Properties

Label 666.2.bs.a.611.3
Level $666$
Weight $2$
Character 666.611
Analytic conductor $5.318$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(17,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 611.3
Character \(\chi\) \(=\) 666.611
Dual form 666.2.bs.a.557.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0871557 - 0.996195i) q^{2} +(-0.984808 + 0.173648i) q^{4} +(2.82596 - 1.31777i) q^{5} +(1.97276 + 0.718026i) q^{7} +(0.258819 + 0.965926i) q^{8} +(-1.55905 - 2.70036i) q^{10} +(1.33922 - 2.31960i) q^{11} +(-0.527495 + 0.753341i) q^{13} +(0.543357 - 2.02783i) q^{14} +(0.939693 - 0.342020i) q^{16} +(2.87989 + 4.11292i) q^{17} +(-2.92670 - 0.256053i) q^{19} +(-2.55420 + 1.78847i) q^{20} +(-2.42750 - 1.13196i) q^{22} +(2.70753 + 0.725480i) q^{23} +(3.03561 - 3.61770i) q^{25} +(0.796448 + 0.459830i) q^{26} +(-2.06747 - 0.364552i) q^{28} +(4.95425 - 1.32749i) q^{29} +(-1.88370 + 1.88370i) q^{31} +(-0.422618 - 0.906308i) q^{32} +(3.84627 - 3.22740i) q^{34} +(6.52114 - 0.570526i) q^{35} +(-1.40496 - 5.91828i) q^{37} +2.93788i q^{38} +(2.00428 + 2.38861i) q^{40} +(0.366974 + 2.08121i) q^{41} +(-6.00144 - 6.00144i) q^{43} +(-0.916083 + 2.51692i) q^{44} +(0.486742 - 2.76045i) q^{46} +(-5.03071 + 2.90448i) q^{47} +(-1.98609 - 1.66652i) q^{49} +(-3.86850 - 2.70876i) q^{50} +(0.388665 - 0.833494i) q^{52} +(-2.29375 - 6.30203i) q^{53} +(0.727896 - 8.31989i) q^{55} +(-0.182972 + 2.09138i) q^{56} +(-1.75423 - 4.81970i) q^{58} +(5.91334 - 12.6812i) q^{59} +(5.22818 + 3.66081i) q^{61} +(2.04071 + 1.71236i) q^{62} +(-0.866025 + 0.500000i) q^{64} +(-0.497952 + 2.82403i) q^{65} +(-2.91868 + 8.01901i) q^{67} +(-3.55034 - 3.55034i) q^{68} +(-1.13671 - 6.44660i) q^{70} +(-3.95008 - 4.70753i) q^{71} +9.01662i q^{73} +(-5.77331 + 1.91543i) q^{74} +(2.92670 - 0.256053i) q^{76} +(4.30750 - 3.61442i) q^{77} +(0.222674 + 0.477526i) q^{79} +(2.20483 - 2.20483i) q^{80} +(2.04131 - 0.546967i) q^{82} +(3.14123 + 0.553883i) q^{83} +(13.5583 + 7.82791i) q^{85} +(-5.45554 + 6.50167i) q^{86} +(2.58718 + 0.693233i) q^{88} +(-2.30861 - 1.07652i) q^{89} +(-1.58154 + 1.10741i) q^{91} +(-2.79237 - 0.244301i) q^{92} +(3.33189 + 4.75842i) q^{94} +(-8.60817 + 3.13312i) q^{95} +(-3.13983 + 11.7180i) q^{97} +(-1.48708 + 2.12378i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 12 q^{13} - 24 q^{19} - 12 q^{22} + 72 q^{34} + 72 q^{37} + 24 q^{40} + 24 q^{43} + 36 q^{46} - 48 q^{49} - 12 q^{52} + 60 q^{55} + 120 q^{61} + 60 q^{67} - 60 q^{70} + 24 q^{76} - 12 q^{79} - 48 q^{82}+ \cdots - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{35}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0871557 0.996195i −0.0616284 0.704416i
\(3\) 0 0
\(4\) −0.984808 + 0.173648i −0.492404 + 0.0868241i
\(5\) 2.82596 1.31777i 1.26381 0.589324i 0.328951 0.944347i \(-0.393305\pi\)
0.934857 + 0.355023i \(0.115527\pi\)
\(6\) 0 0
\(7\) 1.97276 + 0.718026i 0.745634 + 0.271388i 0.686767 0.726877i \(-0.259029\pi\)
0.0588664 + 0.998266i \(0.481251\pi\)
\(8\) 0.258819 + 0.965926i 0.0915064 + 0.341506i
\(9\) 0 0
\(10\) −1.55905 2.70036i −0.493015 0.853928i
\(11\) 1.33922 2.31960i 0.403791 0.699387i −0.590389 0.807119i \(-0.701026\pi\)
0.994180 + 0.107732i \(0.0343590\pi\)
\(12\) 0 0
\(13\) −0.527495 + 0.753341i −0.146301 + 0.208939i −0.885613 0.464423i \(-0.846262\pi\)
0.739313 + 0.673362i \(0.235151\pi\)
\(14\) 0.543357 2.02783i 0.145218 0.541962i
\(15\) 0 0
\(16\) 0.939693 0.342020i 0.234923 0.0855050i
\(17\) 2.87989 + 4.11292i 0.698477 + 0.997528i 0.999042 + 0.0437671i \(0.0139359\pi\)
−0.300565 + 0.953761i \(0.597175\pi\)
\(18\) 0 0
\(19\) −2.92670 0.256053i −0.671432 0.0587427i −0.253658 0.967294i \(-0.581634\pi\)
−0.417773 + 0.908551i \(0.637189\pi\)
\(20\) −2.55420 + 1.78847i −0.571137 + 0.399914i
\(21\) 0 0
\(22\) −2.42750 1.13196i −0.517544 0.241335i
\(23\) 2.70753 + 0.725480i 0.564558 + 0.151273i 0.529800 0.848123i \(-0.322267\pi\)
0.0347586 + 0.999396i \(0.488934\pi\)
\(24\) 0 0
\(25\) 3.03561 3.61770i 0.607122 0.723540i
\(26\) 0.796448 + 0.459830i 0.156196 + 0.0901800i
\(27\) 0 0
\(28\) −2.06747 0.364552i −0.390716 0.0688938i
\(29\) 4.95425 1.32749i 0.919981 0.246508i 0.232404 0.972619i \(-0.425341\pi\)
0.687577 + 0.726111i \(0.258674\pi\)
\(30\) 0 0
\(31\) −1.88370 + 1.88370i −0.338323 + 0.338323i −0.855736 0.517413i \(-0.826895\pi\)
0.517413 + 0.855736i \(0.326895\pi\)
\(32\) −0.422618 0.906308i −0.0747091 0.160214i
\(33\) 0 0
\(34\) 3.84627 3.22740i 0.659629 0.553494i
\(35\) 6.52114 0.570526i 1.10227 0.0964365i
\(36\) 0 0
\(37\) −1.40496 5.91828i −0.230974 0.972960i
\(38\) 2.93788i 0.476587i
\(39\) 0 0
\(40\) 2.00428 + 2.38861i 0.316904 + 0.377672i
\(41\) 0.366974 + 2.08121i 0.0573117 + 0.325031i 0.999962 0.00875197i \(-0.00278587\pi\)
−0.942650 + 0.333783i \(0.891675\pi\)
\(42\) 0 0
\(43\) −6.00144 6.00144i −0.915211 0.915211i 0.0814648 0.996676i \(-0.474040\pi\)
−0.996676 + 0.0814648i \(0.974040\pi\)
\(44\) −0.916083 + 2.51692i −0.138105 + 0.379439i
\(45\) 0 0
\(46\) 0.486742 2.76045i 0.0717662 0.407007i
\(47\) −5.03071 + 2.90448i −0.733805 + 0.423662i −0.819812 0.572632i \(-0.805922\pi\)
0.0860078 + 0.996294i \(0.472589\pi\)
\(48\) 0 0
\(49\) −1.98609 1.66652i −0.283727 0.238075i
\(50\) −3.86850 2.70876i −0.547089 0.383076i
\(51\) 0 0
\(52\) 0.388665 0.833494i 0.0538981 0.115585i
\(53\) −2.29375 6.30203i −0.315071 0.865650i −0.991613 0.129246i \(-0.958744\pi\)
0.676542 0.736404i \(-0.263478\pi\)
\(54\) 0 0
\(55\) 0.727896 8.31989i 0.0981495 1.12185i
\(56\) −0.182972 + 2.09138i −0.0244507 + 0.279472i
\(57\) 0 0
\(58\) −1.75423 4.81970i −0.230341 0.632857i
\(59\) 5.91334 12.6812i 0.769851 1.65095i 0.0107801 0.999942i \(-0.496569\pi\)
0.759071 0.651008i \(-0.225654\pi\)
\(60\) 0 0
\(61\) 5.22818 + 3.66081i 0.669400 + 0.468719i 0.858213 0.513294i \(-0.171575\pi\)
−0.188813 + 0.982013i \(0.560464\pi\)
\(62\) 2.04071 + 1.71236i 0.259170 + 0.217470i
\(63\) 0 0
\(64\) −0.866025 + 0.500000i −0.108253 + 0.0625000i
\(65\) −0.497952 + 2.82403i −0.0617634 + 0.350278i
\(66\) 0 0
\(67\) −2.91868 + 8.01901i −0.356574 + 0.979678i 0.623636 + 0.781715i \(0.285655\pi\)
−0.980209 + 0.197963i \(0.936567\pi\)
\(68\) −3.55034 3.55034i −0.430542 0.430542i
\(69\) 0 0
\(70\) −1.13671 6.44660i −0.135863 0.770516i
\(71\) −3.95008 4.70753i −0.468789 0.558681i 0.478903 0.877868i \(-0.341035\pi\)
−0.947692 + 0.319187i \(0.896590\pi\)
\(72\) 0 0
\(73\) 9.01662i 1.05532i 0.849457 + 0.527658i \(0.176930\pi\)
−0.849457 + 0.527658i \(0.823070\pi\)
\(74\) −5.77331 + 1.91543i −0.671134 + 0.222664i
\(75\) 0 0
\(76\) 2.92670 0.256053i 0.335716 0.0293713i
\(77\) 4.30750 3.61442i 0.490886 0.411902i
\(78\) 0 0
\(79\) 0.222674 + 0.477526i 0.0250528 + 0.0537259i 0.918436 0.395570i \(-0.129453\pi\)
−0.893383 + 0.449296i \(0.851675\pi\)
\(80\) 2.20483 2.20483i 0.246508 0.246508i
\(81\) 0 0
\(82\) 2.04131 0.546967i 0.225425 0.0604024i
\(83\) 3.14123 + 0.553883i 0.344795 + 0.0607966i 0.343364 0.939202i \(-0.388434\pi\)
0.00143059 + 0.999999i \(0.499545\pi\)
\(84\) 0 0
\(85\) 13.5583 + 7.82791i 1.47061 + 0.849056i
\(86\) −5.45554 + 6.50167i −0.588287 + 0.701093i
\(87\) 0 0
\(88\) 2.58718 + 0.693233i 0.275794 + 0.0738989i
\(89\) −2.30861 1.07652i −0.244712 0.114111i 0.296393 0.955066i \(-0.404216\pi\)
−0.541105 + 0.840955i \(0.681994\pi\)
\(90\) 0 0
\(91\) −1.58154 + 1.10741i −0.165790 + 0.116088i
\(92\) −2.79237 0.244301i −0.291125 0.0254701i
\(93\) 0 0
\(94\) 3.33189 + 4.75842i 0.343658 + 0.490794i
\(95\) −8.60817 + 3.13312i −0.883179 + 0.321451i
\(96\) 0 0
\(97\) −3.13983 + 11.7180i −0.318801 + 1.18978i 0.601597 + 0.798800i \(0.294531\pi\)
−0.920398 + 0.390982i \(0.872135\pi\)
\(98\) −1.48708 + 2.12378i −0.150218 + 0.214534i
\(99\) 0 0
\(100\) −2.36129 + 4.08987i −0.236129 + 0.408987i
\(101\) 8.25498 + 14.2980i 0.821401 + 1.42271i 0.904639 + 0.426179i \(0.140140\pi\)
−0.0832381 + 0.996530i \(0.526526\pi\)
\(102\) 0 0
\(103\) −1.49274 5.57097i −0.147084 0.548924i −0.999654 0.0263109i \(-0.991624\pi\)
0.852570 0.522613i \(-0.175043\pi\)
\(104\) −0.864197 0.314542i −0.0847415 0.0308434i
\(105\) 0 0
\(106\) −6.07813 + 2.83428i −0.590360 + 0.275290i
\(107\) −19.4213 + 3.42449i −1.87752 + 0.331058i −0.991239 0.132083i \(-0.957833\pi\)
−0.886285 + 0.463141i \(0.846722\pi\)
\(108\) 0 0
\(109\) 0.366026 + 4.18369i 0.0350589 + 0.400725i 0.993367 + 0.114988i \(0.0366829\pi\)
−0.958308 + 0.285737i \(0.907762\pi\)
\(110\) −8.35167 −0.796301
\(111\) 0 0
\(112\) 2.09937 0.198372
\(113\) −0.703066 8.03608i −0.0661389 0.755971i −0.954769 0.297347i \(-0.903898\pi\)
0.888630 0.458624i \(-0.151657\pi\)
\(114\) 0 0
\(115\) 8.60738 1.51771i 0.802642 0.141527i
\(116\) −4.64847 + 2.16762i −0.431599 + 0.201258i
\(117\) 0 0
\(118\) −13.1483 4.78560i −1.21040 0.440550i
\(119\) 2.72816 + 10.1816i 0.250090 + 0.933349i
\(120\) 0 0
\(121\) 1.91296 + 3.31335i 0.173906 + 0.301213i
\(122\) 3.19121 5.52735i 0.288919 0.500422i
\(123\) 0 0
\(124\) 1.52798 2.18219i 0.137217 0.195966i
\(125\) −0.223892 + 0.835578i −0.0200256 + 0.0747364i
\(126\) 0 0
\(127\) 2.16274 0.787173i 0.191912 0.0698503i −0.244276 0.969706i \(-0.578550\pi\)
0.436188 + 0.899855i \(0.356328\pi\)
\(128\) 0.573576 + 0.819152i 0.0506975 + 0.0724035i
\(129\) 0 0
\(130\) 2.85668 + 0.249927i 0.250547 + 0.0219201i
\(131\) −5.84384 + 4.09190i −0.510578 + 0.357511i −0.800300 0.599600i \(-0.795326\pi\)
0.289721 + 0.957111i \(0.406437\pi\)
\(132\) 0 0
\(133\) −5.58983 2.60658i −0.484700 0.226019i
\(134\) 8.24288 + 2.20867i 0.712076 + 0.190800i
\(135\) 0 0
\(136\) −3.22740 + 3.84627i −0.276747 + 0.329815i
\(137\) 9.65245 + 5.57285i 0.824665 + 0.476120i 0.852022 0.523505i \(-0.175376\pi\)
−0.0273576 + 0.999626i \(0.508709\pi\)
\(138\) 0 0
\(139\) −19.7613 3.48445i −1.67613 0.295547i −0.746870 0.664970i \(-0.768444\pi\)
−0.929261 + 0.369423i \(0.879555\pi\)
\(140\) −6.32300 + 1.69424i −0.534391 + 0.143190i
\(141\) 0 0
\(142\) −4.34534 + 4.34534i −0.364653 + 0.364653i
\(143\) 1.04102 + 2.23247i 0.0870543 + 0.186689i
\(144\) 0 0
\(145\) 12.2512 10.2800i 1.01741 0.853705i
\(146\) 8.98231 0.785850i 0.743381 0.0650374i
\(147\) 0 0
\(148\) 2.41132 + 5.58440i 0.198209 + 0.459035i
\(149\) 21.9435i 1.79768i −0.438274 0.898841i \(-0.644410\pi\)
0.438274 0.898841i \(-0.355590\pi\)
\(150\) 0 0
\(151\) 7.27082 + 8.66503i 0.591691 + 0.705150i 0.975930 0.218084i \(-0.0699806\pi\)
−0.384239 + 0.923234i \(0.625536\pi\)
\(152\) −0.510158 2.89325i −0.0413793 0.234674i
\(153\) 0 0
\(154\) −3.97609 3.97609i −0.320403 0.320403i
\(155\) −2.84099 + 7.80555i −0.228194 + 0.626957i
\(156\) 0 0
\(157\) −3.86195 + 21.9022i −0.308217 + 1.74799i 0.299742 + 0.954020i \(0.403099\pi\)
−0.607960 + 0.793968i \(0.708012\pi\)
\(158\) 0.456302 0.263446i 0.0363014 0.0209586i
\(159\) 0 0
\(160\) −2.38861 2.00428i −0.188836 0.158452i
\(161\) 4.82039 + 3.37527i 0.379900 + 0.266009i
\(162\) 0 0
\(163\) −7.50039 + 16.0846i −0.587476 + 1.25985i 0.357868 + 0.933772i \(0.383504\pi\)
−0.945344 + 0.326074i \(0.894274\pi\)
\(164\) −0.722798 1.98587i −0.0564410 0.155070i
\(165\) 0 0
\(166\) 0.278000 3.17755i 0.0215770 0.246626i
\(167\) −1.26304 + 14.4366i −0.0977370 + 1.11714i 0.775997 + 0.630736i \(0.217247\pi\)
−0.873734 + 0.486403i \(0.838309\pi\)
\(168\) 0 0
\(169\) 4.15699 + 11.4212i 0.319768 + 0.878557i
\(170\) 6.61643 14.1890i 0.507457 1.08825i
\(171\) 0 0
\(172\) 6.95241 + 4.86813i 0.530116 + 0.371191i
\(173\) 5.96864 + 5.00828i 0.453787 + 0.380773i 0.840839 0.541285i \(-0.182062\pi\)
−0.387052 + 0.922058i \(0.626507\pi\)
\(174\) 0 0
\(175\) 8.58614 4.95721i 0.649051 0.374730i
\(176\) 0.465107 2.63775i 0.0350588 0.198828i
\(177\) 0 0
\(178\) −0.871218 + 2.39365i −0.0653005 + 0.179412i
\(179\) −8.58212 8.58212i −0.641458 0.641458i 0.309456 0.950914i \(-0.399853\pi\)
−0.950914 + 0.309456i \(0.899853\pi\)
\(180\) 0 0
\(181\) −0.181925 1.03175i −0.0135224 0.0766892i 0.977300 0.211861i \(-0.0679524\pi\)
−0.990822 + 0.135172i \(0.956841\pi\)
\(182\) 1.24103 + 1.47900i 0.0919914 + 0.109631i
\(183\) 0 0
\(184\) 2.80304i 0.206643i
\(185\) −11.7693 14.8734i −0.865296 1.09352i
\(186\) 0 0
\(187\) 13.3972 1.17210i 0.979697 0.0857124i
\(188\) 4.44992 3.73393i 0.324544 0.272325i
\(189\) 0 0
\(190\) 3.87145 + 8.30234i 0.280864 + 0.602315i
\(191\) −16.2499 + 16.2499i −1.17580 + 1.17580i −0.194999 + 0.980803i \(0.562470\pi\)
−0.980803 + 0.194999i \(0.937530\pi\)
\(192\) 0 0
\(193\) 10.1485 2.71928i 0.730505 0.195738i 0.125651 0.992075i \(-0.459898\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(194\) 11.9471 + 2.10659i 0.857749 + 0.151244i
\(195\) 0 0
\(196\) 2.24530 + 1.29633i 0.160379 + 0.0925947i
\(197\) 16.0720 19.1539i 1.14508 1.36466i 0.224328 0.974514i \(-0.427981\pi\)
0.920755 0.390142i \(-0.127574\pi\)
\(198\) 0 0
\(199\) −0.892139 0.239048i −0.0632421 0.0169457i 0.227059 0.973881i \(-0.427089\pi\)
−0.290301 + 0.956935i \(0.593756\pi\)
\(200\) 4.28010 + 1.99584i 0.302649 + 0.141128i
\(201\) 0 0
\(202\) 13.5242 9.46972i 0.951557 0.666287i
\(203\) 10.7267 + 0.938466i 0.752868 + 0.0658674i
\(204\) 0 0
\(205\) 3.77961 + 5.39784i 0.263979 + 0.377002i
\(206\) −5.41967 + 1.97260i −0.377606 + 0.137437i
\(207\) 0 0
\(208\) −0.238025 + 0.888323i −0.0165041 + 0.0615941i
\(209\) −4.51345 + 6.44588i −0.312202 + 0.445871i
\(210\) 0 0
\(211\) 8.85635 15.3396i 0.609696 1.05602i −0.381594 0.924330i \(-0.624625\pi\)
0.991290 0.131695i \(-0.0420419\pi\)
\(212\) 3.35324 + 5.80798i 0.230301 + 0.398894i
\(213\) 0 0
\(214\) 5.10413 + 19.0489i 0.348911 + 1.30215i
\(215\) −24.8684 9.05134i −1.69601 0.617296i
\(216\) 0 0
\(217\) −5.06864 + 2.36355i −0.344082 + 0.160448i
\(218\) 4.13587 0.729266i 0.280117 0.0493921i
\(219\) 0 0
\(220\) 0.727896 + 8.31989i 0.0490748 + 0.560927i
\(221\) −4.61756 −0.310610
\(222\) 0 0
\(223\) 8.46993 0.567188 0.283594 0.958944i \(-0.408473\pi\)
0.283594 + 0.958944i \(0.408473\pi\)
\(224\) −0.182972 2.09138i −0.0122253 0.139736i
\(225\) 0 0
\(226\) −7.94423 + 1.40078i −0.528442 + 0.0931786i
\(227\) 7.92901 3.69736i 0.526267 0.245402i −0.141281 0.989970i \(-0.545122\pi\)
0.667547 + 0.744567i \(0.267344\pi\)
\(228\) 0 0
\(229\) −20.8633 7.59364i −1.37869 0.501802i −0.456908 0.889514i \(-0.651043\pi\)
−0.921780 + 0.387712i \(0.873265\pi\)
\(230\) −2.26212 8.44235i −0.149160 0.556672i
\(231\) 0 0
\(232\) 2.56451 + 4.44186i 0.168368 + 0.291622i
\(233\) 3.82433 6.62394i 0.250540 0.433949i −0.713134 0.701027i \(-0.752725\pi\)
0.963675 + 0.267079i \(0.0860583\pi\)
\(234\) 0 0
\(235\) −10.3892 + 14.8373i −0.677714 + 0.967876i
\(236\) −3.62143 + 13.5154i −0.235735 + 0.879776i
\(237\) 0 0
\(238\) 9.90512 3.60517i 0.642054 0.233688i
\(239\) 8.37474 + 11.9604i 0.541717 + 0.773652i 0.992922 0.118768i \(-0.0378946\pi\)
−0.451205 + 0.892420i \(0.649006\pi\)
\(240\) 0 0
\(241\) −26.4890 2.31749i −1.70631 0.149283i −0.808157 0.588967i \(-0.799535\pi\)
−0.898152 + 0.439684i \(0.855090\pi\)
\(242\) 3.13401 2.19446i 0.201462 0.141065i
\(243\) 0 0
\(244\) −5.78445 2.69733i −0.370311 0.172679i
\(245\) −7.80869 2.09233i −0.498879 0.133674i
\(246\) 0 0
\(247\) 1.73672 2.06974i 0.110505 0.131694i
\(248\) −2.30706 1.33198i −0.146498 0.0845808i
\(249\) 0 0
\(250\) 0.851912 + 0.150215i 0.0538796 + 0.00950044i
\(251\) −20.4793 + 5.48741i −1.29264 + 0.346363i −0.838664 0.544650i \(-0.816663\pi\)
−0.453979 + 0.891012i \(0.649996\pi\)
\(252\) 0 0
\(253\) 5.30881 5.30881i 0.333762 0.333762i
\(254\) −0.972672 2.08590i −0.0610309 0.130881i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 9.77498 0.855200i 0.609747 0.0533459i 0.221899 0.975070i \(-0.428774\pi\)
0.387847 + 0.921724i \(0.373219\pi\)
\(258\) 0 0
\(259\) 1.47783 12.6842i 0.0918278 0.788155i
\(260\) 2.86759i 0.177841i
\(261\) 0 0
\(262\) 4.58565 + 5.46497i 0.283303 + 0.337627i
\(263\) 2.26517 + 12.8464i 0.139676 + 0.792142i 0.971489 + 0.237086i \(0.0761923\pi\)
−0.831813 + 0.555057i \(0.812697\pi\)
\(264\) 0 0
\(265\) −14.7867 14.7867i −0.908337 0.908337i
\(266\) −2.10948 + 5.79574i −0.129340 + 0.355360i
\(267\) 0 0
\(268\) 1.48185 8.40401i 0.0905186 0.513357i
\(269\) 9.84514 5.68409i 0.600269 0.346565i −0.168879 0.985637i \(-0.554015\pi\)
0.769147 + 0.639072i \(0.220681\pi\)
\(270\) 0 0
\(271\) −18.5306 15.5490i −1.12566 0.944537i −0.126780 0.991931i \(-0.540464\pi\)
−0.998876 + 0.0473935i \(0.984909\pi\)
\(272\) 4.11292 + 2.87989i 0.249382 + 0.174619i
\(273\) 0 0
\(274\) 4.71037 10.1014i 0.284564 0.610250i
\(275\) −4.32626 11.8863i −0.260884 0.716772i
\(276\) 0 0
\(277\) −0.0302720 + 0.346010i −0.00181887 + 0.0207898i −0.997050 0.0767561i \(-0.975544\pi\)
0.995231 + 0.0975459i \(0.0310993\pi\)
\(278\) −1.74888 + 19.9898i −0.104891 + 1.19891i
\(279\) 0 0
\(280\) 2.23888 + 6.15127i 0.133799 + 0.367609i
\(281\) −0.395455 + 0.848057i −0.0235909 + 0.0505908i −0.917750 0.397158i \(-0.869996\pi\)
0.894159 + 0.447749i \(0.147774\pi\)
\(282\) 0 0
\(283\) −8.50619 5.95610i −0.505641 0.354053i 0.292754 0.956188i \(-0.405428\pi\)
−0.798395 + 0.602134i \(0.794317\pi\)
\(284\) 4.70753 + 3.95008i 0.279340 + 0.234394i
\(285\) 0 0
\(286\) 2.13324 1.23163i 0.126141 0.0728278i
\(287\) −0.770414 + 4.36923i −0.0454761 + 0.257908i
\(288\) 0 0
\(289\) −2.80794 + 7.71475i −0.165173 + 0.453809i
\(290\) −11.3086 11.3086i −0.664065 0.664065i
\(291\) 0 0
\(292\) −1.56572 8.87964i −0.0916268 0.519641i
\(293\) −10.9767 13.0815i −0.641266 0.764231i 0.343303 0.939225i \(-0.388454\pi\)
−0.984570 + 0.174993i \(0.944010\pi\)
\(294\) 0 0
\(295\) 43.6290i 2.54018i
\(296\) 5.35299 2.88885i 0.311136 0.167911i
\(297\) 0 0
\(298\) −21.8600 + 1.91250i −1.26632 + 0.110788i
\(299\) −1.97474 + 1.65700i −0.114202 + 0.0958270i
\(300\) 0 0
\(301\) −7.53022 16.1486i −0.434035 0.930790i
\(302\) 7.99836 7.99836i 0.460254 0.460254i
\(303\) 0 0
\(304\) −2.83778 + 0.760380i −0.162758 + 0.0436108i
\(305\) 19.5987 + 3.45579i 1.12222 + 0.197878i
\(306\) 0 0
\(307\) 15.4922 + 8.94445i 0.884189 + 0.510487i 0.872037 0.489440i \(-0.162799\pi\)
0.0121515 + 0.999926i \(0.496132\pi\)
\(308\) −3.61442 + 4.30750i −0.205951 + 0.245443i
\(309\) 0 0
\(310\) 8.02346 + 2.14988i 0.455702 + 0.122105i
\(311\) 8.92073 + 4.15980i 0.505848 + 0.235881i 0.658752 0.752360i \(-0.271085\pi\)
−0.152904 + 0.988241i \(0.548862\pi\)
\(312\) 0 0
\(313\) −4.60506 + 3.22450i −0.260293 + 0.182259i −0.696437 0.717618i \(-0.745233\pi\)
0.436144 + 0.899877i \(0.356344\pi\)
\(314\) 22.1555 + 1.93835i 1.25031 + 0.109388i
\(315\) 0 0
\(316\) −0.302213 0.431605i −0.0170008 0.0242797i
\(317\) −30.0782 + 10.9476i −1.68936 + 0.614878i −0.994545 0.104309i \(-0.966737\pi\)
−0.694817 + 0.719186i \(0.744515\pi\)
\(318\) 0 0
\(319\) 3.55560 13.2697i 0.199076 0.742960i
\(320\) −1.78847 + 2.55420i −0.0999786 + 0.142784i
\(321\) 0 0
\(322\) 2.94230 5.09622i 0.163968 0.284001i
\(323\) −7.37547 12.7747i −0.410382 0.710803i
\(324\) 0 0
\(325\) 1.12409 + 4.19517i 0.0623534 + 0.232706i
\(326\) 16.6771 + 6.06998i 0.923661 + 0.336185i
\(327\) 0 0
\(328\) −1.91532 + 0.893127i −0.105756 + 0.0493147i
\(329\) −12.0099 + 2.11767i −0.662126 + 0.116751i
\(330\) 0 0
\(331\) 0.753073 + 8.60767i 0.0413926 + 0.473120i 0.988396 + 0.151897i \(0.0485383\pi\)
−0.947004 + 0.321223i \(0.895906\pi\)
\(332\) −3.18969 −0.175057
\(333\) 0 0
\(334\) 14.4918 0.792954
\(335\) 2.31911 + 26.5076i 0.126707 + 1.44826i
\(336\) 0 0
\(337\) 33.5843 5.92181i 1.82945 0.322582i 0.850391 0.526151i \(-0.176366\pi\)
0.979060 + 0.203570i \(0.0652544\pi\)
\(338\) 11.0155 5.13660i 0.599163 0.279394i
\(339\) 0 0
\(340\) −14.7117 5.35461i −0.797852 0.290394i
\(341\) 1.84674 + 6.89214i 0.100007 + 0.373230i
\(342\) 0 0
\(343\) −10.0693 17.4405i −0.543689 0.941696i
\(344\) 4.24366 7.35024i 0.228803 0.396298i
\(345\) 0 0
\(346\) 4.46902 6.38243i 0.240256 0.343121i
\(347\) 0.541394 2.02051i 0.0290635 0.108467i −0.949870 0.312644i \(-0.898785\pi\)
0.978934 + 0.204177i \(0.0654520\pi\)
\(348\) 0 0
\(349\) 2.20609 0.802950i 0.118089 0.0429809i −0.282300 0.959326i \(-0.591097\pi\)
0.400389 + 0.916345i \(0.368875\pi\)
\(350\) −5.68668 8.12141i −0.303966 0.434108i
\(351\) 0 0
\(352\) −2.66825 0.233442i −0.142218 0.0124425i
\(353\) 19.6609 13.7667i 1.04645 0.732729i 0.0818985 0.996641i \(-0.473902\pi\)
0.964547 + 0.263912i \(0.0850128\pi\)
\(354\) 0 0
\(355\) −17.3662 8.09800i −0.921703 0.429797i
\(356\) 2.46047 + 0.659282i 0.130405 + 0.0349419i
\(357\) 0 0
\(358\) −7.80148 + 9.29744i −0.412321 + 0.491385i
\(359\) 4.26996 + 2.46526i 0.225360 + 0.130111i 0.608430 0.793608i \(-0.291800\pi\)
−0.383070 + 0.923719i \(0.625133\pi\)
\(360\) 0 0
\(361\) −10.2113 1.80053i −0.537438 0.0947648i
\(362\) −1.01197 + 0.271156i −0.0531878 + 0.0142516i
\(363\) 0 0
\(364\) 1.36521 1.36521i 0.0715566 0.0715566i
\(365\) 11.8818 + 25.4806i 0.621922 + 1.33372i
\(366\) 0 0
\(367\) 12.7810 10.7245i 0.667164 0.559817i −0.245061 0.969508i \(-0.578808\pi\)
0.912224 + 0.409691i \(0.134363\pi\)
\(368\) 2.79237 0.244301i 0.145562 0.0127351i
\(369\) 0 0
\(370\) −13.7911 + 13.0208i −0.716964 + 0.676920i
\(371\) 14.0794i 0.730964i
\(372\) 0 0
\(373\) 4.09324 + 4.87814i 0.211940 + 0.252580i 0.861533 0.507702i \(-0.169505\pi\)
−0.649593 + 0.760283i \(0.725061\pi\)
\(374\) −2.33528 13.2440i −0.120754 0.684832i
\(375\) 0 0
\(376\) −4.10756 4.10756i −0.211831 0.211831i
\(377\) −1.61329 + 4.43248i −0.0830887 + 0.228284i
\(378\) 0 0
\(379\) 1.18223 6.70474i 0.0607269 0.344400i −0.939272 0.343173i \(-0.888498\pi\)
0.999999 0.00122683i \(-0.000390514\pi\)
\(380\) 7.93333 4.58031i 0.406971 0.234965i
\(381\) 0 0
\(382\) 17.6044 + 14.7718i 0.900717 + 0.755791i
\(383\) −15.6041 10.9261i −0.797335 0.558300i 0.102397 0.994744i \(-0.467349\pi\)
−0.899731 + 0.436444i \(0.856238\pi\)
\(384\) 0 0
\(385\) 7.40987 15.8905i 0.377642 0.809856i
\(386\) −3.59343 9.87288i −0.182901 0.502516i
\(387\) 0 0
\(388\) 1.05732 12.0852i 0.0536772 0.613533i
\(389\) −0.304271 + 3.47784i −0.0154272 + 0.176333i 0.984572 + 0.174980i \(0.0559862\pi\)
−0.999999 + 0.00135294i \(0.999569\pi\)
\(390\) 0 0
\(391\) 4.81355 + 13.2251i 0.243432 + 0.668824i
\(392\) 1.09570 2.34974i 0.0553413 0.118680i
\(393\) 0 0
\(394\) −20.4817 14.3415i −1.03186 0.722513i
\(395\) 1.25854 + 1.05604i 0.0633239 + 0.0531351i
\(396\) 0 0
\(397\) 27.3753 15.8051i 1.37393 0.793237i 0.382507 0.923953i \(-0.375061\pi\)
0.991420 + 0.130716i \(0.0417275\pi\)
\(398\) −0.160383 + 0.909579i −0.00803929 + 0.0455931i
\(399\) 0 0
\(400\) 1.61521 4.43776i 0.0807607 0.221888i
\(401\) −9.88686 9.88686i −0.493726 0.493726i 0.415752 0.909478i \(-0.363518\pi\)
−0.909478 + 0.415752i \(0.863518\pi\)
\(402\) 0 0
\(403\) −0.425427 2.41271i −0.0211920 0.120186i
\(404\) −10.6124 12.6474i −0.527986 0.629230i
\(405\) 0 0
\(406\) 10.7677i 0.534392i
\(407\) −15.6096 4.66695i −0.773740 0.231332i
\(408\) 0 0
\(409\) −35.6100 + 3.11547i −1.76080 + 0.154050i −0.921184 0.389127i \(-0.872777\pi\)
−0.839618 + 0.543177i \(0.817221\pi\)
\(410\) 5.04789 4.23568i 0.249297 0.209185i
\(411\) 0 0
\(412\) 2.43745 + 5.22712i 0.120084 + 0.257522i
\(413\) 20.7710 20.7710i 1.02208 1.02208i
\(414\) 0 0
\(415\) 9.60688 2.57416i 0.471583 0.126360i
\(416\) 0.905688 + 0.159697i 0.0444050 + 0.00782980i
\(417\) 0 0
\(418\) 6.81472 + 3.93448i 0.333319 + 0.192442i
\(419\) 3.78686 4.51301i 0.185000 0.220475i −0.665571 0.746335i \(-0.731812\pi\)
0.850571 + 0.525860i \(0.176256\pi\)
\(420\) 0 0
\(421\) 10.7741 + 2.88690i 0.525096 + 0.140699i 0.511623 0.859210i \(-0.329045\pi\)
0.0134732 + 0.999909i \(0.495711\pi\)
\(422\) −16.0532 7.48571i −0.781455 0.364399i
\(423\) 0 0
\(424\) 5.49363 3.84668i 0.266794 0.186811i
\(425\) 23.6215 + 2.06662i 1.14581 + 0.100246i
\(426\) 0 0
\(427\) 7.68539 + 10.9759i 0.371922 + 0.531160i
\(428\) 18.5315 6.74493i 0.895756 0.326028i
\(429\) 0 0
\(430\) −6.84948 + 25.5626i −0.330311 + 1.23274i
\(431\) −2.44990 + 3.49882i −0.118007 + 0.168532i −0.873810 0.486267i \(-0.838358\pi\)
0.755803 + 0.654800i \(0.227247\pi\)
\(432\) 0 0
\(433\) 10.9074 18.8921i 0.524174 0.907896i −0.475430 0.879754i \(-0.657707\pi\)
0.999604 0.0281424i \(-0.00895918\pi\)
\(434\) 2.79632 + 4.84336i 0.134227 + 0.232489i
\(435\) 0 0
\(436\) −1.08696 4.05657i −0.0520557 0.194275i
\(437\) −7.73836 2.81653i −0.370176 0.134733i
\(438\) 0 0
\(439\) 7.84924 3.66016i 0.374624 0.174690i −0.226182 0.974085i \(-0.572624\pi\)
0.600806 + 0.799395i \(0.294847\pi\)
\(440\) 8.22479 1.45025i 0.392102 0.0691381i
\(441\) 0 0
\(442\) 0.402447 + 4.59998i 0.0191424 + 0.218799i
\(443\) 13.2524 0.629642 0.314821 0.949151i \(-0.398056\pi\)
0.314821 + 0.949151i \(0.398056\pi\)
\(444\) 0 0
\(445\) −7.94265 −0.376518
\(446\) −0.738203 8.43770i −0.0349549 0.399536i
\(447\) 0 0
\(448\) −2.06747 + 0.364552i −0.0976790 + 0.0172234i
\(449\) 8.00777 3.73409i 0.377910 0.176222i −0.224376 0.974503i \(-0.572034\pi\)
0.602286 + 0.798280i \(0.294257\pi\)
\(450\) 0 0
\(451\) 5.31905 + 1.93598i 0.250464 + 0.0911615i
\(452\) 2.08784 + 7.79191i 0.0982036 + 0.366501i
\(453\) 0 0
\(454\) −4.37435 7.57659i −0.205298 0.355587i
\(455\) −3.01007 + 5.21359i −0.141114 + 0.244417i
\(456\) 0 0
\(457\) −8.62766 + 12.3216i −0.403585 + 0.576379i −0.968576 0.248718i \(-0.919991\pi\)
0.564991 + 0.825097i \(0.308880\pi\)
\(458\) −5.74638 + 21.4458i −0.268511 + 1.00210i
\(459\) 0 0
\(460\) −8.21307 + 2.98931i −0.382936 + 0.139377i
\(461\) 1.62400 + 2.31931i 0.0756372 + 0.108021i 0.855188 0.518318i \(-0.173442\pi\)
−0.779551 + 0.626339i \(0.784553\pi\)
\(462\) 0 0
\(463\) −36.1930 3.16648i −1.68203 0.147159i −0.794301 0.607524i \(-0.792163\pi\)
−0.887729 + 0.460366i \(0.847718\pi\)
\(464\) 4.20144 2.94188i 0.195047 0.136573i
\(465\) 0 0
\(466\) −6.93205 3.23247i −0.321121 0.149741i
\(467\) 34.6623 + 9.28773i 1.60398 + 0.429785i 0.946241 0.323462i \(-0.104847\pi\)
0.657738 + 0.753247i \(0.271513\pi\)
\(468\) 0 0
\(469\) −11.5157 + 13.7239i −0.531747 + 0.633711i
\(470\) 15.6863 + 9.05648i 0.723554 + 0.417744i
\(471\) 0 0
\(472\) 13.7796 + 2.42971i 0.634256 + 0.111836i
\(473\) −21.9582 + 5.88369i −1.00964 + 0.270532i
\(474\) 0 0
\(475\) −9.81065 + 9.81065i −0.450144 + 0.450144i
\(476\) −4.45474 9.55322i −0.204183 0.437871i
\(477\) 0 0
\(478\) 11.1849 9.38529i 0.511588 0.429273i
\(479\) −26.0672 + 2.28058i −1.19104 + 0.104203i −0.665388 0.746497i \(-0.731734\pi\)
−0.525652 + 0.850700i \(0.676179\pi\)
\(480\) 0 0
\(481\) 5.19959 + 2.06345i 0.237081 + 0.0940852i
\(482\) 26.5902i 1.21115i
\(483\) 0 0
\(484\) −2.45926 2.93083i −0.111784 0.133219i
\(485\) 6.56856 + 37.2522i 0.298263 + 1.69153i
\(486\) 0 0
\(487\) 0.689631 + 0.689631i 0.0312502 + 0.0312502i 0.722559 0.691309i \(-0.242966\pi\)
−0.691309 + 0.722559i \(0.742966\pi\)
\(488\) −2.18292 + 5.99752i −0.0988161 + 0.271495i
\(489\) 0 0
\(490\) −1.40380 + 7.96134i −0.0634172 + 0.359657i
\(491\) 37.2091 21.4827i 1.67922 0.969501i 0.717068 0.697003i \(-0.245484\pi\)
0.962157 0.272497i \(-0.0878496\pi\)
\(492\) 0 0
\(493\) 19.7276 + 16.5534i 0.888484 + 0.745527i
\(494\) −2.21323 1.54972i −0.0995778 0.0697251i
\(495\) 0 0
\(496\) −1.12584 + 2.41437i −0.0505516 + 0.108408i
\(497\) −4.41245 12.1231i −0.197925 0.543795i
\(498\) 0 0
\(499\) −1.11174 + 12.7072i −0.0497682 + 0.568854i 0.929844 + 0.367955i \(0.119942\pi\)
−0.979612 + 0.200899i \(0.935614\pi\)
\(500\) 0.0753944 0.861762i 0.00337174 0.0385392i
\(501\) 0 0
\(502\) 7.25142 + 19.9231i 0.323647 + 0.889212i
\(503\) 4.67196 10.0191i 0.208313 0.446728i −0.774196 0.632946i \(-0.781845\pi\)
0.982508 + 0.186219i \(0.0596232\pi\)
\(504\) 0 0
\(505\) 42.1697 + 29.5276i 1.87653 + 1.31396i
\(506\) −5.75130 4.82591i −0.255676 0.214538i
\(507\) 0 0
\(508\) −1.99319 + 1.15077i −0.0884336 + 0.0510571i
\(509\) −3.73654 + 21.1910i −0.165619 + 0.939273i 0.782805 + 0.622268i \(0.213788\pi\)
−0.948424 + 0.317005i \(0.897323\pi\)
\(510\) 0 0
\(511\) −6.47417 + 17.7876i −0.286400 + 0.786879i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −1.70389 9.66325i −0.0751554 0.426228i
\(515\) −11.5597 13.7763i −0.509379 0.607054i
\(516\) 0 0
\(517\) 15.5590i 0.684284i
\(518\) −12.7647 0.366707i −0.560848 0.0161122i
\(519\) 0 0
\(520\) −2.85668 + 0.249927i −0.125274 + 0.0109600i
\(521\) −0.350028 + 0.293708i −0.0153350 + 0.0128676i −0.650423 0.759572i \(-0.725408\pi\)
0.635088 + 0.772440i \(0.280964\pi\)
\(522\) 0 0
\(523\) −7.60898 16.3175i −0.332717 0.713515i 0.666779 0.745256i \(-0.267673\pi\)
−0.999496 + 0.0317411i \(0.989895\pi\)
\(524\) 5.04451 5.04451i 0.220370 0.220370i
\(525\) 0 0
\(526\) 12.6001 3.37618i 0.549390 0.147209i
\(527\) −13.1724 2.32265i −0.573798 0.101176i
\(528\) 0 0
\(529\) −13.1142 7.57149i −0.570183 0.329195i
\(530\) −13.4416 + 16.0191i −0.583868 + 0.695827i
\(531\) 0 0
\(532\) 5.95754 + 1.59632i 0.258292 + 0.0692092i
\(533\) −1.76144 0.821373i −0.0762964 0.0355776i
\(534\) 0 0
\(535\) −50.3710 + 35.2702i −2.17773 + 1.52486i
\(536\) −8.50118 0.743757i −0.367195 0.0321254i
\(537\) 0 0
\(538\) −6.52052 9.31227i −0.281120 0.401481i
\(539\) −6.52549 + 2.37508i −0.281073 + 0.102302i
\(540\) 0 0
\(541\) 8.95812 33.4321i 0.385139 1.43736i −0.452807 0.891608i \(-0.649577\pi\)
0.837947 0.545752i \(-0.183756\pi\)
\(542\) −13.8748 + 19.8153i −0.595975 + 0.851140i
\(543\) 0 0
\(544\) 2.51047 4.34826i 0.107636 0.186430i
\(545\) 6.54751 + 11.3406i 0.280465 + 0.485779i
\(546\) 0 0
\(547\) 7.37760 + 27.5336i 0.315444 + 1.17725i 0.923576 + 0.383416i \(0.125252\pi\)
−0.608132 + 0.793836i \(0.708081\pi\)
\(548\) −10.4735 3.81205i −0.447407 0.162843i
\(549\) 0 0
\(550\) −11.4640 + 5.34576i −0.488828 + 0.227944i
\(551\) −14.8395 + 2.61661i −0.632185 + 0.111471i
\(552\) 0 0
\(553\) 0.0964065 + 1.10193i 0.00409962 + 0.0468589i
\(554\) 0.347332 0.0147567
\(555\) 0 0
\(556\) 20.0662 0.850994
\(557\) 1.56837 + 17.9266i 0.0664540 + 0.759573i 0.954186 + 0.299213i \(0.0967241\pi\)
−0.887732 + 0.460360i \(0.847720\pi\)
\(558\) 0 0
\(559\) 7.68686 1.35540i 0.325120 0.0573274i
\(560\) 5.93274 2.76648i 0.250704 0.116905i
\(561\) 0 0
\(562\) 0.879296 + 0.320037i 0.0370908 + 0.0135000i
\(563\) −4.39452 16.4006i −0.185207 0.691201i −0.994586 0.103915i \(-0.966863\pi\)
0.809379 0.587286i \(-0.199804\pi\)
\(564\) 0 0
\(565\) −12.5765 21.7832i −0.529099 0.916426i
\(566\) −5.19207 + 8.99293i −0.218239 + 0.378001i
\(567\) 0 0
\(568\) 3.52477 5.03389i 0.147896 0.211217i
\(569\) 0.0672038 0.250808i 0.00281733 0.0105144i −0.964503 0.264072i \(-0.914934\pi\)
0.967320 + 0.253558i \(0.0816009\pi\)
\(570\) 0 0
\(571\) −43.2375 + 15.7372i −1.80943 + 0.658579i −0.812271 + 0.583280i \(0.801769\pi\)
−0.997161 + 0.0752988i \(0.976009\pi\)
\(572\) −1.41287 2.01778i −0.0590749 0.0843677i
\(573\) 0 0
\(574\) 4.41975 + 0.386678i 0.184477 + 0.0161396i
\(575\) 10.8436 7.59274i 0.452208 0.316639i
\(576\) 0 0
\(577\) 37.8768 + 17.6623i 1.57683 + 0.735289i 0.996848 0.0793374i \(-0.0252804\pi\)
0.579985 + 0.814627i \(0.303058\pi\)
\(578\) 7.93012 + 2.12487i 0.329849 + 0.0883829i
\(579\) 0 0
\(580\) −10.2800 + 12.2512i −0.426853 + 0.508703i
\(581\) 5.79919 + 3.34817i 0.240591 + 0.138905i
\(582\) 0 0
\(583\) −17.6900 3.11923i −0.732647 0.129185i
\(584\) −8.70939 + 2.33367i −0.360397 + 0.0965681i
\(585\) 0 0
\(586\) −12.0751 + 12.0751i −0.498817 + 0.498817i
\(587\) 11.5283 + 24.7225i 0.475823 + 1.02041i 0.986969 + 0.160912i \(0.0514435\pi\)
−0.511146 + 0.859494i \(0.670779\pi\)
\(588\) 0 0
\(589\) 5.99537 5.03071i 0.247035 0.207287i
\(590\) −43.4629 + 3.80251i −1.78934 + 0.156547i
\(591\) 0 0
\(592\) −3.34441 5.08084i −0.137454 0.208821i
\(593\) 8.69991i 0.357263i −0.983916 0.178631i \(-0.942833\pi\)
0.983916 0.178631i \(-0.0571669\pi\)
\(594\) 0 0
\(595\) 21.1267 + 25.1778i 0.866111 + 1.03219i
\(596\) 3.81045 + 21.6101i 0.156082 + 0.885186i
\(597\) 0 0
\(598\) 1.82281 + 1.82281i 0.0745402 + 0.0745402i
\(599\) 11.1752 30.7035i 0.456605 1.25451i −0.471391 0.881924i \(-0.656248\pi\)
0.927997 0.372589i \(-0.121530\pi\)
\(600\) 0 0
\(601\) −5.74854 + 32.6016i −0.234488 + 1.32985i 0.609202 + 0.793015i \(0.291490\pi\)
−0.843690 + 0.536831i \(0.819621\pi\)
\(602\) −15.4309 + 8.90901i −0.628915 + 0.363104i
\(603\) 0 0
\(604\) −8.66503 7.27082i −0.352575 0.295845i
\(605\) 9.77218 + 6.84255i 0.397296 + 0.278189i
\(606\) 0 0
\(607\) 12.8041 27.4585i 0.519703 1.11451i −0.454895 0.890545i \(-0.650323\pi\)
0.974598 0.223962i \(-0.0718990\pi\)
\(608\) 1.00481 + 2.76071i 0.0407506 + 0.111961i
\(609\) 0 0
\(610\) 1.73449 19.8253i 0.0702276 0.802705i
\(611\) 0.465609 5.32194i 0.0188365 0.215303i
\(612\) 0 0
\(613\) 15.1841 + 41.7181i 0.613282 + 1.68498i 0.722856 + 0.690999i \(0.242829\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(614\) 7.56017 16.2128i 0.305104 0.654297i
\(615\) 0 0
\(616\) 4.60613 + 3.22525i 0.185586 + 0.129949i
\(617\) −27.7168 23.2571i −1.11583 0.936296i −0.117448 0.993079i \(-0.537471\pi\)
−0.998387 + 0.0567827i \(0.981916\pi\)
\(618\) 0 0
\(619\) 26.5570 15.3327i 1.06742 0.616274i 0.139943 0.990160i \(-0.455308\pi\)
0.927475 + 0.373886i \(0.121975\pi\)
\(620\) 1.44241 8.18030i 0.0579285 0.328529i
\(621\) 0 0
\(622\) 3.36648 9.24933i 0.134984 0.370864i
\(623\) −3.78137 3.78137i −0.151497 0.151497i
\(624\) 0 0
\(625\) 4.56871 + 25.9105i 0.182749 + 1.03642i
\(626\) 3.61358 + 4.30650i 0.144428 + 0.172122i
\(627\) 0 0
\(628\) 22.2401i 0.887477i
\(629\) 20.2953 22.8225i 0.809225 0.909994i
\(630\) 0 0
\(631\) 1.73147 0.151484i 0.0689289 0.00603049i −0.0526391 0.998614i \(-0.516763\pi\)
0.121568 + 0.992583i \(0.461208\pi\)
\(632\) −0.403623 + 0.338680i −0.0160553 + 0.0134720i
\(633\) 0 0
\(634\) 13.5274 + 29.0096i 0.537242 + 1.15212i
\(635\) 5.07451 5.07451i 0.201376 0.201376i
\(636\) 0 0
\(637\) 2.30311 0.617117i 0.0912526 0.0244511i
\(638\) −13.5291 2.38554i −0.535622 0.0944445i
\(639\) 0 0
\(640\) 2.70036 + 1.55905i 0.106741 + 0.0616269i
\(641\) 6.24611 7.44382i 0.246706 0.294013i −0.628453 0.777847i \(-0.716312\pi\)
0.875160 + 0.483834i \(0.160756\pi\)
\(642\) 0 0
\(643\) 32.9105 + 8.81835i 1.29786 + 0.347762i 0.840642 0.541591i \(-0.182178\pi\)
0.457222 + 0.889352i \(0.348844\pi\)
\(644\) −5.33327 2.48694i −0.210160 0.0979993i
\(645\) 0 0
\(646\) −12.0833 + 8.46079i −0.475410 + 0.332885i
\(647\) −31.7137 2.77459i −1.24679 0.109080i −0.555415 0.831573i \(-0.687441\pi\)
−0.691378 + 0.722493i \(0.742996\pi\)
\(648\) 0 0
\(649\) −21.4960 30.6995i −0.843794 1.20506i
\(650\) 4.08123 1.48545i 0.160079 0.0582640i
\(651\) 0 0
\(652\) 4.59337 17.1427i 0.179890 0.671360i
\(653\) −2.69304 + 3.84606i −0.105387 + 0.150508i −0.868381 0.495897i \(-0.834839\pi\)
0.762995 + 0.646405i \(0.223728\pi\)
\(654\) 0 0
\(655\) −11.1223 + 19.2644i −0.434584 + 0.752721i
\(656\) 1.05666 + 1.83019i 0.0412556 + 0.0714568i
\(657\) 0 0
\(658\) 3.15634 + 11.7796i 0.123047 + 0.459217i
\(659\) 27.0882 + 9.85932i 1.05521 + 0.384064i 0.810626 0.585564i \(-0.199127\pi\)
0.244582 + 0.969629i \(0.421349\pi\)
\(660\) 0 0
\(661\) −27.7552 + 12.9425i −1.07955 + 0.503403i −0.879265 0.476334i \(-0.841965\pi\)
−0.200288 + 0.979737i \(0.564188\pi\)
\(662\) 8.50928 1.50041i 0.330722 0.0583153i
\(663\) 0 0
\(664\) 0.278000 + 3.17755i 0.0107885 + 0.123313i
\(665\) −19.2315 −0.745766
\(666\) 0 0
\(667\) 14.3768 0.556673
\(668\) −1.26304 14.4366i −0.0488685 0.558570i
\(669\) 0 0
\(670\) 26.2046 4.62057i 1.01237 0.178508i
\(671\) 15.4933 7.22466i 0.598113 0.278905i
\(672\) 0 0
\(673\) 13.9137 + 5.06416i 0.536332 + 0.195209i 0.595963 0.803012i \(-0.296770\pi\)
−0.0596314 + 0.998220i \(0.518993\pi\)
\(674\) −8.82634 32.9403i −0.339978 1.26881i
\(675\) 0 0
\(676\) −6.07711 10.5259i −0.233735 0.404841i
\(677\) 16.1053 27.8952i 0.618977 1.07210i −0.370696 0.928754i \(-0.620881\pi\)
0.989673 0.143345i \(-0.0457860\pi\)
\(678\) 0 0
\(679\) −14.6080 + 20.8623i −0.560602 + 0.800622i
\(680\) −4.05202 + 15.1224i −0.155388 + 0.579916i
\(681\) 0 0
\(682\) 6.70496 2.44041i 0.256746 0.0934480i
\(683\) 5.46876 + 7.81020i 0.209256 + 0.298849i 0.910036 0.414528i \(-0.136053\pi\)
−0.700780 + 0.713377i \(0.747165\pi\)
\(684\) 0 0
\(685\) 34.6212 + 3.02896i 1.32281 + 0.115731i
\(686\) −16.4965 + 11.5510i −0.629839 + 0.441018i
\(687\) 0 0
\(688\) −7.69213 3.58690i −0.293260 0.136749i
\(689\) 5.95752 + 1.59631i 0.226963 + 0.0608146i
\(690\) 0 0
\(691\) 22.0361 26.2616i 0.838292 0.999037i −0.161634 0.986851i \(-0.551676\pi\)
0.999926 0.0121863i \(-0.00387911\pi\)
\(692\) −6.74764 3.89575i −0.256507 0.148094i
\(693\) 0 0
\(694\) −2.06001 0.363234i −0.0781967 0.0137882i
\(695\) −60.4364 + 16.1939i −2.29248 + 0.614269i
\(696\) 0 0
\(697\) −7.50301 + 7.50301i −0.284197 + 0.284197i
\(698\) −0.992168 2.12771i −0.0375541 0.0805350i
\(699\) 0 0
\(700\) −7.59488 + 6.37286i −0.287060 + 0.240872i
\(701\) −46.0964 + 4.03291i −1.74104 + 0.152321i −0.912894 0.408196i \(-0.866158\pi\)
−0.828143 + 0.560517i \(0.810603\pi\)
\(702\) 0 0
\(703\) 2.59651 + 17.6808i 0.0979293 + 0.666844i
\(704\) 2.67845i 0.100948i
\(705\) 0 0
\(706\) −15.4279 18.3863i −0.580637 0.691976i
\(707\) 6.01873 + 34.1339i 0.226358 + 1.28374i
\(708\) 0 0
\(709\) −11.3364 11.3364i −0.425749 0.425749i 0.461428 0.887177i \(-0.347337\pi\)
−0.887177 + 0.461428i \(0.847337\pi\)
\(710\) −6.55362 + 18.0059i −0.245953 + 0.675750i
\(711\) 0 0
\(712\) 0.442329 2.50857i 0.0165770 0.0940127i
\(713\) −6.46676 + 3.73359i −0.242182 + 0.139824i
\(714\) 0 0
\(715\) 5.88375 + 4.93705i 0.220040 + 0.184635i
\(716\) 9.94200 + 6.96147i 0.371550 + 0.260162i
\(717\) 0 0
\(718\) 2.08373 4.46857i 0.0777641 0.166766i
\(719\) 5.95733 + 16.3676i 0.222171 + 0.610409i 0.999833 0.0182729i \(-0.00581678\pi\)
−0.777662 + 0.628682i \(0.783595\pi\)
\(720\) 0 0
\(721\) 1.05529 12.0620i 0.0393010 0.449213i
\(722\) −0.903705 + 10.3294i −0.0336324 + 0.384420i
\(723\) 0 0
\(724\) 0.358322 + 0.984483i 0.0133169 + 0.0365880i
\(725\) 10.2367 21.9527i 0.380182 0.815303i
\(726\) 0 0
\(727\) 0.525227 + 0.367768i 0.0194796 + 0.0136398i 0.583276 0.812274i \(-0.301771\pi\)
−0.563796 + 0.825914i \(0.690660\pi\)
\(728\) −1.47900 1.24103i −0.0548156 0.0459957i
\(729\) 0 0
\(730\) 24.3481 14.0574i 0.901163 0.520287i
\(731\) 7.39990 41.9669i 0.273695 1.55220i
\(732\) 0 0
\(733\) −5.99689 + 16.4763i −0.221500 + 0.608567i −0.999814 0.0193090i \(-0.993853\pi\)
0.778313 + 0.627876i \(0.216076\pi\)
\(734\) −11.7977 11.7977i −0.435460 0.435460i
\(735\) 0 0
\(736\) −0.486742 2.76045i −0.0179416 0.101752i
\(737\) 14.6922 + 17.5094i 0.541193 + 0.644968i
\(738\) 0 0
\(739\) 40.3640i 1.48482i −0.669949 0.742408i \(-0.733684\pi\)
0.669949 0.742408i \(-0.266316\pi\)
\(740\) 14.1732 + 12.6038i 0.521018 + 0.463323i
\(741\) 0 0
\(742\) −14.0258 + 1.22710i −0.514903 + 0.0450482i
\(743\) 5.88578 4.93876i 0.215928 0.181185i −0.528407 0.848991i \(-0.677211\pi\)
0.744336 + 0.667805i \(0.232766\pi\)
\(744\) 0 0
\(745\) −28.9165 62.0115i −1.05942 2.27193i
\(746\) 4.50283 4.50283i 0.164860 0.164860i
\(747\) 0 0
\(748\) −12.9901 + 3.48068i −0.474965 + 0.127266i
\(749\) −40.7724 7.18927i −1.48979 0.262690i
\(750\) 0 0
\(751\) 2.63599 + 1.52189i 0.0961885 + 0.0555345i 0.547323 0.836922i \(-0.315647\pi\)
−0.451134 + 0.892456i \(0.648980\pi\)
\(752\) −3.73393 + 4.44992i −0.136162 + 0.162272i
\(753\) 0 0
\(754\) 4.55622 + 1.22084i 0.165928 + 0.0444602i
\(755\) 31.9656 + 14.9058i 1.16335 + 0.542477i
\(756\) 0 0
\(757\) −21.5392 + 15.0819i −0.782857 + 0.548162i −0.895283 0.445498i \(-0.853027\pi\)
0.112426 + 0.993660i \(0.464138\pi\)
\(758\) −6.78227 0.593372i −0.246343 0.0215522i
\(759\) 0 0
\(760\) −5.25432 7.50394i −0.190594 0.272197i
\(761\) −3.54295 + 1.28953i −0.128432 + 0.0467453i −0.405436 0.914123i \(-0.632880\pi\)
0.277005 + 0.960869i \(0.410658\pi\)
\(762\) 0 0
\(763\) −2.28192 + 8.51624i −0.0826111 + 0.308309i
\(764\) 13.1813 18.8248i 0.476882 0.681058i
\(765\) 0 0
\(766\) −9.52457 + 16.4970i −0.344137 + 0.596062i
\(767\) 6.43400 + 11.1440i 0.232318 + 0.402387i
\(768\) 0 0
\(769\) 4.44019 + 16.5710i 0.160117 + 0.597566i 0.998613 + 0.0526572i \(0.0167691\pi\)
−0.838495 + 0.544909i \(0.816564\pi\)
\(770\) −16.4759 5.99672i −0.593749 0.216107i
\(771\) 0 0
\(772\) −9.52212 + 4.44024i −0.342709 + 0.159808i
\(773\) −29.9348 + 5.27830i −1.07668 + 0.189847i −0.683746 0.729720i \(-0.739650\pi\)
−0.392932 + 0.919567i \(0.628539\pi\)
\(774\) 0 0
\(775\) 1.09648 + 12.5329i 0.0393868 + 0.450193i
\(776\) −12.1314 −0.435490
\(777\) 0 0
\(778\) 3.49112 0.125163
\(779\) −0.541122 6.18506i −0.0193877 0.221603i
\(780\) 0 0
\(781\) −16.2096 + 2.85820i −0.580027 + 0.102274i
\(782\) 12.7553 5.94788i 0.456128 0.212696i
\(783\) 0 0
\(784\) −2.43630 0.886739i −0.0870105 0.0316692i
\(785\) 17.9483 + 66.9840i 0.640603 + 2.39076i
\(786\) 0 0
\(787\) 14.1074 + 24.4347i 0.502873 + 0.871002i 0.999994 + 0.00332059i \(0.00105698\pi\)
−0.497122 + 0.867681i \(0.665610\pi\)
\(788\) −12.5018 + 21.6537i −0.445358 + 0.771383i
\(789\) 0 0
\(790\) 0.942331 1.34579i 0.0335266 0.0478810i
\(791\) 4.38314 16.3581i 0.155846 0.581627i
\(792\) 0 0
\(793\) −5.51568 + 2.00754i −0.195867 + 0.0712899i
\(794\) −18.1309 25.8936i −0.643442 0.918930i
\(795\) 0 0
\(796\) 0.920096 + 0.0804980i 0.0326119 + 0.00285317i
\(797\) −17.2016 + 12.0447i −0.609311 + 0.426644i −0.837087 0.547069i \(-0.815743\pi\)
0.227776 + 0.973713i \(0.426855\pi\)
\(798\) 0 0
\(799\) −26.4338 12.3263i −0.935161 0.436073i
\(800\) −4.56165 1.22229i −0.161279 0.0432145i
\(801\) 0 0
\(802\) −8.98754 + 10.7109i −0.317361 + 0.378216i
\(803\) 20.9150 + 12.0753i 0.738073 + 0.426127i
\(804\) 0 0
\(805\) 18.0701 + 3.18624i 0.636886 + 0.112300i
\(806\) −2.36645 + 0.634089i −0.0833548 + 0.0223348i
\(807\) 0 0
\(808\) −11.6743 + 11.6743i −0.410700 + 0.410700i
\(809\) −2.40882 5.16574i −0.0846898 0.181618i 0.859402 0.511300i \(-0.170836\pi\)
−0.944092 + 0.329683i \(0.893058\pi\)
\(810\) 0 0
\(811\) 28.5738 23.9763i 1.00336 0.841920i 0.0159147 0.999873i \(-0.494934\pi\)
0.987447 + 0.157953i \(0.0504895\pi\)
\(812\) −10.7267 + 0.938466i −0.376434 + 0.0329337i
\(813\) 0 0
\(814\) −3.28872 + 15.9570i −0.115270 + 0.559292i
\(815\) 55.3383i 1.93842i
\(816\) 0 0
\(817\) 16.0277 + 19.1011i 0.560740 + 0.668264i
\(818\) 6.20724 + 35.2030i 0.217031 + 1.23084i
\(819\) 0 0
\(820\) −4.65951 4.65951i −0.162717 0.162717i
\(821\) 8.81959 24.2316i 0.307806 0.845690i −0.685278 0.728282i \(-0.740319\pi\)
0.993084 0.117408i \(-0.0374586\pi\)
\(822\) 0 0
\(823\) 2.49692 14.1607i 0.0870370 0.493611i −0.909861 0.414912i \(-0.863812\pi\)
0.996898 0.0786991i \(-0.0250766\pi\)
\(824\) 4.99479 2.88374i 0.174002 0.100460i
\(825\) 0 0
\(826\) −22.5023 18.8817i −0.782955 0.656977i
\(827\) −20.5519 14.3906i −0.714658 0.500409i 0.158798 0.987311i \(-0.449238\pi\)
−0.873457 + 0.486902i \(0.838127\pi\)
\(828\) 0 0
\(829\) 5.56812 11.9409i 0.193389 0.414724i −0.785572 0.618770i \(-0.787631\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(830\) −3.40166 9.34597i −0.118073 0.324403i
\(831\) 0 0
\(832\) 0.0801536 0.916160i 0.00277883 0.0317621i
\(833\) 1.13455 12.9680i 0.0393100 0.449315i
\(834\) 0 0
\(835\) 15.4548 + 42.4617i 0.534836 + 1.46945i
\(836\) 3.32557 7.13170i 0.115017 0.246655i
\(837\) 0 0
\(838\) −4.82588 3.37912i −0.166707 0.116730i
\(839\) −14.3198 12.0158i −0.494375 0.414830i 0.361216 0.932482i \(-0.382362\pi\)
−0.855591 + 0.517652i \(0.826806\pi\)
\(840\) 0 0
\(841\) −2.33238 + 1.34660i −0.0804269 + 0.0464345i
\(842\) 1.93690 10.9847i 0.0667498 0.378557i
\(843\) 0 0
\(844\) −6.05810 + 16.6445i −0.208528 + 0.572927i
\(845\) 26.7980 + 26.7980i 0.921880 + 0.921880i
\(846\) 0 0
\(847\) 1.39475 + 7.91000i 0.0479241 + 0.271791i
\(848\) −4.31084 5.13746i −0.148035 0.176421i
\(849\) 0 0
\(850\) 23.7118i 0.813306i
\(851\) 0.489620 17.0432i 0.0167840 0.584233i
\(852\) 0 0
\(853\) −42.3155 + 3.70213i −1.44886 + 0.126758i −0.784254 0.620440i \(-0.786954\pi\)
−0.664601 + 0.747198i \(0.731399\pi\)
\(854\) 10.2643 8.61276i 0.351237 0.294722i
\(855\) 0 0
\(856\) −8.33439 17.8732i −0.284864 0.610892i
\(857\) 22.1846 22.1846i 0.757812 0.757812i −0.218112 0.975924i \(-0.569990\pi\)
0.975924 + 0.218112i \(0.0699898\pi\)
\(858\) 0 0
\(859\) −1.91030 + 0.511864i −0.0651787 + 0.0174646i −0.291261 0.956644i \(-0.594075\pi\)
0.226082 + 0.974108i \(0.427408\pi\)
\(860\) 26.0623 + 4.59549i 0.888717 + 0.156705i
\(861\) 0 0
\(862\) 3.69903 + 2.13563i 0.125989 + 0.0727400i
\(863\) −11.2705 + 13.4316i −0.383651 + 0.457218i −0.922963 0.384888i \(-0.874240\pi\)
0.539312 + 0.842106i \(0.318684\pi\)
\(864\) 0 0
\(865\) 23.4669 + 6.28793i 0.797898 + 0.213796i
\(866\) −19.7708 9.21929i −0.671840 0.313284i
\(867\) 0 0
\(868\) 4.58121 3.20780i 0.155497 0.108880i
\(869\) 1.40588 + 0.122999i 0.0476913 + 0.00417245i
\(870\) 0 0
\(871\) −4.50146 6.42875i −0.152526 0.217830i
\(872\) −3.94640 + 1.43637i −0.133642 + 0.0486417i
\(873\) 0 0
\(874\) −2.13137 + 7.95439i −0.0720948 + 0.269061i
\(875\) −1.04165 + 1.48764i −0.0352143 + 0.0502913i
\(876\) 0 0
\(877\) 24.7178 42.8125i 0.834661 1.44567i −0.0596455 0.998220i \(-0.518997\pi\)
0.894306 0.447455i \(-0.147670\pi\)
\(878\) −4.33034 7.50037i −0.146142 0.253125i
\(879\) 0 0
\(880\) −2.16157 8.06710i −0.0728666 0.271942i
\(881\) 15.6147 + 5.68329i 0.526073 + 0.191475i 0.591384 0.806390i \(-0.298582\pi\)
−0.0653111 + 0.997865i \(0.520804\pi\)
\(882\) 0 0
\(883\) 13.8652 6.46546i 0.466602 0.217580i −0.175075 0.984555i \(-0.556017\pi\)
0.641677 + 0.766975i \(0.278239\pi\)
\(884\) 4.54740 0.801830i 0.152946 0.0269685i
\(885\) 0 0
\(886\) −1.15502 13.2020i −0.0388038 0.443530i
\(887\) 46.3541 1.55642 0.778209 0.628005i \(-0.216128\pi\)
0.778209 + 0.628005i \(0.216128\pi\)
\(888\) 0 0
\(889\) 4.83178 0.162053
\(890\) 0.692248 + 7.91243i 0.0232042 + 0.265225i
\(891\) 0 0
\(892\) −8.34125 + 1.47079i −0.279286 + 0.0492456i
\(893\) 15.4671 7.21243i 0.517587 0.241355i
\(894\) 0 0
\(895\) −35.5620 12.9435i −1.18871 0.432653i
\(896\) 0.543357 + 2.02783i 0.0181523 + 0.0677452i
\(897\) 0 0
\(898\) −4.41780 7.65185i −0.147424 0.255346i
\(899\) −6.83174 + 11.8329i −0.227851 + 0.394650i
\(900\) 0 0
\(901\) 19.3139 27.5832i 0.643441 0.918929i
\(902\) 1.46502 5.46754i 0.0487799 0.182049i
\(903\) 0 0
\(904\) 7.58029 2.75900i 0.252117 0.0917630i
\(905\) −1.87372 2.67595i −0.0622845 0.0889514i
\(906\) 0 0
\(907\) 48.1942 + 4.21645i 1.60026 + 0.140005i 0.852053 0.523456i \(-0.175358\pi\)
0.748211 + 0.663461i \(0.230913\pi\)
\(908\) −7.16651 + 5.01804i −0.237829 + 0.166530i
\(909\) 0 0
\(910\) 5.45609 + 2.54422i 0.180868 + 0.0843400i
\(911\) −46.1555 12.3673i −1.52920 0.409748i −0.606442 0.795128i \(-0.707404\pi\)
−0.922758 + 0.385380i \(0.874070\pi\)
\(912\) 0 0
\(913\) 5.49160 6.54463i 0.181745 0.216596i
\(914\) 13.0266 + 7.52093i 0.430883 + 0.248770i
\(915\) 0 0
\(916\) 21.8650 + 3.85539i 0.722440 + 0.127386i
\(917\) −14.4666 + 3.87631i −0.477729 + 0.128007i
\(918\) 0 0
\(919\) −33.2710 + 33.2710i −1.09751 + 1.09751i −0.102808 + 0.994701i \(0.532783\pi\)
−0.994701 + 0.102808i \(0.967217\pi\)
\(920\) 3.69375 + 7.92128i 0.121779 + 0.261157i
\(921\) 0 0
\(922\) 2.16895 1.81996i 0.0714304 0.0599372i
\(923\) 5.63002 0.492563i 0.185314 0.0162129i
\(924\) 0 0
\(925\) −25.6755 12.8829i −0.844205 0.423586i
\(926\) 36.3312i 1.19392i
\(927\) 0 0
\(928\) −3.29687 3.92905i −0.108225 0.128978i
\(929\) −1.27383 7.22425i −0.0417930 0.237020i 0.956755 0.290896i \(-0.0939535\pi\)
−0.998548 + 0.0538762i \(0.982842\pi\)
\(930\) 0 0
\(931\) 5.38596 + 5.38596i 0.176518 + 0.176518i
\(932\) −2.61600 + 7.18740i −0.0856899 + 0.235431i
\(933\) 0 0
\(934\) 6.23137 35.3399i 0.203897 1.15636i
\(935\) 36.3153 20.9666i 1.18764 0.685682i
\(936\) 0 0
\(937\) −15.3008 12.8389i −0.499856 0.419429i 0.357687 0.933842i \(-0.383566\pi\)
−0.857543 + 0.514413i \(0.828010\pi\)
\(938\) 14.6753 + 10.2758i 0.479167 + 0.335516i
\(939\) 0 0
\(940\) 7.65486 16.4159i 0.249674 0.535428i
\(941\) 11.9782 + 32.9099i 0.390479 + 1.07283i 0.966783 + 0.255597i \(0.0822720\pi\)
−0.576304 + 0.817235i \(0.695506\pi\)
\(942\) 0 0
\(943\) −0.516286 + 5.90117i −0.0168126 + 0.192169i
\(944\) 1.21950 13.9389i 0.0396912 0.453673i
\(945\) 0 0
\(946\) 7.77509 + 21.3619i 0.252790 + 0.694535i
\(947\) 11.8786 25.4738i 0.386004 0.827788i −0.613277 0.789868i \(-0.710149\pi\)
0.999281 0.0379202i \(-0.0120733\pi\)
\(948\) 0 0
\(949\) −6.79259 4.75622i −0.220497 0.154393i
\(950\) 10.6284 + 8.91826i 0.344830 + 0.289347i
\(951\) 0 0
\(952\) −9.12861 + 5.27040i −0.295860 + 0.170815i
\(953\) 8.04858 45.6458i 0.260719 1.47861i −0.520235 0.854023i \(-0.674156\pi\)
0.780954 0.624588i \(-0.214733\pi\)
\(954\) 0 0
\(955\) −24.5080 + 67.3353i −0.793061 + 2.17892i
\(956\) −10.3244 10.3244i −0.333915 0.333915i
\(957\) 0 0
\(958\) 4.54381 + 25.7692i 0.146804 + 0.832566i
\(959\) 15.0405 + 17.9246i 0.485684 + 0.578816i
\(960\) 0 0
\(961\) 23.9033i 0.771075i
\(962\) 1.60242 5.35965i 0.0516642 0.172802i
\(963\) 0 0
\(964\) 26.4890 2.31749i 0.853155 0.0746414i
\(965\) 25.0959 21.0579i 0.807865 0.677879i
\(966\) 0 0
\(967\) −11.3390 24.3166i −0.364638 0.781968i −0.999953 0.00971516i \(-0.996908\pi\)
0.635315 0.772253i \(-0.280870\pi\)
\(968\) −2.70534 + 2.70534i −0.0869528 + 0.0869528i
\(969\) 0 0
\(970\) 36.5379 9.79031i 1.17316 0.314348i
\(971\) 37.4251 + 6.59905i 1.20103 + 0.211773i 0.738142 0.674645i \(-0.235703\pi\)
0.462885 + 0.886418i \(0.346814\pi\)
\(972\) 0 0
\(973\) −36.4824 21.0631i −1.16957 0.675253i
\(974\) 0.626902 0.747112i 0.0200872 0.0239390i
\(975\) 0 0
\(976\) 6.16495 + 1.65189i 0.197335 + 0.0528758i
\(977\) −29.6850 13.8424i −0.949708 0.442856i −0.114888 0.993378i \(-0.536651\pi\)
−0.834821 + 0.550522i \(0.814429\pi\)
\(978\) 0 0
\(979\) −5.58885 + 3.91336i −0.178620 + 0.125071i
\(980\) 8.05339 + 0.704581i 0.257256 + 0.0225070i
\(981\) 0 0
\(982\) −24.6439 35.1952i −0.786420 1.12312i
\(983\) 36.4512 13.2672i 1.16261 0.423157i 0.312583 0.949890i \(-0.398806\pi\)
0.850030 + 0.526734i \(0.176583\pi\)
\(984\) 0 0
\(985\) 20.1785 75.3072i 0.642941 2.39949i
\(986\) 14.7710 21.0952i 0.470405 0.671808i
\(987\) 0 0
\(988\) −1.35093 + 2.33987i −0.0429787 + 0.0744412i
\(989\) −11.8951 20.6030i −0.378243 0.655137i
\(990\) 0 0
\(991\) −2.84466 10.6164i −0.0903635 0.337241i 0.905912 0.423465i \(-0.139187\pi\)
−0.996276 + 0.0862243i \(0.972520\pi\)
\(992\) 2.50330 + 0.911127i 0.0794799 + 0.0289283i
\(993\) 0 0
\(994\) −11.6924 + 5.45225i −0.370860 + 0.172935i
\(995\) −2.83616 + 0.500092i −0.0899124 + 0.0158540i
\(996\) 0 0
\(997\) 2.89369 + 33.0750i 0.0916441 + 1.04750i 0.893225 + 0.449610i \(0.148437\pi\)
−0.801581 + 0.597886i \(0.796007\pi\)
\(998\) 12.7558 0.403777
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 666.2.bs.a.611.3 yes 72
3.2 odd 2 inner 666.2.bs.a.611.4 yes 72
37.2 odd 36 inner 666.2.bs.a.557.4 yes 72
111.2 even 36 inner 666.2.bs.a.557.3 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.bs.a.557.3 72 111.2 even 36 inner
666.2.bs.a.557.4 yes 72 37.2 odd 36 inner
666.2.bs.a.611.3 yes 72 1.1 even 1 trivial
666.2.bs.a.611.4 yes 72 3.2 odd 2 inner