Properties

Label 6561.2.a.c
Level $6561$
Weight $2$
Character orbit 6561.a
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6561,2,Mod(1,6561)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6561, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6561.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38} - 72 q^{41} - 90 q^{44} - 90 q^{47} + 18 q^{49} - 45 q^{50} - 45 q^{53} + 9 q^{55} - 108 q^{56} + 18 q^{58} - 108 q^{59} - 72 q^{62} + 9 q^{64} - 72 q^{65} - 108 q^{68} - 126 q^{71} - 90 q^{74} - 72 q^{77} - 144 q^{80} - 18 q^{82} - 108 q^{83} - 90 q^{86} - 108 q^{89} - 72 q^{92} - 144 q^{95} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.76978 0 5.67166 −1.02650 0 1.57628 −10.1697 0 2.84319
1.2 −2.66973 0 5.12748 −2.53528 0 0.510929 −8.34954 0 6.76852
1.3 −2.66924 0 5.12486 1.81561 0 −2.58238 −8.34102 0 −4.84630
1.4 −2.65582 0 5.05340 −2.84817 0 1.91288 −8.10929 0 7.56425
1.5 −2.63231 0 4.92907 1.23074 0 3.78872 −7.71023 0 −3.23969
1.6 −2.49505 0 4.22529 −1.40756 0 −3.19016 −5.55222 0 3.51194
1.7 −2.45262 0 4.01536 −3.99887 0 −1.31658 −4.94293 0 9.80772
1.8 −2.43593 0 3.93374 2.95122 0 2.28987 −4.71046 0 −7.18896
1.9 −2.38302 0 3.67881 1.07976 0 3.12254 −4.00064 0 −2.57310
1.10 −2.36209 0 3.57945 −2.65977 0 4.59390 −3.73079 0 6.28260
1.11 −2.22247 0 2.93935 −2.94555 0 2.95569 −2.08768 0 6.54639
1.12 −2.11576 0 2.47642 3.89294 0 −3.33519 −1.00799 0 −8.23651
1.13 −2.04685 0 2.18960 0.0207958 0 −1.50444 −0.388080 0 −0.0425659
1.14 −2.01939 0 2.07795 −2.76814 0 −0.611277 −0.157420 0 5.58998
1.15 −1.91259 0 1.65799 2.48473 0 −4.55307 0.654119 0 −4.75227
1.16 −1.73329 0 1.00429 1.91493 0 4.47719 1.72585 0 −3.31913
1.17 −1.73145 0 0.997916 −1.37705 0 3.28825 1.73506 0 2.38429
1.18 −1.71009 0 0.924414 1.37341 0 −0.310223 1.83935 0 −2.34865
1.19 −1.55207 0 0.408920 3.09765 0 1.06604 2.46947 0 −4.80776
1.20 −1.50881 0 0.276511 −2.79694 0 −3.90283 2.60042 0 4.22006
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.72
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6561.2.a.c 72
3.b odd 2 1 6561.2.a.d 72
81.g even 27 2 81.2.g.a 144
81.g even 27 2 729.2.g.c 144
81.g even 27 2 729.2.g.d 144
81.h odd 54 2 243.2.g.a 144
81.h odd 54 2 729.2.g.a 144
81.h odd 54 2 729.2.g.b 144
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
81.2.g.a 144 81.g even 27 2
243.2.g.a 144 81.h odd 54 2
729.2.g.a 144 81.h odd 54 2
729.2.g.b 144 81.h odd 54 2
729.2.g.c 144 81.g even 27 2
729.2.g.d 144 81.g even 27 2
6561.2.a.c 72 1.a even 1 1 trivial
6561.2.a.d 72 3.b odd 2 1