Properties

Label 660.2.c
Level $660$
Weight $2$
Character orbit 660.c
Rep. character $\chi_{660}(529,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(660, [\chi])\).

Total New Old
Modular forms 156 8 148
Cusp forms 132 8 124
Eisenstein series 24 0 24

Trace form

\( 8 q - 8 q^{9} + 8 q^{19} - 8 q^{21} + 8 q^{25} - 24 q^{29} - 16 q^{31} - 8 q^{35} + 8 q^{39} + 8 q^{41} + 24 q^{49} + 48 q^{59} - 8 q^{65} + 16 q^{69} + 16 q^{75} - 56 q^{79} + 8 q^{81} - 24 q^{85} - 16 q^{89}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(660, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
660.2.c.a 660.c 5.b $2$ $5.270$ \(\Q(\sqrt{-1}) \) None 660.2.c.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(2 i-1)q^{5}+2 i q^{7}-q^{9}+\cdots\)
660.2.c.b 660.c 5.b $2$ $5.270$ \(\Q(\sqrt{-1}) \) None 660.2.c.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-2 i+1)q^{5}-q^{9}+q^{11}+\cdots\)
660.2.c.c 660.c 5.b $4$ $5.270$ \(\Q(i, \sqrt{5})\) None 660.2.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{3}q^{5}+(\beta _{1}+\beta _{2})q^{7}-q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(660, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(660, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)