Properties

Label 1980.2.z.e.1081.1
Level $1980$
Weight $2$
Character 1980.1081
Analytic conductor $15.810$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1980,2,Mod(181,1980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1980.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1980, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1980.z (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,2,0,3,0,0,0,3,0,-6,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8103796002\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 660)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 1081.1
Root \(-0.386111 + 0.280526i\) of defining polynomial
Character \(\chi\) \(=\) 1980.1081
Dual form 1980.2.z.e.1621.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{5} +(0.408851 - 1.25832i) q^{7} +(0.105203 - 3.31496i) q^{11} +(-4.83807 + 3.51506i) q^{13} +(-6.44876 - 4.68530i) q^{17} +(1.37486 + 4.23139i) q^{19} -4.02566 q^{23} +(0.309017 + 0.951057i) q^{25} +(-2.56916 + 7.90707i) q^{29} +(-1.68107 + 1.22137i) q^{31} +(1.07039 - 0.777682i) q^{35} +(-2.83392 + 8.72192i) q^{37} +(-2.41714 - 7.43920i) q^{41} -3.08621 q^{43} +(0.886111 + 2.72717i) q^{47} +(4.24692 + 3.08557i) q^{49} +(3.31118 - 2.40572i) q^{53} +(2.03359 - 2.62002i) q^{55} +(-1.63220 + 5.02341i) q^{59} +(-2.49009 - 1.80916i) q^{61} -5.98018 q^{65} -14.1976 q^{67} +(7.33551 + 5.32956i) q^{71} +(2.83100 - 8.71293i) q^{73} +(-4.12825 - 1.48770i) q^{77} +(8.99857 - 6.53784i) q^{79} +(6.63047 + 4.81732i) q^{83} +(-2.46321 - 7.58097i) q^{85} -9.73424 q^{89} +(2.44501 + 7.52496i) q^{91} +(-1.37486 + 4.23139i) q^{95} +(9.54725 - 6.93648i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{5} + 3 q^{7} + 3 q^{11} - 6 q^{13} - 8 q^{17} - 14 q^{19} - 10 q^{23} - 2 q^{25} - 6 q^{29} - q^{31} + 7 q^{35} - 5 q^{37} + 11 q^{41} + 28 q^{43} + q^{47} + q^{49} + 3 q^{53} + 7 q^{55} + 5 q^{59}+ \cdots + 35 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1980\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(991\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.408851 1.25832i 0.154531 0.475599i −0.843582 0.537001i \(-0.819557\pi\)
0.998113 + 0.0614022i \(0.0195572\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.105203 3.31496i 0.0317198 0.999497i
\(12\) 0 0
\(13\) −4.83807 + 3.51506i −1.34184 + 0.974903i −0.342465 + 0.939531i \(0.611262\pi\)
−0.999374 + 0.0353725i \(0.988738\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.44876 4.68530i −1.56405 1.13635i −0.932586 0.360949i \(-0.882453\pi\)
−0.631468 0.775402i \(-0.717547\pi\)
\(18\) 0 0
\(19\) 1.37486 + 4.23139i 0.315415 + 0.970749i 0.975583 + 0.219630i \(0.0704851\pi\)
−0.660168 + 0.751118i \(0.729515\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.02566 −0.839409 −0.419704 0.907661i \(-0.637866\pi\)
−0.419704 + 0.907661i \(0.637866\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.56916 + 7.90707i −0.477082 + 1.46831i 0.366048 + 0.930596i \(0.380711\pi\)
−0.843129 + 0.537711i \(0.819289\pi\)
\(30\) 0 0
\(31\) −1.68107 + 1.22137i −0.301930 + 0.219365i −0.728426 0.685125i \(-0.759748\pi\)
0.426496 + 0.904489i \(0.359748\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.07039 0.777682i 0.180928 0.131452i
\(36\) 0 0
\(37\) −2.83392 + 8.72192i −0.465894 + 1.43388i 0.391960 + 0.919982i \(0.371797\pi\)
−0.857854 + 0.513893i \(0.828203\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.41714 7.43920i −0.377494 1.16181i −0.941780 0.336228i \(-0.890849\pi\)
0.564286 0.825579i \(-0.309151\pi\)
\(42\) 0 0
\(43\) −3.08621 −0.470643 −0.235322 0.971918i \(-0.575614\pi\)
−0.235322 + 0.971918i \(0.575614\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.886111 + 2.72717i 0.129253 + 0.397799i 0.994652 0.103284i \(-0.0329351\pi\)
−0.865399 + 0.501083i \(0.832935\pi\)
\(48\) 0 0
\(49\) 4.24692 + 3.08557i 0.606703 + 0.440796i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.31118 2.40572i 0.454826 0.330451i −0.336672 0.941622i \(-0.609301\pi\)
0.791498 + 0.611171i \(0.209301\pi\)
\(54\) 0 0
\(55\) 2.03359 2.62002i 0.274210 0.353283i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.63220 + 5.02341i −0.212495 + 0.653992i 0.786827 + 0.617174i \(0.211722\pi\)
−0.999322 + 0.0368186i \(0.988278\pi\)
\(60\) 0 0
\(61\) −2.49009 1.80916i −0.318824 0.231639i 0.416850 0.908975i \(-0.363134\pi\)
−0.735673 + 0.677337i \(0.763134\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.98018 −0.741750
\(66\) 0 0
\(67\) −14.1976 −1.73451 −0.867256 0.497862i \(-0.834119\pi\)
−0.867256 + 0.497862i \(0.834119\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.33551 + 5.32956i 0.870565 + 0.632502i 0.930738 0.365686i \(-0.119166\pi\)
−0.0601738 + 0.998188i \(0.519166\pi\)
\(72\) 0 0
\(73\) 2.83100 8.71293i 0.331344 1.01977i −0.637152 0.770739i \(-0.719887\pi\)
0.968495 0.249032i \(-0.0801125\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.12825 1.48770i −0.470457 0.169539i
\(78\) 0 0
\(79\) 8.99857 6.53784i 1.01242 0.735565i 0.0477034 0.998862i \(-0.484810\pi\)
0.964715 + 0.263297i \(0.0848098\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.63047 + 4.81732i 0.727789 + 0.528769i 0.888863 0.458173i \(-0.151496\pi\)
−0.161074 + 0.986942i \(0.551496\pi\)
\(84\) 0 0
\(85\) −2.46321 7.58097i −0.267172 0.822271i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.73424 −1.03183 −0.515914 0.856640i \(-0.672548\pi\)
−0.515914 + 0.856640i \(0.672548\pi\)
\(90\) 0 0
\(91\) 2.44501 + 7.52496i 0.256306 + 0.788830i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.37486 + 4.23139i −0.141058 + 0.434132i
\(96\) 0 0
\(97\) 9.54725 6.93648i 0.969377 0.704293i 0.0140672 0.999901i \(-0.495522\pi\)
0.955309 + 0.295608i \(0.0955221\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.5092 + 8.36195i −1.14521 + 0.832045i −0.987837 0.155494i \(-0.950303\pi\)
−0.157375 + 0.987539i \(0.550303\pi\)
\(102\) 0 0
\(103\) −6.12806 + 18.8602i −0.603816 + 1.85835i −0.0990798 + 0.995079i \(0.531590\pi\)
−0.504736 + 0.863274i \(0.668410\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.939127 + 2.89033i 0.0907888 + 0.279419i 0.986133 0.165955i \(-0.0530707\pi\)
−0.895345 + 0.445374i \(0.853071\pi\)
\(108\) 0 0
\(109\) −1.25740 −0.120437 −0.0602184 0.998185i \(-0.519180\pi\)
−0.0602184 + 0.998185i \(0.519180\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.09127 18.7470i −0.573018 1.76357i −0.642831 0.766008i \(-0.722240\pi\)
0.0698130 0.997560i \(-0.477760\pi\)
\(114\) 0 0
\(115\) −3.25683 2.36623i −0.303701 0.220652i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.53216 + 6.19898i −0.782142 + 0.568260i
\(120\) 0 0
\(121\) −10.9779 0.697484i −0.997988 0.0634077i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −9.65888 7.01759i −0.857087 0.622710i 0.0700037 0.997547i \(-0.477699\pi\)
−0.927091 + 0.374836i \(0.877699\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.4042 −1.69535 −0.847675 0.530516i \(-0.821998\pi\)
−0.847675 + 0.530516i \(0.821998\pi\)
\(132\) 0 0
\(133\) 5.88654 0.510428
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.67955 + 2.67335i 0.314365 + 0.228399i 0.733767 0.679401i \(-0.237760\pi\)
−0.419402 + 0.907800i \(0.637760\pi\)
\(138\) 0 0
\(139\) 5.81853 17.9076i 0.493521 1.51890i −0.325727 0.945464i \(-0.605609\pi\)
0.819249 0.573439i \(-0.194391\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.1433 + 16.4078i 0.931850 + 1.37209i
\(144\) 0 0
\(145\) −6.72616 + 4.88684i −0.558577 + 0.405830i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.11669 + 2.26441i 0.255330 + 0.185508i 0.708086 0.706127i \(-0.249559\pi\)
−0.452756 + 0.891634i \(0.649559\pi\)
\(150\) 0 0
\(151\) 0.873524 + 2.68843i 0.0710864 + 0.218781i 0.980288 0.197575i \(-0.0633067\pi\)
−0.909201 + 0.416357i \(0.863307\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.07792 −0.166903
\(156\) 0 0
\(157\) −2.50631 7.71364i −0.200026 0.615615i −0.999881 0.0154227i \(-0.995091\pi\)
0.799856 0.600193i \(-0.204909\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.64590 + 5.06555i −0.129715 + 0.399222i
\(162\) 0 0
\(163\) −1.94480 + 1.41298i −0.152328 + 0.110673i −0.661339 0.750087i \(-0.730011\pi\)
0.509010 + 0.860760i \(0.330011\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.29496 + 3.12047i −0.332354 + 0.241469i −0.741429 0.671031i \(-0.765852\pi\)
0.409075 + 0.912501i \(0.365852\pi\)
\(168\) 0 0
\(169\) 7.03403 21.6485i 0.541079 1.66527i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.99744 12.3028i −0.303920 0.935368i −0.980078 0.198612i \(-0.936357\pi\)
0.676159 0.736756i \(-0.263643\pi\)
\(174\) 0 0
\(175\) 1.32307 0.100015
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.35505 + 16.4811i 0.400255 + 1.23186i 0.924793 + 0.380471i \(0.124238\pi\)
−0.524538 + 0.851387i \(0.675762\pi\)
\(180\) 0 0
\(181\) 5.81853 + 4.22741i 0.432488 + 0.314221i 0.782643 0.622471i \(-0.213871\pi\)
−0.350155 + 0.936692i \(0.613871\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.41931 + 5.39044i −0.545478 + 0.396313i
\(186\) 0 0
\(187\) −16.2100 + 20.8844i −1.18539 + 1.52722i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.27103 6.98953i 0.164326 0.505744i −0.834660 0.550766i \(-0.814336\pi\)
0.998986 + 0.0450216i \(0.0143357\pi\)
\(192\) 0 0
\(193\) 14.7801 + 10.7384i 1.06390 + 0.772966i 0.974805 0.223058i \(-0.0716038\pi\)
0.0890910 + 0.996023i \(0.471604\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.0090 −1.14059 −0.570297 0.821438i \(-0.693172\pi\)
−0.570297 + 0.821438i \(0.693172\pi\)
\(198\) 0 0
\(199\) −15.4438 −1.09478 −0.547391 0.836877i \(-0.684379\pi\)
−0.547391 + 0.836877i \(0.684379\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.89919 + 6.46564i 0.624600 + 0.453799i
\(204\) 0 0
\(205\) 2.41714 7.43920i 0.168821 0.519576i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 14.1715 4.11246i 0.980265 0.284465i
\(210\) 0 0
\(211\) −1.29610 + 0.941669i −0.0892269 + 0.0648271i −0.631504 0.775372i \(-0.717562\pi\)
0.542277 + 0.840200i \(0.317562\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.49680 1.81403i −0.170280 0.123716i
\(216\) 0 0
\(217\) 0.849561 + 2.61468i 0.0576720 + 0.177496i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 47.6686 3.20654
\(222\) 0 0
\(223\) 0.973942 + 2.99749i 0.0652200 + 0.200727i 0.978356 0.206928i \(-0.0663467\pi\)
−0.913136 + 0.407655i \(0.866347\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.145142 + 0.446702i −0.00963343 + 0.0296487i −0.955758 0.294155i \(-0.904962\pi\)
0.946124 + 0.323804i \(0.104962\pi\)
\(228\) 0 0
\(229\) 20.5047 14.8975i 1.35499 0.984457i 0.356242 0.934394i \(-0.384058\pi\)
0.998746 0.0500631i \(-0.0159422\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.78597 + 1.29758i −0.117003 + 0.0850076i −0.644748 0.764395i \(-0.723038\pi\)
0.527745 + 0.849403i \(0.323038\pi\)
\(234\) 0 0
\(235\) −0.886111 + 2.72717i −0.0578035 + 0.177901i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.522006 1.60657i −0.0337657 0.103920i 0.932753 0.360516i \(-0.117399\pi\)
−0.966519 + 0.256595i \(0.917399\pi\)
\(240\) 0 0
\(241\) −13.6730 −0.880754 −0.440377 0.897813i \(-0.645155\pi\)
−0.440377 + 0.897813i \(0.645155\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.62218 + 4.99255i 0.103637 + 0.318963i
\(246\) 0 0
\(247\) −21.5253 15.6390i −1.36962 0.995089i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.9407 7.94889i 0.690571 0.501730i −0.186276 0.982497i \(-0.559642\pi\)
0.876848 + 0.480768i \(0.159642\pi\)
\(252\) 0 0
\(253\) −0.423510 + 13.3449i −0.0266259 + 0.838986i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.42596 + 7.46632i −0.151327 + 0.465737i −0.997770 0.0667424i \(-0.978739\pi\)
0.846443 + 0.532479i \(0.178739\pi\)
\(258\) 0 0
\(259\) 9.81627 + 7.13194i 0.609954 + 0.443157i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.4132 −0.765433 −0.382717 0.923866i \(-0.625011\pi\)
−0.382717 + 0.923866i \(0.625011\pi\)
\(264\) 0 0
\(265\) 4.09285 0.251422
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.2873 9.65377i −0.810140 0.588601i 0.103732 0.994605i \(-0.466922\pi\)
−0.913871 + 0.406004i \(0.866922\pi\)
\(270\) 0 0
\(271\) 5.32895 16.4008i 0.323711 0.996279i −0.648309 0.761378i \(-0.724523\pi\)
0.972019 0.234901i \(-0.0754767\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.18522 0.924324i 0.192076 0.0557388i
\(276\) 0 0
\(277\) 3.67199 2.66786i 0.220629 0.160296i −0.471981 0.881609i \(-0.656461\pi\)
0.692610 + 0.721313i \(0.256461\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.96448 7.23962i −0.594431 0.431880i 0.249467 0.968383i \(-0.419745\pi\)
−0.843898 + 0.536504i \(0.819745\pi\)
\(282\) 0 0
\(283\) 5.74487 + 17.6809i 0.341497 + 1.05102i 0.963432 + 0.267951i \(0.0863467\pi\)
−0.621935 + 0.783069i \(0.713653\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.3491 −0.610889
\(288\) 0 0
\(289\) 14.3812 + 44.2607i 0.845952 + 2.60357i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.23345 16.1069i 0.305741 0.940975i −0.673658 0.739043i \(-0.735278\pi\)
0.979400 0.201932i \(-0.0647221\pi\)
\(294\) 0 0
\(295\) −4.27317 + 3.10464i −0.248793 + 0.180759i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.4764 14.1505i 1.12635 0.818342i
\(300\) 0 0
\(301\) −1.26180 + 3.88343i −0.0727291 + 0.223837i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.951130 2.92728i −0.0544616 0.167615i
\(306\) 0 0
\(307\) −11.1953 −0.638949 −0.319475 0.947595i \(-0.603506\pi\)
−0.319475 + 0.947595i \(0.603506\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.32004 + 4.06267i 0.0748527 + 0.230373i 0.981482 0.191556i \(-0.0613533\pi\)
−0.906629 + 0.421929i \(0.861353\pi\)
\(312\) 0 0
\(313\) −22.4356 16.3004i −1.26813 0.921353i −0.269008 0.963138i \(-0.586696\pi\)
−0.999127 + 0.0417845i \(0.986696\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.15608 5.19919i 0.401925 0.292016i −0.368399 0.929668i \(-0.620094\pi\)
0.770325 + 0.637652i \(0.220094\pi\)
\(318\) 0 0
\(319\) 25.9413 + 9.34851i 1.45244 + 0.523416i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.9592 33.7289i 0.609785 1.87673i
\(324\) 0 0
\(325\) −4.83807 3.51506i −0.268368 0.194981i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.79393 0.209166
\(330\) 0 0
\(331\) 29.2241 1.60630 0.803150 0.595777i \(-0.203156\pi\)
0.803150 + 0.595777i \(0.203156\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.4861 8.34514i −0.627553 0.455944i
\(336\) 0 0
\(337\) −1.77586 + 5.46553i −0.0967371 + 0.297726i −0.987702 0.156345i \(-0.950029\pi\)
0.890965 + 0.454071i \(0.150029\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.87194 + 5.70118i 0.209677 + 0.308736i
\(342\) 0 0
\(343\) 13.1117 9.52620i 0.707965 0.514366i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.45382 4.68897i −0.346459 0.251717i 0.400923 0.916112i \(-0.368690\pi\)
−0.747382 + 0.664394i \(0.768690\pi\)
\(348\) 0 0
\(349\) −2.80783 8.64161i −0.150300 0.462575i 0.847355 0.531027i \(-0.178194\pi\)
−0.997654 + 0.0684526i \(0.978194\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0715 0.908625 0.454313 0.890842i \(-0.349885\pi\)
0.454313 + 0.890842i \(0.349885\pi\)
\(354\) 0 0
\(355\) 2.80191 + 8.62341i 0.148710 + 0.457683i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.3507 + 34.9338i −0.599066 + 1.84374i −0.0657196 + 0.997838i \(0.520934\pi\)
−0.533346 + 0.845897i \(0.679066\pi\)
\(360\) 0 0
\(361\) −0.643130 + 0.467261i −0.0338489 + 0.0245927i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.41166 5.38488i 0.387944 0.281858i
\(366\) 0 0
\(367\) 9.82154 30.2276i 0.512680 1.57787i −0.274784 0.961506i \(-0.588606\pi\)
0.787464 0.616361i \(-0.211394\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.67337 5.15009i −0.0868769 0.267380i
\(372\) 0 0
\(373\) 9.17548 0.475088 0.237544 0.971377i \(-0.423658\pi\)
0.237544 + 0.971377i \(0.423658\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.3641 47.2858i −0.791290 2.43534i
\(378\) 0 0
\(379\) 0.640018 + 0.465001i 0.0328755 + 0.0238855i 0.604102 0.796907i \(-0.293532\pi\)
−0.571226 + 0.820793i \(0.693532\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.67065 + 4.11997i −0.289757 + 0.210521i −0.723162 0.690679i \(-0.757312\pi\)
0.433405 + 0.901199i \(0.357312\pi\)
\(384\) 0 0
\(385\) −2.46537 3.63010i −0.125647 0.185007i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.99979 12.3101i 0.202798 0.624147i −0.796999 0.603981i \(-0.793580\pi\)
0.999797 0.0201662i \(-0.00641955\pi\)
\(390\) 0 0
\(391\) 25.9605 + 18.8614i 1.31288 + 0.953863i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.1228 0.559651
\(396\) 0 0
\(397\) −34.5780 −1.73542 −0.867710 0.497071i \(-0.834409\pi\)
−0.867710 + 0.497071i \(0.834409\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.21570 0.883259i −0.0607092 0.0441078i 0.557017 0.830501i \(-0.311946\pi\)
−0.617726 + 0.786393i \(0.711946\pi\)
\(402\) 0 0
\(403\) 3.83995 11.8182i 0.191282 0.588705i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.6146 + 10.3119i 1.41838 + 0.511142i
\(408\) 0 0
\(409\) 1.94299 1.41167i 0.0960748 0.0698025i −0.538711 0.842491i \(-0.681088\pi\)
0.634786 + 0.772688i \(0.281088\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.65370 + 4.10766i 0.278201 + 0.202125i
\(414\) 0 0
\(415\) 2.53261 + 7.79459i 0.124321 + 0.382621i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.5961 1.69013 0.845065 0.534664i \(-0.179562\pi\)
0.845065 + 0.534664i \(0.179562\pi\)
\(420\) 0 0
\(421\) 9.70713 + 29.8755i 0.473097 + 1.45604i 0.848508 + 0.529183i \(0.177502\pi\)
−0.375411 + 0.926859i \(0.622498\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.46321 7.58097i 0.119483 0.367731i
\(426\) 0 0
\(427\) −3.29457 + 2.39364i −0.159435 + 0.115837i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.11519 5.16949i 0.342727 0.249006i −0.403085 0.915163i \(-0.632062\pi\)
0.745811 + 0.666157i \(0.232062\pi\)
\(432\) 0 0
\(433\) −1.42435 + 4.38370i −0.0684500 + 0.210667i −0.979430 0.201782i \(-0.935327\pi\)
0.910980 + 0.412450i \(0.135327\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.53474 17.0342i −0.264762 0.814855i
\(438\) 0 0
\(439\) 37.8748 1.80767 0.903834 0.427884i \(-0.140741\pi\)
0.903834 + 0.427884i \(0.140741\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.92666 + 15.1627i 0.234072 + 0.720401i 0.997243 + 0.0742040i \(0.0236416\pi\)
−0.763171 + 0.646197i \(0.776358\pi\)
\(444\) 0 0
\(445\) −7.87517 5.72164i −0.373319 0.271232i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.4511 11.2259i 0.729181 0.529781i −0.160123 0.987097i \(-0.551189\pi\)
0.889304 + 0.457316i \(0.151189\pi\)
\(450\) 0 0
\(451\) −24.9149 + 7.23010i −1.17320 + 0.340452i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.44501 + 7.52496i −0.114624 + 0.352775i
\(456\) 0 0
\(457\) −10.2623 7.45599i −0.480050 0.348777i 0.321295 0.946979i \(-0.395882\pi\)
−0.801345 + 0.598202i \(0.795882\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.87253 0.133787 0.0668935 0.997760i \(-0.478691\pi\)
0.0668935 + 0.997760i \(0.478691\pi\)
\(462\) 0 0
\(463\) −6.29101 −0.292368 −0.146184 0.989257i \(-0.546699\pi\)
−0.146184 + 0.989257i \(0.546699\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.74814 1.99664i −0.127169 0.0923936i 0.522383 0.852711i \(-0.325043\pi\)
−0.649551 + 0.760318i \(0.725043\pi\)
\(468\) 0 0
\(469\) −5.80471 + 17.8651i −0.268037 + 0.824932i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.324678 + 10.2307i −0.0149287 + 0.470406i
\(474\) 0 0
\(475\) −3.59944 + 2.61515i −0.165154 + 0.119991i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.3946 + 9.00524i 0.566326 + 0.411460i 0.833769 0.552114i \(-0.186179\pi\)
−0.267443 + 0.963574i \(0.586179\pi\)
\(480\) 0 0
\(481\) −16.9474 52.1587i −0.772734 2.37823i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.8011 0.535858
\(486\) 0 0
\(487\) 5.84044 + 17.9750i 0.264656 + 0.814527i 0.991773 + 0.128013i \(0.0408599\pi\)
−0.727117 + 0.686514i \(0.759140\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.64555 8.14216i 0.119392 0.367450i −0.873446 0.486921i \(-0.838120\pi\)
0.992838 + 0.119471i \(0.0381198\pi\)
\(492\) 0 0
\(493\) 53.6149 38.9535i 2.41469 1.75438i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.70540 7.05138i 0.435347 0.316298i
\(498\) 0 0
\(499\) −11.0689 + 34.0664i −0.495510 + 1.52502i 0.320651 + 0.947197i \(0.396098\pi\)
−0.816161 + 0.577825i \(0.803902\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.11424 6.50696i −0.0942693 0.290131i 0.892793 0.450467i \(-0.148742\pi\)
−0.987063 + 0.160336i \(0.948742\pi\)
\(504\) 0 0
\(505\) −14.2262 −0.633057
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.567708 1.74723i −0.0251632 0.0774445i 0.937686 0.347483i \(-0.112964\pi\)
−0.962850 + 0.270039i \(0.912964\pi\)
\(510\) 0 0
\(511\) −9.80615 7.12458i −0.433799 0.315173i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.0435 + 11.6563i −0.706960 + 0.513636i
\(516\) 0 0
\(517\) 9.13367 2.65051i 0.401698 0.116570i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.56920 + 17.1402i −0.243991 + 0.750928i 0.751810 + 0.659380i \(0.229181\pi\)
−0.995801 + 0.0915473i \(0.970819\pi\)
\(522\) 0 0
\(523\) 11.0172 + 8.00444i 0.481747 + 0.350010i 0.802002 0.597322i \(-0.203768\pi\)
−0.320255 + 0.947331i \(0.603768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.5633 0.721510
\(528\) 0 0
\(529\) −6.79404 −0.295393
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 37.8436 + 27.4950i 1.63919 + 1.19094i
\(534\) 0 0
\(535\) −0.939127 + 2.89033i −0.0406020 + 0.124960i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.6753 13.7537i 0.459818 0.592416i
\(540\) 0 0
\(541\) −1.18837 + 0.863398i −0.0510918 + 0.0371204i −0.613038 0.790053i \(-0.710053\pi\)
0.561946 + 0.827174i \(0.310053\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.01726 0.739079i −0.0435744 0.0316587i
\(546\) 0 0
\(547\) −7.74300 23.8305i −0.331067 1.01892i −0.968627 0.248518i \(-0.920056\pi\)
0.637561 0.770400i \(-0.279944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −36.9902 −1.57584
\(552\) 0 0
\(553\) −4.54759 13.9960i −0.193383 0.595172i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.23801 + 3.81021i −0.0524563 + 0.161444i −0.973853 0.227180i \(-0.927049\pi\)
0.921397 + 0.388624i \(0.127049\pi\)
\(558\) 0 0
\(559\) 14.9313 10.8482i 0.631527 0.458831i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.7914 + 23.8244i −1.38199 + 1.00408i −0.385303 + 0.922790i \(0.625903\pi\)
−0.996691 + 0.0812875i \(0.974097\pi\)
\(564\) 0 0
\(565\) 6.09127 18.7470i 0.256261 0.788692i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.322604 0.992873i −0.0135243 0.0416234i 0.944067 0.329755i \(-0.106966\pi\)
−0.957591 + 0.288131i \(0.906966\pi\)
\(570\) 0 0
\(571\) 13.3111 0.557054 0.278527 0.960428i \(-0.410154\pi\)
0.278527 + 0.960428i \(0.410154\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.24400 3.82863i −0.0518783 0.159665i
\(576\) 0 0
\(577\) −6.11389 4.44200i −0.254525 0.184923i 0.453205 0.891406i \(-0.350281\pi\)
−0.707730 + 0.706483i \(0.750281\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.77258 6.37366i 0.363948 0.264424i
\(582\) 0 0
\(583\) −7.62650 11.2295i −0.315857 0.465079i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.6185 + 35.7580i −0.479545 + 1.47589i 0.360183 + 0.932882i \(0.382714\pi\)
−0.839728 + 0.543007i \(0.817286\pi\)
\(588\) 0 0
\(589\) −7.47935 5.43407i −0.308181 0.223907i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.36380 −0.0560047 −0.0280024 0.999608i \(-0.508915\pi\)
−0.0280024 + 0.999608i \(0.508915\pi\)
\(594\) 0 0
\(595\) −10.5463 −0.432358
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.12176 5.90080i −0.331846 0.241100i 0.409367 0.912370i \(-0.365749\pi\)
−0.741214 + 0.671269i \(0.765749\pi\)
\(600\) 0 0
\(601\) 6.79845 20.9235i 0.277314 0.853486i −0.711283 0.702906i \(-0.751886\pi\)
0.988598 0.150581i \(-0.0481143\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.47131 7.01690i −0.344408 0.285278i
\(606\) 0 0
\(607\) 17.1112 12.4320i 0.694521 0.504599i −0.183622 0.982997i \(-0.558782\pi\)
0.878143 + 0.478398i \(0.158782\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.8732 10.0795i −0.561251 0.407773i
\(612\) 0 0
\(613\) 0.833203 + 2.56433i 0.0336527 + 0.103572i 0.966472 0.256772i \(-0.0826590\pi\)
−0.932819 + 0.360345i \(0.882659\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.26666 0.373062 0.186531 0.982449i \(-0.440276\pi\)
0.186531 + 0.982449i \(0.440276\pi\)
\(618\) 0 0
\(619\) 4.75896 + 14.6466i 0.191279 + 0.588695i 1.00000 0.000503118i \(0.000160147\pi\)
−0.808721 + 0.588192i \(0.799840\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.97986 + 12.2487i −0.159450 + 0.490736i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 59.1401 42.9678i 2.35807 1.71324i
\(630\) 0 0
\(631\) −6.94137 + 21.3633i −0.276332 + 0.850461i 0.712532 + 0.701639i \(0.247548\pi\)
−0.988864 + 0.148822i \(0.952452\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.68937 11.3547i −0.146408 0.450597i
\(636\) 0 0
\(637\) −31.3929 −1.24383
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.32794 + 19.4754i 0.249939 + 0.769232i 0.994785 + 0.101996i \(0.0325228\pi\)
−0.744846 + 0.667236i \(0.767477\pi\)
\(642\) 0 0
\(643\) 4.72609 + 3.43370i 0.186379 + 0.135412i 0.677062 0.735926i \(-0.263253\pi\)
−0.490683 + 0.871338i \(0.663253\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.00539 + 2.91009i −0.157468 + 0.114407i −0.663729 0.747973i \(-0.731027\pi\)
0.506261 + 0.862380i \(0.331027\pi\)
\(648\) 0 0
\(649\) 16.4807 + 5.93916i 0.646923 + 0.233133i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.37985 + 28.8682i −0.367062 + 1.12970i 0.581618 + 0.813462i \(0.302420\pi\)
−0.948680 + 0.316238i \(0.897580\pi\)
\(654\) 0 0
\(655\) −15.6983 11.4055i −0.613383 0.445649i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.9400 −0.504071 −0.252036 0.967718i \(-0.581100\pi\)
−0.252036 + 0.967718i \(0.581100\pi\)
\(660\) 0 0
\(661\) −5.41592 −0.210655 −0.105327 0.994438i \(-0.533589\pi\)
−0.105327 + 0.994438i \(0.533589\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.76231 + 3.46002i 0.184675 + 0.134174i
\(666\) 0 0
\(667\) 10.3426 31.8312i 0.400467 1.23251i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.25924 + 8.06421i −0.241635 + 0.311316i
\(672\) 0 0
\(673\) 33.6903 24.4774i 1.29867 0.943536i 0.298724 0.954339i \(-0.403439\pi\)
0.999942 + 0.0108032i \(0.00343884\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −37.1606 26.9988i −1.42820 1.03765i −0.990349 0.138599i \(-0.955740\pi\)
−0.437850 0.899048i \(-0.644260\pi\)
\(678\) 0 0
\(679\) −4.82488 14.8494i −0.185162 0.569869i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.462944 0.0177141 0.00885703 0.999961i \(-0.497181\pi\)
0.00885703 + 0.999961i \(0.497181\pi\)
\(684\) 0 0
\(685\) 1.40546 + 4.32557i 0.0536999 + 0.165271i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.56349 + 23.2780i −0.288146 + 0.886823i
\(690\) 0 0
\(691\) 26.6269 19.3455i 1.01293 0.735939i 0.0481110 0.998842i \(-0.484680\pi\)
0.964822 + 0.262903i \(0.0846799\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.2331 11.0675i 0.577825 0.419814i
\(696\) 0 0
\(697\) −19.2673 + 59.2986i −0.729801 + 2.24610i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.87750 + 30.3998i 0.373068 + 1.14819i 0.944773 + 0.327726i \(0.106282\pi\)
−0.571705 + 0.820459i \(0.693718\pi\)
\(702\) 0 0
\(703\) −40.8022 −1.53888
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.81640 + 17.9010i 0.218748 + 0.673238i
\(708\) 0 0
\(709\) 24.1808 + 17.5684i 0.908129 + 0.659794i 0.940541 0.339680i \(-0.110319\pi\)
−0.0324120 + 0.999475i \(0.510319\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.76744 4.91683i 0.253443 0.184137i
\(714\) 0 0
\(715\) −0.629131 + 19.8240i −0.0235282 + 0.741377i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.37070 + 19.6070i −0.237587 + 0.731217i 0.759181 + 0.650880i \(0.225600\pi\)
−0.996768 + 0.0803375i \(0.974400\pi\)
\(720\) 0 0
\(721\) 21.2266 + 15.4221i 0.790522 + 0.574348i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.31399 −0.308774
\(726\) 0 0
\(727\) 26.4641 0.981499 0.490749 0.871301i \(-0.336723\pi\)
0.490749 + 0.871301i \(0.336723\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.9022 + 14.4598i 0.736111 + 0.534816i
\(732\) 0 0
\(733\) −5.62538 + 17.3131i −0.207778 + 0.639475i 0.791810 + 0.610768i \(0.209139\pi\)
−0.999588 + 0.0287076i \(0.990861\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.49363 + 47.0644i −0.0550184 + 1.73364i
\(738\) 0 0
\(739\) −32.8386 + 23.8586i −1.20799 + 0.877653i −0.995046 0.0994120i \(-0.968304\pi\)
−0.212940 + 0.977065i \(0.568304\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.3393 + 19.1366i 0.966296 + 0.702055i 0.954604 0.297877i \(-0.0962784\pi\)
0.0116914 + 0.999932i \(0.496278\pi\)
\(744\) 0 0
\(745\) 1.19047 + 3.66389i 0.0436155 + 0.134235i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.02092 0.146921
\(750\) 0 0
\(751\) 1.53589 + 4.72698i 0.0560453 + 0.172490i 0.975161 0.221499i \(-0.0710949\pi\)
−0.919115 + 0.393989i \(0.871095\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.873524 + 2.68843i −0.0317908 + 0.0978420i
\(756\) 0 0
\(757\) −20.3767 + 14.8045i −0.740602 + 0.538079i −0.892900 0.450256i \(-0.851333\pi\)
0.152297 + 0.988335i \(0.451333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.05151 + 6.57631i −0.328117 + 0.238391i −0.739631 0.673012i \(-0.765000\pi\)
0.411514 + 0.911403i \(0.365000\pi\)
\(762\) 0 0
\(763\) −0.514088 + 1.58220i −0.0186113 + 0.0572795i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.76088 30.0409i −0.352445 1.08471i
\(768\) 0 0
\(769\) −53.3116 −1.92246 −0.961232 0.275741i \(-0.911077\pi\)
−0.961232 + 0.275741i \(0.911077\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.30689 + 16.3329i 0.190876 + 0.587455i 1.00000 0.000182505i \(-5.80931e-5\pi\)
−0.809124 + 0.587638i \(0.800058\pi\)
\(774\) 0 0
\(775\) −1.68107 1.22137i −0.0603860 0.0438730i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.1549 20.4558i 1.00876 0.732904i
\(780\) 0 0
\(781\) 18.4390 23.7562i 0.659798 0.850064i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.50631 7.71364i 0.0894541 0.275311i
\(786\) 0 0
\(787\) −3.48717 2.53358i −0.124304 0.0903122i 0.523896 0.851782i \(-0.324478\pi\)
−0.648200 + 0.761470i \(0.724478\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −26.0800 −0.927300
\(792\) 0 0
\(793\) 18.4065 0.653635
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.1444 9.54996i −0.465598 0.338277i 0.330125 0.943937i \(-0.392909\pi\)
−0.795723 + 0.605660i \(0.792909\pi\)
\(798\) 0 0
\(799\) 7.06328 21.7386i 0.249881 0.769055i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.5851 10.3013i −1.00875 0.363524i
\(804\) 0 0
\(805\) −4.30902 + 3.13068i −0.151873 + 0.110342i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.7235 9.24413i −0.447333 0.325006i 0.341209 0.939987i \(-0.389164\pi\)
−0.788542 + 0.614981i \(0.789164\pi\)
\(810\) 0 0
\(811\) 5.02578 + 15.4678i 0.176479 + 0.543146i 0.999698 0.0245776i \(-0.00782407\pi\)
−0.823219 + 0.567724i \(0.807824\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.40390 −0.0842051
\(816\) 0 0
\(817\) −4.24312 13.0590i −0.148448 0.456876i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.81964 11.7556i 0.133306 0.410274i −0.862016 0.506880i \(-0.830799\pi\)
0.995323 + 0.0966058i \(0.0307986\pi\)
\(822\) 0 0
\(823\) 7.90757 5.74518i 0.275640 0.200265i −0.441373 0.897324i \(-0.645508\pi\)
0.717014 + 0.697059i \(0.245508\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.7322 + 15.0629i −0.720931 + 0.523787i −0.886681 0.462381i \(-0.846995\pi\)
0.165751 + 0.986168i \(0.446995\pi\)
\(828\) 0 0
\(829\) 10.0035 30.7877i 0.347437 1.06930i −0.612829 0.790216i \(-0.709968\pi\)
0.960266 0.279086i \(-0.0900316\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.9306 39.7962i −0.448017 1.37886i
\(834\) 0 0
\(835\) −5.30887 −0.183721
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.09372 9.52149i −0.106807 0.328718i 0.883343 0.468727i \(-0.155287\pi\)
−0.990150 + 0.140008i \(0.955287\pi\)
\(840\) 0 0
\(841\) −32.4597 23.5834i −1.11930 0.813220i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.4153 13.3795i 0.633506 0.460269i
\(846\) 0 0
\(847\) −5.36597 + 13.5284i −0.184377 + 0.464843i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.4084 35.1115i 0.391076 1.20361i
\(852\) 0 0
\(853\) 8.16802 + 5.93441i 0.279668 + 0.203190i 0.718772 0.695245i \(-0.244704\pi\)
−0.439105 + 0.898436i \(0.644704\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.9504 −0.920609 −0.460305 0.887761i \(-0.652260\pi\)
−0.460305 + 0.887761i \(0.652260\pi\)
\(858\) 0 0
\(859\) −23.4354 −0.799606 −0.399803 0.916601i \(-0.630921\pi\)
−0.399803 + 0.916601i \(0.630921\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.8203 + 7.86141i 0.368327 + 0.267606i 0.756517 0.653974i \(-0.226899\pi\)
−0.388190 + 0.921580i \(0.626899\pi\)
\(864\) 0 0
\(865\) 3.99744 12.3028i 0.135917 0.418309i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20.7260 30.5177i −0.703081 1.03524i
\(870\) 0 0
\(871\) 68.6890 49.9055i 2.32744 1.69098i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.07039 + 0.777682i 0.0361857 + 0.0262904i
\(876\) 0 0
\(877\) −3.92517 12.0804i −0.132543 0.407927i 0.862656 0.505790i \(-0.168799\pi\)
−0.995200 + 0.0978637i \(0.968799\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22.5811 −0.760778 −0.380389 0.924827i \(-0.624210\pi\)
−0.380389 + 0.924827i \(0.624210\pi\)
\(882\) 0 0
\(883\) 8.87708 + 27.3208i 0.298737 + 0.919419i 0.981940 + 0.189191i \(0.0605864\pi\)
−0.683203 + 0.730228i \(0.739414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.35720 7.25473i 0.0791471 0.243590i −0.903652 0.428267i \(-0.859124\pi\)
0.982799 + 0.184678i \(0.0591241\pi\)
\(888\) 0 0
\(889\) −12.7794 + 9.28477i −0.428607 + 0.311401i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.3215 + 7.49897i −0.345394 + 0.250944i
\(894\) 0 0
\(895\) −5.35505 + 16.4811i −0.178999 + 0.550904i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.33852 16.4303i −0.178050 0.547981i
\(900\) 0 0
\(901\) −32.6245 −1.08688
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.22248 + 6.84009i 0.0738778 + 0.227372i
\(906\) 0 0
\(907\) −15.0288 10.9191i −0.499023 0.362562i 0.309620 0.950860i \(-0.399798\pi\)
−0.808644 + 0.588298i \(0.799798\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.1152 18.9738i 0.865234 0.628630i −0.0640696 0.997945i \(-0.520408\pi\)
0.929304 + 0.369316i \(0.120408\pi\)
\(912\) 0 0
\(913\) 16.6667 21.4729i 0.551589 0.710650i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.93342 + 24.4166i −0.261985 + 0.806306i
\(918\) 0 0
\(919\) −23.9513 17.4017i −0.790082 0.574028i 0.117906 0.993025i \(-0.462382\pi\)
−0.907988 + 0.418997i \(0.862382\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −54.2234 −1.78479
\(924\) 0 0
\(925\) −9.17077 −0.301533
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29.6500 21.5420i −0.972784 0.706769i −0.0166993 0.999861i \(-0.505316\pi\)
−0.956084 + 0.293092i \(0.905316\pi\)
\(930\) 0 0
\(931\) −7.21732 + 22.2126i −0.236538 + 0.727990i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.3897 + 7.36788i −0.830332 + 0.240955i
\(936\) 0 0
\(937\) −11.2165 + 8.14929i −0.366428 + 0.266226i −0.755728 0.654885i \(-0.772717\pi\)
0.389300 + 0.921111i \(0.372717\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.8062 + 17.2962i 0.776059 + 0.563840i 0.903794 0.427969i \(-0.140771\pi\)
−0.127735 + 0.991808i \(0.540771\pi\)
\(942\) 0 0
\(943\) 9.73060 + 29.9477i 0.316872 + 0.975232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.3123 0.692557 0.346278 0.938132i \(-0.387445\pi\)
0.346278 + 0.938132i \(0.387445\pi\)
\(948\) 0 0
\(949\) 16.9299 + 52.1049i 0.549568 + 1.69140i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.17738 6.70130i 0.0705323 0.217076i −0.909577 0.415536i \(-0.863594\pi\)
0.980109 + 0.198460i \(0.0635940\pi\)
\(954\) 0 0
\(955\) 5.94565 4.31976i 0.192397 0.139784i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.86830 3.53703i 0.157206 0.114217i
\(960\) 0 0
\(961\) −8.24527 + 25.3763i −0.265976 + 0.818591i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.64550 + 17.3751i 0.181735 + 0.559323i
\(966\) 0 0
\(967\) −16.4122 −0.527781 −0.263891 0.964553i \(-0.585006\pi\)
−0.263891 + 0.964553i \(0.585006\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.72502 11.4644i −0.119542 0.367911i 0.873326 0.487137i \(-0.161959\pi\)
−0.992867 + 0.119226i \(0.961959\pi\)
\(972\) 0 0
\(973\) −20.1545 14.6431i −0.646123 0.469436i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.2903 + 27.8195i −1.22501 + 0.890025i −0.996506 0.0835173i \(-0.973385\pi\)
−0.228508 + 0.973542i \(0.573385\pi\)
\(978\) 0 0
\(979\) −1.02407 + 32.2686i −0.0327294 + 1.03131i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.439405 1.35235i 0.0140148 0.0431333i −0.943805 0.330504i \(-0.892781\pi\)
0.957819 + 0.287371i \(0.0927812\pi\)
\(984\) 0 0
\(985\) −12.9516 9.40986i −0.412671 0.299823i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.4241 0.395062
\(990\) 0 0
\(991\) −41.5050 −1.31845 −0.659225 0.751946i \(-0.729116\pi\)
−0.659225 + 0.751946i \(0.729116\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.4943 9.07763i −0.396096 0.287780i
\(996\) 0 0
\(997\) 1.08772 3.34767i 0.0344486 0.106022i −0.932354 0.361548i \(-0.882249\pi\)
0.966802 + 0.255526i \(0.0822485\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1980.2.z.e.1081.1 8
3.2 odd 2 660.2.y.a.421.1 yes 8
11.4 even 5 inner 1980.2.z.e.1621.1 8
33.2 even 10 7260.2.a.bh.1.3 4
33.20 odd 10 7260.2.a.bj.1.2 4
33.26 odd 10 660.2.y.a.301.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.y.a.301.1 8 33.26 odd 10
660.2.y.a.421.1 yes 8 3.2 odd 2
1980.2.z.e.1081.1 8 1.1 even 1 trivial
1980.2.z.e.1621.1 8 11.4 even 5 inner
7260.2.a.bh.1.3 4 33.2 even 10
7260.2.a.bj.1.2 4 33.20 odd 10