Properties

Label 6561.2.a.c.1.3
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66924 q^{2} +5.12486 q^{4} +1.81561 q^{5} -2.58238 q^{7} -8.34102 q^{8} -4.84630 q^{10} -3.66030 q^{11} +0.378476 q^{13} +6.89301 q^{14} +12.0145 q^{16} -2.27635 q^{17} +1.40631 q^{19} +9.30474 q^{20} +9.77023 q^{22} +3.54005 q^{23} -1.70357 q^{25} -1.01025 q^{26} -13.2344 q^{28} -6.60809 q^{29} +9.77392 q^{31} -15.3876 q^{32} +6.07613 q^{34} -4.68860 q^{35} -0.605354 q^{37} -3.75377 q^{38} -15.1440 q^{40} -3.34990 q^{41} +2.66812 q^{43} -18.7585 q^{44} -9.44925 q^{46} +0.150740 q^{47} -0.331292 q^{49} +4.54724 q^{50} +1.93964 q^{52} +13.4514 q^{53} -6.64567 q^{55} +21.5397 q^{56} +17.6386 q^{58} -4.24844 q^{59} +7.45019 q^{61} -26.0890 q^{62} +17.0442 q^{64} +0.687165 q^{65} +10.0915 q^{67} -11.6660 q^{68} +12.5150 q^{70} -1.75794 q^{71} +5.36123 q^{73} +1.61584 q^{74} +7.20712 q^{76} +9.45230 q^{77} +4.24959 q^{79} +21.8136 q^{80} +8.94171 q^{82} +2.60462 q^{83} -4.13296 q^{85} -7.12186 q^{86} +30.5306 q^{88} -3.19024 q^{89} -0.977371 q^{91} +18.1423 q^{92} -0.402362 q^{94} +2.55330 q^{95} +15.3717 q^{97} +0.884298 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66924 −1.88744 −0.943720 0.330745i \(-0.892700\pi\)
−0.943720 + 0.330745i \(0.892700\pi\)
\(3\) 0 0
\(4\) 5.12486 2.56243
\(5\) 1.81561 0.811965 0.405982 0.913881i \(-0.366929\pi\)
0.405982 + 0.913881i \(0.366929\pi\)
\(6\) 0 0
\(7\) −2.58238 −0.976050 −0.488025 0.872830i \(-0.662282\pi\)
−0.488025 + 0.872830i \(0.662282\pi\)
\(8\) −8.34102 −2.94900
\(9\) 0 0
\(10\) −4.84630 −1.53253
\(11\) −3.66030 −1.10362 −0.551811 0.833969i \(-0.686063\pi\)
−0.551811 + 0.833969i \(0.686063\pi\)
\(12\) 0 0
\(13\) 0.378476 0.104970 0.0524852 0.998622i \(-0.483286\pi\)
0.0524852 + 0.998622i \(0.483286\pi\)
\(14\) 6.89301 1.84224
\(15\) 0 0
\(16\) 12.0145 3.00362
\(17\) −2.27635 −0.552096 −0.276048 0.961144i \(-0.589025\pi\)
−0.276048 + 0.961144i \(0.589025\pi\)
\(18\) 0 0
\(19\) 1.40631 0.322629 0.161314 0.986903i \(-0.448427\pi\)
0.161314 + 0.986903i \(0.448427\pi\)
\(20\) 9.30474 2.08060
\(21\) 0 0
\(22\) 9.77023 2.08302
\(23\) 3.54005 0.738151 0.369075 0.929399i \(-0.379674\pi\)
0.369075 + 0.929399i \(0.379674\pi\)
\(24\) 0 0
\(25\) −1.70357 −0.340713
\(26\) −1.01025 −0.198125
\(27\) 0 0
\(28\) −13.2344 −2.50106
\(29\) −6.60809 −1.22709 −0.613546 0.789659i \(-0.710258\pi\)
−0.613546 + 0.789659i \(0.710258\pi\)
\(30\) 0 0
\(31\) 9.77392 1.75545 0.877724 0.479166i \(-0.159061\pi\)
0.877724 + 0.479166i \(0.159061\pi\)
\(32\) −15.3876 −2.72016
\(33\) 0 0
\(34\) 6.07613 1.04205
\(35\) −4.68860 −0.792518
\(36\) 0 0
\(37\) −0.605354 −0.0995196 −0.0497598 0.998761i \(-0.515846\pi\)
−0.0497598 + 0.998761i \(0.515846\pi\)
\(38\) −3.75377 −0.608942
\(39\) 0 0
\(40\) −15.1440 −2.39448
\(41\) −3.34990 −0.523167 −0.261583 0.965181i \(-0.584245\pi\)
−0.261583 + 0.965181i \(0.584245\pi\)
\(42\) 0 0
\(43\) 2.66812 0.406884 0.203442 0.979087i \(-0.434787\pi\)
0.203442 + 0.979087i \(0.434787\pi\)
\(44\) −18.7585 −2.82796
\(45\) 0 0
\(46\) −9.44925 −1.39322
\(47\) 0.150740 0.0219877 0.0109938 0.999940i \(-0.496500\pi\)
0.0109938 + 0.999940i \(0.496500\pi\)
\(48\) 0 0
\(49\) −0.331292 −0.0473274
\(50\) 4.54724 0.643076
\(51\) 0 0
\(52\) 1.93964 0.268980
\(53\) 13.4514 1.84770 0.923849 0.382756i \(-0.125025\pi\)
0.923849 + 0.382756i \(0.125025\pi\)
\(54\) 0 0
\(55\) −6.64567 −0.896102
\(56\) 21.5397 2.87837
\(57\) 0 0
\(58\) 17.6386 2.31606
\(59\) −4.24844 −0.553100 −0.276550 0.961000i \(-0.589191\pi\)
−0.276550 + 0.961000i \(0.589191\pi\)
\(60\) 0 0
\(61\) 7.45019 0.953899 0.476949 0.878931i \(-0.341742\pi\)
0.476949 + 0.878931i \(0.341742\pi\)
\(62\) −26.0890 −3.31330
\(63\) 0 0
\(64\) 17.0442 2.13052
\(65\) 0.687165 0.0852323
\(66\) 0 0
\(67\) 10.0915 1.23287 0.616435 0.787406i \(-0.288576\pi\)
0.616435 + 0.787406i \(0.288576\pi\)
\(68\) −11.6660 −1.41471
\(69\) 0 0
\(70\) 12.5150 1.49583
\(71\) −1.75794 −0.208629 −0.104315 0.994544i \(-0.533265\pi\)
−0.104315 + 0.994544i \(0.533265\pi\)
\(72\) 0 0
\(73\) 5.36123 0.627484 0.313742 0.949508i \(-0.398417\pi\)
0.313742 + 0.949508i \(0.398417\pi\)
\(74\) 1.61584 0.187837
\(75\) 0 0
\(76\) 7.20712 0.826714
\(77\) 9.45230 1.07719
\(78\) 0 0
\(79\) 4.24959 0.478116 0.239058 0.971005i \(-0.423161\pi\)
0.239058 + 0.971005i \(0.423161\pi\)
\(80\) 21.8136 2.43884
\(81\) 0 0
\(82\) 8.94171 0.987446
\(83\) 2.60462 0.285894 0.142947 0.989730i \(-0.454342\pi\)
0.142947 + 0.989730i \(0.454342\pi\)
\(84\) 0 0
\(85\) −4.13296 −0.448282
\(86\) −7.12186 −0.767970
\(87\) 0 0
\(88\) 30.5306 3.25458
\(89\) −3.19024 −0.338164 −0.169082 0.985602i \(-0.554080\pi\)
−0.169082 + 0.985602i \(0.554080\pi\)
\(90\) 0 0
\(91\) −0.977371 −0.102456
\(92\) 18.1423 1.89146
\(93\) 0 0
\(94\) −0.402362 −0.0415005
\(95\) 2.55330 0.261963
\(96\) 0 0
\(97\) 15.3717 1.56076 0.780382 0.625303i \(-0.215025\pi\)
0.780382 + 0.625303i \(0.215025\pi\)
\(98\) 0.884298 0.0893276
\(99\) 0 0
\(100\) −8.73055 −0.873055
\(101\) −13.0448 −1.29801 −0.649004 0.760785i \(-0.724814\pi\)
−0.649004 + 0.760785i \(0.724814\pi\)
\(102\) 0 0
\(103\) −13.7208 −1.35195 −0.675973 0.736927i \(-0.736276\pi\)
−0.675973 + 0.736927i \(0.736276\pi\)
\(104\) −3.15688 −0.309558
\(105\) 0 0
\(106\) −35.9052 −3.48742
\(107\) 2.30536 0.222868 0.111434 0.993772i \(-0.464456\pi\)
0.111434 + 0.993772i \(0.464456\pi\)
\(108\) 0 0
\(109\) 9.24936 0.885928 0.442964 0.896539i \(-0.353927\pi\)
0.442964 + 0.896539i \(0.353927\pi\)
\(110\) 17.7389 1.69134
\(111\) 0 0
\(112\) −31.0260 −2.93169
\(113\) 9.49882 0.893574 0.446787 0.894640i \(-0.352568\pi\)
0.446787 + 0.894640i \(0.352568\pi\)
\(114\) 0 0
\(115\) 6.42734 0.599352
\(116\) −33.8656 −3.14434
\(117\) 0 0
\(118\) 11.3401 1.04394
\(119\) 5.87841 0.538873
\(120\) 0 0
\(121\) 2.39780 0.217982
\(122\) −19.8864 −1.80043
\(123\) 0 0
\(124\) 50.0900 4.49822
\(125\) −12.1711 −1.08861
\(126\) 0 0
\(127\) 12.6498 1.12249 0.561243 0.827651i \(-0.310323\pi\)
0.561243 + 0.827651i \(0.310323\pi\)
\(128\) −14.7200 −1.30107
\(129\) 0 0
\(130\) −1.83421 −0.160871
\(131\) −14.8788 −1.29997 −0.649985 0.759947i \(-0.725225\pi\)
−0.649985 + 0.759947i \(0.725225\pi\)
\(132\) 0 0
\(133\) −3.63162 −0.314901
\(134\) −26.9366 −2.32697
\(135\) 0 0
\(136\) 18.9871 1.62813
\(137\) −16.2475 −1.38812 −0.694061 0.719916i \(-0.744180\pi\)
−0.694061 + 0.719916i \(0.744180\pi\)
\(138\) 0 0
\(139\) −16.5075 −1.40015 −0.700073 0.714071i \(-0.746849\pi\)
−0.700073 + 0.714071i \(0.746849\pi\)
\(140\) −24.0284 −2.03077
\(141\) 0 0
\(142\) 4.69237 0.393775
\(143\) −1.38534 −0.115848
\(144\) 0 0
\(145\) −11.9977 −0.996356
\(146\) −14.3104 −1.18434
\(147\) 0 0
\(148\) −3.10236 −0.255012
\(149\) −3.40747 −0.279151 −0.139576 0.990211i \(-0.544574\pi\)
−0.139576 + 0.990211i \(0.544574\pi\)
\(150\) 0 0
\(151\) −8.64100 −0.703195 −0.351597 0.936151i \(-0.614361\pi\)
−0.351597 + 0.936151i \(0.614361\pi\)
\(152\) −11.7300 −0.951431
\(153\) 0 0
\(154\) −25.2305 −2.03313
\(155\) 17.7456 1.42536
\(156\) 0 0
\(157\) 3.88458 0.310023 0.155012 0.987913i \(-0.450458\pi\)
0.155012 + 0.987913i \(0.450458\pi\)
\(158\) −11.3432 −0.902416
\(159\) 0 0
\(160\) −27.9378 −2.20868
\(161\) −9.14176 −0.720472
\(162\) 0 0
\(163\) −23.8379 −1.86713 −0.933564 0.358412i \(-0.883318\pi\)
−0.933564 + 0.358412i \(0.883318\pi\)
\(164\) −17.1678 −1.34058
\(165\) 0 0
\(166\) −6.95237 −0.539609
\(167\) 12.7883 0.989587 0.494793 0.869011i \(-0.335244\pi\)
0.494793 + 0.869011i \(0.335244\pi\)
\(168\) 0 0
\(169\) −12.8568 −0.988981
\(170\) 11.0319 0.846106
\(171\) 0 0
\(172\) 13.6737 1.04261
\(173\) −5.09857 −0.387637 −0.193818 0.981037i \(-0.562087\pi\)
−0.193818 + 0.981037i \(0.562087\pi\)
\(174\) 0 0
\(175\) 4.39927 0.332553
\(176\) −43.9767 −3.31487
\(177\) 0 0
\(178\) 8.51552 0.638265
\(179\) −1.17952 −0.0881611 −0.0440806 0.999028i \(-0.514036\pi\)
−0.0440806 + 0.999028i \(0.514036\pi\)
\(180\) 0 0
\(181\) 11.4538 0.851356 0.425678 0.904875i \(-0.360036\pi\)
0.425678 + 0.904875i \(0.360036\pi\)
\(182\) 2.60884 0.193380
\(183\) 0 0
\(184\) −29.5276 −2.17680
\(185\) −1.09909 −0.0808064
\(186\) 0 0
\(187\) 8.33212 0.609305
\(188\) 0.772522 0.0563419
\(189\) 0 0
\(190\) −6.81538 −0.494440
\(191\) −15.3834 −1.11310 −0.556552 0.830813i \(-0.687876\pi\)
−0.556552 + 0.830813i \(0.687876\pi\)
\(192\) 0 0
\(193\) −17.4472 −1.25588 −0.627939 0.778263i \(-0.716101\pi\)
−0.627939 + 0.778263i \(0.716101\pi\)
\(194\) −41.0309 −2.94585
\(195\) 0 0
\(196\) −1.69782 −0.121273
\(197\) 9.15442 0.652226 0.326113 0.945331i \(-0.394261\pi\)
0.326113 + 0.945331i \(0.394261\pi\)
\(198\) 0 0
\(199\) −23.1814 −1.64329 −0.821644 0.570001i \(-0.806943\pi\)
−0.821644 + 0.570001i \(0.806943\pi\)
\(200\) 14.2095 1.00476
\(201\) 0 0
\(202\) 34.8198 2.44991
\(203\) 17.0646 1.19770
\(204\) 0 0
\(205\) −6.08211 −0.424793
\(206\) 36.6240 2.55172
\(207\) 0 0
\(208\) 4.54720 0.315292
\(209\) −5.14750 −0.356060
\(210\) 0 0
\(211\) −25.8278 −1.77806 −0.889029 0.457851i \(-0.848619\pi\)
−0.889029 + 0.457851i \(0.848619\pi\)
\(212\) 68.9368 4.73460
\(213\) 0 0
\(214\) −6.15357 −0.420649
\(215\) 4.84426 0.330376
\(216\) 0 0
\(217\) −25.2400 −1.71340
\(218\) −24.6888 −1.67214
\(219\) 0 0
\(220\) −34.0582 −2.29620
\(221\) −0.861544 −0.0579537
\(222\) 0 0
\(223\) 4.07909 0.273156 0.136578 0.990629i \(-0.456390\pi\)
0.136578 + 0.990629i \(0.456390\pi\)
\(224\) 39.7366 2.65502
\(225\) 0 0
\(226\) −25.3547 −1.68657
\(227\) −21.2872 −1.41288 −0.706439 0.707774i \(-0.749700\pi\)
−0.706439 + 0.707774i \(0.749700\pi\)
\(228\) 0 0
\(229\) 12.1209 0.800974 0.400487 0.916302i \(-0.368841\pi\)
0.400487 + 0.916302i \(0.368841\pi\)
\(230\) −17.1561 −1.13124
\(231\) 0 0
\(232\) 55.1183 3.61869
\(233\) 24.1097 1.57948 0.789741 0.613441i \(-0.210215\pi\)
0.789741 + 0.613441i \(0.210215\pi\)
\(234\) 0 0
\(235\) 0.273685 0.0178532
\(236\) −21.7727 −1.41728
\(237\) 0 0
\(238\) −15.6909 −1.01709
\(239\) −23.7385 −1.53552 −0.767759 0.640738i \(-0.778628\pi\)
−0.767759 + 0.640738i \(0.778628\pi\)
\(240\) 0 0
\(241\) −12.6749 −0.816465 −0.408232 0.912878i \(-0.633855\pi\)
−0.408232 + 0.912878i \(0.633855\pi\)
\(242\) −6.40031 −0.411428
\(243\) 0 0
\(244\) 38.1812 2.44430
\(245\) −0.601496 −0.0384281
\(246\) 0 0
\(247\) 0.532253 0.0338665
\(248\) −81.5245 −5.17681
\(249\) 0 0
\(250\) 32.4875 2.05469
\(251\) 13.5656 0.856250 0.428125 0.903719i \(-0.359174\pi\)
0.428125 + 0.903719i \(0.359174\pi\)
\(252\) 0 0
\(253\) −12.9576 −0.814639
\(254\) −33.7654 −2.11863
\(255\) 0 0
\(256\) 5.20281 0.325175
\(257\) 2.79905 0.174600 0.0872999 0.996182i \(-0.472176\pi\)
0.0872999 + 0.996182i \(0.472176\pi\)
\(258\) 0 0
\(259\) 1.56326 0.0971360
\(260\) 3.52163 0.218402
\(261\) 0 0
\(262\) 39.7152 2.45362
\(263\) −1.48546 −0.0915975 −0.0457987 0.998951i \(-0.514583\pi\)
−0.0457987 + 0.998951i \(0.514583\pi\)
\(264\) 0 0
\(265\) 24.4226 1.50027
\(266\) 9.69368 0.594358
\(267\) 0 0
\(268\) 51.7175 3.15915
\(269\) 9.12375 0.556285 0.278142 0.960540i \(-0.410281\pi\)
0.278142 + 0.960540i \(0.410281\pi\)
\(270\) 0 0
\(271\) 5.89686 0.358209 0.179105 0.983830i \(-0.442680\pi\)
0.179105 + 0.983830i \(0.442680\pi\)
\(272\) −27.3492 −1.65829
\(273\) 0 0
\(274\) 43.3687 2.62000
\(275\) 6.23557 0.376019
\(276\) 0 0
\(277\) −4.94979 −0.297404 −0.148702 0.988882i \(-0.547510\pi\)
−0.148702 + 0.988882i \(0.547510\pi\)
\(278\) 44.0625 2.64269
\(279\) 0 0
\(280\) 39.1077 2.33713
\(281\) 13.6087 0.811824 0.405912 0.913912i \(-0.366954\pi\)
0.405912 + 0.913912i \(0.366954\pi\)
\(282\) 0 0
\(283\) −11.8258 −0.702970 −0.351485 0.936193i \(-0.614323\pi\)
−0.351485 + 0.936193i \(0.614323\pi\)
\(284\) −9.00920 −0.534598
\(285\) 0 0
\(286\) 3.69780 0.218656
\(287\) 8.65073 0.510637
\(288\) 0 0
\(289\) −11.8182 −0.695190
\(290\) 32.0248 1.88056
\(291\) 0 0
\(292\) 27.4756 1.60789
\(293\) −16.2791 −0.951033 −0.475517 0.879707i \(-0.657739\pi\)
−0.475517 + 0.879707i \(0.657739\pi\)
\(294\) 0 0
\(295\) −7.71350 −0.449097
\(296\) 5.04927 0.293483
\(297\) 0 0
\(298\) 9.09538 0.526881
\(299\) 1.33982 0.0774840
\(300\) 0 0
\(301\) −6.89011 −0.397139
\(302\) 23.0649 1.32724
\(303\) 0 0
\(304\) 16.8960 0.969055
\(305\) 13.5266 0.774532
\(306\) 0 0
\(307\) −24.9492 −1.42392 −0.711962 0.702218i \(-0.752193\pi\)
−0.711962 + 0.702218i \(0.752193\pi\)
\(308\) 48.4418 2.76023
\(309\) 0 0
\(310\) −47.3674 −2.69029
\(311\) 8.29393 0.470306 0.235153 0.971958i \(-0.424441\pi\)
0.235153 + 0.971958i \(0.424441\pi\)
\(312\) 0 0
\(313\) 5.53438 0.312822 0.156411 0.987692i \(-0.450008\pi\)
0.156411 + 0.987692i \(0.450008\pi\)
\(314\) −10.3689 −0.585151
\(315\) 0 0
\(316\) 21.7786 1.22514
\(317\) −22.0932 −1.24088 −0.620438 0.784256i \(-0.713045\pi\)
−0.620438 + 0.784256i \(0.713045\pi\)
\(318\) 0 0
\(319\) 24.1876 1.35425
\(320\) 30.9456 1.72991
\(321\) 0 0
\(322\) 24.4016 1.35985
\(323\) −3.20124 −0.178122
\(324\) 0 0
\(325\) −0.644760 −0.0357648
\(326\) 63.6291 3.52409
\(327\) 0 0
\(328\) 27.9416 1.54282
\(329\) −0.389269 −0.0214611
\(330\) 0 0
\(331\) 2.86313 0.157372 0.0786859 0.996899i \(-0.474928\pi\)
0.0786859 + 0.996899i \(0.474928\pi\)
\(332\) 13.3483 0.732585
\(333\) 0 0
\(334\) −34.1350 −1.86779
\(335\) 18.3222 1.00105
\(336\) 0 0
\(337\) −16.1655 −0.880591 −0.440295 0.897853i \(-0.645126\pi\)
−0.440295 + 0.897853i \(0.645126\pi\)
\(338\) 34.3178 1.86664
\(339\) 0 0
\(340\) −21.1808 −1.14869
\(341\) −35.7755 −1.93735
\(342\) 0 0
\(343\) 18.9322 1.02224
\(344\) −22.2548 −1.19990
\(345\) 0 0
\(346\) 13.6093 0.731642
\(347\) 14.7401 0.791289 0.395645 0.918404i \(-0.370521\pi\)
0.395645 + 0.918404i \(0.370521\pi\)
\(348\) 0 0
\(349\) −2.47371 −0.132415 −0.0662074 0.997806i \(-0.521090\pi\)
−0.0662074 + 0.997806i \(0.521090\pi\)
\(350\) −11.7427 −0.627674
\(351\) 0 0
\(352\) 56.3231 3.00203
\(353\) 15.6647 0.833750 0.416875 0.908964i \(-0.363125\pi\)
0.416875 + 0.908964i \(0.363125\pi\)
\(354\) 0 0
\(355\) −3.19173 −0.169399
\(356\) −16.3495 −0.866523
\(357\) 0 0
\(358\) 3.14841 0.166399
\(359\) −0.235713 −0.0124405 −0.00622023 0.999981i \(-0.501980\pi\)
−0.00622023 + 0.999981i \(0.501980\pi\)
\(360\) 0 0
\(361\) −17.0223 −0.895911
\(362\) −30.5731 −1.60688
\(363\) 0 0
\(364\) −5.00889 −0.262537
\(365\) 9.73389 0.509495
\(366\) 0 0
\(367\) −9.63450 −0.502917 −0.251458 0.967868i \(-0.580910\pi\)
−0.251458 + 0.967868i \(0.580910\pi\)
\(368\) 42.5319 2.21713
\(369\) 0 0
\(370\) 2.93373 0.152517
\(371\) −34.7368 −1.80345
\(372\) 0 0
\(373\) −0.0602067 −0.00311738 −0.00155869 0.999999i \(-0.500496\pi\)
−0.00155869 + 0.999999i \(0.500496\pi\)
\(374\) −22.2405 −1.15003
\(375\) 0 0
\(376\) −1.25733 −0.0648416
\(377\) −2.50101 −0.128808
\(378\) 0 0
\(379\) 2.47228 0.126992 0.0634961 0.997982i \(-0.479775\pi\)
0.0634961 + 0.997982i \(0.479775\pi\)
\(380\) 13.0853 0.671262
\(381\) 0 0
\(382\) 41.0620 2.10092
\(383\) −27.5899 −1.40978 −0.704889 0.709318i \(-0.749003\pi\)
−0.704889 + 0.709318i \(0.749003\pi\)
\(384\) 0 0
\(385\) 17.1617 0.874640
\(386\) 46.5709 2.37039
\(387\) 0 0
\(388\) 78.7781 3.99935
\(389\) 10.8071 0.547944 0.273972 0.961738i \(-0.411662\pi\)
0.273972 + 0.961738i \(0.411662\pi\)
\(390\) 0 0
\(391\) −8.05838 −0.407530
\(392\) 2.76331 0.139568
\(393\) 0 0
\(394\) −24.4354 −1.23104
\(395\) 7.71559 0.388214
\(396\) 0 0
\(397\) −19.1601 −0.961619 −0.480810 0.876825i \(-0.659657\pi\)
−0.480810 + 0.876825i \(0.659657\pi\)
\(398\) 61.8769 3.10161
\(399\) 0 0
\(400\) −20.4675 −1.02337
\(401\) 31.5068 1.57338 0.786688 0.617351i \(-0.211794\pi\)
0.786688 + 0.617351i \(0.211794\pi\)
\(402\) 0 0
\(403\) 3.69920 0.184270
\(404\) −66.8529 −3.32606
\(405\) 0 0
\(406\) −45.5497 −2.26059
\(407\) 2.21578 0.109832
\(408\) 0 0
\(409\) −0.915697 −0.0452783 −0.0226392 0.999744i \(-0.507207\pi\)
−0.0226392 + 0.999744i \(0.507207\pi\)
\(410\) 16.2346 0.801771
\(411\) 0 0
\(412\) −70.3170 −3.46427
\(413\) 10.9711 0.539853
\(414\) 0 0
\(415\) 4.72897 0.232136
\(416\) −5.82383 −0.285537
\(417\) 0 0
\(418\) 13.7399 0.672042
\(419\) −12.1995 −0.595985 −0.297992 0.954568i \(-0.596317\pi\)
−0.297992 + 0.954568i \(0.596317\pi\)
\(420\) 0 0
\(421\) 31.3354 1.52719 0.763597 0.645694i \(-0.223432\pi\)
0.763597 + 0.645694i \(0.223432\pi\)
\(422\) 68.9407 3.35598
\(423\) 0 0
\(424\) −112.199 −5.44886
\(425\) 3.87791 0.188106
\(426\) 0 0
\(427\) −19.2392 −0.931052
\(428\) 11.8147 0.571083
\(429\) 0 0
\(430\) −12.9305 −0.623564
\(431\) −13.8065 −0.665035 −0.332518 0.943097i \(-0.607898\pi\)
−0.332518 + 0.943097i \(0.607898\pi\)
\(432\) 0 0
\(433\) −24.2825 −1.16694 −0.583472 0.812133i \(-0.698306\pi\)
−0.583472 + 0.812133i \(0.698306\pi\)
\(434\) 67.3718 3.23395
\(435\) 0 0
\(436\) 47.4017 2.27013
\(437\) 4.97839 0.238148
\(438\) 0 0
\(439\) 12.7095 0.606591 0.303295 0.952897i \(-0.401913\pi\)
0.303295 + 0.952897i \(0.401913\pi\)
\(440\) 55.4317 2.64260
\(441\) 0 0
\(442\) 2.29967 0.109384
\(443\) 25.5174 1.21237 0.606185 0.795324i \(-0.292699\pi\)
0.606185 + 0.795324i \(0.292699\pi\)
\(444\) 0 0
\(445\) −5.79222 −0.274578
\(446\) −10.8881 −0.515566
\(447\) 0 0
\(448\) −44.0147 −2.07950
\(449\) 3.20974 0.151477 0.0757386 0.997128i \(-0.475869\pi\)
0.0757386 + 0.997128i \(0.475869\pi\)
\(450\) 0 0
\(451\) 12.2616 0.577378
\(452\) 48.6801 2.28972
\(453\) 0 0
\(454\) 56.8206 2.66672
\(455\) −1.77452 −0.0831909
\(456\) 0 0
\(457\) −2.13314 −0.0997838 −0.0498919 0.998755i \(-0.515888\pi\)
−0.0498919 + 0.998755i \(0.515888\pi\)
\(458\) −32.3538 −1.51179
\(459\) 0 0
\(460\) 32.9392 1.53580
\(461\) 22.9372 1.06829 0.534146 0.845392i \(-0.320633\pi\)
0.534146 + 0.845392i \(0.320633\pi\)
\(462\) 0 0
\(463\) 28.9514 1.34548 0.672742 0.739877i \(-0.265116\pi\)
0.672742 + 0.739877i \(0.265116\pi\)
\(464\) −79.3929 −3.68572
\(465\) 0 0
\(466\) −64.3548 −2.98118
\(467\) 2.08928 0.0966806 0.0483403 0.998831i \(-0.484607\pi\)
0.0483403 + 0.998831i \(0.484607\pi\)
\(468\) 0 0
\(469\) −26.0601 −1.20334
\(470\) −0.730531 −0.0336969
\(471\) 0 0
\(472\) 35.4363 1.63109
\(473\) −9.76612 −0.449047
\(474\) 0 0
\(475\) −2.39574 −0.109924
\(476\) 30.1260 1.38082
\(477\) 0 0
\(478\) 63.3640 2.89820
\(479\) −21.7385 −0.993256 −0.496628 0.867964i \(-0.665429\pi\)
−0.496628 + 0.867964i \(0.665429\pi\)
\(480\) 0 0
\(481\) −0.229112 −0.0104466
\(482\) 33.8325 1.54103
\(483\) 0 0
\(484\) 12.2884 0.558563
\(485\) 27.9091 1.26729
\(486\) 0 0
\(487\) −3.65843 −0.165779 −0.0828896 0.996559i \(-0.526415\pi\)
−0.0828896 + 0.996559i \(0.526415\pi\)
\(488\) −62.1422 −2.81304
\(489\) 0 0
\(490\) 1.60554 0.0725308
\(491\) −17.3672 −0.783769 −0.391884 0.920014i \(-0.628177\pi\)
−0.391884 + 0.920014i \(0.628177\pi\)
\(492\) 0 0
\(493\) 15.0423 0.677472
\(494\) −1.42071 −0.0639209
\(495\) 0 0
\(496\) 117.429 5.27271
\(497\) 4.53968 0.203632
\(498\) 0 0
\(499\) −16.9180 −0.757355 −0.378678 0.925529i \(-0.623621\pi\)
−0.378678 + 0.925529i \(0.623621\pi\)
\(500\) −62.3750 −2.78949
\(501\) 0 0
\(502\) −36.2098 −1.61612
\(503\) 28.8154 1.28482 0.642408 0.766363i \(-0.277935\pi\)
0.642408 + 0.766363i \(0.277935\pi\)
\(504\) 0 0
\(505\) −23.6843 −1.05394
\(506\) 34.5871 1.53758
\(507\) 0 0
\(508\) 64.8284 2.87630
\(509\) −11.9779 −0.530912 −0.265456 0.964123i \(-0.585522\pi\)
−0.265456 + 0.964123i \(0.585522\pi\)
\(510\) 0 0
\(511\) −13.8448 −0.612456
\(512\) 15.5524 0.687325
\(513\) 0 0
\(514\) −7.47134 −0.329547
\(515\) −24.9115 −1.09773
\(516\) 0 0
\(517\) −0.551754 −0.0242661
\(518\) −4.17271 −0.183338
\(519\) 0 0
\(520\) −5.73166 −0.251350
\(521\) 3.58360 0.157000 0.0785001 0.996914i \(-0.474987\pi\)
0.0785001 + 0.996914i \(0.474987\pi\)
\(522\) 0 0
\(523\) −26.9569 −1.17874 −0.589372 0.807861i \(-0.700625\pi\)
−0.589372 + 0.807861i \(0.700625\pi\)
\(524\) −76.2520 −3.33108
\(525\) 0 0
\(526\) 3.96506 0.172885
\(527\) −22.2489 −0.969176
\(528\) 0 0
\(529\) −10.4681 −0.455134
\(530\) −65.1898 −2.83166
\(531\) 0 0
\(532\) −18.6116 −0.806913
\(533\) −1.26786 −0.0549171
\(534\) 0 0
\(535\) 4.18563 0.180961
\(536\) −84.1733 −3.63573
\(537\) 0 0
\(538\) −24.3535 −1.04995
\(539\) 1.21263 0.0522315
\(540\) 0 0
\(541\) −16.6701 −0.716702 −0.358351 0.933587i \(-0.616661\pi\)
−0.358351 + 0.933587i \(0.616661\pi\)
\(542\) −15.7402 −0.676098
\(543\) 0 0
\(544\) 35.0275 1.50179
\(545\) 16.7932 0.719342
\(546\) 0 0
\(547\) −38.7221 −1.65564 −0.827819 0.560995i \(-0.810419\pi\)
−0.827819 + 0.560995i \(0.810419\pi\)
\(548\) −83.2665 −3.55697
\(549\) 0 0
\(550\) −16.6443 −0.709713
\(551\) −9.29300 −0.395895
\(552\) 0 0
\(553\) −10.9741 −0.466665
\(554\) 13.2122 0.561333
\(555\) 0 0
\(556\) −84.5986 −3.58778
\(557\) 19.7122 0.835231 0.417616 0.908624i \(-0.362866\pi\)
0.417616 + 0.908624i \(0.362866\pi\)
\(558\) 0 0
\(559\) 1.00982 0.0427108
\(560\) −56.3311 −2.38042
\(561\) 0 0
\(562\) −36.3248 −1.53227
\(563\) 0.734504 0.0309557 0.0154778 0.999880i \(-0.495073\pi\)
0.0154778 + 0.999880i \(0.495073\pi\)
\(564\) 0 0
\(565\) 17.2461 0.725550
\(566\) 31.5659 1.32681
\(567\) 0 0
\(568\) 14.6630 0.615246
\(569\) −20.5750 −0.862547 −0.431273 0.902221i \(-0.641936\pi\)
−0.431273 + 0.902221i \(0.641936\pi\)
\(570\) 0 0
\(571\) 2.34611 0.0981818 0.0490909 0.998794i \(-0.484368\pi\)
0.0490909 + 0.998794i \(0.484368\pi\)
\(572\) −7.09966 −0.296852
\(573\) 0 0
\(574\) −23.0909 −0.963796
\(575\) −6.03071 −0.251498
\(576\) 0 0
\(577\) −32.4208 −1.34969 −0.674847 0.737958i \(-0.735790\pi\)
−0.674847 + 0.737958i \(0.735790\pi\)
\(578\) 31.5457 1.31213
\(579\) 0 0
\(580\) −61.4866 −2.55309
\(581\) −6.72614 −0.279047
\(582\) 0 0
\(583\) −49.2363 −2.03916
\(584\) −44.7181 −1.85045
\(585\) 0 0
\(586\) 43.4528 1.79502
\(587\) −18.5558 −0.765880 −0.382940 0.923773i \(-0.625088\pi\)
−0.382940 + 0.923773i \(0.625088\pi\)
\(588\) 0 0
\(589\) 13.7451 0.566358
\(590\) 20.5892 0.847645
\(591\) 0 0
\(592\) −7.27302 −0.298919
\(593\) −40.8678 −1.67824 −0.839120 0.543946i \(-0.816930\pi\)
−0.839120 + 0.543946i \(0.816930\pi\)
\(594\) 0 0
\(595\) 10.6729 0.437546
\(596\) −17.4628 −0.715305
\(597\) 0 0
\(598\) −3.57632 −0.146246
\(599\) 9.13507 0.373249 0.186624 0.982431i \(-0.440245\pi\)
0.186624 + 0.982431i \(0.440245\pi\)
\(600\) 0 0
\(601\) −37.0943 −1.51311 −0.756554 0.653932i \(-0.773118\pi\)
−0.756554 + 0.653932i \(0.773118\pi\)
\(602\) 18.3914 0.749577
\(603\) 0 0
\(604\) −44.2839 −1.80189
\(605\) 4.35346 0.176994
\(606\) 0 0
\(607\) −33.4475 −1.35759 −0.678796 0.734326i \(-0.737498\pi\)
−0.678796 + 0.734326i \(0.737498\pi\)
\(608\) −21.6396 −0.877603
\(609\) 0 0
\(610\) −36.1059 −1.46188
\(611\) 0.0570515 0.00230806
\(612\) 0 0
\(613\) 46.0232 1.85886 0.929429 0.369001i \(-0.120300\pi\)
0.929429 + 0.369001i \(0.120300\pi\)
\(614\) 66.5954 2.68757
\(615\) 0 0
\(616\) −78.8419 −3.17663
\(617\) 42.5107 1.71142 0.855709 0.517457i \(-0.173121\pi\)
0.855709 + 0.517457i \(0.173121\pi\)
\(618\) 0 0
\(619\) 42.0677 1.69084 0.845422 0.534099i \(-0.179349\pi\)
0.845422 + 0.534099i \(0.179349\pi\)
\(620\) 90.9439 3.65239
\(621\) 0 0
\(622\) −22.1385 −0.887674
\(623\) 8.23842 0.330065
\(624\) 0 0
\(625\) −13.5800 −0.543201
\(626\) −14.7726 −0.590432
\(627\) 0 0
\(628\) 19.9079 0.794414
\(629\) 1.37800 0.0549443
\(630\) 0 0
\(631\) 1.33597 0.0531840 0.0265920 0.999646i \(-0.491535\pi\)
0.0265920 + 0.999646i \(0.491535\pi\)
\(632\) −35.4459 −1.40996
\(633\) 0 0
\(634\) 58.9720 2.34208
\(635\) 22.9671 0.911420
\(636\) 0 0
\(637\) −0.125386 −0.00496797
\(638\) −64.5626 −2.55606
\(639\) 0 0
\(640\) −26.7257 −1.05643
\(641\) −9.62855 −0.380305 −0.190152 0.981755i \(-0.560898\pi\)
−0.190152 + 0.981755i \(0.560898\pi\)
\(642\) 0 0
\(643\) −18.3614 −0.724101 −0.362051 0.932158i \(-0.617923\pi\)
−0.362051 + 0.932158i \(0.617923\pi\)
\(644\) −46.8503 −1.84616
\(645\) 0 0
\(646\) 8.54490 0.336194
\(647\) −24.2705 −0.954170 −0.477085 0.878857i \(-0.658307\pi\)
−0.477085 + 0.878857i \(0.658307\pi\)
\(648\) 0 0
\(649\) 15.5506 0.610413
\(650\) 1.72102 0.0675040
\(651\) 0 0
\(652\) −122.166 −4.78439
\(653\) 42.5587 1.66545 0.832724 0.553688i \(-0.186780\pi\)
0.832724 + 0.553688i \(0.186780\pi\)
\(654\) 0 0
\(655\) −27.0141 −1.05553
\(656\) −40.2474 −1.57140
\(657\) 0 0
\(658\) 1.03905 0.0405065
\(659\) 1.88588 0.0734636 0.0367318 0.999325i \(-0.488305\pi\)
0.0367318 + 0.999325i \(0.488305\pi\)
\(660\) 0 0
\(661\) 42.0954 1.63732 0.818661 0.574277i \(-0.194717\pi\)
0.818661 + 0.574277i \(0.194717\pi\)
\(662\) −7.64239 −0.297030
\(663\) 0 0
\(664\) −21.7252 −0.843102
\(665\) −6.59360 −0.255689
\(666\) 0 0
\(667\) −23.3930 −0.905779
\(668\) 65.5382 2.53575
\(669\) 0 0
\(670\) −48.9064 −1.88942
\(671\) −27.2699 −1.05274
\(672\) 0 0
\(673\) 10.7690 0.415114 0.207557 0.978223i \(-0.433449\pi\)
0.207557 + 0.978223i \(0.433449\pi\)
\(674\) 43.1497 1.66206
\(675\) 0 0
\(676\) −65.8891 −2.53420
\(677\) −10.4892 −0.403131 −0.201565 0.979475i \(-0.564603\pi\)
−0.201565 + 0.979475i \(0.564603\pi\)
\(678\) 0 0
\(679\) −39.6957 −1.52338
\(680\) 34.4731 1.32198
\(681\) 0 0
\(682\) 95.4935 3.65664
\(683\) −24.1810 −0.925259 −0.462629 0.886552i \(-0.653094\pi\)
−0.462629 + 0.886552i \(0.653094\pi\)
\(684\) 0 0
\(685\) −29.4992 −1.12711
\(686\) −50.5347 −1.92942
\(687\) 0 0
\(688\) 32.0561 1.22213
\(689\) 5.09106 0.193954
\(690\) 0 0
\(691\) −8.56348 −0.325770 −0.162885 0.986645i \(-0.552080\pi\)
−0.162885 + 0.986645i \(0.552080\pi\)
\(692\) −26.1295 −0.993293
\(693\) 0 0
\(694\) −39.3449 −1.49351
\(695\) −29.9711 −1.13687
\(696\) 0 0
\(697\) 7.62555 0.288838
\(698\) 6.60295 0.249925
\(699\) 0 0
\(700\) 22.5456 0.852145
\(701\) 2.42039 0.0914168 0.0457084 0.998955i \(-0.485445\pi\)
0.0457084 + 0.998955i \(0.485445\pi\)
\(702\) 0 0
\(703\) −0.851312 −0.0321079
\(704\) −62.3869 −2.35129
\(705\) 0 0
\(706\) −41.8130 −1.57365
\(707\) 33.6867 1.26692
\(708\) 0 0
\(709\) 49.7759 1.86937 0.934686 0.355475i \(-0.115681\pi\)
0.934686 + 0.355475i \(0.115681\pi\)
\(710\) 8.51950 0.319731
\(711\) 0 0
\(712\) 26.6098 0.997246
\(713\) 34.6001 1.29579
\(714\) 0 0
\(715\) −2.51523 −0.0940643
\(716\) −6.04486 −0.225907
\(717\) 0 0
\(718\) 0.629175 0.0234806
\(719\) −52.3613 −1.95275 −0.976373 0.216093i \(-0.930669\pi\)
−0.976373 + 0.216093i \(0.930669\pi\)
\(720\) 0 0
\(721\) 35.4323 1.31957
\(722\) 45.4367 1.69098
\(723\) 0 0
\(724\) 58.6993 2.18154
\(725\) 11.2573 0.418087
\(726\) 0 0
\(727\) −35.2007 −1.30552 −0.652760 0.757564i \(-0.726389\pi\)
−0.652760 + 0.757564i \(0.726389\pi\)
\(728\) 8.15228 0.302143
\(729\) 0 0
\(730\) −25.9821 −0.961642
\(731\) −6.07357 −0.224639
\(732\) 0 0
\(733\) 23.7927 0.878802 0.439401 0.898291i \(-0.355191\pi\)
0.439401 + 0.898291i \(0.355191\pi\)
\(734\) 25.7168 0.949225
\(735\) 0 0
\(736\) −54.4727 −2.00789
\(737\) −36.9379 −1.36062
\(738\) 0 0
\(739\) −43.5839 −1.60326 −0.801631 0.597820i \(-0.796034\pi\)
−0.801631 + 0.597820i \(0.796034\pi\)
\(740\) −5.63266 −0.207061
\(741\) 0 0
\(742\) 92.7210 3.40390
\(743\) 10.1694 0.373079 0.186539 0.982447i \(-0.440273\pi\)
0.186539 + 0.982447i \(0.440273\pi\)
\(744\) 0 0
\(745\) −6.18663 −0.226661
\(746\) 0.160706 0.00588388
\(747\) 0 0
\(748\) 42.7010 1.56130
\(749\) −5.95332 −0.217530
\(750\) 0 0
\(751\) −16.7213 −0.610170 −0.305085 0.952325i \(-0.598685\pi\)
−0.305085 + 0.952325i \(0.598685\pi\)
\(752\) 1.81107 0.0660427
\(753\) 0 0
\(754\) 6.67580 0.243118
\(755\) −15.6887 −0.570969
\(756\) 0 0
\(757\) −40.6578 −1.47773 −0.738867 0.673852i \(-0.764639\pi\)
−0.738867 + 0.673852i \(0.764639\pi\)
\(758\) −6.59911 −0.239690
\(759\) 0 0
\(760\) −21.2971 −0.772528
\(761\) 13.6161 0.493583 0.246791 0.969069i \(-0.420624\pi\)
0.246791 + 0.969069i \(0.420624\pi\)
\(762\) 0 0
\(763\) −23.8854 −0.864709
\(764\) −78.8378 −2.85225
\(765\) 0 0
\(766\) 73.6441 2.66087
\(767\) −1.60793 −0.0580591
\(768\) 0 0
\(769\) 44.9223 1.61994 0.809970 0.586471i \(-0.199483\pi\)
0.809970 + 0.586471i \(0.199483\pi\)
\(770\) −45.8087 −1.65083
\(771\) 0 0
\(772\) −89.4146 −3.21810
\(773\) 23.2895 0.837664 0.418832 0.908064i \(-0.362440\pi\)
0.418832 + 0.908064i \(0.362440\pi\)
\(774\) 0 0
\(775\) −16.6505 −0.598105
\(776\) −128.216 −4.60269
\(777\) 0 0
\(778\) −28.8469 −1.03421
\(779\) −4.71099 −0.168789
\(780\) 0 0
\(781\) 6.43459 0.230248
\(782\) 21.5098 0.769188
\(783\) 0 0
\(784\) −3.98030 −0.142154
\(785\) 7.05288 0.251728
\(786\) 0 0
\(787\) 2.98243 0.106312 0.0531560 0.998586i \(-0.483072\pi\)
0.0531560 + 0.998586i \(0.483072\pi\)
\(788\) 46.9152 1.67128
\(789\) 0 0
\(790\) −20.5948 −0.732730
\(791\) −24.5296 −0.872172
\(792\) 0 0
\(793\) 2.81972 0.100131
\(794\) 51.1430 1.81500
\(795\) 0 0
\(796\) −118.802 −4.21081
\(797\) −23.9545 −0.848511 −0.424256 0.905542i \(-0.639464\pi\)
−0.424256 + 0.905542i \(0.639464\pi\)
\(798\) 0 0
\(799\) −0.343137 −0.0121393
\(800\) 26.2138 0.926797
\(801\) 0 0
\(802\) −84.0994 −2.96965
\(803\) −19.6237 −0.692506
\(804\) 0 0
\(805\) −16.5979 −0.584997
\(806\) −9.87407 −0.347799
\(807\) 0 0
\(808\) 108.807 3.82782
\(809\) 36.1049 1.26938 0.634691 0.772766i \(-0.281128\pi\)
0.634691 + 0.772766i \(0.281128\pi\)
\(810\) 0 0
\(811\) −41.1368 −1.44451 −0.722255 0.691627i \(-0.756894\pi\)
−0.722255 + 0.691627i \(0.756894\pi\)
\(812\) 87.4539 3.06903
\(813\) 0 0
\(814\) −5.91445 −0.207301
\(815\) −43.2803 −1.51604
\(816\) 0 0
\(817\) 3.75219 0.131273
\(818\) 2.44422 0.0854601
\(819\) 0 0
\(820\) −31.1700 −1.08850
\(821\) −41.7681 −1.45772 −0.728859 0.684664i \(-0.759949\pi\)
−0.728859 + 0.684664i \(0.759949\pi\)
\(822\) 0 0
\(823\) 18.6180 0.648982 0.324491 0.945889i \(-0.394807\pi\)
0.324491 + 0.945889i \(0.394807\pi\)
\(824\) 114.445 3.98688
\(825\) 0 0
\(826\) −29.2845 −1.01894
\(827\) −4.92478 −0.171251 −0.0856256 0.996327i \(-0.527289\pi\)
−0.0856256 + 0.996327i \(0.527289\pi\)
\(828\) 0 0
\(829\) −9.14266 −0.317538 −0.158769 0.987316i \(-0.550752\pi\)
−0.158769 + 0.987316i \(0.550752\pi\)
\(830\) −12.6228 −0.438143
\(831\) 0 0
\(832\) 6.45083 0.223642
\(833\) 0.754135 0.0261292
\(834\) 0 0
\(835\) 23.2185 0.803510
\(836\) −26.3802 −0.912379
\(837\) 0 0
\(838\) 32.5634 1.12489
\(839\) 36.2122 1.25018 0.625092 0.780551i \(-0.285061\pi\)
0.625092 + 0.780551i \(0.285061\pi\)
\(840\) 0 0
\(841\) 14.6669 0.505755
\(842\) −83.6418 −2.88249
\(843\) 0 0
\(844\) −132.364 −4.55615
\(845\) −23.3428 −0.803018
\(846\) 0 0
\(847\) −6.19204 −0.212761
\(848\) 161.612 5.54979
\(849\) 0 0
\(850\) −10.3511 −0.355040
\(851\) −2.14298 −0.0734604
\(852\) 0 0
\(853\) 1.85396 0.0634786 0.0317393 0.999496i \(-0.489895\pi\)
0.0317393 + 0.999496i \(0.489895\pi\)
\(854\) 51.3542 1.75731
\(855\) 0 0
\(856\) −19.2291 −0.657235
\(857\) 1.01274 0.0345947 0.0172973 0.999850i \(-0.494494\pi\)
0.0172973 + 0.999850i \(0.494494\pi\)
\(858\) 0 0
\(859\) 5.87727 0.200530 0.100265 0.994961i \(-0.468031\pi\)
0.100265 + 0.994961i \(0.468031\pi\)
\(860\) 24.8262 0.846565
\(861\) 0 0
\(862\) 36.8529 1.25521
\(863\) −27.1699 −0.924875 −0.462438 0.886652i \(-0.653025\pi\)
−0.462438 + 0.886652i \(0.653025\pi\)
\(864\) 0 0
\(865\) −9.25700 −0.314747
\(866\) 64.8160 2.20254
\(867\) 0 0
\(868\) −129.352 −4.39048
\(869\) −15.5548 −0.527660
\(870\) 0 0
\(871\) 3.81939 0.129415
\(872\) −77.1491 −2.61260
\(873\) 0 0
\(874\) −13.2885 −0.449491
\(875\) 31.4303 1.06254
\(876\) 0 0
\(877\) 6.05949 0.204615 0.102307 0.994753i \(-0.467377\pi\)
0.102307 + 0.994753i \(0.467377\pi\)
\(878\) −33.9247 −1.14490
\(879\) 0 0
\(880\) −79.8444 −2.69155
\(881\) −27.6566 −0.931776 −0.465888 0.884844i \(-0.654265\pi\)
−0.465888 + 0.884844i \(0.654265\pi\)
\(882\) 0 0
\(883\) 46.1501 1.55307 0.776537 0.630072i \(-0.216975\pi\)
0.776537 + 0.630072i \(0.216975\pi\)
\(884\) −4.41530 −0.148503
\(885\) 0 0
\(886\) −68.1123 −2.28828
\(887\) −10.5727 −0.354995 −0.177498 0.984121i \(-0.556800\pi\)
−0.177498 + 0.984121i \(0.556800\pi\)
\(888\) 0 0
\(889\) −32.6666 −1.09560
\(890\) 15.4608 0.518249
\(891\) 0 0
\(892\) 20.9048 0.699944
\(893\) 0.211986 0.00709386
\(894\) 0 0
\(895\) −2.14154 −0.0715837
\(896\) 38.0126 1.26991
\(897\) 0 0
\(898\) −8.56759 −0.285904
\(899\) −64.5870 −2.15410
\(900\) 0 0
\(901\) −30.6202 −1.02011
\(902\) −32.7293 −1.08977
\(903\) 0 0
\(904\) −79.2298 −2.63515
\(905\) 20.7957 0.691271
\(906\) 0 0
\(907\) −6.61129 −0.219524 −0.109762 0.993958i \(-0.535009\pi\)
−0.109762 + 0.993958i \(0.535009\pi\)
\(908\) −109.094 −3.62040
\(909\) 0 0
\(910\) 4.73664 0.157018
\(911\) −9.17704 −0.304049 −0.152024 0.988377i \(-0.548579\pi\)
−0.152024 + 0.988377i \(0.548579\pi\)
\(912\) 0 0
\(913\) −9.53370 −0.315519
\(914\) 5.69386 0.188336
\(915\) 0 0
\(916\) 62.1182 2.05244
\(917\) 38.4229 1.26883
\(918\) 0 0
\(919\) −14.9497 −0.493146 −0.246573 0.969124i \(-0.579305\pi\)
−0.246573 + 0.969124i \(0.579305\pi\)
\(920\) −53.6106 −1.76749
\(921\) 0 0
\(922\) −61.2250 −2.01634
\(923\) −0.665339 −0.0218999
\(924\) 0 0
\(925\) 1.03126 0.0339077
\(926\) −77.2782 −2.53952
\(927\) 0 0
\(928\) 101.683 3.33789
\(929\) −23.1734 −0.760293 −0.380147 0.924926i \(-0.624126\pi\)
−0.380147 + 0.924926i \(0.624126\pi\)
\(930\) 0 0
\(931\) −0.465897 −0.0152692
\(932\) 123.559 4.04731
\(933\) 0 0
\(934\) −5.57681 −0.182479
\(935\) 15.1279 0.494734
\(936\) 0 0
\(937\) 24.7831 0.809628 0.404814 0.914399i \(-0.367336\pi\)
0.404814 + 0.914399i \(0.367336\pi\)
\(938\) 69.5607 2.27124
\(939\) 0 0
\(940\) 1.40260 0.0457477
\(941\) 41.9888 1.36879 0.684397 0.729109i \(-0.260065\pi\)
0.684397 + 0.729109i \(0.260065\pi\)
\(942\) 0 0
\(943\) −11.8588 −0.386176
\(944\) −51.0428 −1.66130
\(945\) 0 0
\(946\) 26.0681 0.847549
\(947\) −5.40036 −0.175488 −0.0877440 0.996143i \(-0.527966\pi\)
−0.0877440 + 0.996143i \(0.527966\pi\)
\(948\) 0 0
\(949\) 2.02910 0.0658673
\(950\) 6.39480 0.207475
\(951\) 0 0
\(952\) −49.0319 −1.58913
\(953\) 26.7994 0.868119 0.434059 0.900884i \(-0.357081\pi\)
0.434059 + 0.900884i \(0.357081\pi\)
\(954\) 0 0
\(955\) −27.9302 −0.903801
\(956\) −121.657 −3.93466
\(957\) 0 0
\(958\) 58.0253 1.87471
\(959\) 41.9574 1.35488
\(960\) 0 0
\(961\) 64.5296 2.08160
\(962\) 0.611556 0.0197174
\(963\) 0 0
\(964\) −64.9573 −2.09214
\(965\) −31.6773 −1.01973
\(966\) 0 0
\(967\) 25.1527 0.808855 0.404428 0.914570i \(-0.367471\pi\)
0.404428 + 0.914570i \(0.367471\pi\)
\(968\) −20.0001 −0.642828
\(969\) 0 0
\(970\) −74.4961 −2.39193
\(971\) −42.8042 −1.37365 −0.686826 0.726822i \(-0.740997\pi\)
−0.686826 + 0.726822i \(0.740997\pi\)
\(972\) 0 0
\(973\) 42.6287 1.36661
\(974\) 9.76524 0.312899
\(975\) 0 0
\(976\) 89.5102 2.86515
\(977\) −26.6227 −0.851736 −0.425868 0.904785i \(-0.640031\pi\)
−0.425868 + 0.904785i \(0.640031\pi\)
\(978\) 0 0
\(979\) 11.6772 0.373206
\(980\) −3.08258 −0.0984695
\(981\) 0 0
\(982\) 46.3572 1.47932
\(983\) 59.3588 1.89325 0.946625 0.322336i \(-0.104468\pi\)
0.946625 + 0.322336i \(0.104468\pi\)
\(984\) 0 0
\(985\) 16.6208 0.529584
\(986\) −40.1516 −1.27869
\(987\) 0 0
\(988\) 2.72773 0.0867805
\(989\) 9.44526 0.300342
\(990\) 0 0
\(991\) −18.1773 −0.577420 −0.288710 0.957417i \(-0.593226\pi\)
−0.288710 + 0.957417i \(0.593226\pi\)
\(992\) −150.397 −4.77511
\(993\) 0 0
\(994\) −12.1175 −0.384344
\(995\) −42.0884 −1.33429
\(996\) 0 0
\(997\) 9.69823 0.307146 0.153573 0.988137i \(-0.450922\pi\)
0.153573 + 0.988137i \(0.450922\pi\)
\(998\) 45.1584 1.42946
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.3 72
3.2 odd 2 6561.2.a.d.1.70 72
81.5 odd 54 729.2.g.b.460.8 144
81.11 odd 54 243.2.g.a.91.1 144
81.16 even 27 729.2.g.c.271.1 144
81.22 even 27 81.2.g.a.79.8 yes 144
81.32 odd 54 729.2.g.a.703.1 144
81.38 odd 54 729.2.g.a.28.1 144
81.43 even 27 729.2.g.d.28.8 144
81.49 even 27 729.2.g.d.703.8 144
81.59 odd 54 243.2.g.a.235.1 144
81.65 odd 54 729.2.g.b.271.8 144
81.70 even 27 81.2.g.a.40.8 144
81.76 even 27 729.2.g.c.460.1 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.40.8 144 81.70 even 27
81.2.g.a.79.8 yes 144 81.22 even 27
243.2.g.a.91.1 144 81.11 odd 54
243.2.g.a.235.1 144 81.59 odd 54
729.2.g.a.28.1 144 81.38 odd 54
729.2.g.a.703.1 144 81.32 odd 54
729.2.g.b.271.8 144 81.65 odd 54
729.2.g.b.460.8 144 81.5 odd 54
729.2.g.c.271.1 144 81.16 even 27
729.2.g.c.460.1 144 81.76 even 27
729.2.g.d.28.8 144 81.43 even 27
729.2.g.d.703.8 144 81.49 even 27
6561.2.a.c.1.3 72 1.1 even 1 trivial
6561.2.a.d.1.70 72 3.2 odd 2