Properties

Label 660.2.c.a.529.1
Level $660$
Weight $2$
Character 660.529
Analytic conductor $5.270$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [660,2,Mod(529,660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(660, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("660.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27012653340\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 660.529
Dual form 660.2.c.a.529.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-1.00000 - 2.00000i) q^{5} -2.00000i q^{7} -1.00000 q^{9} +1.00000 q^{11} +2.00000i q^{13} +(-2.00000 + 1.00000i) q^{15} -6.00000i q^{17} -4.00000 q^{19} -2.00000 q^{21} +(-3.00000 + 4.00000i) q^{25} +1.00000i q^{27} -2.00000 q^{29} -8.00000 q^{31} -1.00000i q^{33} +(-4.00000 + 2.00000i) q^{35} +2.00000 q^{39} -2.00000 q^{41} +2.00000i q^{43} +(1.00000 + 2.00000i) q^{45} -8.00000i q^{47} +3.00000 q^{49} -6.00000 q^{51} -8.00000i q^{53} +(-1.00000 - 2.00000i) q^{55} +4.00000i q^{57} +8.00000 q^{59} +10.0000 q^{61} +2.00000i q^{63} +(4.00000 - 2.00000i) q^{65} -8.00000i q^{67} -12.0000 q^{71} +14.0000i q^{73} +(4.00000 + 3.00000i) q^{75} -2.00000i q^{77} -8.00000 q^{79} +1.00000 q^{81} -6.00000i q^{83} +(-12.0000 + 6.00000i) q^{85} +2.00000i q^{87} +14.0000 q^{89} +4.00000 q^{91} +8.00000i q^{93} +(4.00000 + 8.00000i) q^{95} -12.0000i q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{9} + 2 q^{11} - 4 q^{15} - 8 q^{19} - 4 q^{21} - 6 q^{25} - 4 q^{29} - 16 q^{31} - 8 q^{35} + 4 q^{39} - 4 q^{41} + 2 q^{45} + 6 q^{49} - 12 q^{51} - 2 q^{55} + 16 q^{59} + 20 q^{61}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/660\mathbb{Z}\right)^\times\).

\(n\) \(221\) \(331\) \(397\) \(541\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) −2.00000 + 1.00000i −0.516398 + 0.258199i
\(16\) 0 0
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) −4.00000 + 2.00000i −0.676123 + 0.338062i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i 0.988304 + 0.152499i \(0.0487319\pi\)
−0.988304 + 0.152499i \(0.951268\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 8.00000i 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(54\) 0 0
\(55\) −1.00000 2.00000i −0.134840 0.269680i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 4.00000 2.00000i 0.496139 0.248069i
\(66\) 0 0
\(67\) 8.00000i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 4.00000 + 3.00000i 0.461880 + 0.346410i
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) −12.0000 + 6.00000i −1.30158 + 0.650791i
\(86\) 0 0
\(87\) 2.00000i 0.214423i
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 4.00000 + 8.00000i 0.410391 + 0.820783i
\(96\) 0 0
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 2.00000 + 4.00000i 0.195180 + 0.390360i
\(106\) 0 0
\(107\) 10.0000i 0.966736i −0.875417 0.483368i \(-0.839413\pi\)
0.875417 0.483368i \(-0.160587\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 10.0000i 0.887357i 0.896186 + 0.443678i \(0.146327\pi\)
−0.896186 + 0.443678i \(0.853673\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 0 0
\(135\) 2.00000 1.00000i 0.172133 0.0860663i
\(136\) 0 0
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 2.00000 + 4.00000i 0.166091 + 0.332182i
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 8.00000 + 16.0000i 0.642575 + 1.28515i
\(156\) 0 0
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) −2.00000 + 1.00000i −0.155700 + 0.0778499i
\(166\) 0 0
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 10.0000i 0.760286i −0.924928 0.380143i \(-0.875875\pi\)
0.924928 0.380143i \(-0.124125\pi\)
\(174\) 0 0
\(175\) 8.00000 + 6.00000i 0.604743 + 0.453557i
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 22.0000i 1.58359i 0.610784 + 0.791797i \(0.290854\pi\)
−0.610784 + 0.791797i \(0.709146\pi\)
\(194\) 0 0
\(195\) −2.00000 4.00000i −0.143223 0.286446i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 4.00000i 0.280745i
\(204\) 0 0
\(205\) 2.00000 + 4.00000i 0.139686 + 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) 4.00000 2.00000i 0.272798 0.136399i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 0 0
\(227\) 14.0000i 0.929213i −0.885517 0.464606i \(-0.846196\pi\)
0.885517 0.464606i \(-0.153804\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) 26.0000i 1.70332i 0.524097 + 0.851658i \(0.324403\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) −16.0000 + 8.00000i −1.04372 + 0.521862i
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −3.00000 6.00000i −0.191663 0.383326i
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.00000 + 12.0000i 0.375735 + 0.751469i
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) −16.0000 + 8.00000i −0.982872 + 0.491436i
\(266\) 0 0
\(267\) 14.0000i 0.856786i
\(268\) 0 0
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 4.00000i 0.242091i
\(274\) 0 0
\(275\) −3.00000 + 4.00000i −0.180907 + 0.241209i
\(276\) 0 0
\(277\) 26.0000i 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 14.0000i 0.832214i −0.909316 0.416107i \(-0.863394\pi\)
0.909316 0.416107i \(-0.136606\pi\)
\(284\) 0 0
\(285\) 8.00000 4.00000i 0.473879 0.236940i
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 0 0
\(293\) 10.0000i 0.584206i 0.956387 + 0.292103i \(0.0943550\pi\)
−0.956387 + 0.292103i \(0.905645\pi\)
\(294\) 0 0
\(295\) −8.00000 16.0000i −0.465778 0.931556i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 14.0000i 0.804279i
\(304\) 0 0
\(305\) −10.0000 20.0000i −0.572598 1.14520i
\(306\) 0 0
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 32.0000i 1.80875i −0.426742 0.904373i \(-0.640339\pi\)
0.426742 0.904373i \(-0.359661\pi\)
\(314\) 0 0
\(315\) 4.00000 2.00000i 0.225374 0.112687i
\(316\) 0 0
\(317\) 4.00000i 0.224662i −0.993671 0.112331i \(-0.964168\pi\)
0.993671 0.112331i \(-0.0358318\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 0 0
\(327\) 10.0000i 0.553001i
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.0000 + 8.00000i −0.874173 + 0.437087i
\(336\) 0 0
\(337\) 6.00000i 0.326841i −0.986557 0.163420i \(-0.947747\pi\)
0.986557 0.163420i \(-0.0522527\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.0000i 1.61048i 0.592946 + 0.805242i \(0.297965\pi\)
−0.592946 + 0.805242i \(0.702035\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 16.0000i 0.851594i 0.904819 + 0.425797i \(0.140006\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 12.0000 + 24.0000i 0.636894 + 1.27379i
\(356\) 0 0
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 28.0000 14.0000i 1.46559 0.732793i
\(366\) 0 0
\(367\) 24.0000i 1.25279i −0.779506 0.626395i \(-0.784530\pi\)
0.779506 0.626395i \(-0.215470\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −16.0000 −0.830679
\(372\) 0 0
\(373\) 6.00000i 0.310668i 0.987862 + 0.155334i \(0.0496454\pi\)
−0.987862 + 0.155334i \(0.950355\pi\)
\(374\) 0 0
\(375\) 2.00000 11.0000i 0.103280 0.568038i
\(376\) 0 0
\(377\) 4.00000i 0.206010i
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 10.0000 0.512316
\(382\) 0 0
\(383\) 20.0000i 1.02195i −0.859595 0.510976i \(-0.829284\pi\)
0.859595 0.510976i \(-0.170716\pi\)
\(384\) 0 0
\(385\) −4.00000 + 2.00000i −0.203859 + 0.101929i
\(386\) 0 0
\(387\) 2.00000i 0.101666i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 8.00000 + 16.0000i 0.402524 + 0.805047i
\(396\) 0 0
\(397\) 12.0000i 0.602263i −0.953583 0.301131i \(-0.902636\pi\)
0.953583 0.301131i \(-0.0973643\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) −1.00000 2.00000i −0.0496904 0.0993808i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 16.0000i 0.787309i
\(414\) 0 0
\(415\) −12.0000 + 6.00000i −0.589057 + 0.294528i
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 24.0000 + 18.0000i 1.16417 + 0.873128i
\(426\) 0 0
\(427\) 20.0000i 0.967868i
\(428\) 0 0
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 12.0000i 0.576683i −0.957528 0.288342i \(-0.906896\pi\)
0.957528 0.288342i \(-0.0931039\pi\)
\(434\) 0 0
\(435\) 4.00000 2.00000i 0.191785 0.0958927i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 28.0000i 1.33032i 0.746701 + 0.665160i \(0.231637\pi\)
−0.746701 + 0.665160i \(0.768363\pi\)
\(444\) 0 0
\(445\) −14.0000 28.0000i −0.663664 1.32733i
\(446\) 0 0
\(447\) 10.0000i 0.472984i
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.00000 8.00000i −0.187523 0.375046i
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 22.0000 1.02464 0.512321 0.858794i \(-0.328786\pi\)
0.512321 + 0.858794i \(0.328786\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 16.0000 8.00000i 0.741982 0.370991i
\(466\) 0 0
\(467\) 40.0000i 1.85098i 0.378773 + 0.925490i \(0.376346\pi\)
−0.378773 + 0.925490i \(0.623654\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) 12.0000 16.0000i 0.550598 0.734130i
\(476\) 0 0
\(477\) 8.00000i 0.366295i
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 + 12.0000i −1.08978 + 0.544892i
\(486\) 0 0
\(487\) 32.0000i 1.45006i 0.688718 + 0.725029i \(0.258174\pi\)
−0.688718 + 0.725029i \(0.741826\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 1.00000 + 2.00000i 0.0449467 + 0.0898933i
\(496\) 0 0
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) 10.0000i 0.445878i −0.974832 0.222939i \(-0.928435\pi\)
0.974832 0.222939i \(-0.0715651\pi\)
\(504\) 0 0
\(505\) −14.0000 28.0000i −0.622992 1.24598i
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) −8.00000 + 4.00000i −0.352522 + 0.176261i
\(516\) 0 0
\(517\) 8.00000i 0.351840i
\(518\) 0 0
\(519\) −10.0000 −0.438951
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 14.0000i 0.612177i 0.952003 + 0.306089i \(0.0990204\pi\)
−0.952003 + 0.306089i \(0.900980\pi\)
\(524\) 0 0
\(525\) 6.00000 8.00000i 0.261861 0.349149i
\(526\) 0 0
\(527\) 48.0000i 2.09091i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) −20.0000 + 10.0000i −0.864675 + 0.432338i
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 0 0
\(543\) 10.0000i 0.429141i
\(544\) 0 0
\(545\) −10.0000 20.0000i −0.428353 0.856706i
\(546\) 0 0
\(547\) 18.0000i 0.769624i 0.922995 + 0.384812i \(0.125734\pi\)
−0.922995 + 0.384812i \(0.874266\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000i 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) −6.00000 −0.253320
\(562\) 0 0
\(563\) 6.00000i 0.252870i 0.991975 + 0.126435i \(0.0403535\pi\)
−0.991975 + 0.126435i \(0.959647\pi\)
\(564\) 0 0
\(565\) 8.00000 4.00000i 0.336563 0.168281i
\(566\) 0 0
\(567\) 2.00000i 0.0839921i
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.00000i 0.166522i 0.996528 + 0.0832611i \(0.0265335\pi\)
−0.996528 + 0.0832611i \(0.973466\pi\)
\(578\) 0 0
\(579\) 22.0000 0.914289
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 8.00000i 0.331326i
\(584\) 0 0
\(585\) −4.00000 + 2.00000i −0.165380 + 0.0826898i
\(586\) 0 0
\(587\) 24.0000i 0.990586i 0.868726 + 0.495293i \(0.164939\pi\)
−0.868726 + 0.495293i \(0.835061\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 12.0000 + 24.0000i 0.491952 + 0.983904i
\(596\) 0 0
\(597\) 4.00000i 0.163709i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 0 0
\(605\) −1.00000 2.00000i −0.0406558 0.0813116i
\(606\) 0 0
\(607\) 34.0000i 1.38002i 0.723801 + 0.690009i \(0.242393\pi\)
−0.723801 + 0.690009i \(0.757607\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 38.0000i 1.53481i 0.641165 + 0.767403i \(0.278451\pi\)
−0.641165 + 0.767403i \(0.721549\pi\)
\(614\) 0 0
\(615\) 4.00000 2.00000i 0.161296 0.0806478i
\(616\) 0 0
\(617\) 20.0000i 0.805170i −0.915383 0.402585i \(-0.868112\pi\)
0.915383 0.402585i \(-0.131888\pi\)
\(618\) 0 0
\(619\) 12.0000 0.482321 0.241160 0.970485i \(-0.422472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 28.0000i 1.12180i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 4.00000i 0.159745i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 28.0000i 1.11290i
\(634\) 0 0
\(635\) 20.0000 10.0000i 0.793676 0.396838i
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) 44.0000i 1.73519i −0.497271 0.867595i \(-0.665665\pi\)
0.497271 0.867595i \(-0.334335\pi\)
\(644\) 0 0
\(645\) −2.00000 4.00000i −0.0787499 0.157500i
\(646\) 0 0
\(647\) 44.0000i 1.72982i 0.501928 + 0.864909i \(0.332624\pi\)
−0.501928 + 0.864909i \(0.667376\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) 16.0000i 0.626128i −0.949732 0.313064i \(-0.898644\pi\)
0.949732 0.313064i \(-0.101356\pi\)
\(654\) 0 0
\(655\) −12.0000 24.0000i −0.468879 0.937758i
\(656\) 0 0
\(657\) 14.0000i 0.546192i
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) 16.0000 8.00000i 0.620453 0.310227i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 18.0000i 0.693849i −0.937893 0.346925i \(-0.887226\pi\)
0.937893 0.346925i \(-0.112774\pi\)
\(674\) 0 0
\(675\) −4.00000 3.00000i −0.153960 0.115470i
\(676\) 0 0
\(677\) 2.00000i 0.0768662i −0.999261 0.0384331i \(-0.987763\pi\)
0.999261 0.0384331i \(-0.0122367\pi\)
\(678\) 0 0
\(679\) −24.0000 −0.921035
\(680\) 0 0
\(681\) −14.0000 −0.536481
\(682\) 0 0
\(683\) 24.0000i 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) −24.0000 + 12.0000i −0.916993 + 0.458496i
\(686\) 0 0
\(687\) 26.0000i 0.991962i
\(688\) 0 0
\(689\) 16.0000 0.609551
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 0 0
\(693\) 2.00000i 0.0759737i
\(694\) 0 0
\(695\) 4.00000 + 8.00000i 0.151729 + 0.303457i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) 26.0000 0.983410
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 + 16.0000i 0.301297 + 0.602595i
\(706\) 0 0
\(707\) 28.0000i 1.05305i
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 2.00000i 0.149592 0.0747958i
\(716\) 0 0
\(717\) 24.0000i 0.896296i
\(718\) 0 0
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 22.0000i 0.818189i
\(724\) 0 0
\(725\) 6.00000 8.00000i 0.222834 0.297113i
\(726\) 0 0
\(727\) 28.0000i 1.03846i −0.854634 0.519231i \(-0.826218\pi\)
0.854634 0.519231i \(-0.173782\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) 46.0000i 1.69905i 0.527549 + 0.849524i \(0.323111\pi\)
−0.527549 + 0.849524i \(0.676889\pi\)
\(734\) 0 0
\(735\) −6.00000 + 3.00000i −0.221313 + 0.110657i
\(736\) 0 0
\(737\) 8.00000i 0.294684i
\(738\) 0 0
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 10.0000i 0.366864i 0.983032 + 0.183432i \(0.0587208\pi\)
−0.983032 + 0.183432i \(0.941279\pi\)
\(744\) 0 0
\(745\) −10.0000 20.0000i −0.366372 0.732743i
\(746\) 0 0
\(747\) 6.00000i 0.219529i
\(748\) 0 0
\(749\) −20.0000 −0.730784
\(750\) 0 0
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) 0 0
\(753\) 16.0000i 0.583072i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 44.0000i 1.59921i 0.600528 + 0.799604i \(0.294957\pi\)
−0.600528 + 0.799604i \(0.705043\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 0 0
\(765\) 12.0000 6.00000i 0.433861 0.216930i
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 0 0
\(769\) −54.0000 −1.94729 −0.973645 0.228069i \(-0.926759\pi\)
−0.973645 + 0.228069i \(0.926759\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.00000i 0.287740i −0.989597 0.143870i \(-0.954045\pi\)
0.989597 0.143870i \(-0.0459547\pi\)
\(774\) 0 0
\(775\) 24.0000 32.0000i 0.862105 1.14947i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 2.00000i 0.0714742i
\(784\) 0 0
\(785\) −8.00000 + 4.00000i −0.285532 + 0.142766i
\(786\) 0 0
\(787\) 54.0000i 1.92489i 0.271473 + 0.962446i \(0.412489\pi\)
−0.271473 + 0.962446i \(0.587511\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 20.0000i 0.710221i
\(794\) 0 0
\(795\) 8.00000 + 16.0000i 0.283731 + 0.567462i
\(796\) 0 0
\(797\) 52.0000i 1.84193i 0.389640 + 0.920967i \(0.372599\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 14.0000i 0.494049i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.00000i 0.0704033i
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.00000 4.00000i 0.280228 0.140114i
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) −14.0000 −0.488603 −0.244302 0.969699i \(-0.578559\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(822\) 0 0
\(823\) 28.0000i 0.976019i −0.872838 0.488009i \(-0.837723\pi\)
0.872838 0.488009i \(-0.162277\pi\)
\(824\) 0 0
\(825\) 4.00000 + 3.00000i 0.139262 + 0.104447i
\(826\) 0 0
\(827\) 18.0000i 0.625921i −0.949766 0.312961i \(-0.898679\pi\)
0.949766 0.312961i \(-0.101321\pi\)
\(828\) 0 0
\(829\) 22.0000 0.764092 0.382046 0.924143i \(-0.375220\pi\)
0.382046 + 0.924143i \(0.375220\pi\)
\(830\) 0 0
\(831\) −26.0000 −0.901930
\(832\) 0 0
\(833\) 18.0000i 0.623663i
\(834\) 0 0
\(835\) 4.00000 2.00000i 0.138426 0.0692129i
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) −20.0000 −0.690477 −0.345238 0.938515i \(-0.612202\pi\)
−0.345238 + 0.938515i \(0.612202\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) −9.00000 18.0000i −0.309609 0.619219i
\(846\) 0 0
\(847\) 2.00000i 0.0687208i
\(848\) 0 0
\(849\) −14.0000 −0.480479
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 34.0000i 1.16414i −0.813139 0.582069i \(-0.802243\pi\)
0.813139 0.582069i \(-0.197757\pi\)
\(854\) 0 0
\(855\) −4.00000 8.00000i −0.136797 0.273594i
\(856\) 0 0
\(857\) 42.0000i 1.43469i 0.696717 + 0.717346i \(0.254643\pi\)
−0.696717 + 0.717346i \(0.745357\pi\)
\(858\) 0 0
\(859\) −12.0000 −0.409435 −0.204717 0.978821i \(-0.565628\pi\)
−0.204717 + 0.978821i \(0.565628\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 12.0000i 0.408485i −0.978920 0.204242i \(-0.934527\pi\)
0.978920 0.204242i \(-0.0654731\pi\)
\(864\) 0 0
\(865\) −20.0000 + 10.0000i −0.680020 + 0.340010i
\(866\) 0 0
\(867\) 19.0000i 0.645274i
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) 4.00000 22.0000i 0.135225 0.743736i
\(876\) 0 0
\(877\) 42.0000i 1.41824i 0.705088 + 0.709120i \(0.250907\pi\)
−0.705088 + 0.709120i \(0.749093\pi\)
\(878\) 0 0
\(879\) 10.0000 0.337292
\(880\) 0 0
\(881\) −34.0000 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 0 0
\(885\) −16.0000 + 8.00000i −0.537834 + 0.268917i
\(886\) 0 0
\(887\) 38.0000i 1.27592i −0.770072 0.637958i \(-0.779780\pi\)
0.770072 0.637958i \(-0.220220\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) −12.0000 24.0000i −0.401116 0.802232i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) −48.0000 −1.59911
\(902\) 0 0
\(903\) 4.00000i 0.133112i
\(904\) 0 0
\(905\) −10.0000 20.0000i −0.332411 0.664822i
\(906\) 0 0
\(907\) 40.0000i 1.32818i −0.747653 0.664089i \(-0.768820\pi\)
0.747653 0.664089i \(-0.231180\pi\)
\(908\) 0 0
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 6.00000i 0.198571i
\(914\) 0 0
\(915\) −20.0000 + 10.0000i −0.661180 + 0.330590i
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 22.0000 0.724925
\(922\) 0 0
\(923\) 24.0000i 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 4.00000i 0.130954i
\(934\) 0 0
\(935\) −12.0000 + 6.00000i −0.392442 + 0.196221i
\(936\) 0 0
\(937\) 58.0000i 1.89478i −0.320085 0.947389i \(-0.603712\pi\)
0.320085 0.947389i \(-0.396288\pi\)
\(938\) 0 0
\(939\) −32.0000 −1.04428
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.00000 4.00000i −0.0650600 0.130120i
\(946\) 0 0
\(947\) 48.0000i 1.55979i −0.625910 0.779895i \(-0.715272\pi\)
0.625910 0.779895i \(-0.284728\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) −4.00000 −0.129709
\(952\) 0 0
\(953\) 34.0000i 1.10137i 0.834714 + 0.550684i \(0.185633\pi\)
−0.834714 + 0.550684i \(0.814367\pi\)
\(954\) 0 0
\(955\) 24.0000 + 48.0000i 0.776622 + 1.55324i
\(956\) 0 0
\(957\) 2.00000i 0.0646508i
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 10.0000i 0.322245i
\(964\) 0 0
\(965\) 44.0000 22.0000i 1.41641 0.708205i
\(966\) 0 0
\(967\) 34.0000i 1.09337i 0.837340 + 0.546683i \(0.184110\pi\)
−0.837340 + 0.546683i \(0.815890\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) 8.00000i 0.256468i
\(974\) 0 0
\(975\) −6.00000 + 8.00000i −0.192154 + 0.256205i
\(976\) 0 0
\(977\) 12.0000i 0.383914i −0.981403 0.191957i \(-0.938517\pi\)
0.981403 0.191957i \(-0.0614834\pi\)
\(978\) 0 0
\(979\) 14.0000 0.447442
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) 28.0000i 0.893061i −0.894768 0.446531i \(-0.852659\pi\)
0.894768 0.446531i \(-0.147341\pi\)
\(984\) 0 0
\(985\) −12.0000 + 6.00000i −0.382352 + 0.191176i
\(986\) 0 0
\(987\) 16.0000i 0.509286i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 0 0
\(993\) 28.0000i 0.888553i
\(994\) 0 0
\(995\) 4.00000 + 8.00000i 0.126809 + 0.253617i
\(996\) 0 0
\(997\) 2.00000i 0.0633406i 0.999498 + 0.0316703i \(0.0100827\pi\)
−0.999498 + 0.0316703i \(0.989917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 660.2.c.a.529.1 2
3.2 odd 2 1980.2.c.c.1189.2 2
4.3 odd 2 2640.2.d.a.529.2 2
5.2 odd 4 3300.2.a.g.1.1 1
5.3 odd 4 3300.2.a.l.1.1 1
5.4 even 2 inner 660.2.c.a.529.2 yes 2
15.2 even 4 9900.2.a.v.1.1 1
15.8 even 4 9900.2.a.f.1.1 1
15.14 odd 2 1980.2.c.c.1189.1 2
20.19 odd 2 2640.2.d.a.529.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
660.2.c.a.529.1 2 1.1 even 1 trivial
660.2.c.a.529.2 yes 2 5.4 even 2 inner
1980.2.c.c.1189.1 2 15.14 odd 2
1980.2.c.c.1189.2 2 3.2 odd 2
2640.2.d.a.529.1 2 20.19 odd 2
2640.2.d.a.529.2 2 4.3 odd 2
3300.2.a.g.1.1 1 5.2 odd 4
3300.2.a.l.1.1 1 5.3 odd 4
9900.2.a.f.1.1 1 15.8 even 4
9900.2.a.v.1.1 1 15.2 even 4