Properties

Label 2075.2.a.f.1.6
Level $2075$
Weight $2$
Character 2075.1
Self dual yes
Analytic conductor $16.569$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,2,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.5689584194\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7783241.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 9x^{3} + 5x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 415)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.92537\) of defining polynomial
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.92537 q^{2} -0.431741 q^{3} +1.70704 q^{4} -0.831260 q^{6} +3.01948 q^{7} -0.564055 q^{8} -2.81360 q^{9} +0.386511 q^{11} -0.736999 q^{12} -6.99372 q^{13} +5.81360 q^{14} -4.50009 q^{16} -6.58773 q^{17} -5.41721 q^{18} -5.57007 q^{19} -1.30363 q^{21} +0.744176 q^{22} -2.83126 q^{23} +0.243526 q^{24} -13.4655 q^{26} +2.50997 q^{27} +5.15437 q^{28} +6.46422 q^{29} +3.65295 q^{31} -7.53623 q^{32} -0.166873 q^{33} -12.6838 q^{34} -4.80293 q^{36} +2.48887 q^{37} -10.7244 q^{38} +3.01948 q^{39} +8.52322 q^{41} -2.50997 q^{42} -6.95309 q^{43} +0.659790 q^{44} -5.45122 q^{46} -1.08451 q^{47} +1.94287 q^{48} +2.11723 q^{49} +2.84419 q^{51} -11.9386 q^{52} -5.27625 q^{53} +4.83261 q^{54} -1.70315 q^{56} +2.40483 q^{57} +12.4460 q^{58} +4.70284 q^{59} +5.05383 q^{61} +7.03328 q^{62} -8.49559 q^{63} -5.50982 q^{64} -0.321291 q^{66} -4.19631 q^{67} -11.2455 q^{68} +1.22237 q^{69} -10.3287 q^{71} +1.58702 q^{72} +13.8414 q^{73} +4.79198 q^{74} -9.50834 q^{76} +1.16706 q^{77} +5.81360 q^{78} +7.75829 q^{79} +7.35714 q^{81} +16.4103 q^{82} -1.00000 q^{83} -2.22535 q^{84} -13.3873 q^{86} -2.79087 q^{87} -0.218013 q^{88} +0.0634123 q^{89} -21.1174 q^{91} -4.83308 q^{92} -1.57713 q^{93} -2.08808 q^{94} +3.25370 q^{96} -6.29407 q^{97} +4.07645 q^{98} -1.08749 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 3 q^{3} + 2 q^{4} + 4 q^{6} - 3 q^{8} + 9 q^{9} + 4 q^{11} - 13 q^{12} - 7 q^{13} + 9 q^{14} - 6 q^{16} - 21 q^{17} - 11 q^{18} + 2 q^{19} - 9 q^{21} - 5 q^{22} - 8 q^{23} + 11 q^{24} - 15 q^{26}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.92537 1.36144 0.680720 0.732543i \(-0.261667\pi\)
0.680720 + 0.732543i \(0.261667\pi\)
\(3\) −0.431741 −0.249266 −0.124633 0.992203i \(-0.539775\pi\)
−0.124633 + 0.992203i \(0.539775\pi\)
\(4\) 1.70704 0.853520
\(5\) 0 0
\(6\) −0.831260 −0.339360
\(7\) 3.01948 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(8\) −0.564055 −0.199424
\(9\) −2.81360 −0.937867
\(10\) 0 0
\(11\) 0.386511 0.116537 0.0582687 0.998301i \(-0.481442\pi\)
0.0582687 + 0.998301i \(0.481442\pi\)
\(12\) −0.736999 −0.212753
\(13\) −6.99372 −1.93971 −0.969855 0.243685i \(-0.921644\pi\)
−0.969855 + 0.243685i \(0.921644\pi\)
\(14\) 5.81360 1.55375
\(15\) 0 0
\(16\) −4.50009 −1.12502
\(17\) −6.58773 −1.59776 −0.798880 0.601490i \(-0.794574\pi\)
−0.798880 + 0.601490i \(0.794574\pi\)
\(18\) −5.41721 −1.27685
\(19\) −5.57007 −1.27786 −0.638931 0.769264i \(-0.720623\pi\)
−0.638931 + 0.769264i \(0.720623\pi\)
\(20\) 0 0
\(21\) −1.30363 −0.284476
\(22\) 0.744176 0.158659
\(23\) −2.83126 −0.590359 −0.295179 0.955442i \(-0.595379\pi\)
−0.295179 + 0.955442i \(0.595379\pi\)
\(24\) 0.243526 0.0497095
\(25\) 0 0
\(26\) −13.4655 −2.64080
\(27\) 2.50997 0.483044
\(28\) 5.15437 0.974084
\(29\) 6.46422 1.20038 0.600188 0.799859i \(-0.295092\pi\)
0.600188 + 0.799859i \(0.295092\pi\)
\(30\) 0 0
\(31\) 3.65295 0.656090 0.328045 0.944662i \(-0.393610\pi\)
0.328045 + 0.944662i \(0.393610\pi\)
\(32\) −7.53623 −1.33223
\(33\) −0.166873 −0.0290488
\(34\) −12.6838 −2.17526
\(35\) 0 0
\(36\) −4.80293 −0.800488
\(37\) 2.48887 0.409167 0.204584 0.978849i \(-0.434416\pi\)
0.204584 + 0.978849i \(0.434416\pi\)
\(38\) −10.7244 −1.73973
\(39\) 3.01948 0.483503
\(40\) 0 0
\(41\) 8.52322 1.33110 0.665551 0.746352i \(-0.268196\pi\)
0.665551 + 0.746352i \(0.268196\pi\)
\(42\) −2.50997 −0.387297
\(43\) −6.95309 −1.06034 −0.530168 0.847893i \(-0.677871\pi\)
−0.530168 + 0.847893i \(0.677871\pi\)
\(44\) 0.659790 0.0994671
\(45\) 0 0
\(46\) −5.45122 −0.803738
\(47\) −1.08451 −0.158192 −0.0790958 0.996867i \(-0.525203\pi\)
−0.0790958 + 0.996867i \(0.525203\pi\)
\(48\) 1.94287 0.280430
\(49\) 2.11723 0.302462
\(50\) 0 0
\(51\) 2.84419 0.398267
\(52\) −11.9386 −1.65558
\(53\) −5.27625 −0.724749 −0.362374 0.932033i \(-0.618034\pi\)
−0.362374 + 0.932033i \(0.618034\pi\)
\(54\) 4.83261 0.657635
\(55\) 0 0
\(56\) −1.70315 −0.227593
\(57\) 2.40483 0.318527
\(58\) 12.4460 1.63424
\(59\) 4.70284 0.612257 0.306129 0.951990i \(-0.400966\pi\)
0.306129 + 0.951990i \(0.400966\pi\)
\(60\) 0 0
\(61\) 5.05383 0.647076 0.323538 0.946215i \(-0.395128\pi\)
0.323538 + 0.946215i \(0.395128\pi\)
\(62\) 7.03328 0.893227
\(63\) −8.49559 −1.07034
\(64\) −5.50982 −0.688727
\(65\) 0 0
\(66\) −0.321291 −0.0395482
\(67\) −4.19631 −0.512661 −0.256330 0.966589i \(-0.582514\pi\)
−0.256330 + 0.966589i \(0.582514\pi\)
\(68\) −11.2455 −1.36372
\(69\) 1.22237 0.147156
\(70\) 0 0
\(71\) −10.3287 −1.22579 −0.612897 0.790163i \(-0.709996\pi\)
−0.612897 + 0.790163i \(0.709996\pi\)
\(72\) 1.58702 0.187033
\(73\) 13.8414 1.62001 0.810004 0.586424i \(-0.199465\pi\)
0.810004 + 0.586424i \(0.199465\pi\)
\(74\) 4.79198 0.557057
\(75\) 0 0
\(76\) −9.50834 −1.09068
\(77\) 1.16706 0.132999
\(78\) 5.81360 0.658261
\(79\) 7.75829 0.872876 0.436438 0.899734i \(-0.356240\pi\)
0.436438 + 0.899734i \(0.356240\pi\)
\(80\) 0 0
\(81\) 7.35714 0.817460
\(82\) 16.4103 1.81222
\(83\) −1.00000 −0.109764
\(84\) −2.22535 −0.242806
\(85\) 0 0
\(86\) −13.3873 −1.44358
\(87\) −2.79087 −0.299213
\(88\) −0.218013 −0.0232403
\(89\) 0.0634123 0.00672169 0.00336084 0.999994i \(-0.498930\pi\)
0.00336084 + 0.999994i \(0.498930\pi\)
\(90\) 0 0
\(91\) −21.1174 −2.21370
\(92\) −4.83308 −0.503883
\(93\) −1.57713 −0.163541
\(94\) −2.08808 −0.215369
\(95\) 0 0
\(96\) 3.25370 0.332079
\(97\) −6.29407 −0.639066 −0.319533 0.947575i \(-0.603526\pi\)
−0.319533 + 0.947575i \(0.603526\pi\)
\(98\) 4.07645 0.411783
\(99\) −1.08749 −0.109297
\(100\) 0 0
\(101\) −5.38701 −0.536028 −0.268014 0.963415i \(-0.586367\pi\)
−0.268014 + 0.963415i \(0.586367\pi\)
\(102\) 5.47612 0.542217
\(103\) 9.41240 0.927431 0.463716 0.885984i \(-0.346516\pi\)
0.463716 + 0.885984i \(0.346516\pi\)
\(104\) 3.94484 0.386824
\(105\) 0 0
\(106\) −10.1587 −0.986702
\(107\) −13.1270 −1.26903 −0.634517 0.772909i \(-0.718801\pi\)
−0.634517 + 0.772909i \(0.718801\pi\)
\(108\) 4.28462 0.412288
\(109\) −16.5975 −1.58975 −0.794876 0.606773i \(-0.792464\pi\)
−0.794876 + 0.606773i \(0.792464\pi\)
\(110\) 0 0
\(111\) −1.07455 −0.101991
\(112\) −13.5879 −1.28394
\(113\) 4.56004 0.428972 0.214486 0.976727i \(-0.431192\pi\)
0.214486 + 0.976727i \(0.431192\pi\)
\(114\) 4.63018 0.433656
\(115\) 0 0
\(116\) 11.0347 1.02455
\(117\) 19.6775 1.81919
\(118\) 9.05469 0.833552
\(119\) −19.8915 −1.82345
\(120\) 0 0
\(121\) −10.8506 −0.986419
\(122\) 9.73047 0.880956
\(123\) −3.67982 −0.331798
\(124\) 6.23574 0.559986
\(125\) 0 0
\(126\) −16.3571 −1.45721
\(127\) 5.94008 0.527097 0.263549 0.964646i \(-0.415107\pi\)
0.263549 + 0.964646i \(0.415107\pi\)
\(128\) 4.46403 0.394568
\(129\) 3.00193 0.264306
\(130\) 0 0
\(131\) −13.6795 −1.19518 −0.597590 0.801802i \(-0.703875\pi\)
−0.597590 + 0.801802i \(0.703875\pi\)
\(132\) −0.284858 −0.0247937
\(133\) −16.8187 −1.45837
\(134\) −8.07944 −0.697957
\(135\) 0 0
\(136\) 3.71584 0.318631
\(137\) −21.1218 −1.80456 −0.902278 0.431155i \(-0.858106\pi\)
−0.902278 + 0.431155i \(0.858106\pi\)
\(138\) 2.35351 0.200344
\(139\) 9.91452 0.840939 0.420469 0.907307i \(-0.361865\pi\)
0.420469 + 0.907307i \(0.361865\pi\)
\(140\) 0 0
\(141\) 0.468226 0.0394318
\(142\) −19.8866 −1.66885
\(143\) −2.70315 −0.226049
\(144\) 12.6615 1.05512
\(145\) 0 0
\(146\) 26.6497 2.20554
\(147\) −0.914095 −0.0753933
\(148\) 4.24860 0.349232
\(149\) 17.7934 1.45769 0.728847 0.684677i \(-0.240057\pi\)
0.728847 + 0.684677i \(0.240057\pi\)
\(150\) 0 0
\(151\) −16.2437 −1.32189 −0.660945 0.750434i \(-0.729845\pi\)
−0.660945 + 0.750434i \(0.729845\pi\)
\(152\) 3.14183 0.254836
\(153\) 18.5352 1.49849
\(154\) 2.24702 0.181070
\(155\) 0 0
\(156\) 5.15437 0.412680
\(157\) 10.1188 0.807572 0.403786 0.914854i \(-0.367694\pi\)
0.403786 + 0.914854i \(0.367694\pi\)
\(158\) 14.9376 1.18837
\(159\) 2.27797 0.180655
\(160\) 0 0
\(161\) −8.54892 −0.673749
\(162\) 14.1652 1.11292
\(163\) −16.9814 −1.33008 −0.665041 0.746806i \(-0.731586\pi\)
−0.665041 + 0.746806i \(0.731586\pi\)
\(164\) 14.5495 1.13612
\(165\) 0 0
\(166\) −1.92537 −0.149438
\(167\) 4.22535 0.326967 0.163484 0.986546i \(-0.447727\pi\)
0.163484 + 0.986546i \(0.447727\pi\)
\(168\) 0.735320 0.0567311
\(169\) 35.9121 2.76247
\(170\) 0 0
\(171\) 15.6720 1.19846
\(172\) −11.8692 −0.905018
\(173\) −5.62999 −0.428040 −0.214020 0.976829i \(-0.568656\pi\)
−0.214020 + 0.976829i \(0.568656\pi\)
\(174\) −5.37345 −0.407360
\(175\) 0 0
\(176\) −1.73934 −0.131107
\(177\) −2.03041 −0.152615
\(178\) 0.122092 0.00915118
\(179\) −19.6729 −1.47042 −0.735210 0.677839i \(-0.762916\pi\)
−0.735210 + 0.677839i \(0.762916\pi\)
\(180\) 0 0
\(181\) 12.0848 0.898256 0.449128 0.893467i \(-0.351735\pi\)
0.449128 + 0.893467i \(0.351735\pi\)
\(182\) −40.6587 −3.01382
\(183\) −2.18194 −0.161294
\(184\) 1.59699 0.117731
\(185\) 0 0
\(186\) −3.03655 −0.222651
\(187\) −2.54623 −0.186199
\(188\) −1.85130 −0.135020
\(189\) 7.57879 0.551276
\(190\) 0 0
\(191\) 25.1044 1.81649 0.908246 0.418437i \(-0.137422\pi\)
0.908246 + 0.418437i \(0.137422\pi\)
\(192\) 2.37881 0.171676
\(193\) −5.20785 −0.374869 −0.187435 0.982277i \(-0.560017\pi\)
−0.187435 + 0.982277i \(0.560017\pi\)
\(194\) −12.1184 −0.870050
\(195\) 0 0
\(196\) 3.61420 0.258157
\(197\) −14.6607 −1.04453 −0.522267 0.852782i \(-0.674913\pi\)
−0.522267 + 0.852782i \(0.674913\pi\)
\(198\) −2.09381 −0.148801
\(199\) −16.2836 −1.15432 −0.577159 0.816632i \(-0.695839\pi\)
−0.577159 + 0.816632i \(0.695839\pi\)
\(200\) 0 0
\(201\) 1.81172 0.127789
\(202\) −10.3720 −0.729770
\(203\) 19.5186 1.36993
\(204\) 4.85515 0.339929
\(205\) 0 0
\(206\) 18.1223 1.26264
\(207\) 7.96603 0.553678
\(208\) 31.4724 2.18222
\(209\) −2.15289 −0.148919
\(210\) 0 0
\(211\) 8.44791 0.581578 0.290789 0.956787i \(-0.406082\pi\)
0.290789 + 0.956787i \(0.406082\pi\)
\(212\) −9.00677 −0.618588
\(213\) 4.45933 0.305548
\(214\) −25.2743 −1.72771
\(215\) 0 0
\(216\) −1.41576 −0.0963303
\(217\) 11.0300 0.748766
\(218\) −31.9563 −2.16435
\(219\) −5.97588 −0.403813
\(220\) 0 0
\(221\) 46.0728 3.09919
\(222\) −2.06889 −0.138855
\(223\) −12.9884 −0.869765 −0.434882 0.900487i \(-0.643210\pi\)
−0.434882 + 0.900487i \(0.643210\pi\)
\(224\) −22.7554 −1.52041
\(225\) 0 0
\(226\) 8.77975 0.584020
\(227\) 22.1599 1.47080 0.735401 0.677632i \(-0.236994\pi\)
0.735401 + 0.677632i \(0.236994\pi\)
\(228\) 4.10514 0.271870
\(229\) −9.23725 −0.610414 −0.305207 0.952286i \(-0.598726\pi\)
−0.305207 + 0.952286i \(0.598726\pi\)
\(230\) 0 0
\(231\) −0.503868 −0.0331521
\(232\) −3.64618 −0.239383
\(233\) −10.6482 −0.697584 −0.348792 0.937200i \(-0.613408\pi\)
−0.348792 + 0.937200i \(0.613408\pi\)
\(234\) 37.8865 2.47672
\(235\) 0 0
\(236\) 8.02793 0.522574
\(237\) −3.34957 −0.217578
\(238\) −38.2985 −2.48252
\(239\) −20.4925 −1.32555 −0.662775 0.748819i \(-0.730621\pi\)
−0.662775 + 0.748819i \(0.730621\pi\)
\(240\) 0 0
\(241\) −1.19273 −0.0768303 −0.0384151 0.999262i \(-0.512231\pi\)
−0.0384151 + 0.999262i \(0.512231\pi\)
\(242\) −20.8914 −1.34295
\(243\) −10.7063 −0.686809
\(244\) 8.62708 0.552293
\(245\) 0 0
\(246\) −7.08501 −0.451724
\(247\) 38.9555 2.47868
\(248\) −2.06047 −0.130840
\(249\) 0.431741 0.0273605
\(250\) 0 0
\(251\) 12.4779 0.787598 0.393799 0.919197i \(-0.371161\pi\)
0.393799 + 0.919197i \(0.371161\pi\)
\(252\) −14.5023 −0.913561
\(253\) −1.09431 −0.0687989
\(254\) 11.4368 0.717611
\(255\) 0 0
\(256\) 19.6145 1.22591
\(257\) 1.18701 0.0740434 0.0370217 0.999314i \(-0.488213\pi\)
0.0370217 + 0.999314i \(0.488213\pi\)
\(258\) 5.77983 0.359836
\(259\) 7.51507 0.466964
\(260\) 0 0
\(261\) −18.1877 −1.12579
\(262\) −26.3380 −1.62717
\(263\) 28.3723 1.74951 0.874757 0.484562i \(-0.161021\pi\)
0.874757 + 0.484562i \(0.161021\pi\)
\(264\) 0.0941253 0.00579301
\(265\) 0 0
\(266\) −32.3822 −1.98548
\(267\) −0.0273777 −0.00167549
\(268\) −7.16327 −0.437566
\(269\) 0.759625 0.0463152 0.0231576 0.999732i \(-0.492628\pi\)
0.0231576 + 0.999732i \(0.492628\pi\)
\(270\) 0 0
\(271\) 10.0695 0.611678 0.305839 0.952083i \(-0.401063\pi\)
0.305839 + 0.952083i \(0.401063\pi\)
\(272\) 29.6454 1.79752
\(273\) 9.11723 0.551800
\(274\) −40.6672 −2.45679
\(275\) 0 0
\(276\) 2.08664 0.125601
\(277\) −3.70252 −0.222463 −0.111232 0.993795i \(-0.535480\pi\)
−0.111232 + 0.993795i \(0.535480\pi\)
\(278\) 19.0891 1.14489
\(279\) −10.2780 −0.615325
\(280\) 0 0
\(281\) −4.53568 −0.270576 −0.135288 0.990806i \(-0.543196\pi\)
−0.135288 + 0.990806i \(0.543196\pi\)
\(282\) 0.901507 0.0536840
\(283\) −27.3069 −1.62323 −0.811614 0.584194i \(-0.801411\pi\)
−0.811614 + 0.584194i \(0.801411\pi\)
\(284\) −17.6315 −1.04624
\(285\) 0 0
\(286\) −5.20456 −0.307752
\(287\) 25.7356 1.51913
\(288\) 21.2039 1.24945
\(289\) 26.3982 1.55284
\(290\) 0 0
\(291\) 2.71741 0.159297
\(292\) 23.6278 1.38271
\(293\) 20.2487 1.18294 0.591471 0.806326i \(-0.298547\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(294\) −1.75997 −0.102643
\(295\) 0 0
\(296\) −1.40386 −0.0815976
\(297\) 0.970131 0.0562927
\(298\) 34.2589 1.98456
\(299\) 19.8010 1.14512
\(300\) 0 0
\(301\) −20.9947 −1.21011
\(302\) −31.2750 −1.79968
\(303\) 2.32579 0.133613
\(304\) 25.0659 1.43763
\(305\) 0 0
\(306\) 35.6872 2.04010
\(307\) −27.4709 −1.56785 −0.783925 0.620856i \(-0.786785\pi\)
−0.783925 + 0.620856i \(0.786785\pi\)
\(308\) 1.99222 0.113517
\(309\) −4.06372 −0.231177
\(310\) 0 0
\(311\) 4.51650 0.256107 0.128053 0.991767i \(-0.459127\pi\)
0.128053 + 0.991767i \(0.459127\pi\)
\(312\) −1.70315 −0.0964219
\(313\) −3.91415 −0.221241 −0.110620 0.993863i \(-0.535284\pi\)
−0.110620 + 0.993863i \(0.535284\pi\)
\(314\) 19.4825 1.09946
\(315\) 0 0
\(316\) 13.2437 0.745017
\(317\) 15.5806 0.875095 0.437548 0.899195i \(-0.355847\pi\)
0.437548 + 0.899195i \(0.355847\pi\)
\(318\) 4.38593 0.245951
\(319\) 2.49849 0.139889
\(320\) 0 0
\(321\) 5.66746 0.316327
\(322\) −16.4598 −0.917269
\(323\) 36.6942 2.04172
\(324\) 12.5589 0.697719
\(325\) 0 0
\(326\) −32.6954 −1.81083
\(327\) 7.16581 0.396270
\(328\) −4.80756 −0.265453
\(329\) −3.27464 −0.180537
\(330\) 0 0
\(331\) 12.4747 0.685672 0.342836 0.939395i \(-0.388612\pi\)
0.342836 + 0.939395i \(0.388612\pi\)
\(332\) −1.70704 −0.0936860
\(333\) −7.00267 −0.383744
\(334\) 8.13535 0.445147
\(335\) 0 0
\(336\) 5.86646 0.320042
\(337\) −15.2315 −0.829712 −0.414856 0.909887i \(-0.636168\pi\)
−0.414856 + 0.909887i \(0.636168\pi\)
\(338\) 69.1440 3.76094
\(339\) −1.96876 −0.106928
\(340\) 0 0
\(341\) 1.41191 0.0764591
\(342\) 30.1743 1.63164
\(343\) −14.7434 −0.796069
\(344\) 3.92193 0.211456
\(345\) 0 0
\(346\) −10.8398 −0.582751
\(347\) 10.9993 0.590472 0.295236 0.955424i \(-0.404602\pi\)
0.295236 + 0.955424i \(0.404602\pi\)
\(348\) −4.76413 −0.255384
\(349\) −17.1177 −0.916288 −0.458144 0.888878i \(-0.651486\pi\)
−0.458144 + 0.888878i \(0.651486\pi\)
\(350\) 0 0
\(351\) −17.5540 −0.936964
\(352\) −2.91283 −0.155255
\(353\) −13.7837 −0.733631 −0.366816 0.930294i \(-0.619552\pi\)
−0.366816 + 0.930294i \(0.619552\pi\)
\(354\) −3.90928 −0.207776
\(355\) 0 0
\(356\) 0.108247 0.00573710
\(357\) 8.58797 0.454524
\(358\) −37.8775 −2.00189
\(359\) −5.87777 −0.310217 −0.155109 0.987897i \(-0.549573\pi\)
−0.155109 + 0.987897i \(0.549573\pi\)
\(360\) 0 0
\(361\) 12.0257 0.632933
\(362\) 23.2677 1.22292
\(363\) 4.68465 0.245880
\(364\) −36.0482 −1.88944
\(365\) 0 0
\(366\) −4.20104 −0.219592
\(367\) −7.31349 −0.381761 −0.190880 0.981613i \(-0.561134\pi\)
−0.190880 + 0.981613i \(0.561134\pi\)
\(368\) 12.7409 0.664167
\(369\) −23.9809 −1.24840
\(370\) 0 0
\(371\) −15.9315 −0.827122
\(372\) −2.69222 −0.139585
\(373\) −1.89691 −0.0982185 −0.0491092 0.998793i \(-0.515638\pi\)
−0.0491092 + 0.998793i \(0.515638\pi\)
\(374\) −4.90243 −0.253499
\(375\) 0 0
\(376\) 0.611722 0.0315471
\(377\) −45.2090 −2.32838
\(378\) 14.5920 0.750529
\(379\) −34.6799 −1.78139 −0.890693 0.454605i \(-0.849781\pi\)
−0.890693 + 0.454605i \(0.849781\pi\)
\(380\) 0 0
\(381\) −2.56458 −0.131387
\(382\) 48.3352 2.47305
\(383\) 1.13468 0.0579796 0.0289898 0.999580i \(-0.490771\pi\)
0.0289898 + 0.999580i \(0.490771\pi\)
\(384\) −1.92730 −0.0983523
\(385\) 0 0
\(386\) −10.0270 −0.510362
\(387\) 19.5632 0.994454
\(388\) −10.7442 −0.545455
\(389\) 13.4060 0.679709 0.339855 0.940478i \(-0.389622\pi\)
0.339855 + 0.940478i \(0.389622\pi\)
\(390\) 0 0
\(391\) 18.6516 0.943251
\(392\) −1.19423 −0.0603180
\(393\) 5.90598 0.297917
\(394\) −28.2273 −1.42207
\(395\) 0 0
\(396\) −1.85638 −0.0932868
\(397\) 24.1747 1.21329 0.606647 0.794972i \(-0.292514\pi\)
0.606647 + 0.794972i \(0.292514\pi\)
\(398\) −31.3520 −1.57153
\(399\) 7.26132 0.363521
\(400\) 0 0
\(401\) 16.0221 0.800105 0.400053 0.916492i \(-0.368992\pi\)
0.400053 + 0.916492i \(0.368992\pi\)
\(402\) 3.48822 0.173977
\(403\) −25.5477 −1.27262
\(404\) −9.19585 −0.457511
\(405\) 0 0
\(406\) 37.5804 1.86508
\(407\) 0.961974 0.0476833
\(408\) −1.60428 −0.0794238
\(409\) 15.4202 0.762480 0.381240 0.924476i \(-0.375497\pi\)
0.381240 + 0.924476i \(0.375497\pi\)
\(410\) 0 0
\(411\) 9.11914 0.449814
\(412\) 16.0673 0.791581
\(413\) 14.2001 0.698741
\(414\) 15.3375 0.753799
\(415\) 0 0
\(416\) 52.7063 2.58414
\(417\) −4.28051 −0.209617
\(418\) −4.14511 −0.202744
\(419\) 6.59479 0.322177 0.161088 0.986940i \(-0.448500\pi\)
0.161088 + 0.986940i \(0.448500\pi\)
\(420\) 0 0
\(421\) −36.1505 −1.76187 −0.880934 0.473240i \(-0.843084\pi\)
−0.880934 + 0.473240i \(0.843084\pi\)
\(422\) 16.2653 0.791784
\(423\) 3.05137 0.148363
\(424\) 2.97609 0.144532
\(425\) 0 0
\(426\) 8.58585 0.415986
\(427\) 15.2599 0.738478
\(428\) −22.4083 −1.08315
\(429\) 1.16706 0.0563462
\(430\) 0 0
\(431\) 25.4782 1.22724 0.613622 0.789600i \(-0.289712\pi\)
0.613622 + 0.789600i \(0.289712\pi\)
\(432\) −11.2951 −0.543436
\(433\) −14.7128 −0.707053 −0.353527 0.935424i \(-0.615018\pi\)
−0.353527 + 0.935424i \(0.615018\pi\)
\(434\) 21.2368 1.01940
\(435\) 0 0
\(436\) −28.3326 −1.35688
\(437\) 15.7703 0.754397
\(438\) −11.5058 −0.549767
\(439\) 6.66548 0.318126 0.159063 0.987268i \(-0.449153\pi\)
0.159063 + 0.987268i \(0.449153\pi\)
\(440\) 0 0
\(441\) −5.95704 −0.283669
\(442\) 88.7070 4.21936
\(443\) −0.549488 −0.0261070 −0.0130535 0.999915i \(-0.504155\pi\)
−0.0130535 + 0.999915i \(0.504155\pi\)
\(444\) −1.83429 −0.0870517
\(445\) 0 0
\(446\) −25.0074 −1.18413
\(447\) −7.68215 −0.363353
\(448\) −16.6368 −0.786013
\(449\) −4.52148 −0.213382 −0.106691 0.994292i \(-0.534026\pi\)
−0.106691 + 0.994292i \(0.534026\pi\)
\(450\) 0 0
\(451\) 3.29432 0.155123
\(452\) 7.78417 0.366137
\(453\) 7.01306 0.329502
\(454\) 42.6659 2.00241
\(455\) 0 0
\(456\) −1.35646 −0.0635219
\(457\) −32.9160 −1.53974 −0.769872 0.638199i \(-0.779680\pi\)
−0.769872 + 0.638199i \(0.779680\pi\)
\(458\) −17.7851 −0.831043
\(459\) −16.5350 −0.771788
\(460\) 0 0
\(461\) −0.628370 −0.0292661 −0.0146331 0.999893i \(-0.504658\pi\)
−0.0146331 + 0.999893i \(0.504658\pi\)
\(462\) −0.970131 −0.0451346
\(463\) −21.2255 −0.986432 −0.493216 0.869907i \(-0.664179\pi\)
−0.493216 + 0.869907i \(0.664179\pi\)
\(464\) −29.0896 −1.35045
\(465\) 0 0
\(466\) −20.5016 −0.949719
\(467\) −35.7171 −1.65279 −0.826396 0.563089i \(-0.809613\pi\)
−0.826396 + 0.563089i \(0.809613\pi\)
\(468\) 33.5903 1.55271
\(469\) −12.6707 −0.585076
\(470\) 0 0
\(471\) −4.36872 −0.201300
\(472\) −2.65266 −0.122098
\(473\) −2.68745 −0.123569
\(474\) −6.44916 −0.296220
\(475\) 0 0
\(476\) −33.9556 −1.55635
\(477\) 14.8453 0.679717
\(478\) −39.4556 −1.80466
\(479\) −24.3814 −1.11401 −0.557007 0.830508i \(-0.688050\pi\)
−0.557007 + 0.830508i \(0.688050\pi\)
\(480\) 0 0
\(481\) −17.4064 −0.793665
\(482\) −2.29644 −0.104600
\(483\) 3.69092 0.167943
\(484\) −18.5224 −0.841929
\(485\) 0 0
\(486\) −20.6135 −0.935049
\(487\) 23.1661 1.04976 0.524879 0.851177i \(-0.324111\pi\)
0.524879 + 0.851177i \(0.324111\pi\)
\(488\) −2.85064 −0.129042
\(489\) 7.33155 0.331544
\(490\) 0 0
\(491\) 0.895629 0.0404192 0.0202096 0.999796i \(-0.493567\pi\)
0.0202096 + 0.999796i \(0.493567\pi\)
\(492\) −6.28160 −0.283197
\(493\) −42.5846 −1.91791
\(494\) 75.0037 3.37458
\(495\) 0 0
\(496\) −16.4386 −0.738117
\(497\) −31.1873 −1.39894
\(498\) 0.831260 0.0372496
\(499\) −11.8061 −0.528514 −0.264257 0.964452i \(-0.585127\pi\)
−0.264257 + 0.964452i \(0.585127\pi\)
\(500\) 0 0
\(501\) −1.82426 −0.0815018
\(502\) 24.0246 1.07227
\(503\) 19.7931 0.882531 0.441265 0.897377i \(-0.354530\pi\)
0.441265 + 0.897377i \(0.354530\pi\)
\(504\) 4.79198 0.213452
\(505\) 0 0
\(506\) −2.10696 −0.0936656
\(507\) −15.5047 −0.688589
\(508\) 10.1400 0.449888
\(509\) 3.69547 0.163799 0.0818995 0.996641i \(-0.473901\pi\)
0.0818995 + 0.996641i \(0.473901\pi\)
\(510\) 0 0
\(511\) 41.7936 1.84884
\(512\) 28.8371 1.27443
\(513\) −13.9807 −0.617264
\(514\) 2.28542 0.100806
\(515\) 0 0
\(516\) 5.12442 0.225590
\(517\) −0.419174 −0.0184353
\(518\) 14.4693 0.635743
\(519\) 2.43070 0.106696
\(520\) 0 0
\(521\) 17.7211 0.776376 0.388188 0.921580i \(-0.373101\pi\)
0.388188 + 0.921580i \(0.373101\pi\)
\(522\) −35.0181 −1.53270
\(523\) 31.6186 1.38258 0.691292 0.722575i \(-0.257042\pi\)
0.691292 + 0.722575i \(0.257042\pi\)
\(524\) −23.3514 −1.02011
\(525\) 0 0
\(526\) 54.6272 2.38186
\(527\) −24.0647 −1.04827
\(528\) 0.750942 0.0326806
\(529\) −14.9840 −0.651477
\(530\) 0 0
\(531\) −13.2319 −0.574216
\(532\) −28.7102 −1.24475
\(533\) −59.6090 −2.58195
\(534\) −0.0527121 −0.00228108
\(535\) 0 0
\(536\) 2.36695 0.102237
\(537\) 8.49359 0.366525
\(538\) 1.46256 0.0630553
\(539\) 0.818333 0.0352481
\(540\) 0 0
\(541\) 4.35506 0.187239 0.0936193 0.995608i \(-0.470156\pi\)
0.0936193 + 0.995608i \(0.470156\pi\)
\(542\) 19.3875 0.832763
\(543\) −5.21750 −0.223904
\(544\) 49.6466 2.12858
\(545\) 0 0
\(546\) 17.5540 0.751243
\(547\) 42.4490 1.81499 0.907493 0.420067i \(-0.137993\pi\)
0.907493 + 0.420067i \(0.137993\pi\)
\(548\) −36.0557 −1.54022
\(549\) −14.2194 −0.606871
\(550\) 0 0
\(551\) −36.0062 −1.53392
\(552\) −0.689484 −0.0293464
\(553\) 23.4260 0.996173
\(554\) −7.12872 −0.302870
\(555\) 0 0
\(556\) 16.9245 0.717758
\(557\) 6.63302 0.281050 0.140525 0.990077i \(-0.455121\pi\)
0.140525 + 0.990077i \(0.455121\pi\)
\(558\) −19.7888 −0.837728
\(559\) 48.6280 2.05674
\(560\) 0 0
\(561\) 1.09931 0.0464130
\(562\) −8.73285 −0.368373
\(563\) −35.7791 −1.50791 −0.753955 0.656927i \(-0.771856\pi\)
−0.753955 + 0.656927i \(0.771856\pi\)
\(564\) 0.799281 0.0336558
\(565\) 0 0
\(566\) −52.5759 −2.20993
\(567\) 22.2147 0.932930
\(568\) 5.82597 0.244452
\(569\) −35.5696 −1.49116 −0.745578 0.666419i \(-0.767826\pi\)
−0.745578 + 0.666419i \(0.767826\pi\)
\(570\) 0 0
\(571\) −20.4274 −0.854858 −0.427429 0.904049i \(-0.640581\pi\)
−0.427429 + 0.904049i \(0.640581\pi\)
\(572\) −4.61439 −0.192937
\(573\) −10.8386 −0.452789
\(574\) 49.5506 2.06820
\(575\) 0 0
\(576\) 15.5024 0.645934
\(577\) −30.7540 −1.28030 −0.640152 0.768248i \(-0.721129\pi\)
−0.640152 + 0.768248i \(0.721129\pi\)
\(578\) 50.8263 2.11410
\(579\) 2.24844 0.0934420
\(580\) 0 0
\(581\) −3.01948 −0.125269
\(582\) 5.23200 0.216874
\(583\) −2.03933 −0.0844604
\(584\) −7.80729 −0.323068
\(585\) 0 0
\(586\) 38.9862 1.61051
\(587\) 47.9182 1.97780 0.988898 0.148595i \(-0.0474751\pi\)
0.988898 + 0.148595i \(0.0474751\pi\)
\(588\) −1.56040 −0.0643497
\(589\) −20.3472 −0.838393
\(590\) 0 0
\(591\) 6.32963 0.260366
\(592\) −11.2001 −0.460323
\(593\) 17.1170 0.702910 0.351455 0.936205i \(-0.385687\pi\)
0.351455 + 0.936205i \(0.385687\pi\)
\(594\) 1.86786 0.0766391
\(595\) 0 0
\(596\) 30.3741 1.24417
\(597\) 7.03032 0.287732
\(598\) 38.1243 1.55902
\(599\) 1.61307 0.0659081 0.0329540 0.999457i \(-0.489509\pi\)
0.0329540 + 0.999457i \(0.489509\pi\)
\(600\) 0 0
\(601\) −44.6538 −1.82147 −0.910734 0.412994i \(-0.864483\pi\)
−0.910734 + 0.412994i \(0.864483\pi\)
\(602\) −40.4225 −1.64750
\(603\) 11.8067 0.480807
\(604\) −27.7286 −1.12826
\(605\) 0 0
\(606\) 4.47801 0.181907
\(607\) 44.2902 1.79768 0.898841 0.438274i \(-0.144410\pi\)
0.898841 + 0.438274i \(0.144410\pi\)
\(608\) 41.9773 1.70241
\(609\) −8.42696 −0.341478
\(610\) 0 0
\(611\) 7.58474 0.306846
\(612\) 31.6404 1.27899
\(613\) 44.7545 1.80762 0.903808 0.427939i \(-0.140760\pi\)
0.903808 + 0.427939i \(0.140760\pi\)
\(614\) −52.8917 −2.13453
\(615\) 0 0
\(616\) −0.658286 −0.0265231
\(617\) −2.19344 −0.0883047 −0.0441523 0.999025i \(-0.514059\pi\)
−0.0441523 + 0.999025i \(0.514059\pi\)
\(618\) −7.82415 −0.314734
\(619\) −20.1843 −0.811277 −0.405639 0.914033i \(-0.632951\pi\)
−0.405639 + 0.914033i \(0.632951\pi\)
\(620\) 0 0
\(621\) −7.10637 −0.285169
\(622\) 8.69591 0.348674
\(623\) 0.191472 0.00767116
\(624\) −13.5879 −0.543952
\(625\) 0 0
\(626\) −7.53617 −0.301206
\(627\) 0.929493 0.0371204
\(628\) 17.2733 0.689279
\(629\) −16.3960 −0.653751
\(630\) 0 0
\(631\) −6.65239 −0.264827 −0.132414 0.991195i \(-0.542273\pi\)
−0.132414 + 0.991195i \(0.542273\pi\)
\(632\) −4.37610 −0.174072
\(633\) −3.64731 −0.144967
\(634\) 29.9984 1.19139
\(635\) 0 0
\(636\) 3.88859 0.154193
\(637\) −14.8073 −0.586687
\(638\) 4.81052 0.190450
\(639\) 29.0609 1.14963
\(640\) 0 0
\(641\) 35.1221 1.38724 0.693620 0.720341i \(-0.256015\pi\)
0.693620 + 0.720341i \(0.256015\pi\)
\(642\) 10.9119 0.430660
\(643\) 33.0043 1.30156 0.650781 0.759266i \(-0.274442\pi\)
0.650781 + 0.759266i \(0.274442\pi\)
\(644\) −14.5934 −0.575059
\(645\) 0 0
\(646\) 70.6498 2.77968
\(647\) 15.2774 0.600618 0.300309 0.953842i \(-0.402910\pi\)
0.300309 + 0.953842i \(0.402910\pi\)
\(648\) −4.14983 −0.163021
\(649\) 1.81770 0.0713509
\(650\) 0 0
\(651\) −4.76210 −0.186642
\(652\) −28.9879 −1.13525
\(653\) −34.4208 −1.34699 −0.673495 0.739192i \(-0.735208\pi\)
−0.673495 + 0.739192i \(0.735208\pi\)
\(654\) 13.7968 0.539499
\(655\) 0 0
\(656\) −38.3553 −1.49752
\(657\) −38.9440 −1.51935
\(658\) −6.30489 −0.245790
\(659\) −24.7850 −0.965488 −0.482744 0.875762i \(-0.660360\pi\)
−0.482744 + 0.875762i \(0.660360\pi\)
\(660\) 0 0
\(661\) −3.33949 −0.129891 −0.0649456 0.997889i \(-0.520687\pi\)
−0.0649456 + 0.997889i \(0.520687\pi\)
\(662\) 24.0184 0.933502
\(663\) −19.8915 −0.772522
\(664\) 0.564055 0.0218896
\(665\) 0 0
\(666\) −13.4827 −0.522445
\(667\) −18.3019 −0.708652
\(668\) 7.21284 0.279073
\(669\) 5.60761 0.216803
\(670\) 0 0
\(671\) 1.95336 0.0754086
\(672\) 9.82446 0.378987
\(673\) −14.0825 −0.542841 −0.271421 0.962461i \(-0.587493\pi\)
−0.271421 + 0.962461i \(0.587493\pi\)
\(674\) −29.3262 −1.12960
\(675\) 0 0
\(676\) 61.3035 2.35783
\(677\) −35.9538 −1.38182 −0.690909 0.722941i \(-0.742790\pi\)
−0.690909 + 0.722941i \(0.742790\pi\)
\(678\) −3.79058 −0.145576
\(679\) −19.0048 −0.729336
\(680\) 0 0
\(681\) −9.56732 −0.366620
\(682\) 2.71844 0.104094
\(683\) 3.40122 0.130144 0.0650720 0.997881i \(-0.479272\pi\)
0.0650720 + 0.997881i \(0.479272\pi\)
\(684\) 26.7527 1.02291
\(685\) 0 0
\(686\) −28.3865 −1.08380
\(687\) 3.98810 0.152155
\(688\) 31.2896 1.19290
\(689\) 36.9006 1.40580
\(690\) 0 0
\(691\) −18.9887 −0.722365 −0.361182 0.932495i \(-0.617627\pi\)
−0.361182 + 0.932495i \(0.617627\pi\)
\(692\) −9.61062 −0.365341
\(693\) −3.28364 −0.124735
\(694\) 21.1777 0.803893
\(695\) 0 0
\(696\) 1.57420 0.0596701
\(697\) −56.1487 −2.12678
\(698\) −32.9578 −1.24747
\(699\) 4.59725 0.173884
\(700\) 0 0
\(701\) −43.2740 −1.63444 −0.817219 0.576327i \(-0.804485\pi\)
−0.817219 + 0.576327i \(0.804485\pi\)
\(702\) −33.7979 −1.27562
\(703\) −13.8632 −0.522859
\(704\) −2.12960 −0.0802625
\(705\) 0 0
\(706\) −26.5386 −0.998795
\(707\) −16.2660 −0.611744
\(708\) −3.46599 −0.130260
\(709\) −9.47103 −0.355692 −0.177846 0.984058i \(-0.556913\pi\)
−0.177846 + 0.984058i \(0.556913\pi\)
\(710\) 0 0
\(711\) −21.8287 −0.818641
\(712\) −0.0357680 −0.00134046
\(713\) −10.3425 −0.387328
\(714\) 16.5350 0.618807
\(715\) 0 0
\(716\) −33.5824 −1.25503
\(717\) 8.84745 0.330414
\(718\) −11.3169 −0.422342
\(719\) 24.6960 0.921004 0.460502 0.887659i \(-0.347669\pi\)
0.460502 + 0.887659i \(0.347669\pi\)
\(720\) 0 0
\(721\) 28.4205 1.05844
\(722\) 23.1539 0.861701
\(723\) 0.514949 0.0191512
\(724\) 20.6292 0.766680
\(725\) 0 0
\(726\) 9.01968 0.334752
\(727\) 23.3386 0.865582 0.432791 0.901494i \(-0.357529\pi\)
0.432791 + 0.901494i \(0.357529\pi\)
\(728\) 11.9114 0.441464
\(729\) −17.4491 −0.646263
\(730\) 0 0
\(731\) 45.8051 1.69416
\(732\) −3.72467 −0.137668
\(733\) −40.6924 −1.50301 −0.751504 0.659728i \(-0.770671\pi\)
−0.751504 + 0.659728i \(0.770671\pi\)
\(734\) −14.0812 −0.519745
\(735\) 0 0
\(736\) 21.3370 0.786493
\(737\) −1.62192 −0.0597442
\(738\) −46.1721 −1.69962
\(739\) −16.3218 −0.600408 −0.300204 0.953875i \(-0.597055\pi\)
−0.300204 + 0.953875i \(0.597055\pi\)
\(740\) 0 0
\(741\) −16.8187 −0.617850
\(742\) −30.6740 −1.12608
\(743\) 1.50962 0.0553826 0.0276913 0.999617i \(-0.491184\pi\)
0.0276913 + 0.999617i \(0.491184\pi\)
\(744\) 0.889588 0.0326139
\(745\) 0 0
\(746\) −3.65226 −0.133719
\(747\) 2.81360 0.102944
\(748\) −4.34652 −0.158925
\(749\) −39.6366 −1.44829
\(750\) 0 0
\(751\) 19.7197 0.719582 0.359791 0.933033i \(-0.382848\pi\)
0.359791 + 0.933033i \(0.382848\pi\)
\(752\) 4.88038 0.177969
\(753\) −5.38722 −0.196321
\(754\) −87.0439 −3.16995
\(755\) 0 0
\(756\) 12.9373 0.470525
\(757\) −14.9494 −0.543346 −0.271673 0.962390i \(-0.587577\pi\)
−0.271673 + 0.962390i \(0.587577\pi\)
\(758\) −66.7716 −2.42525
\(759\) 0.472460 0.0171492
\(760\) 0 0
\(761\) 9.48843 0.343955 0.171978 0.985101i \(-0.444984\pi\)
0.171978 + 0.985101i \(0.444984\pi\)
\(762\) −4.93775 −0.178876
\(763\) −50.1157 −1.81431
\(764\) 42.8543 1.55041
\(765\) 0 0
\(766\) 2.18468 0.0789357
\(767\) −32.8903 −1.18760
\(768\) −8.46839 −0.305577
\(769\) 44.3031 1.59761 0.798806 0.601589i \(-0.205465\pi\)
0.798806 + 0.601589i \(0.205465\pi\)
\(770\) 0 0
\(771\) −0.512479 −0.0184565
\(772\) −8.89000 −0.319958
\(773\) 53.9911 1.94193 0.970963 0.239231i \(-0.0768952\pi\)
0.970963 + 0.239231i \(0.0768952\pi\)
\(774\) 37.6664 1.35389
\(775\) 0 0
\(776\) 3.55020 0.127445
\(777\) −3.24456 −0.116398
\(778\) 25.8114 0.925383
\(779\) −47.4750 −1.70097
\(780\) 0 0
\(781\) −3.99216 −0.142851
\(782\) 35.9112 1.28418
\(783\) 16.2250 0.579834
\(784\) −9.52774 −0.340276
\(785\) 0 0
\(786\) 11.3712 0.405597
\(787\) −8.30642 −0.296092 −0.148046 0.988980i \(-0.547298\pi\)
−0.148046 + 0.988980i \(0.547298\pi\)
\(788\) −25.0264 −0.891530
\(789\) −12.2495 −0.436094
\(790\) 0 0
\(791\) 13.7689 0.489567
\(792\) 0.613403 0.0217963
\(793\) −35.3450 −1.25514
\(794\) 46.5452 1.65183
\(795\) 0 0
\(796\) −27.7968 −0.985233
\(797\) −10.8857 −0.385590 −0.192795 0.981239i \(-0.561755\pi\)
−0.192795 + 0.981239i \(0.561755\pi\)
\(798\) 13.9807 0.494912
\(799\) 7.14445 0.252752
\(800\) 0 0
\(801\) −0.178417 −0.00630405
\(802\) 30.8484 1.08930
\(803\) 5.34984 0.188792
\(804\) 3.09268 0.109070
\(805\) 0 0
\(806\) −49.1888 −1.73260
\(807\) −0.327961 −0.0115448
\(808\) 3.03857 0.106897
\(809\) −49.2828 −1.73269 −0.866346 0.499444i \(-0.833537\pi\)
−0.866346 + 0.499444i \(0.833537\pi\)
\(810\) 0 0
\(811\) −7.57591 −0.266026 −0.133013 0.991114i \(-0.542465\pi\)
−0.133013 + 0.991114i \(0.542465\pi\)
\(812\) 33.3190 1.16927
\(813\) −4.34741 −0.152470
\(814\) 1.85215 0.0649180
\(815\) 0 0
\(816\) −12.7991 −0.448060
\(817\) 38.7292 1.35496
\(818\) 29.6896 1.03807
\(819\) 59.4158 2.07616
\(820\) 0 0
\(821\) −13.1781 −0.459919 −0.229959 0.973200i \(-0.573859\pi\)
−0.229959 + 0.973200i \(0.573859\pi\)
\(822\) 17.5577 0.612395
\(823\) −20.1232 −0.701450 −0.350725 0.936479i \(-0.614065\pi\)
−0.350725 + 0.936479i \(0.614065\pi\)
\(824\) −5.30911 −0.184952
\(825\) 0 0
\(826\) 27.3404 0.951294
\(827\) 0.667971 0.0232276 0.0116138 0.999933i \(-0.496303\pi\)
0.0116138 + 0.999933i \(0.496303\pi\)
\(828\) 13.5983 0.472575
\(829\) −52.7661 −1.83264 −0.916321 0.400445i \(-0.868855\pi\)
−0.916321 + 0.400445i \(0.868855\pi\)
\(830\) 0 0
\(831\) 1.59853 0.0554524
\(832\) 38.5341 1.33593
\(833\) −13.9478 −0.483261
\(834\) −8.24155 −0.285381
\(835\) 0 0
\(836\) −3.67508 −0.127105
\(837\) 9.16880 0.316920
\(838\) 12.6974 0.438624
\(839\) 46.4586 1.60393 0.801965 0.597372i \(-0.203788\pi\)
0.801965 + 0.597372i \(0.203788\pi\)
\(840\) 0 0
\(841\) 12.7862 0.440903
\(842\) −69.6030 −2.39868
\(843\) 1.95824 0.0674453
\(844\) 14.4209 0.496389
\(845\) 0 0
\(846\) 5.87501 0.201987
\(847\) −32.7631 −1.12576
\(848\) 23.7436 0.815359
\(849\) 11.7895 0.404615
\(850\) 0 0
\(851\) −7.04663 −0.241555
\(852\) 7.61226 0.260792
\(853\) 34.0142 1.16463 0.582313 0.812965i \(-0.302148\pi\)
0.582313 + 0.812965i \(0.302148\pi\)
\(854\) 29.3809 1.00539
\(855\) 0 0
\(856\) 7.40434 0.253075
\(857\) 23.6364 0.807404 0.403702 0.914891i \(-0.367723\pi\)
0.403702 + 0.914891i \(0.367723\pi\)
\(858\) 2.24702 0.0767120
\(859\) −27.1844 −0.927519 −0.463759 0.885961i \(-0.653500\pi\)
−0.463759 + 0.885961i \(0.653500\pi\)
\(860\) 0 0
\(861\) −11.1111 −0.378666
\(862\) 49.0550 1.67082
\(863\) 55.4152 1.88636 0.943178 0.332289i \(-0.107821\pi\)
0.943178 + 0.332289i \(0.107821\pi\)
\(864\) −18.9157 −0.643525
\(865\) 0 0
\(866\) −28.3276 −0.962611
\(867\) −11.3972 −0.387069
\(868\) 18.8287 0.639086
\(869\) 2.99866 0.101723
\(870\) 0 0
\(871\) 29.3478 0.994413
\(872\) 9.36190 0.317034
\(873\) 17.7090 0.599358
\(874\) 30.3637 1.02707
\(875\) 0 0
\(876\) −10.2011 −0.344662
\(877\) 31.3826 1.05971 0.529857 0.848087i \(-0.322246\pi\)
0.529857 + 0.848087i \(0.322246\pi\)
\(878\) 12.8335 0.433110
\(879\) −8.74220 −0.294867
\(880\) 0 0
\(881\) −10.8571 −0.365787 −0.182893 0.983133i \(-0.558546\pi\)
−0.182893 + 0.983133i \(0.558546\pi\)
\(882\) −11.4695 −0.386198
\(883\) 14.8728 0.500511 0.250255 0.968180i \(-0.419485\pi\)
0.250255 + 0.968180i \(0.419485\pi\)
\(884\) 78.6481 2.64522
\(885\) 0 0
\(886\) −1.05797 −0.0355431
\(887\) −34.0443 −1.14309 −0.571547 0.820569i \(-0.693657\pi\)
−0.571547 + 0.820569i \(0.693657\pi\)
\(888\) 0.606103 0.0203395
\(889\) 17.9359 0.601552
\(890\) 0 0
\(891\) 2.84362 0.0952647
\(892\) −22.1717 −0.742362
\(893\) 6.04079 0.202147
\(894\) −14.7910 −0.494684
\(895\) 0 0
\(896\) 13.4790 0.450303
\(897\) −8.54892 −0.285440
\(898\) −8.70550 −0.290506
\(899\) 23.6135 0.787555
\(900\) 0 0
\(901\) 34.7585 1.15797
\(902\) 6.34277 0.211191
\(903\) 9.06426 0.301640
\(904\) −2.57211 −0.0855472
\(905\) 0 0
\(906\) 13.5027 0.448598
\(907\) −2.39080 −0.0793851 −0.0396925 0.999212i \(-0.512638\pi\)
−0.0396925 + 0.999212i \(0.512638\pi\)
\(908\) 37.8278 1.25536
\(909\) 15.1569 0.502723
\(910\) 0 0
\(911\) 6.37553 0.211231 0.105615 0.994407i \(-0.466319\pi\)
0.105615 + 0.994407i \(0.466319\pi\)
\(912\) −10.8220 −0.358351
\(913\) −0.386511 −0.0127916
\(914\) −63.3753 −2.09627
\(915\) 0 0
\(916\) −15.7684 −0.521001
\(917\) −41.3048 −1.36400
\(918\) −31.8360 −1.05074
\(919\) 59.7294 1.97029 0.985146 0.171719i \(-0.0549322\pi\)
0.985146 + 0.171719i \(0.0549322\pi\)
\(920\) 0 0
\(921\) 11.8603 0.390811
\(922\) −1.20984 −0.0398441
\(923\) 72.2362 2.37768
\(924\) −0.860123 −0.0282960
\(925\) 0 0
\(926\) −40.8669 −1.34297
\(927\) −26.4827 −0.869807
\(928\) −48.7158 −1.59918
\(929\) 4.54835 0.149226 0.0746132 0.997213i \(-0.476228\pi\)
0.0746132 + 0.997213i \(0.476228\pi\)
\(930\) 0 0
\(931\) −11.7931 −0.386504
\(932\) −18.1768 −0.595402
\(933\) −1.94996 −0.0638387
\(934\) −68.7686 −2.25018
\(935\) 0 0
\(936\) −11.0992 −0.362789
\(937\) 1.52795 0.0499161 0.0249580 0.999688i \(-0.492055\pi\)
0.0249580 + 0.999688i \(0.492055\pi\)
\(938\) −24.3957 −0.796547
\(939\) 1.68990 0.0551477
\(940\) 0 0
\(941\) −27.1537 −0.885184 −0.442592 0.896723i \(-0.645941\pi\)
−0.442592 + 0.896723i \(0.645941\pi\)
\(942\) −8.41139 −0.274058
\(943\) −24.1314 −0.785828
\(944\) −21.1632 −0.688804
\(945\) 0 0
\(946\) −5.17432 −0.168232
\(947\) −58.1874 −1.89084 −0.945419 0.325858i \(-0.894347\pi\)
−0.945419 + 0.325858i \(0.894347\pi\)
\(948\) −5.71785 −0.185707
\(949\) −96.8026 −3.14234
\(950\) 0 0
\(951\) −6.72679 −0.218131
\(952\) 11.2199 0.363639
\(953\) 19.3719 0.627518 0.313759 0.949503i \(-0.398412\pi\)
0.313759 + 0.949503i \(0.398412\pi\)
\(954\) 28.5826 0.925395
\(955\) 0 0
\(956\) −34.9815 −1.13138
\(957\) −1.07870 −0.0348695
\(958\) −46.9432 −1.51666
\(959\) −63.7767 −2.05946
\(960\) 0 0
\(961\) −17.6559 −0.569546
\(962\) −33.5138 −1.08053
\(963\) 36.9341 1.19018
\(964\) −2.03603 −0.0655762
\(965\) 0 0
\(966\) 7.10637 0.228644
\(967\) 19.4636 0.625908 0.312954 0.949768i \(-0.398681\pi\)
0.312954 + 0.949768i \(0.398681\pi\)
\(968\) 6.12034 0.196715
\(969\) −15.8424 −0.508930
\(970\) 0 0
\(971\) 44.6819 1.43391 0.716956 0.697119i \(-0.245535\pi\)
0.716956 + 0.697119i \(0.245535\pi\)
\(972\) −18.2761 −0.586205
\(973\) 29.9367 0.959725
\(974\) 44.6033 1.42918
\(975\) 0 0
\(976\) −22.7427 −0.727976
\(977\) 17.7202 0.566918 0.283459 0.958984i \(-0.408518\pi\)
0.283459 + 0.958984i \(0.408518\pi\)
\(978\) 14.1159 0.451378
\(979\) 0.0245095 0.000783328 0
\(980\) 0 0
\(981\) 46.6987 1.49097
\(982\) 1.72441 0.0550283
\(983\) −45.6673 −1.45656 −0.728280 0.685279i \(-0.759680\pi\)
−0.728280 + 0.685279i \(0.759680\pi\)
\(984\) 2.07562 0.0661684
\(985\) 0 0
\(986\) −81.9910 −2.61113
\(987\) 1.41380 0.0450017
\(988\) 66.4987 2.11560
\(989\) 19.6860 0.625979
\(990\) 0 0
\(991\) 16.7135 0.530922 0.265461 0.964122i \(-0.414476\pi\)
0.265461 + 0.964122i \(0.414476\pi\)
\(992\) −27.5295 −0.874062
\(993\) −5.38584 −0.170915
\(994\) −60.0471 −1.90458
\(995\) 0 0
\(996\) 0.736999 0.0233527
\(997\) 14.3840 0.455546 0.227773 0.973714i \(-0.426856\pi\)
0.227773 + 0.973714i \(0.426856\pi\)
\(998\) −22.7311 −0.719540
\(999\) 6.24698 0.197646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.2.a.f.1.6 6
5.4 even 2 415.2.a.c.1.1 6
15.14 odd 2 3735.2.a.l.1.6 6
20.19 odd 2 6640.2.a.bb.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.2.a.c.1.1 6 5.4 even 2
2075.2.a.f.1.6 6 1.1 even 1 trivial
3735.2.a.l.1.6 6 15.14 odd 2
6640.2.a.bb.1.4 6 20.19 odd 2