Properties

Label 6640.2.a.bb.1.4
Level $6640$
Weight $2$
Character 6640.1
Self dual yes
Analytic conductor $53.021$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6640,2,Mod(1,6640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6640.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6640, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6640 = 2^{4} \cdot 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6640.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,-6,0,0,0,9,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.0206669421\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7783241.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 9x^{3} + 5x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 415)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.92537\) of defining polynomial
Character \(\chi\) \(=\) 6640.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.431741 q^{3} -1.00000 q^{5} +3.01948 q^{7} -2.81360 q^{9} -0.386511 q^{11} +6.99372 q^{13} +0.431741 q^{15} +6.58773 q^{17} +5.57007 q^{19} -1.30363 q^{21} -2.83126 q^{23} +1.00000 q^{25} +2.50997 q^{27} +6.46422 q^{29} -3.65295 q^{31} +0.166873 q^{33} -3.01948 q^{35} -2.48887 q^{37} -3.01948 q^{39} +8.52322 q^{41} -6.95309 q^{43} +2.81360 q^{45} -1.08451 q^{47} +2.11723 q^{49} -2.84419 q^{51} +5.27625 q^{53} +0.386511 q^{55} -2.40483 q^{57} -4.70284 q^{59} +5.05383 q^{61} -8.49559 q^{63} -6.99372 q^{65} -4.19631 q^{67} +1.22237 q^{69} +10.3287 q^{71} -13.8414 q^{73} -0.431741 q^{75} -1.16706 q^{77} -7.75829 q^{79} +7.35714 q^{81} -1.00000 q^{83} -6.58773 q^{85} -2.79087 q^{87} +0.0634123 q^{89} +21.1174 q^{91} +1.57713 q^{93} -5.57007 q^{95} +6.29407 q^{97} +1.08749 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 6 q^{5} + 9 q^{9} - 4 q^{11} + 7 q^{13} + 3 q^{15} + 21 q^{17} - 2 q^{19} - 9 q^{21} - 8 q^{23} + 6 q^{25} - 12 q^{27} + 10 q^{29} + 13 q^{31} + 6 q^{33} + q^{37} + 10 q^{41} + 3 q^{43}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.431741 −0.249266 −0.124633 0.992203i \(-0.539775\pi\)
−0.124633 + 0.992203i \(0.539775\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.01948 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(8\) 0 0
\(9\) −2.81360 −0.937867
\(10\) 0 0
\(11\) −0.386511 −0.116537 −0.0582687 0.998301i \(-0.518558\pi\)
−0.0582687 + 0.998301i \(0.518558\pi\)
\(12\) 0 0
\(13\) 6.99372 1.93971 0.969855 0.243685i \(-0.0783562\pi\)
0.969855 + 0.243685i \(0.0783562\pi\)
\(14\) 0 0
\(15\) 0.431741 0.111475
\(16\) 0 0
\(17\) 6.58773 1.59776 0.798880 0.601490i \(-0.205426\pi\)
0.798880 + 0.601490i \(0.205426\pi\)
\(18\) 0 0
\(19\) 5.57007 1.27786 0.638931 0.769264i \(-0.279377\pi\)
0.638931 + 0.769264i \(0.279377\pi\)
\(20\) 0 0
\(21\) −1.30363 −0.284476
\(22\) 0 0
\(23\) −2.83126 −0.590359 −0.295179 0.955442i \(-0.595379\pi\)
−0.295179 + 0.955442i \(0.595379\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.50997 0.483044
\(28\) 0 0
\(29\) 6.46422 1.20038 0.600188 0.799859i \(-0.295092\pi\)
0.600188 + 0.799859i \(0.295092\pi\)
\(30\) 0 0
\(31\) −3.65295 −0.656090 −0.328045 0.944662i \(-0.606390\pi\)
−0.328045 + 0.944662i \(0.606390\pi\)
\(32\) 0 0
\(33\) 0.166873 0.0290488
\(34\) 0 0
\(35\) −3.01948 −0.510384
\(36\) 0 0
\(37\) −2.48887 −0.409167 −0.204584 0.978849i \(-0.565584\pi\)
−0.204584 + 0.978849i \(0.565584\pi\)
\(38\) 0 0
\(39\) −3.01948 −0.483503
\(40\) 0 0
\(41\) 8.52322 1.33110 0.665551 0.746352i \(-0.268196\pi\)
0.665551 + 0.746352i \(0.268196\pi\)
\(42\) 0 0
\(43\) −6.95309 −1.06034 −0.530168 0.847893i \(-0.677871\pi\)
−0.530168 + 0.847893i \(0.677871\pi\)
\(44\) 0 0
\(45\) 2.81360 0.419427
\(46\) 0 0
\(47\) −1.08451 −0.158192 −0.0790958 0.996867i \(-0.525203\pi\)
−0.0790958 + 0.996867i \(0.525203\pi\)
\(48\) 0 0
\(49\) 2.11723 0.302462
\(50\) 0 0
\(51\) −2.84419 −0.398267
\(52\) 0 0
\(53\) 5.27625 0.724749 0.362374 0.932033i \(-0.381966\pi\)
0.362374 + 0.932033i \(0.381966\pi\)
\(54\) 0 0
\(55\) 0.386511 0.0521171
\(56\) 0 0
\(57\) −2.40483 −0.318527
\(58\) 0 0
\(59\) −4.70284 −0.612257 −0.306129 0.951990i \(-0.599034\pi\)
−0.306129 + 0.951990i \(0.599034\pi\)
\(60\) 0 0
\(61\) 5.05383 0.647076 0.323538 0.946215i \(-0.395128\pi\)
0.323538 + 0.946215i \(0.395128\pi\)
\(62\) 0 0
\(63\) −8.49559 −1.07034
\(64\) 0 0
\(65\) −6.99372 −0.867464
\(66\) 0 0
\(67\) −4.19631 −0.512661 −0.256330 0.966589i \(-0.582514\pi\)
−0.256330 + 0.966589i \(0.582514\pi\)
\(68\) 0 0
\(69\) 1.22237 0.147156
\(70\) 0 0
\(71\) 10.3287 1.22579 0.612897 0.790163i \(-0.290004\pi\)
0.612897 + 0.790163i \(0.290004\pi\)
\(72\) 0 0
\(73\) −13.8414 −1.62001 −0.810004 0.586424i \(-0.800535\pi\)
−0.810004 + 0.586424i \(0.800535\pi\)
\(74\) 0 0
\(75\) −0.431741 −0.0498531
\(76\) 0 0
\(77\) −1.16706 −0.132999
\(78\) 0 0
\(79\) −7.75829 −0.872876 −0.436438 0.899734i \(-0.643760\pi\)
−0.436438 + 0.899734i \(0.643760\pi\)
\(80\) 0 0
\(81\) 7.35714 0.817460
\(82\) 0 0
\(83\) −1.00000 −0.109764
\(84\) 0 0
\(85\) −6.58773 −0.714540
\(86\) 0 0
\(87\) −2.79087 −0.299213
\(88\) 0 0
\(89\) 0.0634123 0.00672169 0.00336084 0.999994i \(-0.498930\pi\)
0.00336084 + 0.999994i \(0.498930\pi\)
\(90\) 0 0
\(91\) 21.1174 2.21370
\(92\) 0 0
\(93\) 1.57713 0.163541
\(94\) 0 0
\(95\) −5.57007 −0.571478
\(96\) 0 0
\(97\) 6.29407 0.639066 0.319533 0.947575i \(-0.396474\pi\)
0.319533 + 0.947575i \(0.396474\pi\)
\(98\) 0 0
\(99\) 1.08749 0.109297
\(100\) 0 0
\(101\) −5.38701 −0.536028 −0.268014 0.963415i \(-0.586367\pi\)
−0.268014 + 0.963415i \(0.586367\pi\)
\(102\) 0 0
\(103\) 9.41240 0.927431 0.463716 0.885984i \(-0.346516\pi\)
0.463716 + 0.885984i \(0.346516\pi\)
\(104\) 0 0
\(105\) 1.30363 0.127221
\(106\) 0 0
\(107\) −13.1270 −1.26903 −0.634517 0.772909i \(-0.718801\pi\)
−0.634517 + 0.772909i \(0.718801\pi\)
\(108\) 0 0
\(109\) −16.5975 −1.58975 −0.794876 0.606773i \(-0.792464\pi\)
−0.794876 + 0.606773i \(0.792464\pi\)
\(110\) 0 0
\(111\) 1.07455 0.101991
\(112\) 0 0
\(113\) −4.56004 −0.428972 −0.214486 0.976727i \(-0.568808\pi\)
−0.214486 + 0.976727i \(0.568808\pi\)
\(114\) 0 0
\(115\) 2.83126 0.264016
\(116\) 0 0
\(117\) −19.6775 −1.81919
\(118\) 0 0
\(119\) 19.8915 1.82345
\(120\) 0 0
\(121\) −10.8506 −0.986419
\(122\) 0 0
\(123\) −3.67982 −0.331798
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 5.94008 0.527097 0.263549 0.964646i \(-0.415107\pi\)
0.263549 + 0.964646i \(0.415107\pi\)
\(128\) 0 0
\(129\) 3.00193 0.264306
\(130\) 0 0
\(131\) 13.6795 1.19518 0.597590 0.801802i \(-0.296125\pi\)
0.597590 + 0.801802i \(0.296125\pi\)
\(132\) 0 0
\(133\) 16.8187 1.45837
\(134\) 0 0
\(135\) −2.50997 −0.216024
\(136\) 0 0
\(137\) 21.1218 1.80456 0.902278 0.431155i \(-0.141894\pi\)
0.902278 + 0.431155i \(0.141894\pi\)
\(138\) 0 0
\(139\) −9.91452 −0.840939 −0.420469 0.907307i \(-0.638135\pi\)
−0.420469 + 0.907307i \(0.638135\pi\)
\(140\) 0 0
\(141\) 0.468226 0.0394318
\(142\) 0 0
\(143\) −2.70315 −0.226049
\(144\) 0 0
\(145\) −6.46422 −0.536825
\(146\) 0 0
\(147\) −0.914095 −0.0753933
\(148\) 0 0
\(149\) 17.7934 1.45769 0.728847 0.684677i \(-0.240057\pi\)
0.728847 + 0.684677i \(0.240057\pi\)
\(150\) 0 0
\(151\) 16.2437 1.32189 0.660945 0.750434i \(-0.270155\pi\)
0.660945 + 0.750434i \(0.270155\pi\)
\(152\) 0 0
\(153\) −18.5352 −1.49849
\(154\) 0 0
\(155\) 3.65295 0.293412
\(156\) 0 0
\(157\) −10.1188 −0.807572 −0.403786 0.914854i \(-0.632306\pi\)
−0.403786 + 0.914854i \(0.632306\pi\)
\(158\) 0 0
\(159\) −2.27797 −0.180655
\(160\) 0 0
\(161\) −8.54892 −0.673749
\(162\) 0 0
\(163\) −16.9814 −1.33008 −0.665041 0.746806i \(-0.731586\pi\)
−0.665041 + 0.746806i \(0.731586\pi\)
\(164\) 0 0
\(165\) −0.166873 −0.0129910
\(166\) 0 0
\(167\) 4.22535 0.326967 0.163484 0.986546i \(-0.447727\pi\)
0.163484 + 0.986546i \(0.447727\pi\)
\(168\) 0 0
\(169\) 35.9121 2.76247
\(170\) 0 0
\(171\) −15.6720 −1.19846
\(172\) 0 0
\(173\) 5.62999 0.428040 0.214020 0.976829i \(-0.431344\pi\)
0.214020 + 0.976829i \(0.431344\pi\)
\(174\) 0 0
\(175\) 3.01948 0.228251
\(176\) 0 0
\(177\) 2.03041 0.152615
\(178\) 0 0
\(179\) 19.6729 1.47042 0.735210 0.677839i \(-0.237084\pi\)
0.735210 + 0.677839i \(0.237084\pi\)
\(180\) 0 0
\(181\) 12.0848 0.898256 0.449128 0.893467i \(-0.351735\pi\)
0.449128 + 0.893467i \(0.351735\pi\)
\(182\) 0 0
\(183\) −2.18194 −0.161294
\(184\) 0 0
\(185\) 2.48887 0.182985
\(186\) 0 0
\(187\) −2.54623 −0.186199
\(188\) 0 0
\(189\) 7.57879 0.551276
\(190\) 0 0
\(191\) −25.1044 −1.81649 −0.908246 0.418437i \(-0.862578\pi\)
−0.908246 + 0.418437i \(0.862578\pi\)
\(192\) 0 0
\(193\) 5.20785 0.374869 0.187435 0.982277i \(-0.439983\pi\)
0.187435 + 0.982277i \(0.439983\pi\)
\(194\) 0 0
\(195\) 3.01948 0.216229
\(196\) 0 0
\(197\) 14.6607 1.04453 0.522267 0.852782i \(-0.325087\pi\)
0.522267 + 0.852782i \(0.325087\pi\)
\(198\) 0 0
\(199\) 16.2836 1.15432 0.577159 0.816632i \(-0.304161\pi\)
0.577159 + 0.816632i \(0.304161\pi\)
\(200\) 0 0
\(201\) 1.81172 0.127789
\(202\) 0 0
\(203\) 19.5186 1.36993
\(204\) 0 0
\(205\) −8.52322 −0.595287
\(206\) 0 0
\(207\) 7.96603 0.553678
\(208\) 0 0
\(209\) −2.15289 −0.148919
\(210\) 0 0
\(211\) −8.44791 −0.581578 −0.290789 0.956787i \(-0.593918\pi\)
−0.290789 + 0.956787i \(0.593918\pi\)
\(212\) 0 0
\(213\) −4.45933 −0.305548
\(214\) 0 0
\(215\) 6.95309 0.474197
\(216\) 0 0
\(217\) −11.0300 −0.748766
\(218\) 0 0
\(219\) 5.97588 0.403813
\(220\) 0 0
\(221\) 46.0728 3.09919
\(222\) 0 0
\(223\) −12.9884 −0.869765 −0.434882 0.900487i \(-0.643210\pi\)
−0.434882 + 0.900487i \(0.643210\pi\)
\(224\) 0 0
\(225\) −2.81360 −0.187573
\(226\) 0 0
\(227\) 22.1599 1.47080 0.735401 0.677632i \(-0.236994\pi\)
0.735401 + 0.677632i \(0.236994\pi\)
\(228\) 0 0
\(229\) −9.23725 −0.610414 −0.305207 0.952286i \(-0.598726\pi\)
−0.305207 + 0.952286i \(0.598726\pi\)
\(230\) 0 0
\(231\) 0.503868 0.0331521
\(232\) 0 0
\(233\) 10.6482 0.697584 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(234\) 0 0
\(235\) 1.08451 0.0707455
\(236\) 0 0
\(237\) 3.34957 0.217578
\(238\) 0 0
\(239\) 20.4925 1.32555 0.662775 0.748819i \(-0.269379\pi\)
0.662775 + 0.748819i \(0.269379\pi\)
\(240\) 0 0
\(241\) −1.19273 −0.0768303 −0.0384151 0.999262i \(-0.512231\pi\)
−0.0384151 + 0.999262i \(0.512231\pi\)
\(242\) 0 0
\(243\) −10.7063 −0.686809
\(244\) 0 0
\(245\) −2.11723 −0.135265
\(246\) 0 0
\(247\) 38.9555 2.47868
\(248\) 0 0
\(249\) 0.431741 0.0273605
\(250\) 0 0
\(251\) −12.4779 −0.787598 −0.393799 0.919197i \(-0.628839\pi\)
−0.393799 + 0.919197i \(0.628839\pi\)
\(252\) 0 0
\(253\) 1.09431 0.0687989
\(254\) 0 0
\(255\) 2.84419 0.178110
\(256\) 0 0
\(257\) −1.18701 −0.0740434 −0.0370217 0.999314i \(-0.511787\pi\)
−0.0370217 + 0.999314i \(0.511787\pi\)
\(258\) 0 0
\(259\) −7.51507 −0.466964
\(260\) 0 0
\(261\) −18.1877 −1.12579
\(262\) 0 0
\(263\) 28.3723 1.74951 0.874757 0.484562i \(-0.161021\pi\)
0.874757 + 0.484562i \(0.161021\pi\)
\(264\) 0 0
\(265\) −5.27625 −0.324117
\(266\) 0 0
\(267\) −0.0273777 −0.00167549
\(268\) 0 0
\(269\) 0.759625 0.0463152 0.0231576 0.999732i \(-0.492628\pi\)
0.0231576 + 0.999732i \(0.492628\pi\)
\(270\) 0 0
\(271\) −10.0695 −0.611678 −0.305839 0.952083i \(-0.598937\pi\)
−0.305839 + 0.952083i \(0.598937\pi\)
\(272\) 0 0
\(273\) −9.11723 −0.551800
\(274\) 0 0
\(275\) −0.386511 −0.0233075
\(276\) 0 0
\(277\) 3.70252 0.222463 0.111232 0.993795i \(-0.464520\pi\)
0.111232 + 0.993795i \(0.464520\pi\)
\(278\) 0 0
\(279\) 10.2780 0.615325
\(280\) 0 0
\(281\) −4.53568 −0.270576 −0.135288 0.990806i \(-0.543196\pi\)
−0.135288 + 0.990806i \(0.543196\pi\)
\(282\) 0 0
\(283\) −27.3069 −1.62323 −0.811614 0.584194i \(-0.801411\pi\)
−0.811614 + 0.584194i \(0.801411\pi\)
\(284\) 0 0
\(285\) 2.40483 0.142450
\(286\) 0 0
\(287\) 25.7356 1.51913
\(288\) 0 0
\(289\) 26.3982 1.55284
\(290\) 0 0
\(291\) −2.71741 −0.159297
\(292\) 0 0
\(293\) −20.2487 −1.18294 −0.591471 0.806326i \(-0.701453\pi\)
−0.591471 + 0.806326i \(0.701453\pi\)
\(294\) 0 0
\(295\) 4.70284 0.273810
\(296\) 0 0
\(297\) −0.970131 −0.0562927
\(298\) 0 0
\(299\) −19.8010 −1.14512
\(300\) 0 0
\(301\) −20.9947 −1.21011
\(302\) 0 0
\(303\) 2.32579 0.133613
\(304\) 0 0
\(305\) −5.05383 −0.289381
\(306\) 0 0
\(307\) −27.4709 −1.56785 −0.783925 0.620856i \(-0.786785\pi\)
−0.783925 + 0.620856i \(0.786785\pi\)
\(308\) 0 0
\(309\) −4.06372 −0.231177
\(310\) 0 0
\(311\) −4.51650 −0.256107 −0.128053 0.991767i \(-0.540873\pi\)
−0.128053 + 0.991767i \(0.540873\pi\)
\(312\) 0 0
\(313\) 3.91415 0.221241 0.110620 0.993863i \(-0.464716\pi\)
0.110620 + 0.993863i \(0.464716\pi\)
\(314\) 0 0
\(315\) 8.49559 0.478673
\(316\) 0 0
\(317\) −15.5806 −0.875095 −0.437548 0.899195i \(-0.644153\pi\)
−0.437548 + 0.899195i \(0.644153\pi\)
\(318\) 0 0
\(319\) −2.49849 −0.139889
\(320\) 0 0
\(321\) 5.66746 0.316327
\(322\) 0 0
\(323\) 36.6942 2.04172
\(324\) 0 0
\(325\) 6.99372 0.387942
\(326\) 0 0
\(327\) 7.16581 0.396270
\(328\) 0 0
\(329\) −3.27464 −0.180537
\(330\) 0 0
\(331\) −12.4747 −0.685672 −0.342836 0.939395i \(-0.611388\pi\)
−0.342836 + 0.939395i \(0.611388\pi\)
\(332\) 0 0
\(333\) 7.00267 0.383744
\(334\) 0 0
\(335\) 4.19631 0.229269
\(336\) 0 0
\(337\) 15.2315 0.829712 0.414856 0.909887i \(-0.363832\pi\)
0.414856 + 0.909887i \(0.363832\pi\)
\(338\) 0 0
\(339\) 1.96876 0.106928
\(340\) 0 0
\(341\) 1.41191 0.0764591
\(342\) 0 0
\(343\) −14.7434 −0.796069
\(344\) 0 0
\(345\) −1.22237 −0.0658102
\(346\) 0 0
\(347\) 10.9993 0.590472 0.295236 0.955424i \(-0.404602\pi\)
0.295236 + 0.955424i \(0.404602\pi\)
\(348\) 0 0
\(349\) −17.1177 −0.916288 −0.458144 0.888878i \(-0.651486\pi\)
−0.458144 + 0.888878i \(0.651486\pi\)
\(350\) 0 0
\(351\) 17.5540 0.936964
\(352\) 0 0
\(353\) 13.7837 0.733631 0.366816 0.930294i \(-0.380448\pi\)
0.366816 + 0.930294i \(0.380448\pi\)
\(354\) 0 0
\(355\) −10.3287 −0.548192
\(356\) 0 0
\(357\) −8.58797 −0.454524
\(358\) 0 0
\(359\) 5.87777 0.310217 0.155109 0.987897i \(-0.450427\pi\)
0.155109 + 0.987897i \(0.450427\pi\)
\(360\) 0 0
\(361\) 12.0257 0.632933
\(362\) 0 0
\(363\) 4.68465 0.245880
\(364\) 0 0
\(365\) 13.8414 0.724490
\(366\) 0 0
\(367\) −7.31349 −0.381761 −0.190880 0.981613i \(-0.561134\pi\)
−0.190880 + 0.981613i \(0.561134\pi\)
\(368\) 0 0
\(369\) −23.9809 −1.24840
\(370\) 0 0
\(371\) 15.9315 0.827122
\(372\) 0 0
\(373\) 1.89691 0.0982185 0.0491092 0.998793i \(-0.484362\pi\)
0.0491092 + 0.998793i \(0.484362\pi\)
\(374\) 0 0
\(375\) 0.431741 0.0222950
\(376\) 0 0
\(377\) 45.2090 2.32838
\(378\) 0 0
\(379\) 34.6799 1.78139 0.890693 0.454605i \(-0.150219\pi\)
0.890693 + 0.454605i \(0.150219\pi\)
\(380\) 0 0
\(381\) −2.56458 −0.131387
\(382\) 0 0
\(383\) 1.13468 0.0579796 0.0289898 0.999580i \(-0.490771\pi\)
0.0289898 + 0.999580i \(0.490771\pi\)
\(384\) 0 0
\(385\) 1.16706 0.0594789
\(386\) 0 0
\(387\) 19.5632 0.994454
\(388\) 0 0
\(389\) 13.4060 0.679709 0.339855 0.940478i \(-0.389622\pi\)
0.339855 + 0.940478i \(0.389622\pi\)
\(390\) 0 0
\(391\) −18.6516 −0.943251
\(392\) 0 0
\(393\) −5.90598 −0.297917
\(394\) 0 0
\(395\) 7.75829 0.390362
\(396\) 0 0
\(397\) −24.1747 −1.21329 −0.606647 0.794972i \(-0.707486\pi\)
−0.606647 + 0.794972i \(0.707486\pi\)
\(398\) 0 0
\(399\) −7.26132 −0.363521
\(400\) 0 0
\(401\) 16.0221 0.800105 0.400053 0.916492i \(-0.368992\pi\)
0.400053 + 0.916492i \(0.368992\pi\)
\(402\) 0 0
\(403\) −25.5477 −1.27262
\(404\) 0 0
\(405\) −7.35714 −0.365579
\(406\) 0 0
\(407\) 0.961974 0.0476833
\(408\) 0 0
\(409\) 15.4202 0.762480 0.381240 0.924476i \(-0.375497\pi\)
0.381240 + 0.924476i \(0.375497\pi\)
\(410\) 0 0
\(411\) −9.11914 −0.449814
\(412\) 0 0
\(413\) −14.2001 −0.698741
\(414\) 0 0
\(415\) 1.00000 0.0490881
\(416\) 0 0
\(417\) 4.28051 0.209617
\(418\) 0 0
\(419\) −6.59479 −0.322177 −0.161088 0.986940i \(-0.551500\pi\)
−0.161088 + 0.986940i \(0.551500\pi\)
\(420\) 0 0
\(421\) −36.1505 −1.76187 −0.880934 0.473240i \(-0.843084\pi\)
−0.880934 + 0.473240i \(0.843084\pi\)
\(422\) 0 0
\(423\) 3.05137 0.148363
\(424\) 0 0
\(425\) 6.58773 0.319552
\(426\) 0 0
\(427\) 15.2599 0.738478
\(428\) 0 0
\(429\) 1.16706 0.0563462
\(430\) 0 0
\(431\) −25.4782 −1.22724 −0.613622 0.789600i \(-0.710288\pi\)
−0.613622 + 0.789600i \(0.710288\pi\)
\(432\) 0 0
\(433\) 14.7128 0.707053 0.353527 0.935424i \(-0.384982\pi\)
0.353527 + 0.935424i \(0.384982\pi\)
\(434\) 0 0
\(435\) 2.79087 0.133812
\(436\) 0 0
\(437\) −15.7703 −0.754397
\(438\) 0 0
\(439\) −6.66548 −0.318126 −0.159063 0.987268i \(-0.550847\pi\)
−0.159063 + 0.987268i \(0.550847\pi\)
\(440\) 0 0
\(441\) −5.95704 −0.283669
\(442\) 0 0
\(443\) −0.549488 −0.0261070 −0.0130535 0.999915i \(-0.504155\pi\)
−0.0130535 + 0.999915i \(0.504155\pi\)
\(444\) 0 0
\(445\) −0.0634123 −0.00300603
\(446\) 0 0
\(447\) −7.68215 −0.363353
\(448\) 0 0
\(449\) −4.52148 −0.213382 −0.106691 0.994292i \(-0.534026\pi\)
−0.106691 + 0.994292i \(0.534026\pi\)
\(450\) 0 0
\(451\) −3.29432 −0.155123
\(452\) 0 0
\(453\) −7.01306 −0.329502
\(454\) 0 0
\(455\) −21.1174 −0.989997
\(456\) 0 0
\(457\) 32.9160 1.53974 0.769872 0.638199i \(-0.220320\pi\)
0.769872 + 0.638199i \(0.220320\pi\)
\(458\) 0 0
\(459\) 16.5350 0.771788
\(460\) 0 0
\(461\) −0.628370 −0.0292661 −0.0146331 0.999893i \(-0.504658\pi\)
−0.0146331 + 0.999893i \(0.504658\pi\)
\(462\) 0 0
\(463\) −21.2255 −0.986432 −0.493216 0.869907i \(-0.664179\pi\)
−0.493216 + 0.869907i \(0.664179\pi\)
\(464\) 0 0
\(465\) −1.57713 −0.0731376
\(466\) 0 0
\(467\) −35.7171 −1.65279 −0.826396 0.563089i \(-0.809613\pi\)
−0.826396 + 0.563089i \(0.809613\pi\)
\(468\) 0 0
\(469\) −12.6707 −0.585076
\(470\) 0 0
\(471\) 4.36872 0.201300
\(472\) 0 0
\(473\) 2.68745 0.123569
\(474\) 0 0
\(475\) 5.57007 0.255573
\(476\) 0 0
\(477\) −14.8453 −0.679717
\(478\) 0 0
\(479\) 24.3814 1.11401 0.557007 0.830508i \(-0.311950\pi\)
0.557007 + 0.830508i \(0.311950\pi\)
\(480\) 0 0
\(481\) −17.4064 −0.793665
\(482\) 0 0
\(483\) 3.69092 0.167943
\(484\) 0 0
\(485\) −6.29407 −0.285799
\(486\) 0 0
\(487\) 23.1661 1.04976 0.524879 0.851177i \(-0.324111\pi\)
0.524879 + 0.851177i \(0.324111\pi\)
\(488\) 0 0
\(489\) 7.33155 0.331544
\(490\) 0 0
\(491\) −0.895629 −0.0404192 −0.0202096 0.999796i \(-0.506433\pi\)
−0.0202096 + 0.999796i \(0.506433\pi\)
\(492\) 0 0
\(493\) 42.5846 1.91791
\(494\) 0 0
\(495\) −1.08749 −0.0488789
\(496\) 0 0
\(497\) 31.1873 1.39894
\(498\) 0 0
\(499\) 11.8061 0.528514 0.264257 0.964452i \(-0.414873\pi\)
0.264257 + 0.964452i \(0.414873\pi\)
\(500\) 0 0
\(501\) −1.82426 −0.0815018
\(502\) 0 0
\(503\) 19.7931 0.882531 0.441265 0.897377i \(-0.354530\pi\)
0.441265 + 0.897377i \(0.354530\pi\)
\(504\) 0 0
\(505\) 5.38701 0.239719
\(506\) 0 0
\(507\) −15.5047 −0.688589
\(508\) 0 0
\(509\) 3.69547 0.163799 0.0818995 0.996641i \(-0.473901\pi\)
0.0818995 + 0.996641i \(0.473901\pi\)
\(510\) 0 0
\(511\) −41.7936 −1.84884
\(512\) 0 0
\(513\) 13.9807 0.617264
\(514\) 0 0
\(515\) −9.41240 −0.414760
\(516\) 0 0
\(517\) 0.419174 0.0184353
\(518\) 0 0
\(519\) −2.43070 −0.106696
\(520\) 0 0
\(521\) 17.7211 0.776376 0.388188 0.921580i \(-0.373101\pi\)
0.388188 + 0.921580i \(0.373101\pi\)
\(522\) 0 0
\(523\) 31.6186 1.38258 0.691292 0.722575i \(-0.257042\pi\)
0.691292 + 0.722575i \(0.257042\pi\)
\(524\) 0 0
\(525\) −1.30363 −0.0568951
\(526\) 0 0
\(527\) −24.0647 −1.04827
\(528\) 0 0
\(529\) −14.9840 −0.651477
\(530\) 0 0
\(531\) 13.2319 0.574216
\(532\) 0 0
\(533\) 59.6090 2.58195
\(534\) 0 0
\(535\) 13.1270 0.567529
\(536\) 0 0
\(537\) −8.49359 −0.366525
\(538\) 0 0
\(539\) −0.818333 −0.0352481
\(540\) 0 0
\(541\) 4.35506 0.187239 0.0936193 0.995608i \(-0.470156\pi\)
0.0936193 + 0.995608i \(0.470156\pi\)
\(542\) 0 0
\(543\) −5.21750 −0.223904
\(544\) 0 0
\(545\) 16.5975 0.710958
\(546\) 0 0
\(547\) 42.4490 1.81499 0.907493 0.420067i \(-0.137993\pi\)
0.907493 + 0.420067i \(0.137993\pi\)
\(548\) 0 0
\(549\) −14.2194 −0.606871
\(550\) 0 0
\(551\) 36.0062 1.53392
\(552\) 0 0
\(553\) −23.4260 −0.996173
\(554\) 0 0
\(555\) −1.07455 −0.0456119
\(556\) 0 0
\(557\) −6.63302 −0.281050 −0.140525 0.990077i \(-0.544879\pi\)
−0.140525 + 0.990077i \(0.544879\pi\)
\(558\) 0 0
\(559\) −48.6280 −2.05674
\(560\) 0 0
\(561\) 1.09931 0.0464130
\(562\) 0 0
\(563\) −35.7791 −1.50791 −0.753955 0.656927i \(-0.771856\pi\)
−0.753955 + 0.656927i \(0.771856\pi\)
\(564\) 0 0
\(565\) 4.56004 0.191842
\(566\) 0 0
\(567\) 22.2147 0.932930
\(568\) 0 0
\(569\) −35.5696 −1.49116 −0.745578 0.666419i \(-0.767826\pi\)
−0.745578 + 0.666419i \(0.767826\pi\)
\(570\) 0 0
\(571\) 20.4274 0.854858 0.427429 0.904049i \(-0.359419\pi\)
0.427429 + 0.904049i \(0.359419\pi\)
\(572\) 0 0
\(573\) 10.8386 0.452789
\(574\) 0 0
\(575\) −2.83126 −0.118072
\(576\) 0 0
\(577\) 30.7540 1.28030 0.640152 0.768248i \(-0.278871\pi\)
0.640152 + 0.768248i \(0.278871\pi\)
\(578\) 0 0
\(579\) −2.24844 −0.0934420
\(580\) 0 0
\(581\) −3.01948 −0.125269
\(582\) 0 0
\(583\) −2.03933 −0.0844604
\(584\) 0 0
\(585\) 19.6775 0.813566
\(586\) 0 0
\(587\) 47.9182 1.97780 0.988898 0.148595i \(-0.0474751\pi\)
0.988898 + 0.148595i \(0.0474751\pi\)
\(588\) 0 0
\(589\) −20.3472 −0.838393
\(590\) 0 0
\(591\) −6.32963 −0.260366
\(592\) 0 0
\(593\) −17.1170 −0.702910 −0.351455 0.936205i \(-0.614313\pi\)
−0.351455 + 0.936205i \(0.614313\pi\)
\(594\) 0 0
\(595\) −19.8915 −0.815472
\(596\) 0 0
\(597\) −7.03032 −0.287732
\(598\) 0 0
\(599\) −1.61307 −0.0659081 −0.0329540 0.999457i \(-0.510491\pi\)
−0.0329540 + 0.999457i \(0.510491\pi\)
\(600\) 0 0
\(601\) −44.6538 −1.82147 −0.910734 0.412994i \(-0.864483\pi\)
−0.910734 + 0.412994i \(0.864483\pi\)
\(602\) 0 0
\(603\) 11.8067 0.480807
\(604\) 0 0
\(605\) 10.8506 0.441140
\(606\) 0 0
\(607\) 44.2902 1.79768 0.898841 0.438274i \(-0.144410\pi\)
0.898841 + 0.438274i \(0.144410\pi\)
\(608\) 0 0
\(609\) −8.42696 −0.341478
\(610\) 0 0
\(611\) −7.58474 −0.306846
\(612\) 0 0
\(613\) −44.7545 −1.80762 −0.903808 0.427939i \(-0.859240\pi\)
−0.903808 + 0.427939i \(0.859240\pi\)
\(614\) 0 0
\(615\) 3.67982 0.148385
\(616\) 0 0
\(617\) 2.19344 0.0883047 0.0441523 0.999025i \(-0.485941\pi\)
0.0441523 + 0.999025i \(0.485941\pi\)
\(618\) 0 0
\(619\) 20.1843 0.811277 0.405639 0.914033i \(-0.367049\pi\)
0.405639 + 0.914033i \(0.367049\pi\)
\(620\) 0 0
\(621\) −7.10637 −0.285169
\(622\) 0 0
\(623\) 0.191472 0.00767116
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.929493 0.0371204
\(628\) 0 0
\(629\) −16.3960 −0.653751
\(630\) 0 0
\(631\) 6.65239 0.264827 0.132414 0.991195i \(-0.457727\pi\)
0.132414 + 0.991195i \(0.457727\pi\)
\(632\) 0 0
\(633\) 3.64731 0.144967
\(634\) 0 0
\(635\) −5.94008 −0.235725
\(636\) 0 0
\(637\) 14.8073 0.586687
\(638\) 0 0
\(639\) −29.0609 −1.14963
\(640\) 0 0
\(641\) 35.1221 1.38724 0.693620 0.720341i \(-0.256015\pi\)
0.693620 + 0.720341i \(0.256015\pi\)
\(642\) 0 0
\(643\) 33.0043 1.30156 0.650781 0.759266i \(-0.274442\pi\)
0.650781 + 0.759266i \(0.274442\pi\)
\(644\) 0 0
\(645\) −3.00193 −0.118201
\(646\) 0 0
\(647\) 15.2774 0.600618 0.300309 0.953842i \(-0.402910\pi\)
0.300309 + 0.953842i \(0.402910\pi\)
\(648\) 0 0
\(649\) 1.81770 0.0713509
\(650\) 0 0
\(651\) 4.76210 0.186642
\(652\) 0 0
\(653\) 34.4208 1.34699 0.673495 0.739192i \(-0.264792\pi\)
0.673495 + 0.739192i \(0.264792\pi\)
\(654\) 0 0
\(655\) −13.6795 −0.534500
\(656\) 0 0
\(657\) 38.9440 1.51935
\(658\) 0 0
\(659\) 24.7850 0.965488 0.482744 0.875762i \(-0.339640\pi\)
0.482744 + 0.875762i \(0.339640\pi\)
\(660\) 0 0
\(661\) −3.33949 −0.129891 −0.0649456 0.997889i \(-0.520687\pi\)
−0.0649456 + 0.997889i \(0.520687\pi\)
\(662\) 0 0
\(663\) −19.8915 −0.772522
\(664\) 0 0
\(665\) −16.8187 −0.652201
\(666\) 0 0
\(667\) −18.3019 −0.708652
\(668\) 0 0
\(669\) 5.60761 0.216803
\(670\) 0 0
\(671\) −1.95336 −0.0754086
\(672\) 0 0
\(673\) 14.0825 0.542841 0.271421 0.962461i \(-0.412507\pi\)
0.271421 + 0.962461i \(0.412507\pi\)
\(674\) 0 0
\(675\) 2.50997 0.0966087
\(676\) 0 0
\(677\) 35.9538 1.38182 0.690909 0.722941i \(-0.257210\pi\)
0.690909 + 0.722941i \(0.257210\pi\)
\(678\) 0 0
\(679\) 19.0048 0.729336
\(680\) 0 0
\(681\) −9.56732 −0.366620
\(682\) 0 0
\(683\) 3.40122 0.130144 0.0650720 0.997881i \(-0.479272\pi\)
0.0650720 + 0.997881i \(0.479272\pi\)
\(684\) 0 0
\(685\) −21.1218 −0.807022
\(686\) 0 0
\(687\) 3.98810 0.152155
\(688\) 0 0
\(689\) 36.9006 1.40580
\(690\) 0 0
\(691\) 18.9887 0.722365 0.361182 0.932495i \(-0.382373\pi\)
0.361182 + 0.932495i \(0.382373\pi\)
\(692\) 0 0
\(693\) 3.28364 0.124735
\(694\) 0 0
\(695\) 9.91452 0.376079
\(696\) 0 0
\(697\) 56.1487 2.12678
\(698\) 0 0
\(699\) −4.59725 −0.173884
\(700\) 0 0
\(701\) −43.2740 −1.63444 −0.817219 0.576327i \(-0.804485\pi\)
−0.817219 + 0.576327i \(0.804485\pi\)
\(702\) 0 0
\(703\) −13.8632 −0.522859
\(704\) 0 0
\(705\) −0.468226 −0.0176344
\(706\) 0 0
\(707\) −16.2660 −0.611744
\(708\) 0 0
\(709\) −9.47103 −0.355692 −0.177846 0.984058i \(-0.556913\pi\)
−0.177846 + 0.984058i \(0.556913\pi\)
\(710\) 0 0
\(711\) 21.8287 0.818641
\(712\) 0 0
\(713\) 10.3425 0.387328
\(714\) 0 0
\(715\) 2.70315 0.101092
\(716\) 0 0
\(717\) −8.84745 −0.330414
\(718\) 0 0
\(719\) −24.6960 −0.921004 −0.460502 0.887659i \(-0.652331\pi\)
−0.460502 + 0.887659i \(0.652331\pi\)
\(720\) 0 0
\(721\) 28.4205 1.05844
\(722\) 0 0
\(723\) 0.514949 0.0191512
\(724\) 0 0
\(725\) 6.46422 0.240075
\(726\) 0 0
\(727\) 23.3386 0.865582 0.432791 0.901494i \(-0.357529\pi\)
0.432791 + 0.901494i \(0.357529\pi\)
\(728\) 0 0
\(729\) −17.4491 −0.646263
\(730\) 0 0
\(731\) −45.8051 −1.69416
\(732\) 0 0
\(733\) 40.6924 1.50301 0.751504 0.659728i \(-0.229329\pi\)
0.751504 + 0.659728i \(0.229329\pi\)
\(734\) 0 0
\(735\) 0.914095 0.0337169
\(736\) 0 0
\(737\) 1.62192 0.0597442
\(738\) 0 0
\(739\) 16.3218 0.600408 0.300204 0.953875i \(-0.402945\pi\)
0.300204 + 0.953875i \(0.402945\pi\)
\(740\) 0 0
\(741\) −16.8187 −0.617850
\(742\) 0 0
\(743\) 1.50962 0.0553826 0.0276913 0.999617i \(-0.491184\pi\)
0.0276913 + 0.999617i \(0.491184\pi\)
\(744\) 0 0
\(745\) −17.7934 −0.651900
\(746\) 0 0
\(747\) 2.81360 0.102944
\(748\) 0 0
\(749\) −39.6366 −1.44829
\(750\) 0 0
\(751\) −19.7197 −0.719582 −0.359791 0.933033i \(-0.617152\pi\)
−0.359791 + 0.933033i \(0.617152\pi\)
\(752\) 0 0
\(753\) 5.38722 0.196321
\(754\) 0 0
\(755\) −16.2437 −0.591168
\(756\) 0 0
\(757\) 14.9494 0.543346 0.271673 0.962390i \(-0.412423\pi\)
0.271673 + 0.962390i \(0.412423\pi\)
\(758\) 0 0
\(759\) −0.472460 −0.0171492
\(760\) 0 0
\(761\) 9.48843 0.343955 0.171978 0.985101i \(-0.444984\pi\)
0.171978 + 0.985101i \(0.444984\pi\)
\(762\) 0 0
\(763\) −50.1157 −1.81431
\(764\) 0 0
\(765\) 18.5352 0.670143
\(766\) 0 0
\(767\) −32.8903 −1.18760
\(768\) 0 0
\(769\) 44.3031 1.59761 0.798806 0.601589i \(-0.205465\pi\)
0.798806 + 0.601589i \(0.205465\pi\)
\(770\) 0 0
\(771\) 0.512479 0.0184565
\(772\) 0 0
\(773\) −53.9911 −1.94193 −0.970963 0.239231i \(-0.923105\pi\)
−0.970963 + 0.239231i \(0.923105\pi\)
\(774\) 0 0
\(775\) −3.65295 −0.131218
\(776\) 0 0
\(777\) 3.24456 0.116398
\(778\) 0 0
\(779\) 47.4750 1.70097
\(780\) 0 0
\(781\) −3.99216 −0.142851
\(782\) 0 0
\(783\) 16.2250 0.579834
\(784\) 0 0
\(785\) 10.1188 0.361157
\(786\) 0 0
\(787\) −8.30642 −0.296092 −0.148046 0.988980i \(-0.547298\pi\)
−0.148046 + 0.988980i \(0.547298\pi\)
\(788\) 0 0
\(789\) −12.2495 −0.436094
\(790\) 0 0
\(791\) −13.7689 −0.489567
\(792\) 0 0
\(793\) 35.3450 1.25514
\(794\) 0 0
\(795\) 2.27797 0.0807914
\(796\) 0 0
\(797\) 10.8857 0.385590 0.192795 0.981239i \(-0.438245\pi\)
0.192795 + 0.981239i \(0.438245\pi\)
\(798\) 0 0
\(799\) −7.14445 −0.252752
\(800\) 0 0
\(801\) −0.178417 −0.00630405
\(802\) 0 0
\(803\) 5.34984 0.188792
\(804\) 0 0
\(805\) 8.54892 0.301310
\(806\) 0 0
\(807\) −0.327961 −0.0115448
\(808\) 0 0
\(809\) −49.2828 −1.73269 −0.866346 0.499444i \(-0.833537\pi\)
−0.866346 + 0.499444i \(0.833537\pi\)
\(810\) 0 0
\(811\) 7.57591 0.266026 0.133013 0.991114i \(-0.457535\pi\)
0.133013 + 0.991114i \(0.457535\pi\)
\(812\) 0 0
\(813\) 4.34741 0.152470
\(814\) 0 0
\(815\) 16.9814 0.594831
\(816\) 0 0
\(817\) −38.7292 −1.35496
\(818\) 0 0
\(819\) −59.4158 −2.07616
\(820\) 0 0
\(821\) −13.1781 −0.459919 −0.229959 0.973200i \(-0.573859\pi\)
−0.229959 + 0.973200i \(0.573859\pi\)
\(822\) 0 0
\(823\) −20.1232 −0.701450 −0.350725 0.936479i \(-0.614065\pi\)
−0.350725 + 0.936479i \(0.614065\pi\)
\(824\) 0 0
\(825\) 0.166873 0.00580976
\(826\) 0 0
\(827\) 0.667971 0.0232276 0.0116138 0.999933i \(-0.496303\pi\)
0.0116138 + 0.999933i \(0.496303\pi\)
\(828\) 0 0
\(829\) −52.7661 −1.83264 −0.916321 0.400445i \(-0.868855\pi\)
−0.916321 + 0.400445i \(0.868855\pi\)
\(830\) 0 0
\(831\) −1.59853 −0.0554524
\(832\) 0 0
\(833\) 13.9478 0.483261
\(834\) 0 0
\(835\) −4.22535 −0.146224
\(836\) 0 0
\(837\) −9.16880 −0.316920
\(838\) 0 0
\(839\) −46.4586 −1.60393 −0.801965 0.597372i \(-0.796212\pi\)
−0.801965 + 0.597372i \(0.796212\pi\)
\(840\) 0 0
\(841\) 12.7862 0.440903
\(842\) 0 0
\(843\) 1.95824 0.0674453
\(844\) 0 0
\(845\) −35.9121 −1.23541
\(846\) 0 0
\(847\) −32.7631 −1.12576
\(848\) 0 0
\(849\) 11.7895 0.404615
\(850\) 0 0
\(851\) 7.04663 0.241555
\(852\) 0 0
\(853\) −34.0142 −1.16463 −0.582313 0.812965i \(-0.697852\pi\)
−0.582313 + 0.812965i \(0.697852\pi\)
\(854\) 0 0
\(855\) 15.6720 0.535970
\(856\) 0 0
\(857\) −23.6364 −0.807404 −0.403702 0.914891i \(-0.632277\pi\)
−0.403702 + 0.914891i \(0.632277\pi\)
\(858\) 0 0
\(859\) 27.1844 0.927519 0.463759 0.885961i \(-0.346500\pi\)
0.463759 + 0.885961i \(0.346500\pi\)
\(860\) 0 0
\(861\) −11.1111 −0.378666
\(862\) 0 0
\(863\) 55.4152 1.88636 0.943178 0.332289i \(-0.107821\pi\)
0.943178 + 0.332289i \(0.107821\pi\)
\(864\) 0 0
\(865\) −5.62999 −0.191425
\(866\) 0 0
\(867\) −11.3972 −0.387069
\(868\) 0 0
\(869\) 2.99866 0.101723
\(870\) 0 0
\(871\) −29.3478 −0.994413
\(872\) 0 0
\(873\) −17.7090 −0.599358
\(874\) 0 0
\(875\) −3.01948 −0.102077
\(876\) 0 0
\(877\) −31.3826 −1.05971 −0.529857 0.848087i \(-0.677754\pi\)
−0.529857 + 0.848087i \(0.677754\pi\)
\(878\) 0 0
\(879\) 8.74220 0.294867
\(880\) 0 0
\(881\) −10.8571 −0.365787 −0.182893 0.983133i \(-0.558546\pi\)
−0.182893 + 0.983133i \(0.558546\pi\)
\(882\) 0 0
\(883\) 14.8728 0.500511 0.250255 0.968180i \(-0.419485\pi\)
0.250255 + 0.968180i \(0.419485\pi\)
\(884\) 0 0
\(885\) −2.03041 −0.0682514
\(886\) 0 0
\(887\) −34.0443 −1.14309 −0.571547 0.820569i \(-0.693657\pi\)
−0.571547 + 0.820569i \(0.693657\pi\)
\(888\) 0 0
\(889\) 17.9359 0.601552
\(890\) 0 0
\(891\) −2.84362 −0.0952647
\(892\) 0 0
\(893\) −6.04079 −0.202147
\(894\) 0 0
\(895\) −19.6729 −0.657592
\(896\) 0 0
\(897\) 8.54892 0.285440
\(898\) 0 0
\(899\) −23.6135 −0.787555
\(900\) 0 0
\(901\) 34.7585 1.15797
\(902\) 0 0
\(903\) 9.06426 0.301640
\(904\) 0 0
\(905\) −12.0848 −0.401712
\(906\) 0 0
\(907\) −2.39080 −0.0793851 −0.0396925 0.999212i \(-0.512638\pi\)
−0.0396925 + 0.999212i \(0.512638\pi\)
\(908\) 0 0
\(909\) 15.1569 0.502723
\(910\) 0 0
\(911\) −6.37553 −0.211231 −0.105615 0.994407i \(-0.533681\pi\)
−0.105615 + 0.994407i \(0.533681\pi\)
\(912\) 0 0
\(913\) 0.386511 0.0127916
\(914\) 0 0
\(915\) 2.18194 0.0721328
\(916\) 0 0
\(917\) 41.3048 1.36400
\(918\) 0 0
\(919\) −59.7294 −1.97029 −0.985146 0.171719i \(-0.945068\pi\)
−0.985146 + 0.171719i \(0.945068\pi\)
\(920\) 0 0
\(921\) 11.8603 0.390811
\(922\) 0 0
\(923\) 72.2362 2.37768
\(924\) 0 0
\(925\) −2.48887 −0.0818334
\(926\) 0 0
\(927\) −26.4827 −0.869807
\(928\) 0 0
\(929\) 4.54835 0.149226 0.0746132 0.997213i \(-0.476228\pi\)
0.0746132 + 0.997213i \(0.476228\pi\)
\(930\) 0 0
\(931\) 11.7931 0.386504
\(932\) 0 0
\(933\) 1.94996 0.0638387
\(934\) 0 0
\(935\) 2.54623 0.0832707
\(936\) 0 0
\(937\) −1.52795 −0.0499161 −0.0249580 0.999688i \(-0.507945\pi\)
−0.0249580 + 0.999688i \(0.507945\pi\)
\(938\) 0 0
\(939\) −1.68990 −0.0551477
\(940\) 0 0
\(941\) −27.1537 −0.885184 −0.442592 0.896723i \(-0.645941\pi\)
−0.442592 + 0.896723i \(0.645941\pi\)
\(942\) 0 0
\(943\) −24.1314 −0.785828
\(944\) 0 0
\(945\) −7.57879 −0.246538
\(946\) 0 0
\(947\) −58.1874 −1.89084 −0.945419 0.325858i \(-0.894347\pi\)
−0.945419 + 0.325858i \(0.894347\pi\)
\(948\) 0 0
\(949\) −96.8026 −3.14234
\(950\) 0 0
\(951\) 6.72679 0.218131
\(952\) 0 0
\(953\) −19.3719 −0.627518 −0.313759 0.949503i \(-0.601588\pi\)
−0.313759 + 0.949503i \(0.601588\pi\)
\(954\) 0 0
\(955\) 25.1044 0.812360
\(956\) 0 0
\(957\) 1.07870 0.0348695
\(958\) 0 0
\(959\) 63.7767 2.05946
\(960\) 0 0
\(961\) −17.6559 −0.569546
\(962\) 0 0
\(963\) 36.9341 1.19018
\(964\) 0 0
\(965\) −5.20785 −0.167647
\(966\) 0 0
\(967\) 19.4636 0.625908 0.312954 0.949768i \(-0.398681\pi\)
0.312954 + 0.949768i \(0.398681\pi\)
\(968\) 0 0
\(969\) −15.8424 −0.508930
\(970\) 0 0
\(971\) −44.6819 −1.43391 −0.716956 0.697119i \(-0.754465\pi\)
−0.716956 + 0.697119i \(0.754465\pi\)
\(972\) 0 0
\(973\) −29.9367 −0.959725
\(974\) 0 0
\(975\) −3.01948 −0.0967006
\(976\) 0 0
\(977\) −17.7202 −0.566918 −0.283459 0.958984i \(-0.591482\pi\)
−0.283459 + 0.958984i \(0.591482\pi\)
\(978\) 0 0
\(979\) −0.0245095 −0.000783328 0
\(980\) 0 0
\(981\) 46.6987 1.49097
\(982\) 0 0
\(983\) −45.6673 −1.45656 −0.728280 0.685279i \(-0.759680\pi\)
−0.728280 + 0.685279i \(0.759680\pi\)
\(984\) 0 0
\(985\) −14.6607 −0.467129
\(986\) 0 0
\(987\) 1.41380 0.0450017
\(988\) 0 0
\(989\) 19.6860 0.625979
\(990\) 0 0
\(991\) −16.7135 −0.530922 −0.265461 0.964122i \(-0.585524\pi\)
−0.265461 + 0.964122i \(0.585524\pi\)
\(992\) 0 0
\(993\) 5.38584 0.170915
\(994\) 0 0
\(995\) −16.2836 −0.516226
\(996\) 0 0
\(997\) −14.3840 −0.455546 −0.227773 0.973714i \(-0.573144\pi\)
−0.227773 + 0.973714i \(0.573144\pi\)
\(998\) 0 0
\(999\) −6.24698 −0.197646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6640.2.a.bb.1.4 6
4.3 odd 2 415.2.a.c.1.1 6
12.11 even 2 3735.2.a.l.1.6 6
20.19 odd 2 2075.2.a.f.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.2.a.c.1.1 6 4.3 odd 2
2075.2.a.f.1.6 6 20.19 odd 2
3735.2.a.l.1.6 6 12.11 even 2
6640.2.a.bb.1.4 6 1.1 even 1 trivial