Properties

Label 660.2.y.a.301.1
Level $660$
Weight $2$
Character 660.301
Analytic conductor $5.270$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [660,2,Mod(181,660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("660.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(660, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(-0.386111 - 0.280526i\) of defining polynomial
Character \(\chi\) \(=\) 660.301
Dual form 660.2.y.a.421.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{3} +(-0.809017 + 0.587785i) q^{5} +(0.408851 + 1.25832i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(-0.105203 - 3.31496i) q^{11} +(-4.83807 - 3.51506i) q^{13} +(0.309017 + 0.951057i) q^{15} +(6.44876 - 4.68530i) q^{17} +(1.37486 - 4.23139i) q^{19} +1.32307 q^{21} +4.02566 q^{23} +(0.309017 - 0.951057i) q^{25} +(-0.809017 + 0.587785i) q^{27} +(2.56916 + 7.90707i) q^{29} +(-1.68107 - 1.22137i) q^{31} +(-3.18522 - 0.924324i) q^{33} +(-1.07039 - 0.777682i) q^{35} +(-2.83392 - 8.72192i) q^{37} +(-4.83807 + 3.51506i) q^{39} +(2.41714 - 7.43920i) q^{41} -3.08621 q^{43} +1.00000 q^{45} +(-0.886111 + 2.72717i) q^{47} +(4.24692 - 3.08557i) q^{49} +(-2.46321 - 7.58097i) q^{51} +(-3.31118 - 2.40572i) q^{53} +(2.03359 + 2.62002i) q^{55} +(-3.59944 - 2.61515i) q^{57} +(1.63220 + 5.02341i) q^{59} +(-2.49009 + 1.80916i) q^{61} +(0.408851 - 1.25832i) q^{63} +5.98018 q^{65} -14.1976 q^{67} +(1.24400 - 3.82863i) q^{69} +(-7.33551 + 5.32956i) q^{71} +(2.83100 + 8.71293i) q^{73} +(-0.809017 - 0.587785i) q^{75} +(4.12825 - 1.48770i) q^{77} +(8.99857 + 6.53784i) q^{79} +(0.309017 + 0.951057i) q^{81} +(-6.63047 + 4.81732i) q^{83} +(-2.46321 + 7.58097i) q^{85} +8.31399 q^{87} +9.73424 q^{89} +(2.44501 - 7.52496i) q^{91} +(-1.68107 + 1.22137i) q^{93} +(1.37486 + 4.23139i) q^{95} +(9.54725 + 6.93648i) q^{97} +(-1.86337 + 2.74369i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 2 q^{5} + 3 q^{7} - 2 q^{9} - 3 q^{11} - 6 q^{13} - 2 q^{15} + 8 q^{17} - 14 q^{19} + 8 q^{21} + 10 q^{23} - 2 q^{25} - 2 q^{27} + 6 q^{29} - q^{31} + 2 q^{33} - 7 q^{35} - 5 q^{37} - 6 q^{39}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/660\mathbb{Z}\right)^\times\).

\(n\) \(221\) \(331\) \(397\) \(541\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0 0
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.408851 + 1.25832i 0.154531 + 0.475599i 0.998113 0.0614022i \(-0.0195572\pi\)
−0.843582 + 0.537001i \(0.819557\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) −0.105203 3.31496i −0.0317198 0.999497i
\(12\) 0 0
\(13\) −4.83807 3.51506i −1.34184 0.974903i −0.999374 0.0353725i \(-0.988738\pi\)
−0.342465 0.939531i \(-0.611262\pi\)
\(14\) 0 0
\(15\) 0.309017 + 0.951057i 0.0797878 + 0.245562i
\(16\) 0 0
\(17\) 6.44876 4.68530i 1.56405 1.13635i 0.631468 0.775402i \(-0.282453\pi\)
0.932586 0.360949i \(-0.117547\pi\)
\(18\) 0 0
\(19\) 1.37486 4.23139i 0.315415 0.970749i −0.660168 0.751118i \(-0.729515\pi\)
0.975583 0.219630i \(-0.0704851\pi\)
\(20\) 0 0
\(21\) 1.32307 0.288718
\(22\) 0 0
\(23\) 4.02566 0.839409 0.419704 0.907661i \(-0.362134\pi\)
0.419704 + 0.907661i \(0.362134\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 0 0
\(29\) 2.56916 + 7.90707i 0.477082 + 1.46831i 0.843129 + 0.537711i \(0.180711\pi\)
−0.366048 + 0.930596i \(0.619289\pi\)
\(30\) 0 0
\(31\) −1.68107 1.22137i −0.301930 0.219365i 0.426496 0.904489i \(-0.359748\pi\)
−0.728426 + 0.685125i \(0.759748\pi\)
\(32\) 0 0
\(33\) −3.18522 0.924324i −0.554476 0.160904i
\(34\) 0 0
\(35\) −1.07039 0.777682i −0.180928 0.131452i
\(36\) 0 0
\(37\) −2.83392 8.72192i −0.465894 1.43388i −0.857854 0.513893i \(-0.828203\pi\)
0.391960 0.919982i \(-0.371797\pi\)
\(38\) 0 0
\(39\) −4.83807 + 3.51506i −0.774711 + 0.562861i
\(40\) 0 0
\(41\) 2.41714 7.43920i 0.377494 1.16181i −0.564286 0.825579i \(-0.690849\pi\)
0.941780 0.336228i \(-0.109151\pi\)
\(42\) 0 0
\(43\) −3.08621 −0.470643 −0.235322 0.971918i \(-0.575614\pi\)
−0.235322 + 0.971918i \(0.575614\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −0.886111 + 2.72717i −0.129253 + 0.397799i −0.994652 0.103284i \(-0.967065\pi\)
0.865399 + 0.501083i \(0.167065\pi\)
\(48\) 0 0
\(49\) 4.24692 3.08557i 0.606703 0.440796i
\(50\) 0 0
\(51\) −2.46321 7.58097i −0.344918 1.06155i
\(52\) 0 0
\(53\) −3.31118 2.40572i −0.454826 0.330451i 0.336672 0.941622i \(-0.390699\pi\)
−0.791498 + 0.611171i \(0.790699\pi\)
\(54\) 0 0
\(55\) 2.03359 + 2.62002i 0.274210 + 0.353283i
\(56\) 0 0
\(57\) −3.59944 2.61515i −0.476757 0.346385i
\(58\) 0 0
\(59\) 1.63220 + 5.02341i 0.212495 + 0.653992i 0.999322 + 0.0368186i \(0.0117224\pi\)
−0.786827 + 0.617174i \(0.788278\pi\)
\(60\) 0 0
\(61\) −2.49009 + 1.80916i −0.318824 + 0.231639i −0.735673 0.677337i \(-0.763134\pi\)
0.416850 + 0.908975i \(0.363134\pi\)
\(62\) 0 0
\(63\) 0.408851 1.25832i 0.0515104 0.158533i
\(64\) 0 0
\(65\) 5.98018 0.741750
\(66\) 0 0
\(67\) −14.1976 −1.73451 −0.867256 0.497862i \(-0.834119\pi\)
−0.867256 + 0.497862i \(0.834119\pi\)
\(68\) 0 0
\(69\) 1.24400 3.82863i 0.149760 0.460913i
\(70\) 0 0
\(71\) −7.33551 + 5.32956i −0.870565 + 0.632502i −0.930738 0.365686i \(-0.880834\pi\)
0.0601738 + 0.998188i \(0.480834\pi\)
\(72\) 0 0
\(73\) 2.83100 + 8.71293i 0.331344 + 1.01977i 0.968495 + 0.249032i \(0.0801125\pi\)
−0.637152 + 0.770739i \(0.719887\pi\)
\(74\) 0 0
\(75\) −0.809017 0.587785i −0.0934172 0.0678716i
\(76\) 0 0
\(77\) 4.12825 1.48770i 0.470457 0.169539i
\(78\) 0 0
\(79\) 8.99857 + 6.53784i 1.01242 + 0.735565i 0.964715 0.263297i \(-0.0848098\pi\)
0.0477034 + 0.998862i \(0.484810\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) −6.63047 + 4.81732i −0.727789 + 0.528769i −0.888863 0.458173i \(-0.848504\pi\)
0.161074 + 0.986942i \(0.448504\pi\)
\(84\) 0 0
\(85\) −2.46321 + 7.58097i −0.267172 + 0.822271i
\(86\) 0 0
\(87\) 8.31399 0.891353
\(88\) 0 0
\(89\) 9.73424 1.03183 0.515914 0.856640i \(-0.327452\pi\)
0.515914 + 0.856640i \(0.327452\pi\)
\(90\) 0 0
\(91\) 2.44501 7.52496i 0.256306 0.788830i
\(92\) 0 0
\(93\) −1.68107 + 1.22137i −0.174319 + 0.126650i
\(94\) 0 0
\(95\) 1.37486 + 4.23139i 0.141058 + 0.434132i
\(96\) 0 0
\(97\) 9.54725 + 6.93648i 0.969377 + 0.704293i 0.955309 0.295608i \(-0.0955221\pi\)
0.0140672 + 0.999901i \(0.495522\pi\)
\(98\) 0 0
\(99\) −1.86337 + 2.74369i −0.187276 + 0.275751i
\(100\) 0 0
\(101\) 11.5092 + 8.36195i 1.14521 + 0.832045i 0.987837 0.155494i \(-0.0496969\pi\)
0.157375 + 0.987539i \(0.449697\pi\)
\(102\) 0 0
\(103\) −6.12806 18.8602i −0.603816 1.85835i −0.504736 0.863274i \(-0.668410\pi\)
−0.0990798 0.995079i \(-0.531590\pi\)
\(104\) 0 0
\(105\) −1.07039 + 0.777682i −0.104459 + 0.0758940i
\(106\) 0 0
\(107\) −0.939127 + 2.89033i −0.0907888 + 0.279419i −0.986133 0.165955i \(-0.946929\pi\)
0.895345 + 0.445374i \(0.146929\pi\)
\(108\) 0 0
\(109\) −1.25740 −0.120437 −0.0602184 0.998185i \(-0.519180\pi\)
−0.0602184 + 0.998185i \(0.519180\pi\)
\(110\) 0 0
\(111\) −9.17077 −0.870451
\(112\) 0 0
\(113\) 6.09127 18.7470i 0.573018 1.76357i −0.0698130 0.997560i \(-0.522240\pi\)
0.642831 0.766008i \(-0.277760\pi\)
\(114\) 0 0
\(115\) −3.25683 + 2.36623i −0.303701 + 0.220652i
\(116\) 0 0
\(117\) 1.84798 + 5.68749i 0.170846 + 0.525809i
\(118\) 0 0
\(119\) 8.53216 + 6.19898i 0.782142 + 0.568260i
\(120\) 0 0
\(121\) −10.9779 + 0.697484i −0.997988 + 0.0634077i
\(122\) 0 0
\(123\) −6.32816 4.59768i −0.570591 0.414559i
\(124\) 0 0
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −9.65888 + 7.01759i −0.857087 + 0.622710i −0.927091 0.374836i \(-0.877699\pi\)
0.0700037 + 0.997547i \(0.477699\pi\)
\(128\) 0 0
\(129\) −0.953692 + 2.93516i −0.0839679 + 0.258427i
\(130\) 0 0
\(131\) 19.4042 1.69535 0.847675 0.530516i \(-0.178002\pi\)
0.847675 + 0.530516i \(0.178002\pi\)
\(132\) 0 0
\(133\) 5.88654 0.510428
\(134\) 0 0
\(135\) 0.309017 0.951057i 0.0265959 0.0818539i
\(136\) 0 0
\(137\) −3.67955 + 2.67335i −0.314365 + 0.228399i −0.733767 0.679401i \(-0.762240\pi\)
0.419402 + 0.907800i \(0.362240\pi\)
\(138\) 0 0
\(139\) 5.81853 + 17.9076i 0.493521 + 1.51890i 0.819249 + 0.573439i \(0.194391\pi\)
−0.325727 + 0.945464i \(0.605609\pi\)
\(140\) 0 0
\(141\) 2.31987 + 1.68548i 0.195368 + 0.141943i
\(142\) 0 0
\(143\) −11.1433 + 16.4078i −0.931850 + 1.37209i
\(144\) 0 0
\(145\) −6.72616 4.88684i −0.558577 0.405830i
\(146\) 0 0
\(147\) −1.62218 4.99255i −0.133795 0.411779i
\(148\) 0 0
\(149\) −3.11669 + 2.26441i −0.255330 + 0.185508i −0.708086 0.706127i \(-0.750441\pi\)
0.452756 + 0.891634i \(0.350441\pi\)
\(150\) 0 0
\(151\) 0.873524 2.68843i 0.0710864 0.218781i −0.909201 0.416357i \(-0.863307\pi\)
0.980288 + 0.197575i \(0.0633067\pi\)
\(152\) 0 0
\(153\) −7.97110 −0.644425
\(154\) 0 0
\(155\) 2.07792 0.166903
\(156\) 0 0
\(157\) −2.50631 + 7.71364i −0.200026 + 0.615615i 0.799856 + 0.600193i \(0.204909\pi\)
−0.999881 + 0.0154227i \(0.995091\pi\)
\(158\) 0 0
\(159\) −3.31118 + 2.40572i −0.262594 + 0.190786i
\(160\) 0 0
\(161\) 1.64590 + 5.06555i 0.129715 + 0.399222i
\(162\) 0 0
\(163\) −1.94480 1.41298i −0.152328 0.110673i 0.509010 0.860760i \(-0.330011\pi\)
−0.661339 + 0.750087i \(0.730011\pi\)
\(164\) 0 0
\(165\) 3.12020 1.12443i 0.242907 0.0875369i
\(166\) 0 0
\(167\) 4.29496 + 3.12047i 0.332354 + 0.241469i 0.741429 0.671031i \(-0.234148\pi\)
−0.409075 + 0.912501i \(0.634148\pi\)
\(168\) 0 0
\(169\) 7.03403 + 21.6485i 0.541079 + 1.66527i
\(170\) 0 0
\(171\) −3.59944 + 2.61515i −0.275256 + 0.199985i
\(172\) 0 0
\(173\) 3.99744 12.3028i 0.303920 0.935368i −0.676159 0.736756i \(-0.736357\pi\)
0.980078 0.198612i \(-0.0636434\pi\)
\(174\) 0 0
\(175\) 1.32307 0.100015
\(176\) 0 0
\(177\) 5.28193 0.397014
\(178\) 0 0
\(179\) −5.35505 + 16.4811i −0.400255 + 1.23186i 0.524538 + 0.851387i \(0.324238\pi\)
−0.924793 + 0.380471i \(0.875762\pi\)
\(180\) 0 0
\(181\) 5.81853 4.22741i 0.432488 0.314221i −0.350155 0.936692i \(-0.613871\pi\)
0.782643 + 0.622471i \(0.213871\pi\)
\(182\) 0 0
\(183\) 0.951130 + 2.92728i 0.0703096 + 0.216391i
\(184\) 0 0
\(185\) 7.41931 + 5.39044i 0.545478 + 0.396313i
\(186\) 0 0
\(187\) −16.2100 20.8844i −1.18539 1.52722i
\(188\) 0 0
\(189\) −1.07039 0.777682i −0.0778592 0.0565680i
\(190\) 0 0
\(191\) −2.27103 6.98953i −0.164326 0.505744i 0.834660 0.550766i \(-0.185664\pi\)
−0.998986 + 0.0450216i \(0.985664\pi\)
\(192\) 0 0
\(193\) 14.7801 10.7384i 1.06390 0.772966i 0.0890910 0.996023i \(-0.471604\pi\)
0.974805 + 0.223058i \(0.0716038\pi\)
\(194\) 0 0
\(195\) 1.84798 5.68749i 0.132336 0.407290i
\(196\) 0 0
\(197\) 16.0090 1.14059 0.570297 0.821438i \(-0.306828\pi\)
0.570297 + 0.821438i \(0.306828\pi\)
\(198\) 0 0
\(199\) −15.4438 −1.09478 −0.547391 0.836877i \(-0.684379\pi\)
−0.547391 + 0.836877i \(0.684379\pi\)
\(200\) 0 0
\(201\) −4.38730 + 13.5027i −0.309456 + 0.952408i
\(202\) 0 0
\(203\) −8.89919 + 6.46564i −0.624600 + 0.453799i
\(204\) 0 0
\(205\) 2.41714 + 7.43920i 0.168821 + 0.519576i
\(206\) 0 0
\(207\) −3.25683 2.36623i −0.226365 0.164464i
\(208\) 0 0
\(209\) −14.1715 4.11246i −0.980265 0.284465i
\(210\) 0 0
\(211\) −1.29610 0.941669i −0.0892269 0.0648271i 0.542277 0.840200i \(-0.317562\pi\)
−0.631504 + 0.775372i \(0.717562\pi\)
\(212\) 0 0
\(213\) 2.80191 + 8.62341i 0.191984 + 0.590866i
\(214\) 0 0
\(215\) 2.49680 1.81403i 0.170280 0.123716i
\(216\) 0 0
\(217\) 0.849561 2.61468i 0.0576720 0.177496i
\(218\) 0 0
\(219\) 9.16131 0.619064
\(220\) 0 0
\(221\) −47.6686 −3.20654
\(222\) 0 0
\(223\) 0.973942 2.99749i 0.0652200 0.200727i −0.913136 0.407655i \(-0.866347\pi\)
0.978356 + 0.206928i \(0.0663467\pi\)
\(224\) 0 0
\(225\) −0.809017 + 0.587785i −0.0539345 + 0.0391857i
\(226\) 0 0
\(227\) 0.145142 + 0.446702i 0.00963343 + 0.0296487i 0.955758 0.294155i \(-0.0950382\pi\)
−0.946124 + 0.323804i \(0.895038\pi\)
\(228\) 0 0
\(229\) 20.5047 + 14.8975i 1.35499 + 0.984457i 0.998746 + 0.0500631i \(0.0159422\pi\)
0.356242 + 0.934394i \(0.384058\pi\)
\(230\) 0 0
\(231\) −0.139191 4.38592i −0.00915807 0.288572i
\(232\) 0 0
\(233\) 1.78597 + 1.29758i 0.117003 + 0.0850076i 0.644748 0.764395i \(-0.276962\pi\)
−0.527745 + 0.849403i \(0.676962\pi\)
\(234\) 0 0
\(235\) −0.886111 2.72717i −0.0578035 0.177901i
\(236\) 0 0
\(237\) 8.99857 6.53784i 0.584520 0.424679i
\(238\) 0 0
\(239\) 0.522006 1.60657i 0.0337657 0.103920i −0.932753 0.360516i \(-0.882601\pi\)
0.966519 + 0.256595i \(0.0826008\pi\)
\(240\) 0 0
\(241\) −13.6730 −0.880754 −0.440377 0.897813i \(-0.645155\pi\)
−0.440377 + 0.897813i \(0.645155\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.62218 + 4.99255i −0.103637 + 0.318963i
\(246\) 0 0
\(247\) −21.5253 + 15.6390i −1.36962 + 0.995089i
\(248\) 0 0
\(249\) 2.53261 + 7.79459i 0.160498 + 0.493962i
\(250\) 0 0
\(251\) −10.9407 7.94889i −0.690571 0.501730i 0.186276 0.982497i \(-0.440358\pi\)
−0.876848 + 0.480768i \(0.840358\pi\)
\(252\) 0 0
\(253\) −0.423510 13.3449i −0.0266259 0.838986i
\(254\) 0 0
\(255\) 6.44876 + 4.68530i 0.403837 + 0.293405i
\(256\) 0 0
\(257\) 2.42596 + 7.46632i 0.151327 + 0.465737i 0.997770 0.0667424i \(-0.0212606\pi\)
−0.846443 + 0.532479i \(0.821261\pi\)
\(258\) 0 0
\(259\) 9.81627 7.13194i 0.609954 0.443157i
\(260\) 0 0
\(261\) 2.56916 7.90707i 0.159027 0.489436i
\(262\) 0 0
\(263\) 12.4132 0.765433 0.382717 0.923866i \(-0.374989\pi\)
0.382717 + 0.923866i \(0.374989\pi\)
\(264\) 0 0
\(265\) 4.09285 0.251422
\(266\) 0 0
\(267\) 3.00805 9.25782i 0.184089 0.566569i
\(268\) 0 0
\(269\) 13.2873 9.65377i 0.810140 0.588601i −0.103732 0.994605i \(-0.533078\pi\)
0.913871 + 0.406004i \(0.133078\pi\)
\(270\) 0 0
\(271\) 5.32895 + 16.4008i 0.323711 + 0.996279i 0.972019 + 0.234901i \(0.0754767\pi\)
−0.648309 + 0.761378i \(0.724523\pi\)
\(272\) 0 0
\(273\) −6.40111 4.65068i −0.387413 0.281472i
\(274\) 0 0
\(275\) −3.18522 0.924324i −0.192076 0.0557388i
\(276\) 0 0
\(277\) 3.67199 + 2.66786i 0.220629 + 0.160296i 0.692610 0.721313i \(-0.256461\pi\)
−0.471981 + 0.881609i \(0.656461\pi\)
\(278\) 0 0
\(279\) 0.642113 + 1.97622i 0.0384423 + 0.118313i
\(280\) 0 0
\(281\) 9.96448 7.23962i 0.594431 0.431880i −0.249467 0.968383i \(-0.580255\pi\)
0.843898 + 0.536504i \(0.180255\pi\)
\(282\) 0 0
\(283\) 5.74487 17.6809i 0.341497 1.05102i −0.621935 0.783069i \(-0.713653\pi\)
0.963432 0.267951i \(-0.0863467\pi\)
\(284\) 0 0
\(285\) 4.44915 0.263545
\(286\) 0 0
\(287\) 10.3491 0.610889
\(288\) 0 0
\(289\) 14.3812 44.2607i 0.845952 2.60357i
\(290\) 0 0
\(291\) 9.54725 6.93648i 0.559670 0.406624i
\(292\) 0 0
\(293\) −5.23345 16.1069i −0.305741 0.940975i −0.979400 0.201932i \(-0.935278\pi\)
0.673658 0.739043i \(-0.264722\pi\)
\(294\) 0 0
\(295\) −4.27317 3.10464i −0.248793 0.180759i
\(296\) 0 0
\(297\) 2.03359 + 2.62002i 0.118001 + 0.152029i
\(298\) 0 0
\(299\) −19.4764 14.1505i −1.12635 0.818342i
\(300\) 0 0
\(301\) −1.26180 3.88343i −0.0727291 0.223837i
\(302\) 0 0
\(303\) 11.5092 8.36195i 0.661188 0.480381i
\(304\) 0 0
\(305\) 0.951130 2.92728i 0.0544616 0.167615i
\(306\) 0 0
\(307\) −11.1953 −0.638949 −0.319475 0.947595i \(-0.603506\pi\)
−0.319475 + 0.947595i \(0.603506\pi\)
\(308\) 0 0
\(309\) −19.8308 −1.12814
\(310\) 0 0
\(311\) −1.32004 + 4.06267i −0.0748527 + 0.230373i −0.981482 0.191556i \(-0.938647\pi\)
0.906629 + 0.421929i \(0.138647\pi\)
\(312\) 0 0
\(313\) −22.4356 + 16.3004i −1.26813 + 0.921353i −0.999127 0.0417845i \(-0.986696\pi\)
−0.269008 + 0.963138i \(0.586696\pi\)
\(314\) 0 0
\(315\) 0.408851 + 1.25832i 0.0230362 + 0.0708980i
\(316\) 0 0
\(317\) −7.15608 5.19919i −0.401925 0.292016i 0.368399 0.929668i \(-0.379906\pi\)
−0.770325 + 0.637652i \(0.779906\pi\)
\(318\) 0 0
\(319\) 25.9413 9.34851i 1.45244 0.523416i
\(320\) 0 0
\(321\) 2.45867 + 1.78632i 0.137229 + 0.0997029i
\(322\) 0 0
\(323\) −10.9592 33.7289i −0.609785 1.87673i
\(324\) 0 0
\(325\) −4.83807 + 3.51506i −0.268368 + 0.194981i
\(326\) 0 0
\(327\) −0.388557 + 1.19586i −0.0214872 + 0.0661310i
\(328\) 0 0
\(329\) −3.79393 −0.209166
\(330\) 0 0
\(331\) 29.2241 1.60630 0.803150 0.595777i \(-0.203156\pi\)
0.803150 + 0.595777i \(0.203156\pi\)
\(332\) 0 0
\(333\) −2.83392 + 8.72192i −0.155298 + 0.477958i
\(334\) 0 0
\(335\) 11.4861 8.34514i 0.627553 0.455944i
\(336\) 0 0
\(337\) −1.77586 5.46553i −0.0967371 0.297726i 0.890965 0.454071i \(-0.150029\pi\)
−0.987702 + 0.156345i \(0.950029\pi\)
\(338\) 0 0
\(339\) −15.9471 11.5863i −0.866130 0.629280i
\(340\) 0 0
\(341\) −3.87194 + 5.70118i −0.209677 + 0.308736i
\(342\) 0 0
\(343\) 13.1117 + 9.52620i 0.707965 + 0.514366i
\(344\) 0 0
\(345\) 1.24400 + 3.82863i 0.0669746 + 0.206127i
\(346\) 0 0
\(347\) 6.45382 4.68897i 0.346459 0.251717i −0.400923 0.916112i \(-0.631310\pi\)
0.747382 + 0.664394i \(0.231310\pi\)
\(348\) 0 0
\(349\) −2.80783 + 8.64161i −0.150300 + 0.462575i −0.997654 0.0684526i \(-0.978194\pi\)
0.847355 + 0.531027i \(0.178194\pi\)
\(350\) 0 0
\(351\) 5.98018 0.319199
\(352\) 0 0
\(353\) −17.0715 −0.908625 −0.454313 0.890842i \(-0.650115\pi\)
−0.454313 + 0.890842i \(0.650115\pi\)
\(354\) 0 0
\(355\) 2.80191 8.62341i 0.148710 0.457683i
\(356\) 0 0
\(357\) 8.53216 6.19898i 0.451570 0.328085i
\(358\) 0 0
\(359\) 11.3507 + 34.9338i 0.599066 + 1.84374i 0.533346 + 0.845897i \(0.320934\pi\)
0.0657196 + 0.997838i \(0.479066\pi\)
\(360\) 0 0
\(361\) −0.643130 0.467261i −0.0338489 0.0245927i
\(362\) 0 0
\(363\) −2.72900 + 10.6561i −0.143235 + 0.559300i
\(364\) 0 0
\(365\) −7.41166 5.38488i −0.387944 0.281858i
\(366\) 0 0
\(367\) 9.82154 + 30.2276i 0.512680 + 1.57787i 0.787464 + 0.616361i \(0.211394\pi\)
−0.274784 + 0.961506i \(0.588606\pi\)
\(368\) 0 0
\(369\) −6.32816 + 4.59768i −0.329431 + 0.239346i
\(370\) 0 0
\(371\) 1.67337 5.15009i 0.0868769 0.267380i
\(372\) 0 0
\(373\) 9.17548 0.475088 0.237544 0.971377i \(-0.423658\pi\)
0.237544 + 0.971377i \(0.423658\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 15.3641 47.2858i 0.791290 2.43534i
\(378\) 0 0
\(379\) 0.640018 0.465001i 0.0328755 0.0238855i −0.571226 0.820793i \(-0.693532\pi\)
0.604102 + 0.796907i \(0.293532\pi\)
\(380\) 0 0
\(381\) 3.68937 + 11.3547i 0.189012 + 0.581719i
\(382\) 0 0
\(383\) 5.67065 + 4.11997i 0.289757 + 0.210521i 0.723162 0.690679i \(-0.242688\pi\)
−0.433405 + 0.901199i \(0.642688\pi\)
\(384\) 0 0
\(385\) −2.46537 + 3.63010i −0.125647 + 0.185007i
\(386\) 0 0
\(387\) 2.49680 + 1.81403i 0.126919 + 0.0922124i
\(388\) 0 0
\(389\) −3.99979 12.3101i −0.202798 0.624147i −0.999797 0.0201662i \(-0.993580\pi\)
0.796999 0.603981i \(-0.206420\pi\)
\(390\) 0 0
\(391\) 25.9605 18.8614i 1.31288 0.953863i
\(392\) 0 0
\(393\) 5.99622 18.4545i 0.302469 0.930904i
\(394\) 0 0
\(395\) −11.1228 −0.559651
\(396\) 0 0
\(397\) −34.5780 −1.73542 −0.867710 0.497071i \(-0.834409\pi\)
−0.867710 + 0.497071i \(0.834409\pi\)
\(398\) 0 0
\(399\) 1.81904 5.59844i 0.0910660 0.280272i
\(400\) 0 0
\(401\) 1.21570 0.883259i 0.0607092 0.0441078i −0.557017 0.830501i \(-0.688054\pi\)
0.617726 + 0.786393i \(0.288054\pi\)
\(402\) 0 0
\(403\) 3.83995 + 11.8182i 0.191282 + 0.588705i
\(404\) 0 0
\(405\) −0.809017 0.587785i −0.0402004 0.0292073i
\(406\) 0 0
\(407\) −28.6146 + 10.3119i −1.41838 + 0.511142i
\(408\) 0 0
\(409\) 1.94299 + 1.41167i 0.0960748 + 0.0698025i 0.634786 0.772688i \(-0.281088\pi\)
−0.538711 + 0.842491i \(0.681088\pi\)
\(410\) 0 0
\(411\) 1.40546 + 4.32557i 0.0693263 + 0.213364i
\(412\) 0 0
\(413\) −5.65370 + 4.10766i −0.278201 + 0.202125i
\(414\) 0 0
\(415\) 2.53261 7.79459i 0.124321 0.382621i
\(416\) 0 0
\(417\) 18.8292 0.922068
\(418\) 0 0
\(419\) −34.5961 −1.69013 −0.845065 0.534664i \(-0.820438\pi\)
−0.845065 + 0.534664i \(0.820438\pi\)
\(420\) 0 0
\(421\) 9.70713 29.8755i 0.473097 1.45604i −0.375411 0.926859i \(-0.622498\pi\)
0.848508 0.529183i \(-0.177502\pi\)
\(422\) 0 0
\(423\) 2.31987 1.68548i 0.112796 0.0819510i
\(424\) 0 0
\(425\) −2.46321 7.58097i −0.119483 0.367731i
\(426\) 0 0
\(427\) −3.29457 2.39364i −0.159435 0.115837i
\(428\) 0 0
\(429\) 12.1613 + 15.6682i 0.587151 + 0.756467i
\(430\) 0 0
\(431\) −7.11519 5.16949i −0.342727 0.249006i 0.403085 0.915163i \(-0.367938\pi\)
−0.745811 + 0.666157i \(0.767938\pi\)
\(432\) 0 0
\(433\) −1.42435 4.38370i −0.0684500 0.210667i 0.910980 0.412450i \(-0.135327\pi\)
−0.979430 + 0.201782i \(0.935327\pi\)
\(434\) 0 0
\(435\) −6.72616 + 4.88684i −0.322495 + 0.234306i
\(436\) 0 0
\(437\) 5.53474 17.0342i 0.264762 0.814855i
\(438\) 0 0
\(439\) 37.8748 1.80767 0.903834 0.427884i \(-0.140741\pi\)
0.903834 + 0.427884i \(0.140741\pi\)
\(440\) 0 0
\(441\) −5.24948 −0.249975
\(442\) 0 0
\(443\) −4.92666 + 15.1627i −0.234072 + 0.720401i 0.763171 + 0.646197i \(0.223642\pi\)
−0.997243 + 0.0742040i \(0.976358\pi\)
\(444\) 0 0
\(445\) −7.87517 + 5.72164i −0.373319 + 0.271232i
\(446\) 0 0
\(447\) 1.19047 + 3.66389i 0.0563074 + 0.173296i
\(448\) 0 0
\(449\) −15.4511 11.2259i −0.729181 0.529781i 0.160123 0.987097i \(-0.448811\pi\)
−0.889304 + 0.457316i \(0.848811\pi\)
\(450\) 0 0
\(451\) −24.9149 7.23010i −1.17320 0.340452i
\(452\) 0 0
\(453\) −2.28692 1.66154i −0.107449 0.0780660i
\(454\) 0 0
\(455\) 2.44501 + 7.52496i 0.114624 + 0.352775i
\(456\) 0 0
\(457\) −10.2623 + 7.45599i −0.480050 + 0.348777i −0.801345 0.598202i \(-0.795882\pi\)
0.321295 + 0.946979i \(0.395882\pi\)
\(458\) 0 0
\(459\) −2.46321 + 7.58097i −0.114973 + 0.353849i
\(460\) 0 0
\(461\) −2.87253 −0.133787 −0.0668935 0.997760i \(-0.521309\pi\)
−0.0668935 + 0.997760i \(0.521309\pi\)
\(462\) 0 0
\(463\) −6.29101 −0.292368 −0.146184 0.989257i \(-0.546699\pi\)
−0.146184 + 0.989257i \(0.546699\pi\)
\(464\) 0 0
\(465\) 0.642113 1.97622i 0.0297773 0.0916451i
\(466\) 0 0
\(467\) 2.74814 1.99664i 0.127169 0.0923936i −0.522383 0.852711i \(-0.674957\pi\)
0.649551 + 0.760318i \(0.274957\pi\)
\(468\) 0 0
\(469\) −5.80471 17.8651i −0.268037 0.824932i
\(470\) 0 0
\(471\) 6.56161 + 4.76729i 0.302343 + 0.219665i
\(472\) 0 0
\(473\) 0.324678 + 10.2307i 0.0149287 + 0.470406i
\(474\) 0 0
\(475\) −3.59944 2.61515i −0.165154 0.119991i
\(476\) 0 0
\(477\) 1.26476 + 3.89253i 0.0579094 + 0.178227i
\(478\) 0 0
\(479\) −12.3946 + 9.00524i −0.566326 + 0.411460i −0.833769 0.552114i \(-0.813821\pi\)
0.267443 + 0.963574i \(0.413821\pi\)
\(480\) 0 0
\(481\) −16.9474 + 52.1587i −0.772734 + 2.37823i
\(482\) 0 0
\(483\) 5.32624 0.242352
\(484\) 0 0
\(485\) −11.8011 −0.535858
\(486\) 0 0
\(487\) 5.84044 17.9750i 0.264656 0.814527i −0.727117 0.686514i \(-0.759140\pi\)
0.991773 0.128013i \(-0.0408599\pi\)
\(488\) 0 0
\(489\) −1.94480 + 1.41298i −0.0879469 + 0.0638972i
\(490\) 0 0
\(491\) −2.64555 8.14216i −0.119392 0.367450i 0.873446 0.486921i \(-0.161880\pi\)
−0.992838 + 0.119471i \(0.961880\pi\)
\(492\) 0 0
\(493\) 53.6149 + 38.9535i 2.41469 + 1.75438i
\(494\) 0 0
\(495\) −0.105203 3.31496i −0.00472851 0.148996i
\(496\) 0 0
\(497\) −9.70540 7.05138i −0.435347 0.316298i
\(498\) 0 0
\(499\) −11.0689 34.0664i −0.495510 1.52502i −0.816161 0.577825i \(-0.803902\pi\)
0.320651 0.947197i \(-0.396098\pi\)
\(500\) 0 0
\(501\) 4.29496 3.12047i 0.191885 0.139412i
\(502\) 0 0
\(503\) 2.11424 6.50696i 0.0942693 0.290131i −0.892793 0.450467i \(-0.851258\pi\)
0.987063 + 0.160336i \(0.0512577\pi\)
\(504\) 0 0
\(505\) −14.2262 −0.633057
\(506\) 0 0
\(507\) 22.7626 1.01092
\(508\) 0 0
\(509\) 0.567708 1.74723i 0.0251632 0.0774445i −0.937686 0.347483i \(-0.887036\pi\)
0.962850 + 0.270039i \(0.0870364\pi\)
\(510\) 0 0
\(511\) −9.80615 + 7.12458i −0.433799 + 0.315173i
\(512\) 0 0
\(513\) 1.37486 + 4.23139i 0.0607017 + 0.186821i
\(514\) 0 0
\(515\) 16.0435 + 11.6563i 0.706960 + 0.513636i
\(516\) 0 0
\(517\) 9.13367 + 2.65051i 0.401698 + 0.116570i
\(518\) 0 0
\(519\) −10.4654 7.60358i −0.459381 0.333760i
\(520\) 0 0
\(521\) 5.56920 + 17.1402i 0.243991 + 0.750928i 0.995801 + 0.0915473i \(0.0291813\pi\)
−0.751810 + 0.659380i \(0.770819\pi\)
\(522\) 0 0
\(523\) 11.0172 8.00444i 0.481747 0.350010i −0.320255 0.947331i \(-0.603768\pi\)
0.802002 + 0.597322i \(0.203768\pi\)
\(524\) 0 0
\(525\) 0.408851 1.25832i 0.0178437 0.0549174i
\(526\) 0 0
\(527\) −16.5633 −0.721510
\(528\) 0 0
\(529\) −6.79404 −0.295393
\(530\) 0 0
\(531\) 1.63220 5.02341i 0.0708316 0.217997i
\(532\) 0 0
\(533\) −37.8436 + 27.4950i −1.63919 + 1.19094i
\(534\) 0 0
\(535\) −0.939127 2.89033i −0.0406020 0.124960i
\(536\) 0 0
\(537\) 14.0197 + 10.1859i 0.604994 + 0.439554i
\(538\) 0 0
\(539\) −10.6753 13.7537i −0.459818 0.592416i
\(540\) 0 0
\(541\) −1.18837 0.863398i −0.0510918 0.0371204i 0.561946 0.827174i \(-0.310053\pi\)
−0.613038 + 0.790053i \(0.710053\pi\)
\(542\) 0 0
\(543\) −2.22248 6.84009i −0.0953758 0.293536i
\(544\) 0 0
\(545\) 1.01726 0.739079i 0.0435744 0.0316587i
\(546\) 0 0
\(547\) −7.74300 + 23.8305i −0.331067 + 1.01892i 0.637561 + 0.770400i \(0.279944\pi\)
−0.968627 + 0.248518i \(0.920056\pi\)
\(548\) 0 0
\(549\) 3.07792 0.131363
\(550\) 0 0
\(551\) 36.9902 1.57584
\(552\) 0 0
\(553\) −4.54759 + 13.9960i −0.193383 + 0.595172i
\(554\) 0 0
\(555\) 7.41931 5.39044i 0.314932 0.228812i
\(556\) 0 0
\(557\) 1.23801 + 3.81021i 0.0524563 + 0.161444i 0.973853 0.227180i \(-0.0729506\pi\)
−0.921397 + 0.388624i \(0.872951\pi\)
\(558\) 0 0
\(559\) 14.9313 + 10.8482i 0.631527 + 0.458831i
\(560\) 0 0
\(561\) −24.8714 + 8.96296i −1.05007 + 0.378416i
\(562\) 0 0
\(563\) 32.7914 + 23.8244i 1.38199 + 1.00408i 0.996691 + 0.0812875i \(0.0259032\pi\)
0.385303 + 0.922790i \(0.374097\pi\)
\(564\) 0 0
\(565\) 6.09127 + 18.7470i 0.256261 + 0.788692i
\(566\) 0 0
\(567\) −1.07039 + 0.777682i −0.0449520 + 0.0326596i
\(568\) 0 0
\(569\) 0.322604 0.992873i 0.0135243 0.0416234i −0.944067 0.329755i \(-0.893034\pi\)
0.957591 + 0.288131i \(0.0930340\pi\)
\(570\) 0 0
\(571\) 13.3111 0.557054 0.278527 0.960428i \(-0.410154\pi\)
0.278527 + 0.960428i \(0.410154\pi\)
\(572\) 0 0
\(573\) −7.34922 −0.307018
\(574\) 0 0
\(575\) 1.24400 3.82863i 0.0518783 0.159665i
\(576\) 0 0
\(577\) −6.11389 + 4.44200i −0.254525 + 0.184923i −0.707730 0.706483i \(-0.750281\pi\)
0.453205 + 0.891406i \(0.350281\pi\)
\(578\) 0 0
\(579\) −5.64550 17.3751i −0.234619 0.722083i
\(580\) 0 0
\(581\) −8.77258 6.37366i −0.363948 0.264424i
\(582\) 0 0
\(583\) −7.62650 + 11.2295i −0.315857 + 0.465079i
\(584\) 0 0
\(585\) −4.83807 3.51506i −0.200030 0.145330i
\(586\) 0 0
\(587\) 11.6185 + 35.7580i 0.479545 + 1.47589i 0.839728 + 0.543007i \(0.182714\pi\)
−0.360183 + 0.932882i \(0.617286\pi\)
\(588\) 0 0
\(589\) −7.47935 + 5.43407i −0.308181 + 0.223907i
\(590\) 0 0
\(591\) 4.94706 15.2255i 0.203495 0.626292i
\(592\) 0 0
\(593\) 1.36380 0.0560047 0.0280024 0.999608i \(-0.491085\pi\)
0.0280024 + 0.999608i \(0.491085\pi\)
\(594\) 0 0
\(595\) −10.5463 −0.432358
\(596\) 0 0
\(597\) −4.77240 + 14.6879i −0.195321 + 0.601137i
\(598\) 0 0
\(599\) 8.12176 5.90080i 0.331846 0.241100i −0.409367 0.912370i \(-0.634251\pi\)
0.741214 + 0.671269i \(0.234251\pi\)
\(600\) 0 0
\(601\) 6.79845 + 20.9235i 0.277314 + 0.853486i 0.988598 + 0.150581i \(0.0481143\pi\)
−0.711283 + 0.702906i \(0.751886\pi\)
\(602\) 0 0
\(603\) 11.4861 + 8.34514i 0.467750 + 0.339840i
\(604\) 0 0
\(605\) 8.47131 7.01690i 0.344408 0.285278i
\(606\) 0 0
\(607\) 17.1112 + 12.4320i 0.694521 + 0.504599i 0.878143 0.478398i \(-0.158782\pi\)
−0.183622 + 0.982997i \(0.558782\pi\)
\(608\) 0 0
\(609\) 3.39919 + 10.4616i 0.137742 + 0.423926i
\(610\) 0 0
\(611\) 13.8732 10.0795i 0.561251 0.407773i
\(612\) 0 0
\(613\) 0.833203 2.56433i 0.0336527 0.103572i −0.932819 0.360345i \(-0.882659\pi\)
0.966472 + 0.256772i \(0.0826590\pi\)
\(614\) 0 0
\(615\) 7.82204 0.315415
\(616\) 0 0
\(617\) −9.26666 −0.373062 −0.186531 0.982449i \(-0.559724\pi\)
−0.186531 + 0.982449i \(0.559724\pi\)
\(618\) 0 0
\(619\) 4.75896 14.6466i 0.191279 0.588695i −0.808721 0.588192i \(-0.799840\pi\)
1.00000 0.000503118i \(-0.000160147\pi\)
\(620\) 0 0
\(621\) −3.25683 + 2.36623i −0.130692 + 0.0949533i
\(622\) 0 0
\(623\) 3.97986 + 12.2487i 0.159450 + 0.490736i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) −8.29042 + 12.2071i −0.331088 + 0.487505i
\(628\) 0 0
\(629\) −59.1401 42.9678i −2.35807 1.71324i
\(630\) 0 0
\(631\) −6.94137 21.3633i −0.276332 0.850461i −0.988864 0.148822i \(-0.952452\pi\)
0.712532 0.701639i \(-0.247548\pi\)
\(632\) 0 0
\(633\) −1.29610 + 0.941669i −0.0515152 + 0.0374280i
\(634\) 0 0
\(635\) 3.68937 11.3547i 0.146408 0.450597i
\(636\) 0 0
\(637\) −31.3929 −1.24383
\(638\) 0 0
\(639\) 9.06719 0.358692
\(640\) 0 0
\(641\) −6.32794 + 19.4754i −0.249939 + 0.769232i 0.744846 + 0.667236i \(0.232523\pi\)
−0.994785 + 0.101996i \(0.967477\pi\)
\(642\) 0 0
\(643\) 4.72609 3.43370i 0.186379 0.135412i −0.490683 0.871338i \(-0.663253\pi\)
0.677062 + 0.735926i \(0.263253\pi\)
\(644\) 0 0
\(645\) −0.953692 2.93516i −0.0375516 0.115572i
\(646\) 0 0
\(647\) 4.00539 + 2.91009i 0.157468 + 0.114407i 0.663729 0.747973i \(-0.268973\pi\)
−0.506261 + 0.862380i \(0.668973\pi\)
\(648\) 0 0
\(649\) 16.4807 5.93916i 0.646923 0.233133i
\(650\) 0 0
\(651\) −2.22418 1.61596i −0.0871725 0.0633345i
\(652\) 0 0
\(653\) 9.37985 + 28.8682i 0.367062 + 1.12970i 0.948680 + 0.316238i \(0.102420\pi\)
−0.581618 + 0.813462i \(0.697580\pi\)
\(654\) 0 0
\(655\) −15.6983 + 11.4055i −0.613383 + 0.445649i
\(656\) 0 0
\(657\) 2.83100 8.71293i 0.110448 0.339924i
\(658\) 0 0
\(659\) 12.9400 0.504071 0.252036 0.967718i \(-0.418900\pi\)
0.252036 + 0.967718i \(0.418900\pi\)
\(660\) 0 0
\(661\) −5.41592 −0.210655 −0.105327 0.994438i \(-0.533589\pi\)
−0.105327 + 0.994438i \(0.533589\pi\)
\(662\) 0 0
\(663\) −14.7304 + 45.3356i −0.572082 + 1.76069i
\(664\) 0 0
\(665\) −4.76231 + 3.46002i −0.184675 + 0.134174i
\(666\) 0 0
\(667\) 10.3426 + 31.8312i 0.400467 + 1.23251i
\(668\) 0 0
\(669\) −2.54981 1.85255i −0.0985815 0.0716237i
\(670\) 0 0
\(671\) 6.25924 + 8.06421i 0.241635 + 0.311316i
\(672\) 0 0
\(673\) 33.6903 + 24.4774i 1.29867 + 0.943536i 0.999942 0.0108032i \(-0.00343884\pi\)
0.298724 + 0.954339i \(0.403439\pi\)
\(674\) 0 0
\(675\) 0.309017 + 0.951057i 0.0118941 + 0.0366062i
\(676\) 0 0
\(677\) 37.1606 26.9988i 1.42820 1.03765i 0.437850 0.899048i \(-0.355740\pi\)
0.990349 0.138599i \(-0.0442599\pi\)
\(678\) 0 0
\(679\) −4.82488 + 14.8494i −0.185162 + 0.569869i
\(680\) 0 0
\(681\) 0.469690 0.0179986
\(682\) 0 0
\(683\) −0.462944 −0.0177141 −0.00885703 0.999961i \(-0.502819\pi\)
−0.00885703 + 0.999961i \(0.502819\pi\)
\(684\) 0 0
\(685\) 1.40546 4.32557i 0.0536999 0.165271i
\(686\) 0 0
\(687\) 20.5047 14.8975i 0.782303 0.568376i
\(688\) 0 0
\(689\) 7.56349 + 23.2780i 0.288146 + 0.886823i
\(690\) 0 0
\(691\) 26.6269 + 19.3455i 1.01293 + 0.735939i 0.964822 0.262903i \(-0.0846799\pi\)
0.0481110 + 0.998842i \(0.484680\pi\)
\(692\) 0 0
\(693\) −4.21427 1.22295i −0.160087 0.0464559i
\(694\) 0 0
\(695\) −15.2331 11.0675i −0.577825 0.419814i
\(696\) 0 0
\(697\) −19.2673 59.2986i −0.729801 2.24610i
\(698\) 0 0
\(699\) 1.78597 1.29758i 0.0675517 0.0490792i
\(700\) 0 0
\(701\) −9.87750 + 30.3998i −0.373068 + 1.14819i 0.571705 + 0.820459i \(0.306282\pi\)
−0.944773 + 0.327726i \(0.893718\pi\)
\(702\) 0 0
\(703\) −40.8022 −1.53888
\(704\) 0 0
\(705\) −2.86752 −0.107997
\(706\) 0 0
\(707\) −5.81640 + 17.9010i −0.218748 + 0.673238i
\(708\) 0 0
\(709\) 24.1808 17.5684i 0.908129 0.659794i −0.0324120 0.999475i \(-0.510319\pi\)
0.940541 + 0.339680i \(0.110319\pi\)
\(710\) 0 0
\(711\) −3.43715 10.5785i −0.128903 0.396723i
\(712\) 0 0
\(713\) −6.76744 4.91683i −0.253443 0.184137i
\(714\) 0 0
\(715\) −0.629131 19.8240i −0.0235282 0.741377i
\(716\) 0 0
\(717\) −1.36663 0.992914i −0.0510377 0.0370810i
\(718\) 0 0
\(719\) 6.37070 + 19.6070i 0.237587 + 0.731217i 0.996768 + 0.0803375i \(0.0255998\pi\)
−0.759181 + 0.650880i \(0.774400\pi\)
\(720\) 0 0
\(721\) 21.2266 15.4221i 0.790522 0.574348i
\(722\) 0 0
\(723\) −4.22518 + 13.0038i −0.157136 + 0.483615i
\(724\) 0 0
\(725\) 8.31399 0.308774
\(726\) 0 0
\(727\) 26.4641 0.981499 0.490749 0.871301i \(-0.336723\pi\)
0.490749 + 0.871301i \(0.336723\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −19.9022 + 14.4598i −0.736111 + 0.534816i
\(732\) 0 0
\(733\) −5.62538 17.3131i −0.207778 0.639475i −0.999588 0.0287076i \(-0.990861\pi\)
0.791810 0.610768i \(-0.209139\pi\)
\(734\) 0 0
\(735\) 4.24692 + 3.08557i 0.156650 + 0.113813i
\(736\) 0 0
\(737\) 1.49363 + 47.0644i 0.0550184 + 1.73364i
\(738\) 0 0
\(739\) −32.8386 23.8586i −1.20799 0.877653i −0.212940 0.977065i \(-0.568304\pi\)
−0.995046 + 0.0994120i \(0.968304\pi\)
\(740\) 0 0
\(741\) 8.22194 + 25.3045i 0.302040 + 0.929585i
\(742\) 0 0
\(743\) −26.3393 + 19.1366i −0.966296 + 0.702055i −0.954604 0.297877i \(-0.903722\pi\)
−0.0116914 + 0.999932i \(0.503722\pi\)
\(744\) 0 0
\(745\) 1.19047 3.66389i 0.0436155 0.134235i
\(746\) 0 0
\(747\) 8.19571 0.299865
\(748\) 0 0
\(749\) −4.02092 −0.146921
\(750\) 0 0
\(751\) 1.53589 4.72698i 0.0560453 0.172490i −0.919115 0.393989i \(-0.871095\pi\)
0.975161 + 0.221499i \(0.0710949\pi\)
\(752\) 0 0
\(753\) −10.9407 + 7.94889i −0.398702 + 0.289674i
\(754\) 0 0
\(755\) 0.873524 + 2.68843i 0.0317908 + 0.0978420i
\(756\) 0 0
\(757\) −20.3767 14.8045i −0.740602 0.538079i 0.152297 0.988335i \(-0.451333\pi\)
−0.892900 + 0.450256i \(0.851333\pi\)
\(758\) 0 0
\(759\) −12.8226 3.72102i −0.465432 0.135064i
\(760\) 0 0
\(761\) 9.05151 + 6.57631i 0.328117 + 0.238391i 0.739631 0.673012i \(-0.235000\pi\)
−0.411514 + 0.911403i \(0.635000\pi\)
\(762\) 0 0
\(763\) −0.514088 1.58220i −0.0186113 0.0572795i
\(764\) 0 0
\(765\) 6.44876 4.68530i 0.233155 0.169397i
\(766\) 0 0
\(767\) 9.76088 30.0409i 0.352445 1.08471i
\(768\) 0 0
\(769\) −53.3116 −1.92246 −0.961232 0.275741i \(-0.911077\pi\)
−0.961232 + 0.275741i \(0.911077\pi\)
\(770\) 0 0
\(771\) 7.85056 0.282731
\(772\) 0 0
\(773\) −5.30689 + 16.3329i −0.190876 + 0.587455i −1.00000 0.000182505i \(-0.999942\pi\)
0.809124 + 0.587638i \(0.199942\pi\)
\(774\) 0 0
\(775\) −1.68107 + 1.22137i −0.0603860 + 0.0438730i
\(776\) 0 0
\(777\) −3.74948 11.5397i −0.134512 0.413985i
\(778\) 0 0
\(779\) −28.1549 20.4558i −1.00876 0.732904i
\(780\) 0 0
\(781\) 18.4390 + 23.7562i 0.659798 + 0.850064i
\(782\) 0 0
\(783\) −6.72616 4.88684i −0.240373 0.174641i
\(784\) 0 0
\(785\) −2.50631 7.71364i −0.0894541 0.275311i
\(786\) 0 0
\(787\) −3.48717 + 2.53358i −0.124304 + 0.0903122i −0.648200 0.761470i \(-0.724478\pi\)
0.523896 + 0.851782i \(0.324478\pi\)
\(788\) 0 0
\(789\) 3.83590 11.8057i 0.136562 0.420294i
\(790\) 0 0
\(791\) 26.0800 0.927300
\(792\) 0 0
\(793\) 18.4065 0.653635
\(794\) 0 0
\(795\) 1.26476 3.89253i 0.0448564 0.138054i
\(796\) 0 0
\(797\) 13.1444 9.54996i 0.465598 0.338277i −0.330125 0.943937i \(-0.607091\pi\)
0.795723 + 0.605660i \(0.207091\pi\)
\(798\) 0 0
\(799\) 7.06328 + 21.7386i 0.249881 + 0.769055i
\(800\) 0 0
\(801\) −7.87517 5.72164i −0.278255 0.202164i
\(802\) 0 0
\(803\) 28.5851 10.3013i 1.00875 0.363524i
\(804\) 0 0
\(805\) −4.30902 3.13068i −0.151873 0.110342i
\(806\) 0 0
\(807\) −5.07529 15.6201i −0.178659 0.549855i
\(808\) 0 0
\(809\) 12.7235 9.24413i 0.447333 0.325006i −0.341209 0.939987i \(-0.610836\pi\)
0.788542 + 0.614981i \(0.210836\pi\)
\(810\) 0 0
\(811\) 5.02578 15.4678i 0.176479 0.543146i −0.823219 0.567724i \(-0.807824\pi\)
0.999698 + 0.0245776i \(0.00782407\pi\)
\(812\) 0 0
\(813\) 17.2448 0.604803
\(814\) 0 0
\(815\) 2.40390 0.0842051
\(816\) 0 0
\(817\) −4.24312 + 13.0590i −0.148448 + 0.456876i
\(818\) 0 0
\(819\) −6.40111 + 4.65068i −0.223673 + 0.162508i
\(820\) 0 0
\(821\) −3.81964 11.7556i −0.133306 0.410274i 0.862016 0.506880i \(-0.169201\pi\)
−0.995323 + 0.0966058i \(0.969201\pi\)
\(822\) 0 0
\(823\) 7.90757 + 5.74518i 0.275640 + 0.200265i 0.717014 0.697059i \(-0.245508\pi\)
−0.441373 + 0.897324i \(0.645508\pi\)
\(824\) 0 0
\(825\) −1.86337 + 2.74369i −0.0648743 + 0.0955231i
\(826\) 0 0
\(827\) 20.7322 + 15.0629i 0.720931 + 0.523787i 0.886681 0.462381i \(-0.153005\pi\)
−0.165751 + 0.986168i \(0.553005\pi\)
\(828\) 0 0
\(829\) 10.0035 + 30.7877i 0.347437 + 1.06930i 0.960266 + 0.279086i \(0.0900316\pi\)
−0.612829 + 0.790216i \(0.709968\pi\)
\(830\) 0 0
\(831\) 3.67199 2.66786i 0.127380 0.0925470i
\(832\) 0 0
\(833\) 12.9306 39.7962i 0.448017 1.37886i
\(834\) 0 0
\(835\) −5.30887 −0.183721
\(836\) 0 0
\(837\) 2.07792 0.0718235
\(838\) 0 0
\(839\) 3.09372 9.52149i 0.106807 0.328718i −0.883343 0.468727i \(-0.844713\pi\)
0.990150 + 0.140008i \(0.0447129\pi\)
\(840\) 0 0
\(841\) −32.4597 + 23.5834i −1.11930 + 0.813220i
\(842\) 0 0
\(843\) −3.80609 11.7140i −0.131089 0.403450i
\(844\) 0 0
\(845\) −18.4153 13.3795i −0.633506 0.460269i
\(846\) 0 0
\(847\) −5.36597 13.5284i −0.184377 0.464843i
\(848\) 0 0
\(849\) −15.0403 10.9274i −0.516181 0.375027i
\(850\) 0 0
\(851\) −11.4084 35.1115i −0.391076 1.20361i
\(852\) 0 0
\(853\) 8.16802 5.93441i 0.279668 0.203190i −0.439105 0.898436i \(-0.644704\pi\)
0.718772 + 0.695245i \(0.244704\pi\)
\(854\) 0 0
\(855\) 1.37486 4.23139i 0.0470193 0.144711i
\(856\) 0 0
\(857\) 26.9504 0.920609 0.460305 0.887761i \(-0.347740\pi\)
0.460305 + 0.887761i \(0.347740\pi\)
\(858\) 0 0
\(859\) −23.4354 −0.799606 −0.399803 0.916601i \(-0.630921\pi\)
−0.399803 + 0.916601i \(0.630921\pi\)
\(860\) 0 0
\(861\) 3.19805 9.84259i 0.108989 0.335435i
\(862\) 0 0
\(863\) −10.8203 + 7.86141i −0.368327 + 0.267606i −0.756517 0.653974i \(-0.773101\pi\)
0.388190 + 0.921580i \(0.373101\pi\)
\(864\) 0 0
\(865\) 3.99744 + 12.3028i 0.135917 + 0.418309i
\(866\) 0 0
\(867\) −37.6504 27.3546i −1.27867 0.929012i
\(868\) 0 0
\(869\) 20.7260 30.5177i 0.703081 1.03524i
\(870\) 0 0
\(871\) 68.6890 + 49.9055i 2.32744 + 1.69098i
\(872\) 0 0
\(873\) −3.64673 11.2235i −0.123423 0.379857i
\(874\) 0 0
\(875\) −1.07039 + 0.777682i −0.0361857 + 0.0262904i
\(876\) 0 0
\(877\) −3.92517 + 12.0804i −0.132543 + 0.407927i −0.995200 0.0978637i \(-0.968799\pi\)
0.862656 + 0.505790i \(0.168799\pi\)
\(878\) 0 0
\(879\) −16.9358 −0.571230
\(880\) 0 0
\(881\) 22.5811 0.760778 0.380389 0.924827i \(-0.375790\pi\)
0.380389 + 0.924827i \(0.375790\pi\)
\(882\) 0 0
\(883\) 8.87708 27.3208i 0.298737 0.919419i −0.683203 0.730228i \(-0.739414\pi\)
0.981940 0.189191i \(-0.0605864\pi\)
\(884\) 0 0
\(885\) −4.27317 + 3.10464i −0.143641 + 0.104361i
\(886\) 0 0
\(887\) −2.35720 7.25473i −0.0791471 0.243590i 0.903652 0.428267i \(-0.140876\pi\)
−0.982799 + 0.184678i \(0.940876\pi\)
\(888\) 0 0
\(889\) −12.7794 9.28477i −0.428607 0.311401i
\(890\) 0 0
\(891\) 3.12020 1.12443i 0.104531 0.0376699i
\(892\) 0 0
\(893\) 10.3215 + 7.49897i 0.345394 + 0.250944i
\(894\) 0 0
\(895\) −5.35505 16.4811i −0.178999 0.550904i
\(896\) 0 0
\(897\) −19.4764 + 14.1505i −0.650299 + 0.472470i
\(898\) 0 0
\(899\) 5.33852 16.4303i 0.178050 0.547981i
\(900\) 0 0
\(901\) −32.6245 −1.08688
\(902\) 0 0
\(903\) −4.08328 −0.135883
\(904\) 0 0
\(905\) −2.22248 + 6.84009i −0.0738778 + 0.227372i
\(906\) 0 0
\(907\) −15.0288 + 10.9191i −0.499023 + 0.362562i −0.808644 0.588298i \(-0.799798\pi\)
0.309620 + 0.950860i \(0.399798\pi\)
\(908\) 0 0
\(909\) −4.39614 13.5299i −0.145811 0.448759i
\(910\) 0 0
\(911\) −26.1152 18.9738i −0.865234 0.628630i 0.0640696 0.997945i \(-0.479592\pi\)
−0.929304 + 0.369316i \(0.879592\pi\)
\(912\) 0 0
\(913\) 16.6667 + 21.4729i 0.551589 + 0.710650i
\(914\) 0 0
\(915\) −2.49009 1.80916i −0.0823199 0.0598089i
\(916\) 0 0
\(917\) 7.93342 + 24.4166i 0.261985 + 0.806306i
\(918\) 0 0
\(919\) −23.9513 + 17.4017i −0.790082 + 0.574028i −0.907988 0.418997i \(-0.862382\pi\)
0.117906 + 0.993025i \(0.462382\pi\)
\(920\) 0 0
\(921\) −3.45954 + 10.6474i −0.113996 + 0.350843i
\(922\) 0 0
\(923\) 54.2234 1.78479
\(924\) 0 0
\(925\) −9.17077 −0.301533
\(926\) 0 0
\(927\) −6.12806 + 18.8602i −0.201272 + 0.619451i
\(928\) 0 0
\(929\) 29.6500 21.5420i 0.972784 0.706769i 0.0166993 0.999861i \(-0.494684\pi\)
0.956084 + 0.293092i \(0.0946842\pi\)
\(930\) 0 0
\(931\) −7.21732 22.2126i −0.236538 0.727990i
\(932\) 0 0
\(933\) 3.45591 + 2.51087i 0.113142 + 0.0822022i
\(934\) 0 0
\(935\) 25.3897 + 7.36788i 0.830332 + 0.240955i
\(936\) 0 0
\(937\) −11.2165 8.14929i −0.366428 0.266226i 0.389300 0.921111i \(-0.372717\pi\)
−0.755728 + 0.654885i \(0.772717\pi\)
\(938\) 0 0
\(939\) 8.56963 + 26.3746i 0.279659 + 0.860703i
\(940\) 0 0
\(941\) −23.8062 + 17.2962i −0.776059 + 0.563840i −0.903794 0.427969i \(-0.859229\pi\)
0.127735 + 0.991808i \(0.459229\pi\)
\(942\) 0 0
\(943\) 9.73060 29.9477i 0.316872 0.975232i
\(944\) 0 0
\(945\) 1.32307 0.0430395
\(946\) 0 0
\(947\) −21.3123 −0.692557 −0.346278 0.938132i \(-0.612555\pi\)
−0.346278 + 0.938132i \(0.612555\pi\)
\(948\) 0 0
\(949\) 16.9299 52.1049i 0.549568 1.69140i
\(950\) 0 0
\(951\) −7.15608 + 5.19919i −0.232052 + 0.168595i
\(952\) 0 0
\(953\) −2.17738 6.70130i −0.0705323 0.217076i 0.909577 0.415536i \(-0.136406\pi\)
−0.980109 + 0.198460i \(0.936406\pi\)
\(954\) 0 0
\(955\) 5.94565 + 4.31976i 0.192397 + 0.139784i
\(956\) 0 0
\(957\) −0.874654 27.5605i −0.0282735 0.890905i
\(958\) 0 0
\(959\) −4.86830 3.53703i −0.157206 0.114217i
\(960\) 0 0
\(961\) −8.24527 25.3763i −0.265976 0.818591i
\(962\) 0 0
\(963\) 2.45867 1.78632i 0.0792294 0.0575635i
\(964\) 0 0
\(965\) −5.64550 + 17.3751i −0.181735 + 0.559323i
\(966\) 0 0
\(967\) −16.4122 −0.527781 −0.263891 0.964553i \(-0.585006\pi\)
−0.263891 + 0.964553i \(0.585006\pi\)
\(968\) 0 0
\(969\) −35.4646 −1.13929
\(970\) 0 0
\(971\) 3.72502 11.4644i 0.119542 0.367911i −0.873326 0.487137i \(-0.838041\pi\)
0.992867 + 0.119226i \(0.0380413\pi\)
\(972\) 0 0
\(973\) −20.1545 + 14.6431i −0.646123 + 0.469436i
\(974\) 0 0
\(975\) 1.84798 + 5.68749i 0.0591827 + 0.182146i
\(976\) 0 0
\(977\) 38.2903 + 27.8195i 1.22501 + 0.890025i 0.996506 0.0835173i \(-0.0266154\pi\)
0.228508 + 0.973542i \(0.426615\pi\)
\(978\) 0 0
\(979\) −1.02407 32.2686i −0.0327294 1.03131i
\(980\) 0 0
\(981\) 1.01726 + 0.739079i 0.0324785 + 0.0235970i
\(982\) 0 0
\(983\) −0.439405 1.35235i −0.0140148 0.0431333i 0.943805 0.330504i \(-0.107219\pi\)
−0.957819 + 0.287371i \(0.907219\pi\)
\(984\) 0 0
\(985\) −12.9516 + 9.40986i −0.412671 + 0.299823i
\(986\) 0 0
\(987\) −1.17239 + 3.60824i −0.0373175 + 0.114852i
\(988\) 0 0
\(989\) −12.4241 −0.395062
\(990\) 0 0
\(991\) −41.5050 −1.31845 −0.659225 0.751946i \(-0.729116\pi\)
−0.659225 + 0.751946i \(0.729116\pi\)
\(992\) 0 0
\(993\) 9.03073 27.7937i 0.286582 0.882007i
\(994\) 0 0
\(995\) 12.4943 9.07763i 0.396096 0.287780i
\(996\) 0 0
\(997\) 1.08772 + 3.34767i 0.0344486 + 0.106022i 0.966802 0.255526i \(-0.0822485\pi\)
−0.932354 + 0.361548i \(0.882249\pi\)
\(998\) 0 0
\(999\) 7.41931 + 5.39044i 0.234737 + 0.170546i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 660.2.y.a.301.1 8
3.2 odd 2 1980.2.z.e.1621.1 8
11.3 even 5 inner 660.2.y.a.421.1 yes 8
11.5 even 5 7260.2.a.bj.1.2 4
11.6 odd 10 7260.2.a.bh.1.3 4
33.14 odd 10 1980.2.z.e.1081.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.y.a.301.1 8 1.1 even 1 trivial
660.2.y.a.421.1 yes 8 11.3 even 5 inner
1980.2.z.e.1081.1 8 33.14 odd 10
1980.2.z.e.1621.1 8 3.2 odd 2
7260.2.a.bh.1.3 4 11.6 odd 10
7260.2.a.bj.1.2 4 11.5 even 5