - 1600 \) Copy content Toggle raw display
$73$ \( T^{3} - 3 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$79$ \( T^{3} - 16 T^{2} + \cdots + 600 \) Copy content Toggle raw display
$83$ \( T^{3} + T^{2} + \cdots + 25 \) Copy content Toggle raw display
$89$ \( T^{3} - 9 T^{2} + \cdots + 361 \) Copy content Toggle raw display
$97$ \( T^{3} - 22 T^{2} + \cdots - 152 \) Copy content Toggle raw display
show more
show less