Properties

Label 669.2.a.e.1.3
Level $669$
Weight $2$
Character 669.1
Self dual yes
Analytic conductor $5.342$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [669,2,Mod(1,669)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("669.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 669 = 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 669.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34199189522\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 669.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46050 q^{2} -1.00000 q^{3} +0.133074 q^{4} -1.46050 q^{6} -0.866926 q^{7} -2.72665 q^{8} +1.00000 q^{9} -3.18716 q^{11} -0.133074 q^{12} -3.18716 q^{13} -1.26615 q^{14} -4.24844 q^{16} +3.64766 q^{17} +1.46050 q^{18} +0.460505 q^{19} +0.866926 q^{21} -4.65486 q^{22} -7.84202 q^{23} +2.72665 q^{24} -5.00000 q^{25} -4.65486 q^{26} -1.00000 q^{27} -0.115366 q^{28} -8.32743 q^{29} -0.485411 q^{31} -0.751560 q^{32} +3.18716 q^{33} +5.32743 q^{34} +0.133074 q^{36} +9.78794 q^{37} +0.672570 q^{38} +3.18716 q^{39} +8.97509 q^{41} +1.26615 q^{42} -3.51459 q^{43} -0.424129 q^{44} -11.4533 q^{46} -1.53950 q^{47} +4.24844 q^{48} -6.24844 q^{49} -7.30252 q^{50} -3.64766 q^{51} -0.424129 q^{52} +2.72665 q^{53} -1.46050 q^{54} +2.36381 q^{56} -0.460505 q^{57} -12.1623 q^{58} +0.108168 q^{59} +4.54669 q^{61} -0.708945 q^{62} -0.866926 q^{63} +7.39922 q^{64} +4.65486 q^{66} +7.18716 q^{67} +0.485411 q^{68} +7.84202 q^{69} +7.95019 q^{71} -2.72665 q^{72} -9.78074 q^{73} +14.2953 q^{74} +5.00000 q^{75} +0.0612814 q^{76} +2.76303 q^{77} +4.65486 q^{78} -7.73385 q^{79} +1.00000 q^{81} +13.1082 q^{82} -10.5936 q^{83} +0.115366 q^{84} -5.13307 q^{86} +8.32743 q^{87} +8.69028 q^{88} -8.86693 q^{89} +2.76303 q^{91} -1.04357 q^{92} +0.485411 q^{93} -2.24844 q^{94} +0.751560 q^{96} +9.18716 q^{97} -9.12588 q^{98} -3.18716 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 3 q^{3} + 4 q^{4} + 2 q^{6} + q^{7} - 9 q^{8} + 3 q^{9} - 4 q^{11} - 4 q^{12} - 4 q^{13} - 11 q^{14} + 10 q^{16} - q^{17} - 2 q^{18} - 5 q^{19} - q^{21} + 6 q^{22} + 2 q^{23} + 9 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46050 1.03273 0.516366 0.856368i \(-0.327284\pi\)
0.516366 + 0.856368i \(0.327284\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.133074 0.0665372
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) −1.46050 −0.596249
\(7\) −0.866926 −0.327667 −0.163834 0.986488i \(-0.552386\pi\)
−0.163834 + 0.986488i \(0.552386\pi\)
\(8\) −2.72665 −0.964018
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.18716 −0.960965 −0.480482 0.877004i \(-0.659538\pi\)
−0.480482 + 0.877004i \(0.659538\pi\)
\(12\) −0.133074 −0.0384153
\(13\) −3.18716 −0.883959 −0.441979 0.897025i \(-0.645724\pi\)
−0.441979 + 0.897025i \(0.645724\pi\)
\(14\) −1.26615 −0.338393
\(15\) 0 0
\(16\) −4.24844 −1.06211
\(17\) 3.64766 0.884688 0.442344 0.896845i \(-0.354147\pi\)
0.442344 + 0.896845i \(0.354147\pi\)
\(18\) 1.46050 0.344244
\(19\) 0.460505 0.105647 0.0528235 0.998604i \(-0.483178\pi\)
0.0528235 + 0.998604i \(0.483178\pi\)
\(20\) 0 0
\(21\) 0.866926 0.189179
\(22\) −4.65486 −0.992420
\(23\) −7.84202 −1.63517 −0.817587 0.575805i \(-0.804689\pi\)
−0.817587 + 0.575805i \(0.804689\pi\)
\(24\) 2.72665 0.556576
\(25\) −5.00000 −1.00000
\(26\) −4.65486 −0.912893
\(27\) −1.00000 −0.192450
\(28\) −0.115366 −0.0218021
\(29\) −8.32743 −1.54637 −0.773183 0.634184i \(-0.781336\pi\)
−0.773183 + 0.634184i \(0.781336\pi\)
\(30\) 0 0
\(31\) −0.485411 −0.0871824 −0.0435912 0.999049i \(-0.513880\pi\)
−0.0435912 + 0.999049i \(0.513880\pi\)
\(32\) −0.751560 −0.132858
\(33\) 3.18716 0.554813
\(34\) 5.32743 0.913647
\(35\) 0 0
\(36\) 0.133074 0.0221791
\(37\) 9.78794 1.60913 0.804563 0.593867i \(-0.202399\pi\)
0.804563 + 0.593867i \(0.202399\pi\)
\(38\) 0.672570 0.109105
\(39\) 3.18716 0.510354
\(40\) 0 0
\(41\) 8.97509 1.40167 0.700837 0.713321i \(-0.252810\pi\)
0.700837 + 0.713321i \(0.252810\pi\)
\(42\) 1.26615 0.195371
\(43\) −3.51459 −0.535970 −0.267985 0.963423i \(-0.586358\pi\)
−0.267985 + 0.963423i \(0.586358\pi\)
\(44\) −0.424129 −0.0639399
\(45\) 0 0
\(46\) −11.4533 −1.68870
\(47\) −1.53950 −0.224558 −0.112279 0.993677i \(-0.535815\pi\)
−0.112279 + 0.993677i \(0.535815\pi\)
\(48\) 4.24844 0.613210
\(49\) −6.24844 −0.892634
\(50\) −7.30252 −1.03273
\(51\) −3.64766 −0.510775
\(52\) −0.424129 −0.0588162
\(53\) 2.72665 0.374535 0.187267 0.982309i \(-0.440037\pi\)
0.187267 + 0.982309i \(0.440037\pi\)
\(54\) −1.46050 −0.198750
\(55\) 0 0
\(56\) 2.36381 0.315877
\(57\) −0.460505 −0.0609954
\(58\) −12.1623 −1.59698
\(59\) 0.108168 0.0140823 0.00704117 0.999975i \(-0.497759\pi\)
0.00704117 + 0.999975i \(0.497759\pi\)
\(60\) 0 0
\(61\) 4.54669 0.582144 0.291072 0.956701i \(-0.405988\pi\)
0.291072 + 0.956701i \(0.405988\pi\)
\(62\) −0.708945 −0.0900361
\(63\) −0.866926 −0.109222
\(64\) 7.39922 0.924903
\(65\) 0 0
\(66\) 4.65486 0.572974
\(67\) 7.18716 0.878051 0.439026 0.898475i \(-0.355324\pi\)
0.439026 + 0.898475i \(0.355324\pi\)
\(68\) 0.485411 0.0588647
\(69\) 7.84202 0.944068
\(70\) 0 0
\(71\) 7.95019 0.943514 0.471757 0.881729i \(-0.343620\pi\)
0.471757 + 0.881729i \(0.343620\pi\)
\(72\) −2.72665 −0.321339
\(73\) −9.78074 −1.14475 −0.572374 0.819992i \(-0.693978\pi\)
−0.572374 + 0.819992i \(0.693978\pi\)
\(74\) 14.2953 1.66180
\(75\) 5.00000 0.577350
\(76\) 0.0612814 0.00702946
\(77\) 2.76303 0.314876
\(78\) 4.65486 0.527059
\(79\) −7.73385 −0.870126 −0.435063 0.900400i \(-0.643274\pi\)
−0.435063 + 0.900400i \(0.643274\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 13.1082 1.44756
\(83\) −10.5936 −1.16280 −0.581398 0.813619i \(-0.697494\pi\)
−0.581398 + 0.813619i \(0.697494\pi\)
\(84\) 0.115366 0.0125874
\(85\) 0 0
\(86\) −5.13307 −0.553514
\(87\) 8.32743 0.892794
\(88\) 8.69028 0.926387
\(89\) −8.86693 −0.939892 −0.469946 0.882695i \(-0.655727\pi\)
−0.469946 + 0.882695i \(0.655727\pi\)
\(90\) 0 0
\(91\) 2.76303 0.289644
\(92\) −1.04357 −0.108800
\(93\) 0.485411 0.0503348
\(94\) −2.24844 −0.231909
\(95\) 0 0
\(96\) 0.751560 0.0767058
\(97\) 9.18716 0.932815 0.466407 0.884570i \(-0.345548\pi\)
0.466407 + 0.884570i \(0.345548\pi\)
\(98\) −9.12588 −0.921853
\(99\) −3.18716 −0.320322
\(100\) −0.665372 −0.0665372
\(101\) −10.7089 −1.06558 −0.532790 0.846248i \(-0.678856\pi\)
−0.532790 + 0.846248i \(0.678856\pi\)
\(102\) −5.32743 −0.527494
\(103\) 12.2163 1.20371 0.601856 0.798605i \(-0.294428\pi\)
0.601856 + 0.798605i \(0.294428\pi\)
\(104\) 8.69028 0.852152
\(105\) 0 0
\(106\) 3.98229 0.386794
\(107\) −18.4825 −1.78677 −0.893385 0.449293i \(-0.851676\pi\)
−0.893385 + 0.449293i \(0.851676\pi\)
\(108\) −0.133074 −0.0128051
\(109\) 17.1154 1.63935 0.819677 0.572825i \(-0.194153\pi\)
0.819677 + 0.572825i \(0.194153\pi\)
\(110\) 0 0
\(111\) −9.78794 −0.929030
\(112\) 3.68308 0.348018
\(113\) 19.5759 1.84154 0.920771 0.390102i \(-0.127560\pi\)
0.920771 + 0.390102i \(0.127560\pi\)
\(114\) −0.672570 −0.0629919
\(115\) 0 0
\(116\) −1.10817 −0.102891
\(117\) −3.18716 −0.294653
\(118\) 0.157981 0.0145433
\(119\) −3.16225 −0.289883
\(120\) 0 0
\(121\) −0.842019 −0.0765472
\(122\) 6.64047 0.601200
\(123\) −8.97509 −0.809257
\(124\) −0.0645958 −0.00580087
\(125\) 0 0
\(126\) −1.26615 −0.112798
\(127\) 13.5979 1.20661 0.603307 0.797509i \(-0.293849\pi\)
0.603307 + 0.797509i \(0.293849\pi\)
\(128\) 12.3097 1.08804
\(129\) 3.51459 0.309442
\(130\) 0 0
\(131\) −12.0541 −1.05317 −0.526585 0.850122i \(-0.676528\pi\)
−0.526585 + 0.850122i \(0.676528\pi\)
\(132\) 0.424129 0.0369157
\(133\) −0.399223 −0.0346171
\(134\) 10.4969 0.906792
\(135\) 0 0
\(136\) −9.94592 −0.852855
\(137\) −1.84202 −0.157374 −0.0786872 0.996899i \(-0.525073\pi\)
−0.0786872 + 0.996899i \(0.525073\pi\)
\(138\) 11.4533 0.974970
\(139\) −8.86693 −0.752083 −0.376041 0.926603i \(-0.622715\pi\)
−0.376041 + 0.926603i \(0.622715\pi\)
\(140\) 0 0
\(141\) 1.53950 0.129649
\(142\) 11.6113 0.974398
\(143\) 10.1580 0.849453
\(144\) −4.24844 −0.354037
\(145\) 0 0
\(146\) −14.2848 −1.18222
\(147\) 6.24844 0.515363
\(148\) 1.30252 0.107067
\(149\) 9.29533 0.761503 0.380751 0.924677i \(-0.375665\pi\)
0.380751 + 0.924677i \(0.375665\pi\)
\(150\) 7.30252 0.596249
\(151\) 14.2163 1.15691 0.578455 0.815715i \(-0.303656\pi\)
0.578455 + 0.815715i \(0.303656\pi\)
\(152\) −1.25564 −0.101846
\(153\) 3.64766 0.294896
\(154\) 4.03542 0.325183
\(155\) 0 0
\(156\) 0.424129 0.0339575
\(157\) 16.7630 1.33784 0.668918 0.743336i \(-0.266758\pi\)
0.668918 + 0.743336i \(0.266758\pi\)
\(158\) −11.2953 −0.898608
\(159\) −2.72665 −0.216238
\(160\) 0 0
\(161\) 6.79845 0.535793
\(162\) 1.46050 0.114748
\(163\) −7.13735 −0.559040 −0.279520 0.960140i \(-0.590175\pi\)
−0.279520 + 0.960140i \(0.590175\pi\)
\(164\) 1.19436 0.0932635
\(165\) 0 0
\(166\) −15.4720 −1.20086
\(167\) −8.81284 −0.681958 −0.340979 0.940071i \(-0.610759\pi\)
−0.340979 + 0.940071i \(0.610759\pi\)
\(168\) −2.36381 −0.182372
\(169\) −2.84202 −0.218617
\(170\) 0 0
\(171\) 0.460505 0.0352157
\(172\) −0.467702 −0.0356620
\(173\) −21.8420 −1.66062 −0.830309 0.557303i \(-0.811836\pi\)
−0.830309 + 0.557303i \(0.811836\pi\)
\(174\) 12.1623 0.922018
\(175\) 4.33463 0.327667
\(176\) 13.5405 1.02065
\(177\) −0.108168 −0.00813044
\(178\) −12.9502 −0.970658
\(179\) −17.8961 −1.33762 −0.668809 0.743434i \(-0.733196\pi\)
−0.668809 + 0.743434i \(0.733196\pi\)
\(180\) 0 0
\(181\) −14.9679 −1.11256 −0.556278 0.830997i \(-0.687771\pi\)
−0.556278 + 0.830997i \(0.687771\pi\)
\(182\) 4.03542 0.299125
\(183\) −4.54669 −0.336101
\(184\) 21.3825 1.57634
\(185\) 0 0
\(186\) 0.708945 0.0519824
\(187\) −11.6257 −0.850154
\(188\) −0.204868 −0.0149415
\(189\) 0.866926 0.0630596
\(190\) 0 0
\(191\) −10.2661 −0.742832 −0.371416 0.928466i \(-0.621128\pi\)
−0.371416 + 0.928466i \(0.621128\pi\)
\(192\) −7.39922 −0.533993
\(193\) 11.5615 0.832213 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(194\) 13.4179 0.963348
\(195\) 0 0
\(196\) −0.831508 −0.0593934
\(197\) −25.8319 −1.84045 −0.920223 0.391394i \(-0.871993\pi\)
−0.920223 + 0.391394i \(0.871993\pi\)
\(198\) −4.65486 −0.330807
\(199\) −7.73093 −0.548031 −0.274015 0.961725i \(-0.588352\pi\)
−0.274015 + 0.961725i \(0.588352\pi\)
\(200\) 13.6333 0.964018
\(201\) −7.18716 −0.506943
\(202\) −15.6405 −1.10046
\(203\) 7.21926 0.506693
\(204\) −0.485411 −0.0339856
\(205\) 0 0
\(206\) 17.8420 1.24311
\(207\) −7.84202 −0.545058
\(208\) 13.5405 0.938861
\(209\) −1.46770 −0.101523
\(210\) 0 0
\(211\) 4.46050 0.307074 0.153537 0.988143i \(-0.450934\pi\)
0.153537 + 0.988143i \(0.450934\pi\)
\(212\) 0.362848 0.0249205
\(213\) −7.95019 −0.544738
\(214\) −26.9938 −1.84526
\(215\) 0 0
\(216\) 2.72665 0.185525
\(217\) 0.420815 0.0285668
\(218\) 24.9971 1.69302
\(219\) 9.78074 0.660921
\(220\) 0 0
\(221\) −11.6257 −0.782028
\(222\) −14.2953 −0.959440
\(223\) −1.00000 −0.0669650
\(224\) 0.651546 0.0435333
\(225\) −5.00000 −0.333333
\(226\) 28.5907 1.90182
\(227\) −16.2163 −1.07632 −0.538158 0.842844i \(-0.680880\pi\)
−0.538158 + 0.842844i \(0.680880\pi\)
\(228\) −0.0612814 −0.00405846
\(229\) −22.4825 −1.48568 −0.742842 0.669467i \(-0.766523\pi\)
−0.742842 + 0.669467i \(0.766523\pi\)
\(230\) 0 0
\(231\) −2.76303 −0.181794
\(232\) 22.7060 1.49072
\(233\) −21.5759 −1.41348 −0.706741 0.707472i \(-0.749835\pi\)
−0.706741 + 0.707472i \(0.749835\pi\)
\(234\) −4.65486 −0.304298
\(235\) 0 0
\(236\) 0.0143945 0.000936999 0
\(237\) 7.73385 0.502368
\(238\) −4.61849 −0.299372
\(239\) 5.84202 0.377889 0.188944 0.981988i \(-0.439493\pi\)
0.188944 + 0.981988i \(0.439493\pi\)
\(240\) 0 0
\(241\) 9.64766 0.621461 0.310730 0.950498i \(-0.399426\pi\)
0.310730 + 0.950498i \(0.399426\pi\)
\(242\) −1.22977 −0.0790528
\(243\) −1.00000 −0.0641500
\(244\) 0.605049 0.0387343
\(245\) 0 0
\(246\) −13.1082 −0.835746
\(247\) −1.46770 −0.0933876
\(248\) 1.32355 0.0840454
\(249\) 10.5936 0.671341
\(250\) 0 0
\(251\) −16.8741 −1.06509 −0.532543 0.846403i \(-0.678763\pi\)
−0.532543 + 0.846403i \(0.678763\pi\)
\(252\) −0.115366 −0.00726735
\(253\) 24.9938 1.57134
\(254\) 19.8597 1.24611
\(255\) 0 0
\(256\) 3.17996 0.198748
\(257\) 8.32743 0.519451 0.259725 0.965683i \(-0.416368\pi\)
0.259725 + 0.965683i \(0.416368\pi\)
\(258\) 5.13307 0.319571
\(259\) −8.48541 −0.527258
\(260\) 0 0
\(261\) −8.32743 −0.515455
\(262\) −17.6050 −1.08764
\(263\) −2.37432 −0.146407 −0.0732033 0.997317i \(-0.523322\pi\)
−0.0732033 + 0.997317i \(0.523322\pi\)
\(264\) −8.69028 −0.534850
\(265\) 0 0
\(266\) −0.583068 −0.0357502
\(267\) 8.86693 0.542647
\(268\) 0.956427 0.0584231
\(269\) 5.78366 0.352636 0.176318 0.984333i \(-0.443581\pi\)
0.176318 + 0.984333i \(0.443581\pi\)
\(270\) 0 0
\(271\) −5.66964 −0.344406 −0.172203 0.985061i \(-0.555089\pi\)
−0.172203 + 0.985061i \(0.555089\pi\)
\(272\) −15.4969 −0.939636
\(273\) −2.76303 −0.167226
\(274\) −2.69028 −0.162526
\(275\) 15.9358 0.960965
\(276\) 1.04357 0.0628157
\(277\) 12.8568 0.772490 0.386245 0.922396i \(-0.373772\pi\)
0.386245 + 0.922396i \(0.373772\pi\)
\(278\) −12.9502 −0.776701
\(279\) −0.485411 −0.0290608
\(280\) 0 0
\(281\) −15.5729 −0.929004 −0.464502 0.885572i \(-0.653767\pi\)
−0.464502 + 0.885572i \(0.653767\pi\)
\(282\) 2.24844 0.133893
\(283\) −7.02491 −0.417587 −0.208794 0.977960i \(-0.566954\pi\)
−0.208794 + 0.977960i \(0.566954\pi\)
\(284\) 1.05797 0.0627788
\(285\) 0 0
\(286\) 14.8358 0.877258
\(287\) −7.78074 −0.459282
\(288\) −0.751560 −0.0442861
\(289\) −3.69455 −0.217327
\(290\) 0 0
\(291\) −9.18716 −0.538561
\(292\) −1.30157 −0.0761684
\(293\) 20.2163 1.18105 0.590526 0.807019i \(-0.298921\pi\)
0.590526 + 0.807019i \(0.298921\pi\)
\(294\) 9.12588 0.532232
\(295\) 0 0
\(296\) −26.6883 −1.55123
\(297\) 3.18716 0.184938
\(298\) 13.5759 0.786429
\(299\) 24.9938 1.44543
\(300\) 0.665372 0.0384153
\(301\) 3.04689 0.175620
\(302\) 20.7630 1.19478
\(303\) 10.7089 0.615213
\(304\) −1.95643 −0.112209
\(305\) 0 0
\(306\) 5.32743 0.304549
\(307\) −17.2455 −0.984254 −0.492127 0.870524i \(-0.663780\pi\)
−0.492127 + 0.870524i \(0.663780\pi\)
\(308\) 0.367689 0.0209510
\(309\) −12.2163 −0.694963
\(310\) 0 0
\(311\) −26.1226 −1.48127 −0.740637 0.671905i \(-0.765476\pi\)
−0.740637 + 0.671905i \(0.765476\pi\)
\(312\) −8.69028 −0.491990
\(313\) 14.2019 0.802741 0.401371 0.915916i \(-0.368534\pi\)
0.401371 + 0.915916i \(0.368534\pi\)
\(314\) 24.4825 1.38163
\(315\) 0 0
\(316\) −1.02918 −0.0578958
\(317\) 9.51459 0.534393 0.267196 0.963642i \(-0.413903\pi\)
0.267196 + 0.963642i \(0.413903\pi\)
\(318\) −3.98229 −0.223316
\(319\) 26.5408 1.48600
\(320\) 0 0
\(321\) 18.4825 1.03159
\(322\) 9.92916 0.553331
\(323\) 1.67977 0.0934647
\(324\) 0.133074 0.00739303
\(325\) 15.9358 0.883959
\(326\) −10.4241 −0.577339
\(327\) −17.1154 −0.946482
\(328\) −24.4720 −1.35124
\(329\) 1.33463 0.0735804
\(330\) 0 0
\(331\) −12.6050 −0.692836 −0.346418 0.938080i \(-0.612602\pi\)
−0.346418 + 0.938080i \(0.612602\pi\)
\(332\) −1.40974 −0.0773693
\(333\) 9.78794 0.536376
\(334\) −12.8712 −0.704281
\(335\) 0 0
\(336\) −3.68308 −0.200929
\(337\) 15.6696 0.853580 0.426790 0.904351i \(-0.359644\pi\)
0.426790 + 0.904351i \(0.359644\pi\)
\(338\) −4.15078 −0.225773
\(339\) −19.5759 −1.06322
\(340\) 0 0
\(341\) 1.54708 0.0837792
\(342\) 0.672570 0.0363684
\(343\) 11.4854 0.620154
\(344\) 9.58307 0.516684
\(345\) 0 0
\(346\) −31.9004 −1.71497
\(347\) 2.14454 0.115125 0.0575626 0.998342i \(-0.481667\pi\)
0.0575626 + 0.998342i \(0.481667\pi\)
\(348\) 1.10817 0.0594041
\(349\) 5.25895 0.281505 0.140753 0.990045i \(-0.455048\pi\)
0.140753 + 0.990045i \(0.455048\pi\)
\(350\) 6.33074 0.338393
\(351\) 3.18716 0.170118
\(352\) 2.39534 0.127672
\(353\) −19.7951 −1.05359 −0.526794 0.849993i \(-0.676606\pi\)
−0.526794 + 0.849993i \(0.676606\pi\)
\(354\) −0.157981 −0.00839657
\(355\) 0 0
\(356\) −1.17996 −0.0625378
\(357\) 3.16225 0.167364
\(358\) −26.1373 −1.38140
\(359\) 27.5979 1.45656 0.728279 0.685280i \(-0.240320\pi\)
0.728279 + 0.685280i \(0.240320\pi\)
\(360\) 0 0
\(361\) −18.7879 −0.988839
\(362\) −21.8607 −1.14897
\(363\) 0.842019 0.0441946
\(364\) 0.367689 0.0192721
\(365\) 0 0
\(366\) −6.64047 −0.347103
\(367\) −32.4327 −1.69297 −0.846486 0.532411i \(-0.821286\pi\)
−0.846486 + 0.532411i \(0.821286\pi\)
\(368\) 33.3164 1.73673
\(369\) 8.97509 0.467225
\(370\) 0 0
\(371\) −2.36381 −0.122723
\(372\) 0.0645958 0.00334914
\(373\) −22.5408 −1.16712 −0.583560 0.812070i \(-0.698341\pi\)
−0.583560 + 0.812070i \(0.698341\pi\)
\(374\) −16.9794 −0.877982
\(375\) 0 0
\(376\) 4.19767 0.216478
\(377\) 26.5408 1.36692
\(378\) 1.26615 0.0651237
\(379\) 26.2278 1.34723 0.673616 0.739082i \(-0.264740\pi\)
0.673616 + 0.739082i \(0.264740\pi\)
\(380\) 0 0
\(381\) −13.5979 −0.696639
\(382\) −14.9938 −0.767148
\(383\) 33.6840 1.72117 0.860587 0.509303i \(-0.170097\pi\)
0.860587 + 0.509303i \(0.170097\pi\)
\(384\) −12.3097 −0.628178
\(385\) 0 0
\(386\) 16.8856 0.859454
\(387\) −3.51459 −0.178657
\(388\) 1.22258 0.0620669
\(389\) −32.8755 −1.66685 −0.833426 0.552631i \(-0.813624\pi\)
−0.833426 + 0.552631i \(0.813624\pi\)
\(390\) 0 0
\(391\) −28.6050 −1.44662
\(392\) 17.0373 0.860515
\(393\) 12.0541 0.608048
\(394\) −37.7276 −1.90069
\(395\) 0 0
\(396\) −0.424129 −0.0213133
\(397\) 5.23697 0.262836 0.131418 0.991327i \(-0.458047\pi\)
0.131418 + 0.991327i \(0.458047\pi\)
\(398\) −11.2911 −0.565969
\(399\) 0.399223 0.0199862
\(400\) 21.2422 1.06211
\(401\) 14.9430 0.746217 0.373109 0.927788i \(-0.378292\pi\)
0.373109 + 0.927788i \(0.378292\pi\)
\(402\) −10.4969 −0.523537
\(403\) 1.54708 0.0770656
\(404\) −1.42509 −0.0709007
\(405\) 0 0
\(406\) 10.5438 0.523278
\(407\) −31.1957 −1.54631
\(408\) 9.94592 0.492396
\(409\) −4.81284 −0.237980 −0.118990 0.992895i \(-0.537966\pi\)
−0.118990 + 0.992895i \(0.537966\pi\)
\(410\) 0 0
\(411\) 1.84202 0.0908601
\(412\) 1.62568 0.0800916
\(413\) −0.0937740 −0.00461432
\(414\) −11.4533 −0.562899
\(415\) 0 0
\(416\) 2.39534 0.117441
\(417\) 8.86693 0.434215
\(418\) −2.14359 −0.104846
\(419\) 8.21634 0.401394 0.200697 0.979653i \(-0.435679\pi\)
0.200697 + 0.979653i \(0.435679\pi\)
\(420\) 0 0
\(421\) 36.3829 1.77319 0.886596 0.462544i \(-0.153063\pi\)
0.886596 + 0.462544i \(0.153063\pi\)
\(422\) 6.51459 0.317125
\(423\) −1.53950 −0.0748528
\(424\) −7.43464 −0.361058
\(425\) −18.2383 −0.884688
\(426\) −11.6113 −0.562569
\(427\) −3.94164 −0.190750
\(428\) −2.45955 −0.118887
\(429\) −10.1580 −0.490432
\(430\) 0 0
\(431\) −2.76303 −0.133090 −0.0665452 0.997783i \(-0.521198\pi\)
−0.0665452 + 0.997783i \(0.521198\pi\)
\(432\) 4.24844 0.204403
\(433\) 37.3638 1.79559 0.897795 0.440414i \(-0.145168\pi\)
0.897795 + 0.440414i \(0.145168\pi\)
\(434\) 0.614603 0.0295019
\(435\) 0 0
\(436\) 2.27762 0.109078
\(437\) −3.61129 −0.172751
\(438\) 14.2848 0.682555
\(439\) −1.34514 −0.0642000 −0.0321000 0.999485i \(-0.510220\pi\)
−0.0321000 + 0.999485i \(0.510220\pi\)
\(440\) 0 0
\(441\) −6.24844 −0.297545
\(442\) −16.9794 −0.807626
\(443\) 7.41362 0.352232 0.176116 0.984369i \(-0.443647\pi\)
0.176116 + 0.984369i \(0.443647\pi\)
\(444\) −1.30252 −0.0618151
\(445\) 0 0
\(446\) −1.46050 −0.0691569
\(447\) −9.29533 −0.439654
\(448\) −6.41458 −0.303060
\(449\) 0.546692 0.0258000 0.0129000 0.999917i \(-0.495894\pi\)
0.0129000 + 0.999917i \(0.495894\pi\)
\(450\) −7.30252 −0.344244
\(451\) −28.6050 −1.34696
\(452\) 2.60505 0.122531
\(453\) −14.2163 −0.667942
\(454\) −23.6840 −1.11155
\(455\) 0 0
\(456\) 1.25564 0.0588006
\(457\) 12.7047 0.594300 0.297150 0.954831i \(-0.403964\pi\)
0.297150 + 0.954831i \(0.403964\pi\)
\(458\) −32.8358 −1.53432
\(459\) −3.64766 −0.170258
\(460\) 0 0
\(461\) 35.3566 1.64672 0.823361 0.567518i \(-0.192096\pi\)
0.823361 + 0.567518i \(0.192096\pi\)
\(462\) −4.03542 −0.187745
\(463\) −18.6375 −0.866160 −0.433080 0.901355i \(-0.642573\pi\)
−0.433080 + 0.901355i \(0.642573\pi\)
\(464\) 35.3786 1.64241
\(465\) 0 0
\(466\) −31.5117 −1.45975
\(467\) 32.2163 1.49079 0.745397 0.666621i \(-0.232260\pi\)
0.745397 + 0.666621i \(0.232260\pi\)
\(468\) −0.424129 −0.0196054
\(469\) −6.23073 −0.287708
\(470\) 0 0
\(471\) −16.7630 −0.772400
\(472\) −0.294938 −0.0135756
\(473\) 11.2016 0.515048
\(474\) 11.2953 0.518812
\(475\) −2.30252 −0.105647
\(476\) −0.420815 −0.0192880
\(477\) 2.72665 0.124845
\(478\) 8.53230 0.390258
\(479\) −8.21634 −0.375414 −0.187707 0.982225i \(-0.560106\pi\)
−0.187707 + 0.982225i \(0.560106\pi\)
\(480\) 0 0
\(481\) −31.1957 −1.42240
\(482\) 14.0905 0.641803
\(483\) −6.79845 −0.309340
\(484\) −0.112051 −0.00509324
\(485\) 0 0
\(486\) −1.46050 −0.0662498
\(487\) −19.4399 −0.880905 −0.440452 0.897776i \(-0.645182\pi\)
−0.440452 + 0.897776i \(0.645182\pi\)
\(488\) −12.3973 −0.561197
\(489\) 7.13735 0.322762
\(490\) 0 0
\(491\) −6.54669 −0.295448 −0.147724 0.989029i \(-0.547195\pi\)
−0.147724 + 0.989029i \(0.547195\pi\)
\(492\) −1.19436 −0.0538457
\(493\) −30.3757 −1.36805
\(494\) −2.14359 −0.0964445
\(495\) 0 0
\(496\) 2.06224 0.0925973
\(497\) −6.89222 −0.309158
\(498\) 15.4720 0.693316
\(499\) −14.7089 −0.658463 −0.329231 0.944249i \(-0.606790\pi\)
−0.329231 + 0.944249i \(0.606790\pi\)
\(500\) 0 0
\(501\) 8.81284 0.393729
\(502\) −24.6447 −1.09995
\(503\) 39.5700 1.76434 0.882170 0.470931i \(-0.156082\pi\)
0.882170 + 0.470931i \(0.156082\pi\)
\(504\) 2.36381 0.105292
\(505\) 0 0
\(506\) 36.5035 1.62278
\(507\) 2.84202 0.126219
\(508\) 1.80953 0.0802848
\(509\) −14.0220 −0.621513 −0.310757 0.950489i \(-0.600582\pi\)
−0.310757 + 0.950489i \(0.600582\pi\)
\(510\) 0 0
\(511\) 8.47917 0.375096
\(512\) −19.9751 −0.882783
\(513\) −0.460505 −0.0203318
\(514\) 12.1623 0.536454
\(515\) 0 0
\(516\) 0.467702 0.0205894
\(517\) 4.90662 0.215793
\(518\) −12.3930 −0.544516
\(519\) 21.8420 0.958758
\(520\) 0 0
\(521\) −34.8856 −1.52837 −0.764183 0.645000i \(-0.776857\pi\)
−0.764183 + 0.645000i \(0.776857\pi\)
\(522\) −12.1623 −0.532327
\(523\) 1.35953 0.0594483 0.0297241 0.999558i \(-0.490537\pi\)
0.0297241 + 0.999558i \(0.490537\pi\)
\(524\) −1.60409 −0.0700750
\(525\) −4.33463 −0.189179
\(526\) −3.46770 −0.151199
\(527\) −1.77062 −0.0771292
\(528\) −13.5405 −0.589273
\(529\) 38.4973 1.67379
\(530\) 0 0
\(531\) 0.108168 0.00469411
\(532\) −0.0531264 −0.00230332
\(533\) −28.6050 −1.23902
\(534\) 12.9502 0.560409
\(535\) 0 0
\(536\) −19.5969 −0.846457
\(537\) 17.8961 0.772274
\(538\) 8.44707 0.364179
\(539\) 19.9148 0.857790
\(540\) 0 0
\(541\) −26.2661 −1.12927 −0.564635 0.825341i \(-0.690983\pi\)
−0.564635 + 0.825341i \(0.690983\pi\)
\(542\) −8.28054 −0.355680
\(543\) 14.9679 0.642334
\(544\) −2.74144 −0.117538
\(545\) 0 0
\(546\) −4.03542 −0.172700
\(547\) −27.1230 −1.15969 −0.579847 0.814725i \(-0.696888\pi\)
−0.579847 + 0.814725i \(0.696888\pi\)
\(548\) −0.245126 −0.0104713
\(549\) 4.54669 0.194048
\(550\) 23.2743 0.992420
\(551\) −3.83482 −0.163369
\(552\) −21.3825 −0.910098
\(553\) 6.70467 0.285112
\(554\) 18.7774 0.797776
\(555\) 0 0
\(556\) −1.17996 −0.0500415
\(557\) −0.532298 −0.0225542 −0.0112771 0.999936i \(-0.503590\pi\)
−0.0112771 + 0.999936i \(0.503590\pi\)
\(558\) −0.708945 −0.0300120
\(559\) 11.2016 0.473775
\(560\) 0 0
\(561\) 11.6257 0.490837
\(562\) −22.7444 −0.959413
\(563\) −6.49688 −0.273811 −0.136905 0.990584i \(-0.543716\pi\)
−0.136905 + 0.990584i \(0.543716\pi\)
\(564\) 0.204868 0.00862648
\(565\) 0 0
\(566\) −10.2599 −0.431256
\(567\) −0.866926 −0.0364074
\(568\) −21.6774 −0.909564
\(569\) 17.6257 0.738907 0.369454 0.929249i \(-0.379545\pi\)
0.369454 + 0.929249i \(0.379545\pi\)
\(570\) 0 0
\(571\) 13.8420 0.579270 0.289635 0.957137i \(-0.406466\pi\)
0.289635 + 0.957137i \(0.406466\pi\)
\(572\) 1.35177 0.0565203
\(573\) 10.2661 0.428875
\(574\) −11.3638 −0.474316
\(575\) 39.2101 1.63517
\(576\) 7.39922 0.308301
\(577\) 27.7060 1.15342 0.576708 0.816950i \(-0.304337\pi\)
0.576708 + 0.816950i \(0.304337\pi\)
\(578\) −5.39591 −0.224440
\(579\) −11.5615 −0.480479
\(580\) 0 0
\(581\) 9.18384 0.381010
\(582\) −13.4179 −0.556189
\(583\) −8.69028 −0.359915
\(584\) 26.6687 1.10356
\(585\) 0 0
\(586\) 29.5261 1.21971
\(587\) −8.93540 −0.368804 −0.184402 0.982851i \(-0.559035\pi\)
−0.184402 + 0.982851i \(0.559035\pi\)
\(588\) 0.831508 0.0342908
\(589\) −0.223534 −0.00921056
\(590\) 0 0
\(591\) 25.8319 1.06258
\(592\) −41.5835 −1.70907
\(593\) 4.71322 0.193549 0.0967743 0.995306i \(-0.469147\pi\)
0.0967743 + 0.995306i \(0.469147\pi\)
\(594\) 4.65486 0.190991
\(595\) 0 0
\(596\) 1.23697 0.0506683
\(597\) 7.73093 0.316406
\(598\) 36.5035 1.49274
\(599\) 44.8113 1.83094 0.915469 0.402388i \(-0.131820\pi\)
0.915469 + 0.402388i \(0.131820\pi\)
\(600\) −13.6333 −0.556576
\(601\) −15.1373 −0.617465 −0.308733 0.951149i \(-0.599905\pi\)
−0.308733 + 0.951149i \(0.599905\pi\)
\(602\) 4.44999 0.181368
\(603\) 7.18716 0.292684
\(604\) 1.89183 0.0769775
\(605\) 0 0
\(606\) 15.6405 0.635351
\(607\) −3.07899 −0.124972 −0.0624862 0.998046i \(-0.519903\pi\)
−0.0624862 + 0.998046i \(0.519903\pi\)
\(608\) −0.346097 −0.0140361
\(609\) −7.21926 −0.292539
\(610\) 0 0
\(611\) 4.90662 0.198500
\(612\) 0.485411 0.0196216
\(613\) 31.0790 1.25527 0.627634 0.778508i \(-0.284023\pi\)
0.627634 + 0.778508i \(0.284023\pi\)
\(614\) −25.1872 −1.01647
\(615\) 0 0
\(616\) −7.53382 −0.303546
\(617\) 0.758757 0.0305464 0.0152732 0.999883i \(-0.495138\pi\)
0.0152732 + 0.999883i \(0.495138\pi\)
\(618\) −17.8420 −0.717711
\(619\) 5.67549 0.228117 0.114059 0.993474i \(-0.463615\pi\)
0.114059 + 0.993474i \(0.463615\pi\)
\(620\) 0 0
\(621\) 7.84202 0.314689
\(622\) −38.1521 −1.52976
\(623\) 7.68696 0.307972
\(624\) −13.5405 −0.542052
\(625\) 25.0000 1.00000
\(626\) 20.7420 0.829017
\(627\) 1.46770 0.0586144
\(628\) 2.23073 0.0890159
\(629\) 35.7031 1.42358
\(630\) 0 0
\(631\) 17.4179 0.693395 0.346698 0.937977i \(-0.387303\pi\)
0.346698 + 0.937977i \(0.387303\pi\)
\(632\) 21.0875 0.838817
\(633\) −4.46050 −0.177289
\(634\) 13.8961 0.551885
\(635\) 0 0
\(636\) −0.362848 −0.0143879
\(637\) 19.9148 0.789052
\(638\) 38.7630 1.53464
\(639\) 7.95019 0.314505
\(640\) 0 0
\(641\) 5.28093 0.208584 0.104292 0.994547i \(-0.466742\pi\)
0.104292 + 0.994547i \(0.466742\pi\)
\(642\) 26.9938 1.06536
\(643\) −40.7496 −1.60701 −0.803504 0.595300i \(-0.797033\pi\)
−0.803504 + 0.595300i \(0.797033\pi\)
\(644\) 0.904700 0.0356502
\(645\) 0 0
\(646\) 2.45331 0.0965241
\(647\) 17.1475 0.674137 0.337068 0.941480i \(-0.390565\pi\)
0.337068 + 0.941480i \(0.390565\pi\)
\(648\) −2.72665 −0.107113
\(649\) −0.344750 −0.0135326
\(650\) 23.2743 0.912893
\(651\) −0.420815 −0.0164930
\(652\) −0.949799 −0.0371970
\(653\) −22.9938 −0.899815 −0.449908 0.893075i \(-0.648543\pi\)
−0.449908 + 0.893075i \(0.648543\pi\)
\(654\) −24.9971 −0.977463
\(655\) 0 0
\(656\) −38.1301 −1.48873
\(657\) −9.78074 −0.381583
\(658\) 1.94923 0.0759889
\(659\) 7.09766 0.276485 0.138243 0.990398i \(-0.455855\pi\)
0.138243 + 0.990398i \(0.455855\pi\)
\(660\) 0 0
\(661\) −41.8506 −1.62780 −0.813899 0.581006i \(-0.802659\pi\)
−0.813899 + 0.581006i \(0.802659\pi\)
\(662\) −18.4097 −0.715515
\(663\) 11.6257 0.451504
\(664\) 28.8850 1.12096
\(665\) 0 0
\(666\) 14.2953 0.553933
\(667\) 65.3039 2.52858
\(668\) −1.17276 −0.0453756
\(669\) 1.00000 0.0386622
\(670\) 0 0
\(671\) −14.4910 −0.559420
\(672\) −0.651546 −0.0251339
\(673\) 31.2058 1.20290 0.601448 0.798912i \(-0.294591\pi\)
0.601448 + 0.798912i \(0.294591\pi\)
\(674\) 22.8856 0.881520
\(675\) 5.00000 0.192450
\(676\) −0.378200 −0.0145462
\(677\) 32.0364 1.23126 0.615629 0.788036i \(-0.288902\pi\)
0.615629 + 0.788036i \(0.288902\pi\)
\(678\) −28.5907 −1.09802
\(679\) −7.96458 −0.305653
\(680\) 0 0
\(681\) 16.2163 0.621411
\(682\) 2.25952 0.0865215
\(683\) −44.3753 −1.69797 −0.848986 0.528415i \(-0.822787\pi\)
−0.848986 + 0.528415i \(0.822787\pi\)
\(684\) 0.0612814 0.00234315
\(685\) 0 0
\(686\) 16.7745 0.640453
\(687\) 22.4825 0.857760
\(688\) 14.9315 0.569259
\(689\) −8.69028 −0.331073
\(690\) 0 0
\(691\) −3.73385 −0.142042 −0.0710212 0.997475i \(-0.522626\pi\)
−0.0710212 + 0.997475i \(0.522626\pi\)
\(692\) −2.90662 −0.110493
\(693\) 2.76303 0.104959
\(694\) 3.13212 0.118894
\(695\) 0 0
\(696\) −22.7060 −0.860669
\(697\) 32.7381 1.24004
\(698\) 7.68072 0.290720
\(699\) 21.5759 0.816074
\(700\) 0.576828 0.0218021
\(701\) 29.1010 1.09913 0.549564 0.835451i \(-0.314794\pi\)
0.549564 + 0.835451i \(0.314794\pi\)
\(702\) 4.65486 0.175686
\(703\) 4.50739 0.170000
\(704\) −23.5825 −0.888799
\(705\) 0 0
\(706\) −28.9109 −1.08808
\(707\) 9.28386 0.349155
\(708\) −0.0143945 −0.000540977 0
\(709\) 6.76303 0.253991 0.126995 0.991903i \(-0.459467\pi\)
0.126995 + 0.991903i \(0.459467\pi\)
\(710\) 0 0
\(711\) −7.73385 −0.290042
\(712\) 24.1770 0.906073
\(713\) 3.80660 0.142558
\(714\) 4.61849 0.172842
\(715\) 0 0
\(716\) −2.38151 −0.0890014
\(717\) −5.84202 −0.218174
\(718\) 40.3068 1.50424
\(719\) −18.1158 −0.675604 −0.337802 0.941217i \(-0.609683\pi\)
−0.337802 + 0.941217i \(0.609683\pi\)
\(720\) 0 0
\(721\) −10.5907 −0.394417
\(722\) −27.4399 −1.02121
\(723\) −9.64766 −0.358800
\(724\) −1.99185 −0.0740263
\(725\) 41.6372 1.54637
\(726\) 1.22977 0.0456412
\(727\) −20.9836 −0.778240 −0.389120 0.921187i \(-0.627221\pi\)
−0.389120 + 0.921187i \(0.627221\pi\)
\(728\) −7.53382 −0.279222
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.8200 −0.474166
\(732\) −0.605049 −0.0223632
\(733\) 19.8391 0.732774 0.366387 0.930463i \(-0.380595\pi\)
0.366387 + 0.930463i \(0.380595\pi\)
\(734\) −47.3681 −1.74839
\(735\) 0 0
\(736\) 5.89375 0.217246
\(737\) −22.9066 −0.843776
\(738\) 13.1082 0.482518
\(739\) −25.2370 −0.928357 −0.464178 0.885742i \(-0.653650\pi\)
−0.464178 + 0.885742i \(0.653650\pi\)
\(740\) 0 0
\(741\) 1.46770 0.0539174
\(742\) −3.45235 −0.126740
\(743\) 18.2881 0.670926 0.335463 0.942053i \(-0.391107\pi\)
0.335463 + 0.942053i \(0.391107\pi\)
\(744\) −1.32355 −0.0485236
\(745\) 0 0
\(746\) −32.9210 −1.20532
\(747\) −10.5936 −0.387599
\(748\) −1.54708 −0.0565669
\(749\) 16.0229 0.585465
\(750\) 0 0
\(751\) −15.9722 −0.582833 −0.291416 0.956596i \(-0.594127\pi\)
−0.291416 + 0.956596i \(0.594127\pi\)
\(752\) 6.54045 0.238506
\(753\) 16.8741 0.614927
\(754\) 38.7630 1.41167
\(755\) 0 0
\(756\) 0.115366 0.00419581
\(757\) 6.81284 0.247617 0.123808 0.992306i \(-0.460489\pi\)
0.123808 + 0.992306i \(0.460489\pi\)
\(758\) 38.3058 1.39133
\(759\) −24.9938 −0.907216
\(760\) 0 0
\(761\) −5.84202 −0.211773 −0.105887 0.994378i \(-0.533768\pi\)
−0.105887 + 0.994378i \(0.533768\pi\)
\(762\) −19.8597 −0.719442
\(763\) −14.8377 −0.537163
\(764\) −1.36616 −0.0494260
\(765\) 0 0
\(766\) 49.1957 1.77751
\(767\) −0.344750 −0.0124482
\(768\) −3.17996 −0.114747
\(769\) 17.5873 0.634216 0.317108 0.948389i \(-0.397288\pi\)
0.317108 + 0.948389i \(0.397288\pi\)
\(770\) 0 0
\(771\) −8.32743 −0.299905
\(772\) 1.53854 0.0553732
\(773\) 49.3183 1.77385 0.886927 0.461909i \(-0.152835\pi\)
0.886927 + 0.461909i \(0.152835\pi\)
\(774\) −5.13307 −0.184505
\(775\) 2.42705 0.0871824
\(776\) −25.0502 −0.899250
\(777\) 8.48541 0.304412
\(778\) −48.0148 −1.72141
\(779\) 4.13307 0.148083
\(780\) 0 0
\(781\) −25.3385 −0.906683
\(782\) −41.7778 −1.49397
\(783\) 8.32743 0.297598
\(784\) 26.5461 0.948076
\(785\) 0 0
\(786\) 17.6050 0.627951
\(787\) 52.5054 1.87162 0.935808 0.352510i \(-0.114672\pi\)
0.935808 + 0.352510i \(0.114672\pi\)
\(788\) −3.43757 −0.122458
\(789\) 2.37432 0.0845279
\(790\) 0 0
\(791\) −16.9708 −0.603413
\(792\) 8.69028 0.308796
\(793\) −14.4910 −0.514592
\(794\) 7.64862 0.271439
\(795\) 0 0
\(796\) −1.02879 −0.0364645
\(797\) −13.0833 −0.463433 −0.231716 0.972783i \(-0.574434\pi\)
−0.231716 + 0.972783i \(0.574434\pi\)
\(798\) 0.583068 0.0206404
\(799\) −5.61556 −0.198664
\(800\) 3.75780 0.132858
\(801\) −8.86693 −0.313297
\(802\) 21.8243 0.770643
\(803\) 31.1728 1.10006
\(804\) −0.956427 −0.0337306
\(805\) 0 0
\(806\) 2.25952 0.0795882
\(807\) −5.78366 −0.203595
\(808\) 29.1996 1.02724
\(809\) −26.2163 −0.921717 −0.460859 0.887474i \(-0.652458\pi\)
−0.460859 + 0.887474i \(0.652458\pi\)
\(810\) 0 0
\(811\) 6.31011 0.221578 0.110789 0.993844i \(-0.464662\pi\)
0.110789 + 0.993844i \(0.464662\pi\)
\(812\) 0.960699 0.0337139
\(813\) 5.66964 0.198843
\(814\) −45.5615 −1.59693
\(815\) 0 0
\(816\) 15.4969 0.542499
\(817\) −1.61849 −0.0566236
\(818\) −7.02918 −0.245769
\(819\) 2.76303 0.0965481
\(820\) 0 0
\(821\) −1.63327 −0.0570015 −0.0285007 0.999594i \(-0.509073\pi\)
−0.0285007 + 0.999594i \(0.509073\pi\)
\(822\) 2.69028 0.0938342
\(823\) 2.59065 0.0903045 0.0451523 0.998980i \(-0.485623\pi\)
0.0451523 + 0.998980i \(0.485623\pi\)
\(824\) −33.3097 −1.16040
\(825\) −15.9358 −0.554813
\(826\) −0.136957 −0.00476536
\(827\) −36.7132 −1.27664 −0.638322 0.769770i \(-0.720371\pi\)
−0.638322 + 0.769770i \(0.720371\pi\)
\(828\) −1.04357 −0.0362667
\(829\) −22.8128 −0.792323 −0.396161 0.918181i \(-0.629658\pi\)
−0.396161 + 0.918181i \(0.629658\pi\)
\(830\) 0 0
\(831\) −12.8568 −0.445998
\(832\) −23.5825 −0.817576
\(833\) −22.7922 −0.789703
\(834\) 12.9502 0.448428
\(835\) 0 0
\(836\) −0.195314 −0.00675507
\(837\) 0.485411 0.0167783
\(838\) 12.0000 0.414533
\(839\) 23.8860 0.824636 0.412318 0.911040i \(-0.364719\pi\)
0.412318 + 0.911040i \(0.364719\pi\)
\(840\) 0 0
\(841\) 40.3461 1.39124
\(842\) 53.1373 1.83123
\(843\) 15.5729 0.536361
\(844\) 0.593579 0.0204318
\(845\) 0 0
\(846\) −2.24844 −0.0773030
\(847\) 0.729968 0.0250820
\(848\) −11.5840 −0.397797
\(849\) 7.02491 0.241094
\(850\) −26.6372 −0.913647
\(851\) −76.7572 −2.63120
\(852\) −1.05797 −0.0362454
\(853\) −42.0440 −1.43956 −0.719779 0.694203i \(-0.755757\pi\)
−0.719779 + 0.694203i \(0.755757\pi\)
\(854\) −5.75679 −0.196993
\(855\) 0 0
\(856\) 50.3953 1.72248
\(857\) −32.8755 −1.12300 −0.561502 0.827475i \(-0.689776\pi\)
−0.561502 + 0.827475i \(0.689776\pi\)
\(858\) −14.8358 −0.506485
\(859\) 7.73385 0.263876 0.131938 0.991258i \(-0.457880\pi\)
0.131938 + 0.991258i \(0.457880\pi\)
\(860\) 0 0
\(861\) 7.78074 0.265167
\(862\) −4.03542 −0.137447
\(863\) 20.9296 0.712450 0.356225 0.934400i \(-0.384064\pi\)
0.356225 + 0.934400i \(0.384064\pi\)
\(864\) 0.751560 0.0255686
\(865\) 0 0
\(866\) 54.5700 1.85436
\(867\) 3.69455 0.125474
\(868\) 0.0559998 0.00190076
\(869\) 24.6490 0.836160
\(870\) 0 0
\(871\) −22.9066 −0.776161
\(872\) −46.6677 −1.58037
\(873\) 9.18716 0.310938
\(874\) −5.27430 −0.178406
\(875\) 0 0
\(876\) 1.30157 0.0439759
\(877\) 9.07314 0.306378 0.153189 0.988197i \(-0.451046\pi\)
0.153189 + 0.988197i \(0.451046\pi\)
\(878\) −1.96458 −0.0663014
\(879\) −20.2163 −0.681880
\(880\) 0 0
\(881\) 21.1986 0.714200 0.357100 0.934066i \(-0.383766\pi\)
0.357100 + 0.934066i \(0.383766\pi\)
\(882\) −9.12588 −0.307284
\(883\) 37.2599 1.25390 0.626948 0.779061i \(-0.284304\pi\)
0.626948 + 0.779061i \(0.284304\pi\)
\(884\) −1.54708 −0.0520340
\(885\) 0 0
\(886\) 10.8276 0.363761
\(887\) −14.1609 −0.475477 −0.237738 0.971329i \(-0.576406\pi\)
−0.237738 + 0.971329i \(0.576406\pi\)
\(888\) 26.6883 0.895601
\(889\) −11.7883 −0.395368
\(890\) 0 0
\(891\) −3.18716 −0.106774
\(892\) −0.133074 −0.00445566
\(893\) −0.708945 −0.0237239
\(894\) −13.5759 −0.454045
\(895\) 0 0
\(896\) −10.6716 −0.356514
\(897\) −24.9938 −0.834517
\(898\) 0.798447 0.0266445
\(899\) 4.04223 0.134816
\(900\) −0.665372 −0.0221791
\(901\) 9.94592 0.331346
\(902\) −41.7778 −1.39105
\(903\) −3.04689 −0.101394
\(904\) −53.3766 −1.77528
\(905\) 0 0
\(906\) −20.7630 −0.689805
\(907\) 2.76010 0.0916478 0.0458239 0.998950i \(-0.485409\pi\)
0.0458239 + 0.998950i \(0.485409\pi\)
\(908\) −2.15798 −0.0716151
\(909\) −10.7089 −0.355193
\(910\) 0 0
\(911\) −8.48676 −0.281179 −0.140589 0.990068i \(-0.544900\pi\)
−0.140589 + 0.990068i \(0.544900\pi\)
\(912\) 1.95643 0.0647838
\(913\) 33.7634 1.11741
\(914\) 18.5552 0.613753
\(915\) 0 0
\(916\) −2.99185 −0.0988533
\(917\) 10.4500 0.345089
\(918\) −5.32743 −0.175831
\(919\) −24.3245 −0.802391 −0.401196 0.915992i \(-0.631405\pi\)
−0.401196 + 0.915992i \(0.631405\pi\)
\(920\) 0 0
\(921\) 17.2455 0.568259
\(922\) 51.6385 1.70062
\(923\) −25.3385 −0.834027
\(924\) −0.367689 −0.0120961
\(925\) −48.9397 −1.60913
\(926\) −27.2202 −0.894512
\(927\) 12.2163 0.401237
\(928\) 6.25856 0.205447
\(929\) −1.37297 −0.0450457 −0.0225228 0.999746i \(-0.507170\pi\)
−0.0225228 + 0.999746i \(0.507170\pi\)
\(930\) 0 0
\(931\) −2.87744 −0.0943042
\(932\) −2.87120 −0.0940492
\(933\) 26.1226 0.855214
\(934\) 47.0521 1.53959
\(935\) 0 0
\(936\) 8.69028 0.284051
\(937\) −45.9502 −1.50113 −0.750564 0.660798i \(-0.770218\pi\)
−0.750564 + 0.660798i \(0.770218\pi\)
\(938\) −9.10001 −0.297126
\(939\) −14.2019 −0.463463
\(940\) 0 0
\(941\) −34.4615 −1.12341 −0.561706 0.827337i \(-0.689855\pi\)
−0.561706 + 0.827337i \(0.689855\pi\)
\(942\) −24.4825 −0.797682
\(943\) −70.3829 −2.29198
\(944\) −0.459547 −0.0149570
\(945\) 0 0
\(946\) 16.3599 0.531907
\(947\) −15.7263 −0.511035 −0.255517 0.966804i \(-0.582246\pi\)
−0.255517 + 0.966804i \(0.582246\pi\)
\(948\) 1.02918 0.0334262
\(949\) 31.1728 1.01191
\(950\) −3.36285 −0.109105
\(951\) −9.51459 −0.308532
\(952\) 8.62237 0.279453
\(953\) −38.7926 −1.25662 −0.628308 0.777965i \(-0.716252\pi\)
−0.628308 + 0.777965i \(0.716252\pi\)
\(954\) 3.98229 0.128931
\(955\) 0 0
\(956\) 0.777424 0.0251437
\(957\) −26.5408 −0.857944
\(958\) −12.0000 −0.387702
\(959\) 1.59689 0.0515664
\(960\) 0 0
\(961\) −30.7644 −0.992399
\(962\) −45.5615 −1.46896
\(963\) −18.4825 −0.595590
\(964\) 1.28386 0.0413503
\(965\) 0 0
\(966\) −9.92916 −0.319466
\(967\) 15.8420 0.509445 0.254723 0.967014i \(-0.418016\pi\)
0.254723 + 0.967014i \(0.418016\pi\)
\(968\) 2.29590 0.0737929
\(969\) −1.67977 −0.0539619
\(970\) 0 0
\(971\) 25.3097 0.812228 0.406114 0.913823i \(-0.366884\pi\)
0.406114 + 0.913823i \(0.366884\pi\)
\(972\) −0.133074 −0.00426837
\(973\) 7.68696 0.246433
\(974\) −28.3920 −0.909739
\(975\) −15.9358 −0.510354
\(976\) −19.3164 −0.618301
\(977\) 3.90623 0.124971 0.0624856 0.998046i \(-0.480097\pi\)
0.0624856 + 0.998046i \(0.480097\pi\)
\(978\) 10.4241 0.333327
\(979\) 28.2603 0.903203
\(980\) 0 0
\(981\) 17.1154 0.546452
\(982\) −9.56148 −0.305119
\(983\) 2.59650 0.0828156 0.0414078 0.999142i \(-0.486816\pi\)
0.0414078 + 0.999142i \(0.486816\pi\)
\(984\) 24.4720 0.780138
\(985\) 0 0
\(986\) −44.3638 −1.41283
\(987\) −1.33463 −0.0424817
\(988\) −0.195314 −0.00621376
\(989\) 27.5615 0.876404
\(990\) 0 0
\(991\) 18.6903 0.593716 0.296858 0.954922i \(-0.404061\pi\)
0.296858 + 0.954922i \(0.404061\pi\)
\(992\) 0.364815 0.0115829
\(993\) 12.6050 0.400009
\(994\) −10.0661 −0.319278
\(995\) 0 0
\(996\) 1.40974 0.0446692
\(997\) 42.4297 1.34376 0.671882 0.740658i \(-0.265486\pi\)
0.671882 + 0.740658i \(0.265486\pi\)
\(998\) −21.4825 −0.680016
\(999\) −9.78794 −0.309677
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 669.2.a.e.1.3 3
3.2 odd 2 2007.2.a.h.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
669.2.a.e.1.3 3 1.1 even 1 trivial
2007.2.a.h.1.1 3 3.2 odd 2