Properties

Label 6544.2.a.i.1.14
Level $6544$
Weight $2$
Character 6544.1
Self dual yes
Analytic conductor $52.254$
Analytic rank $1$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6544,2,Mod(1,6544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6544, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6544.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6544 = 2^{4} \cdot 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6544.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.2541030827\)
Analytic rank: \(1\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 409)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-1.38030\) of defining polynomial
Character \(\chi\) \(=\) 6544.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.32806 q^{3} -2.04589 q^{5} +0.300238 q^{7} -1.23626 q^{9} +3.45738 q^{11} -3.89705 q^{13} -2.71707 q^{15} +5.59382 q^{17} +0.669118 q^{19} +0.398734 q^{21} -3.49818 q^{23} -0.814317 q^{25} -5.62600 q^{27} +8.88357 q^{29} -7.37344 q^{31} +4.59161 q^{33} -0.614254 q^{35} -3.54541 q^{37} -5.17552 q^{39} +7.92837 q^{41} -0.985097 q^{43} +2.52925 q^{45} +2.95435 q^{47} -6.90986 q^{49} +7.42893 q^{51} -6.43289 q^{53} -7.07343 q^{55} +0.888629 q^{57} -4.42090 q^{59} -0.236790 q^{61} -0.371170 q^{63} +7.97296 q^{65} -2.33250 q^{67} -4.64579 q^{69} -6.91848 q^{71} +4.76591 q^{73} -1.08146 q^{75} +1.03804 q^{77} -3.80018 q^{79} -3.76290 q^{81} +7.24637 q^{83} -11.4444 q^{85} +11.7979 q^{87} +14.2851 q^{89} -1.17004 q^{91} -9.79237 q^{93} -1.36894 q^{95} -10.8161 q^{97} -4.27421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{3} + 8 q^{5} - 5 q^{7} + 27 q^{9} - 30 q^{11} - 7 q^{13} - 26 q^{15} + 6 q^{17} - q^{19} - 3 q^{21} - 37 q^{23} + 14 q^{25} + 5 q^{27} + 12 q^{29} - 10 q^{31} - 22 q^{33} - 12 q^{35} - 4 q^{37}+ \cdots - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.32806 0.766756 0.383378 0.923592i \(-0.374761\pi\)
0.383378 + 0.923592i \(0.374761\pi\)
\(4\) 0 0
\(5\) −2.04589 −0.914952 −0.457476 0.889222i \(-0.651246\pi\)
−0.457476 + 0.889222i \(0.651246\pi\)
\(6\) 0 0
\(7\) 0.300238 0.113479 0.0567396 0.998389i \(-0.481930\pi\)
0.0567396 + 0.998389i \(0.481930\pi\)
\(8\) 0 0
\(9\) −1.23626 −0.412085
\(10\) 0 0
\(11\) 3.45738 1.04244 0.521220 0.853423i \(-0.325477\pi\)
0.521220 + 0.853423i \(0.325477\pi\)
\(12\) 0 0
\(13\) −3.89705 −1.08085 −0.540424 0.841393i \(-0.681736\pi\)
−0.540424 + 0.841393i \(0.681736\pi\)
\(14\) 0 0
\(15\) −2.71707 −0.701545
\(16\) 0 0
\(17\) 5.59382 1.35670 0.678350 0.734739i \(-0.262695\pi\)
0.678350 + 0.734739i \(0.262695\pi\)
\(18\) 0 0
\(19\) 0.669118 0.153506 0.0767531 0.997050i \(-0.475545\pi\)
0.0767531 + 0.997050i \(0.475545\pi\)
\(20\) 0 0
\(21\) 0.398734 0.0870108
\(22\) 0 0
\(23\) −3.49818 −0.729420 −0.364710 0.931121i \(-0.618832\pi\)
−0.364710 + 0.931121i \(0.618832\pi\)
\(24\) 0 0
\(25\) −0.814317 −0.162863
\(26\) 0 0
\(27\) −5.62600 −1.08272
\(28\) 0 0
\(29\) 8.88357 1.64964 0.824819 0.565397i \(-0.191277\pi\)
0.824819 + 0.565397i \(0.191277\pi\)
\(30\) 0 0
\(31\) −7.37344 −1.32431 −0.662154 0.749368i \(-0.730358\pi\)
−0.662154 + 0.749368i \(0.730358\pi\)
\(32\) 0 0
\(33\) 4.59161 0.799297
\(34\) 0 0
\(35\) −0.614254 −0.103828
\(36\) 0 0
\(37\) −3.54541 −0.582862 −0.291431 0.956592i \(-0.594131\pi\)
−0.291431 + 0.956592i \(0.594131\pi\)
\(38\) 0 0
\(39\) −5.17552 −0.828747
\(40\) 0 0
\(41\) 7.92837 1.23820 0.619102 0.785311i \(-0.287497\pi\)
0.619102 + 0.785311i \(0.287497\pi\)
\(42\) 0 0
\(43\) −0.985097 −0.150226 −0.0751130 0.997175i \(-0.523932\pi\)
−0.0751130 + 0.997175i \(0.523932\pi\)
\(44\) 0 0
\(45\) 2.52925 0.377038
\(46\) 0 0
\(47\) 2.95435 0.430936 0.215468 0.976511i \(-0.430872\pi\)
0.215468 + 0.976511i \(0.430872\pi\)
\(48\) 0 0
\(49\) −6.90986 −0.987122
\(50\) 0 0
\(51\) 7.42893 1.04026
\(52\) 0 0
\(53\) −6.43289 −0.883625 −0.441813 0.897107i \(-0.645664\pi\)
−0.441813 + 0.897107i \(0.645664\pi\)
\(54\) 0 0
\(55\) −7.07343 −0.953782
\(56\) 0 0
\(57\) 0.888629 0.117702
\(58\) 0 0
\(59\) −4.42090 −0.575552 −0.287776 0.957698i \(-0.592916\pi\)
−0.287776 + 0.957698i \(0.592916\pi\)
\(60\) 0 0
\(61\) −0.236790 −0.0303179 −0.0151590 0.999885i \(-0.504825\pi\)
−0.0151590 + 0.999885i \(0.504825\pi\)
\(62\) 0 0
\(63\) −0.371170 −0.0467631
\(64\) 0 0
\(65\) 7.97296 0.988924
\(66\) 0 0
\(67\) −2.33250 −0.284960 −0.142480 0.989798i \(-0.545508\pi\)
−0.142480 + 0.989798i \(0.545508\pi\)
\(68\) 0 0
\(69\) −4.64579 −0.559287
\(70\) 0 0
\(71\) −6.91848 −0.821073 −0.410536 0.911844i \(-0.634659\pi\)
−0.410536 + 0.911844i \(0.634659\pi\)
\(72\) 0 0
\(73\) 4.76591 0.557807 0.278904 0.960319i \(-0.410029\pi\)
0.278904 + 0.960319i \(0.410029\pi\)
\(74\) 0 0
\(75\) −1.08146 −0.124876
\(76\) 0 0
\(77\) 1.03804 0.118295
\(78\) 0 0
\(79\) −3.80018 −0.427553 −0.213777 0.976883i \(-0.568577\pi\)
−0.213777 + 0.976883i \(0.568577\pi\)
\(80\) 0 0
\(81\) −3.76290 −0.418100
\(82\) 0 0
\(83\) 7.24637 0.795392 0.397696 0.917517i \(-0.369810\pi\)
0.397696 + 0.917517i \(0.369810\pi\)
\(84\) 0 0
\(85\) −11.4444 −1.24132
\(86\) 0 0
\(87\) 11.7979 1.26487
\(88\) 0 0
\(89\) 14.2851 1.51421 0.757107 0.653291i \(-0.226612\pi\)
0.757107 + 0.653291i \(0.226612\pi\)
\(90\) 0 0
\(91\) −1.17004 −0.122654
\(92\) 0 0
\(93\) −9.79237 −1.01542
\(94\) 0 0
\(95\) −1.36894 −0.140451
\(96\) 0 0
\(97\) −10.8161 −1.09820 −0.549102 0.835755i \(-0.685030\pi\)
−0.549102 + 0.835755i \(0.685030\pi\)
\(98\) 0 0
\(99\) −4.27421 −0.429574
\(100\) 0 0
\(101\) −14.6903 −1.46174 −0.730872 0.682515i \(-0.760886\pi\)
−0.730872 + 0.682515i \(0.760886\pi\)
\(102\) 0 0
\(103\) 13.1277 1.29351 0.646753 0.762699i \(-0.276126\pi\)
0.646753 + 0.762699i \(0.276126\pi\)
\(104\) 0 0
\(105\) −0.815767 −0.0796107
\(106\) 0 0
\(107\) −11.7666 −1.13752 −0.568760 0.822504i \(-0.692577\pi\)
−0.568760 + 0.822504i \(0.692577\pi\)
\(108\) 0 0
\(109\) −2.17412 −0.208243 −0.104122 0.994565i \(-0.533203\pi\)
−0.104122 + 0.994565i \(0.533203\pi\)
\(110\) 0 0
\(111\) −4.70852 −0.446913
\(112\) 0 0
\(113\) −12.7111 −1.19576 −0.597881 0.801585i \(-0.703991\pi\)
−0.597881 + 0.801585i \(0.703991\pi\)
\(114\) 0 0
\(115\) 7.15690 0.667384
\(116\) 0 0
\(117\) 4.81776 0.445402
\(118\) 0 0
\(119\) 1.67947 0.153957
\(120\) 0 0
\(121\) 0.953476 0.0866796
\(122\) 0 0
\(123\) 10.5294 0.949400
\(124\) 0 0
\(125\) 11.8955 1.06396
\(126\) 0 0
\(127\) −16.2137 −1.43873 −0.719365 0.694633i \(-0.755567\pi\)
−0.719365 + 0.694633i \(0.755567\pi\)
\(128\) 0 0
\(129\) −1.30827 −0.115187
\(130\) 0 0
\(131\) 1.83753 0.160546 0.0802729 0.996773i \(-0.474421\pi\)
0.0802729 + 0.996773i \(0.474421\pi\)
\(132\) 0 0
\(133\) 0.200894 0.0174197
\(134\) 0 0
\(135\) 11.5102 0.990641
\(136\) 0 0
\(137\) 5.89871 0.503961 0.251980 0.967732i \(-0.418918\pi\)
0.251980 + 0.967732i \(0.418918\pi\)
\(138\) 0 0
\(139\) −8.57012 −0.726908 −0.363454 0.931612i \(-0.618403\pi\)
−0.363454 + 0.931612i \(0.618403\pi\)
\(140\) 0 0
\(141\) 3.92356 0.330423
\(142\) 0 0
\(143\) −13.4736 −1.12672
\(144\) 0 0
\(145\) −18.1749 −1.50934
\(146\) 0 0
\(147\) −9.17671 −0.756882
\(148\) 0 0
\(149\) 20.0774 1.64481 0.822403 0.568905i \(-0.192633\pi\)
0.822403 + 0.568905i \(0.192633\pi\)
\(150\) 0 0
\(151\) −21.5706 −1.75539 −0.877696 0.479218i \(-0.840920\pi\)
−0.877696 + 0.479218i \(0.840920\pi\)
\(152\) 0 0
\(153\) −6.91539 −0.559076
\(154\) 0 0
\(155\) 15.0853 1.21168
\(156\) 0 0
\(157\) −4.99937 −0.398993 −0.199497 0.979899i \(-0.563931\pi\)
−0.199497 + 0.979899i \(0.563931\pi\)
\(158\) 0 0
\(159\) −8.54327 −0.677525
\(160\) 0 0
\(161\) −1.05028 −0.0827740
\(162\) 0 0
\(163\) 17.7843 1.39298 0.696488 0.717568i \(-0.254745\pi\)
0.696488 + 0.717568i \(0.254745\pi\)
\(164\) 0 0
\(165\) −9.39395 −0.731318
\(166\) 0 0
\(167\) −23.1226 −1.78928 −0.894640 0.446787i \(-0.852568\pi\)
−0.894640 + 0.446787i \(0.852568\pi\)
\(168\) 0 0
\(169\) 2.18703 0.168233
\(170\) 0 0
\(171\) −0.827201 −0.0632576
\(172\) 0 0
\(173\) −16.8117 −1.27817 −0.639087 0.769135i \(-0.720687\pi\)
−0.639087 + 0.769135i \(0.720687\pi\)
\(174\) 0 0
\(175\) −0.244489 −0.0184816
\(176\) 0 0
\(177\) −5.87122 −0.441308
\(178\) 0 0
\(179\) −18.9790 −1.41856 −0.709280 0.704927i \(-0.750980\pi\)
−0.709280 + 0.704927i \(0.750980\pi\)
\(180\) 0 0
\(181\) 8.22419 0.611299 0.305649 0.952144i \(-0.401126\pi\)
0.305649 + 0.952144i \(0.401126\pi\)
\(182\) 0 0
\(183\) −0.314472 −0.0232464
\(184\) 0 0
\(185\) 7.25354 0.533291
\(186\) 0 0
\(187\) 19.3400 1.41428
\(188\) 0 0
\(189\) −1.68914 −0.122867
\(190\) 0 0
\(191\) −3.31876 −0.240137 −0.120069 0.992766i \(-0.538311\pi\)
−0.120069 + 0.992766i \(0.538311\pi\)
\(192\) 0 0
\(193\) 22.2933 1.60471 0.802355 0.596848i \(-0.203580\pi\)
0.802355 + 0.596848i \(0.203580\pi\)
\(194\) 0 0
\(195\) 10.5886 0.758263
\(196\) 0 0
\(197\) 12.2417 0.872182 0.436091 0.899903i \(-0.356363\pi\)
0.436091 + 0.899903i \(0.356363\pi\)
\(198\) 0 0
\(199\) −18.2365 −1.29275 −0.646377 0.763018i \(-0.723717\pi\)
−0.646377 + 0.763018i \(0.723717\pi\)
\(200\) 0 0
\(201\) −3.09770 −0.218495
\(202\) 0 0
\(203\) 2.66718 0.187200
\(204\) 0 0
\(205\) −16.2206 −1.13290
\(206\) 0 0
\(207\) 4.32464 0.300583
\(208\) 0 0
\(209\) 2.31339 0.160021
\(210\) 0 0
\(211\) 1.49736 0.103082 0.0515411 0.998671i \(-0.483587\pi\)
0.0515411 + 0.998671i \(0.483587\pi\)
\(212\) 0 0
\(213\) −9.18816 −0.629563
\(214\) 0 0
\(215\) 2.01540 0.137449
\(216\) 0 0
\(217\) −2.21378 −0.150281
\(218\) 0 0
\(219\) 6.32941 0.427702
\(220\) 0 0
\(221\) −21.7994 −1.46639
\(222\) 0 0
\(223\) −0.368166 −0.0246542 −0.0123271 0.999924i \(-0.503924\pi\)
−0.0123271 + 0.999924i \(0.503924\pi\)
\(224\) 0 0
\(225\) 1.00670 0.0671136
\(226\) 0 0
\(227\) −20.1086 −1.33465 −0.667326 0.744765i \(-0.732561\pi\)
−0.667326 + 0.744765i \(0.732561\pi\)
\(228\) 0 0
\(229\) −19.5150 −1.28958 −0.644792 0.764358i \(-0.723056\pi\)
−0.644792 + 0.764358i \(0.723056\pi\)
\(230\) 0 0
\(231\) 1.37857 0.0907035
\(232\) 0 0
\(233\) −10.3574 −0.678537 −0.339269 0.940690i \(-0.610180\pi\)
−0.339269 + 0.940690i \(0.610180\pi\)
\(234\) 0 0
\(235\) −6.04429 −0.394286
\(236\) 0 0
\(237\) −5.04687 −0.327829
\(238\) 0 0
\(239\) 9.67826 0.626034 0.313017 0.949747i \(-0.398660\pi\)
0.313017 + 0.949747i \(0.398660\pi\)
\(240\) 0 0
\(241\) −23.4147 −1.50827 −0.754137 0.656718i \(-0.771944\pi\)
−0.754137 + 0.656718i \(0.771944\pi\)
\(242\) 0 0
\(243\) 11.8806 0.762144
\(244\) 0 0
\(245\) 14.1368 0.903169
\(246\) 0 0
\(247\) −2.60759 −0.165917
\(248\) 0 0
\(249\) 9.62362 0.609872
\(250\) 0 0
\(251\) −23.9836 −1.51383 −0.756917 0.653511i \(-0.773295\pi\)
−0.756917 + 0.653511i \(0.773295\pi\)
\(252\) 0 0
\(253\) −12.0945 −0.760376
\(254\) 0 0
\(255\) −15.1988 −0.951786
\(256\) 0 0
\(257\) −19.8386 −1.23750 −0.618750 0.785588i \(-0.712361\pi\)
−0.618750 + 0.785588i \(0.712361\pi\)
\(258\) 0 0
\(259\) −1.06447 −0.0661427
\(260\) 0 0
\(261\) −10.9824 −0.679792
\(262\) 0 0
\(263\) −5.57483 −0.343759 −0.171879 0.985118i \(-0.554984\pi\)
−0.171879 + 0.985118i \(0.554984\pi\)
\(264\) 0 0
\(265\) 13.1610 0.808475
\(266\) 0 0
\(267\) 18.9714 1.16103
\(268\) 0 0
\(269\) −17.9676 −1.09550 −0.547752 0.836641i \(-0.684516\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(270\) 0 0
\(271\) −4.64456 −0.282137 −0.141068 0.990000i \(-0.545054\pi\)
−0.141068 + 0.990000i \(0.545054\pi\)
\(272\) 0 0
\(273\) −1.55389 −0.0940455
\(274\) 0 0
\(275\) −2.81540 −0.169775
\(276\) 0 0
\(277\) 19.2078 1.15409 0.577043 0.816714i \(-0.304206\pi\)
0.577043 + 0.816714i \(0.304206\pi\)
\(278\) 0 0
\(279\) 9.11545 0.545728
\(280\) 0 0
\(281\) 17.7157 1.05683 0.528416 0.848986i \(-0.322786\pi\)
0.528416 + 0.848986i \(0.322786\pi\)
\(282\) 0 0
\(283\) −17.7025 −1.05231 −0.526153 0.850390i \(-0.676366\pi\)
−0.526153 + 0.850390i \(0.676366\pi\)
\(284\) 0 0
\(285\) −1.81804 −0.107691
\(286\) 0 0
\(287\) 2.38040 0.140510
\(288\) 0 0
\(289\) 14.2908 0.840636
\(290\) 0 0
\(291\) −14.3644 −0.842054
\(292\) 0 0
\(293\) −3.13261 −0.183009 −0.0915047 0.995805i \(-0.529168\pi\)
−0.0915047 + 0.995805i \(0.529168\pi\)
\(294\) 0 0
\(295\) 9.04469 0.526602
\(296\) 0 0
\(297\) −19.4512 −1.12867
\(298\) 0 0
\(299\) 13.6326 0.788392
\(300\) 0 0
\(301\) −0.295763 −0.0170475
\(302\) 0 0
\(303\) −19.5097 −1.12080
\(304\) 0 0
\(305\) 0.484448 0.0277394
\(306\) 0 0
\(307\) −0.217861 −0.0124340 −0.00621700 0.999981i \(-0.501979\pi\)
−0.00621700 + 0.999981i \(0.501979\pi\)
\(308\) 0 0
\(309\) 17.4343 0.991804
\(310\) 0 0
\(311\) 17.2626 0.978872 0.489436 0.872039i \(-0.337203\pi\)
0.489436 + 0.872039i \(0.337203\pi\)
\(312\) 0 0
\(313\) 11.6304 0.657388 0.328694 0.944437i \(-0.393392\pi\)
0.328694 + 0.944437i \(0.393392\pi\)
\(314\) 0 0
\(315\) 0.759376 0.0427860
\(316\) 0 0
\(317\) 5.02237 0.282085 0.141042 0.990004i \(-0.454955\pi\)
0.141042 + 0.990004i \(0.454955\pi\)
\(318\) 0 0
\(319\) 30.7139 1.71965
\(320\) 0 0
\(321\) −15.6267 −0.872200
\(322\) 0 0
\(323\) 3.74292 0.208262
\(324\) 0 0
\(325\) 3.17344 0.176031
\(326\) 0 0
\(327\) −2.88736 −0.159672
\(328\) 0 0
\(329\) 0.887007 0.0489023
\(330\) 0 0
\(331\) −7.47113 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(332\) 0 0
\(333\) 4.38303 0.240189
\(334\) 0 0
\(335\) 4.77204 0.260724
\(336\) 0 0
\(337\) 14.1266 0.769525 0.384763 0.923016i \(-0.374283\pi\)
0.384763 + 0.923016i \(0.374283\pi\)
\(338\) 0 0
\(339\) −16.8811 −0.916858
\(340\) 0 0
\(341\) −25.4928 −1.38051
\(342\) 0 0
\(343\) −4.17626 −0.225497
\(344\) 0 0
\(345\) 9.50479 0.511721
\(346\) 0 0
\(347\) 17.3816 0.933091 0.466546 0.884497i \(-0.345498\pi\)
0.466546 + 0.884497i \(0.345498\pi\)
\(348\) 0 0
\(349\) −11.3743 −0.608850 −0.304425 0.952536i \(-0.598464\pi\)
−0.304425 + 0.952536i \(0.598464\pi\)
\(350\) 0 0
\(351\) 21.9248 1.17026
\(352\) 0 0
\(353\) −27.8215 −1.48079 −0.740395 0.672172i \(-0.765362\pi\)
−0.740395 + 0.672172i \(0.765362\pi\)
\(354\) 0 0
\(355\) 14.1545 0.751242
\(356\) 0 0
\(357\) 2.23044 0.118048
\(358\) 0 0
\(359\) −31.8150 −1.67913 −0.839567 0.543257i \(-0.817191\pi\)
−0.839567 + 0.543257i \(0.817191\pi\)
\(360\) 0 0
\(361\) −18.5523 −0.976436
\(362\) 0 0
\(363\) 1.26627 0.0664621
\(364\) 0 0
\(365\) −9.75054 −0.510367
\(366\) 0 0
\(367\) 3.39169 0.177045 0.0885224 0.996074i \(-0.471786\pi\)
0.0885224 + 0.996074i \(0.471786\pi\)
\(368\) 0 0
\(369\) −9.80150 −0.510246
\(370\) 0 0
\(371\) −1.93140 −0.100273
\(372\) 0 0
\(373\) 16.6667 0.862970 0.431485 0.902120i \(-0.357990\pi\)
0.431485 + 0.902120i \(0.357990\pi\)
\(374\) 0 0
\(375\) 15.7979 0.815801
\(376\) 0 0
\(377\) −34.6198 −1.78301
\(378\) 0 0
\(379\) −6.52444 −0.335138 −0.167569 0.985860i \(-0.553592\pi\)
−0.167569 + 0.985860i \(0.553592\pi\)
\(380\) 0 0
\(381\) −21.5327 −1.10315
\(382\) 0 0
\(383\) −8.66460 −0.442740 −0.221370 0.975190i \(-0.571053\pi\)
−0.221370 + 0.975190i \(0.571053\pi\)
\(384\) 0 0
\(385\) −2.12371 −0.108234
\(386\) 0 0
\(387\) 1.21783 0.0619059
\(388\) 0 0
\(389\) 25.3450 1.28504 0.642522 0.766267i \(-0.277888\pi\)
0.642522 + 0.766267i \(0.277888\pi\)
\(390\) 0 0
\(391\) −19.5682 −0.989604
\(392\) 0 0
\(393\) 2.44035 0.123099
\(394\) 0 0
\(395\) 7.77476 0.391191
\(396\) 0 0
\(397\) 17.7609 0.891394 0.445697 0.895184i \(-0.352956\pi\)
0.445697 + 0.895184i \(0.352956\pi\)
\(398\) 0 0
\(399\) 0.266800 0.0133567
\(400\) 0 0
\(401\) 6.25522 0.312371 0.156185 0.987728i \(-0.450080\pi\)
0.156185 + 0.987728i \(0.450080\pi\)
\(402\) 0 0
\(403\) 28.7347 1.43138
\(404\) 0 0
\(405\) 7.69850 0.382542
\(406\) 0 0
\(407\) −12.2578 −0.607598
\(408\) 0 0
\(409\) 1.00000 0.0494468
\(410\) 0 0
\(411\) 7.83384 0.386415
\(412\) 0 0
\(413\) −1.32732 −0.0653132
\(414\) 0 0
\(415\) −14.8253 −0.727746
\(416\) 0 0
\(417\) −11.3816 −0.557361
\(418\) 0 0
\(419\) 17.4774 0.853825 0.426913 0.904293i \(-0.359601\pi\)
0.426913 + 0.904293i \(0.359601\pi\)
\(420\) 0 0
\(421\) 23.7864 1.15928 0.579640 0.814872i \(-0.303193\pi\)
0.579640 + 0.814872i \(0.303193\pi\)
\(422\) 0 0
\(423\) −3.65233 −0.177583
\(424\) 0 0
\(425\) −4.55514 −0.220957
\(426\) 0 0
\(427\) −0.0710934 −0.00344045
\(428\) 0 0
\(429\) −17.8937 −0.863918
\(430\) 0 0
\(431\) −9.72228 −0.468306 −0.234153 0.972200i \(-0.575232\pi\)
−0.234153 + 0.972200i \(0.575232\pi\)
\(432\) 0 0
\(433\) 12.8718 0.618582 0.309291 0.950968i \(-0.399908\pi\)
0.309291 + 0.950968i \(0.399908\pi\)
\(434\) 0 0
\(435\) −24.1373 −1.15729
\(436\) 0 0
\(437\) −2.34069 −0.111970
\(438\) 0 0
\(439\) −16.3107 −0.778466 −0.389233 0.921139i \(-0.627260\pi\)
−0.389233 + 0.921139i \(0.627260\pi\)
\(440\) 0 0
\(441\) 8.54235 0.406779
\(442\) 0 0
\(443\) 20.7520 0.985957 0.492978 0.870042i \(-0.335908\pi\)
0.492978 + 0.870042i \(0.335908\pi\)
\(444\) 0 0
\(445\) −29.2257 −1.38543
\(446\) 0 0
\(447\) 26.6640 1.26116
\(448\) 0 0
\(449\) −14.7710 −0.697086 −0.348543 0.937293i \(-0.613324\pi\)
−0.348543 + 0.937293i \(0.613324\pi\)
\(450\) 0 0
\(451\) 27.4114 1.29075
\(452\) 0 0
\(453\) −28.6471 −1.34596
\(454\) 0 0
\(455\) 2.39378 0.112222
\(456\) 0 0
\(457\) −15.0736 −0.705113 −0.352557 0.935790i \(-0.614688\pi\)
−0.352557 + 0.935790i \(0.614688\pi\)
\(458\) 0 0
\(459\) −31.4708 −1.46893
\(460\) 0 0
\(461\) −19.8978 −0.926733 −0.463366 0.886167i \(-0.653359\pi\)
−0.463366 + 0.886167i \(0.653359\pi\)
\(462\) 0 0
\(463\) 27.4958 1.27784 0.638919 0.769274i \(-0.279382\pi\)
0.638919 + 0.769274i \(0.279382\pi\)
\(464\) 0 0
\(465\) 20.0342 0.929061
\(466\) 0 0
\(467\) 18.1186 0.838429 0.419215 0.907887i \(-0.362305\pi\)
0.419215 + 0.907887i \(0.362305\pi\)
\(468\) 0 0
\(469\) −0.700303 −0.0323370
\(470\) 0 0
\(471\) −6.63946 −0.305930
\(472\) 0 0
\(473\) −3.40586 −0.156601
\(474\) 0 0
\(475\) −0.544874 −0.0250005
\(476\) 0 0
\(477\) 7.95270 0.364129
\(478\) 0 0
\(479\) −1.62305 −0.0741590 −0.0370795 0.999312i \(-0.511805\pi\)
−0.0370795 + 0.999312i \(0.511805\pi\)
\(480\) 0 0
\(481\) 13.8167 0.629985
\(482\) 0 0
\(483\) −1.39484 −0.0634674
\(484\) 0 0
\(485\) 22.1285 1.00480
\(486\) 0 0
\(487\) −17.6722 −0.800805 −0.400403 0.916339i \(-0.631130\pi\)
−0.400403 + 0.916339i \(0.631130\pi\)
\(488\) 0 0
\(489\) 23.6187 1.06807
\(490\) 0 0
\(491\) −40.4253 −1.82437 −0.912183 0.409782i \(-0.865605\pi\)
−0.912183 + 0.409782i \(0.865605\pi\)
\(492\) 0 0
\(493\) 49.6931 2.23806
\(494\) 0 0
\(495\) 8.74457 0.393039
\(496\) 0 0
\(497\) −2.07719 −0.0931747
\(498\) 0 0
\(499\) 2.67593 0.119791 0.0598955 0.998205i \(-0.480923\pi\)
0.0598955 + 0.998205i \(0.480923\pi\)
\(500\) 0 0
\(501\) −30.7082 −1.37194
\(502\) 0 0
\(503\) −13.3355 −0.594599 −0.297300 0.954784i \(-0.596086\pi\)
−0.297300 + 0.954784i \(0.596086\pi\)
\(504\) 0 0
\(505\) 30.0549 1.33742
\(506\) 0 0
\(507\) 2.90450 0.128994
\(508\) 0 0
\(509\) 32.0232 1.41940 0.709702 0.704502i \(-0.248830\pi\)
0.709702 + 0.704502i \(0.248830\pi\)
\(510\) 0 0
\(511\) 1.43090 0.0632995
\(512\) 0 0
\(513\) −3.76446 −0.166205
\(514\) 0 0
\(515\) −26.8578 −1.18350
\(516\) 0 0
\(517\) 10.2143 0.449225
\(518\) 0 0
\(519\) −22.3270 −0.980047
\(520\) 0 0
\(521\) 24.3133 1.06519 0.532594 0.846371i \(-0.321217\pi\)
0.532594 + 0.846371i \(0.321217\pi\)
\(522\) 0 0
\(523\) 3.22360 0.140958 0.0704791 0.997513i \(-0.477547\pi\)
0.0704791 + 0.997513i \(0.477547\pi\)
\(524\) 0 0
\(525\) −0.324696 −0.0141709
\(526\) 0 0
\(527\) −41.2457 −1.79669
\(528\) 0 0
\(529\) −10.7628 −0.467946
\(530\) 0 0
\(531\) 5.46536 0.237177
\(532\) 0 0
\(533\) −30.8973 −1.33831
\(534\) 0 0
\(535\) 24.0732 1.04078
\(536\) 0 0
\(537\) −25.2053 −1.08769
\(538\) 0 0
\(539\) −23.8900 −1.02902
\(540\) 0 0
\(541\) −26.5420 −1.14113 −0.570564 0.821253i \(-0.693275\pi\)
−0.570564 + 0.821253i \(0.693275\pi\)
\(542\) 0 0
\(543\) 10.9222 0.468717
\(544\) 0 0
\(545\) 4.44802 0.190532
\(546\) 0 0
\(547\) −20.5342 −0.877981 −0.438990 0.898492i \(-0.644664\pi\)
−0.438990 + 0.898492i \(0.644664\pi\)
\(548\) 0 0
\(549\) 0.292734 0.0124936
\(550\) 0 0
\(551\) 5.94416 0.253230
\(552\) 0 0
\(553\) −1.14096 −0.0485184
\(554\) 0 0
\(555\) 9.63313 0.408904
\(556\) 0 0
\(557\) 33.5780 1.42275 0.711373 0.702814i \(-0.248073\pi\)
0.711373 + 0.702814i \(0.248073\pi\)
\(558\) 0 0
\(559\) 3.83898 0.162371
\(560\) 0 0
\(561\) 25.6846 1.08441
\(562\) 0 0
\(563\) 34.2480 1.44338 0.721692 0.692215i \(-0.243365\pi\)
0.721692 + 0.692215i \(0.243365\pi\)
\(564\) 0 0
\(565\) 26.0056 1.09406
\(566\) 0 0
\(567\) −1.12977 −0.0474457
\(568\) 0 0
\(569\) 7.92621 0.332284 0.166142 0.986102i \(-0.446869\pi\)
0.166142 + 0.986102i \(0.446869\pi\)
\(570\) 0 0
\(571\) −16.8742 −0.706165 −0.353082 0.935592i \(-0.614866\pi\)
−0.353082 + 0.935592i \(0.614866\pi\)
\(572\) 0 0
\(573\) −4.40752 −0.184127
\(574\) 0 0
\(575\) 2.84862 0.118796
\(576\) 0 0
\(577\) −4.20001 −0.174849 −0.0874244 0.996171i \(-0.527864\pi\)
−0.0874244 + 0.996171i \(0.527864\pi\)
\(578\) 0 0
\(579\) 29.6069 1.23042
\(580\) 0 0
\(581\) 2.17563 0.0902605
\(582\) 0 0
\(583\) −22.2409 −0.921126
\(584\) 0 0
\(585\) −9.85662 −0.407521
\(586\) 0 0
\(587\) −26.0714 −1.07608 −0.538042 0.842918i \(-0.680836\pi\)
−0.538042 + 0.842918i \(0.680836\pi\)
\(588\) 0 0
\(589\) −4.93370 −0.203289
\(590\) 0 0
\(591\) 16.2577 0.668751
\(592\) 0 0
\(593\) −30.8085 −1.26515 −0.632577 0.774497i \(-0.718003\pi\)
−0.632577 + 0.774497i \(0.718003\pi\)
\(594\) 0 0
\(595\) −3.43603 −0.140863
\(596\) 0 0
\(597\) −24.2192 −0.991227
\(598\) 0 0
\(599\) 9.25916 0.378319 0.189159 0.981946i \(-0.439424\pi\)
0.189159 + 0.981946i \(0.439424\pi\)
\(600\) 0 0
\(601\) 6.56273 0.267699 0.133850 0.991002i \(-0.457266\pi\)
0.133850 + 0.991002i \(0.457266\pi\)
\(602\) 0 0
\(603\) 2.88356 0.117428
\(604\) 0 0
\(605\) −1.95071 −0.0793077
\(606\) 0 0
\(607\) 14.5775 0.591682 0.295841 0.955237i \(-0.404400\pi\)
0.295841 + 0.955237i \(0.404400\pi\)
\(608\) 0 0
\(609\) 3.54218 0.143536
\(610\) 0 0
\(611\) −11.5133 −0.465777
\(612\) 0 0
\(613\) −6.37447 −0.257462 −0.128731 0.991680i \(-0.541090\pi\)
−0.128731 + 0.991680i \(0.541090\pi\)
\(614\) 0 0
\(615\) −21.5420 −0.868655
\(616\) 0 0
\(617\) 6.10386 0.245732 0.122866 0.992423i \(-0.460791\pi\)
0.122866 + 0.992423i \(0.460791\pi\)
\(618\) 0 0
\(619\) 20.0277 0.804981 0.402491 0.915424i \(-0.368145\pi\)
0.402491 + 0.915424i \(0.368145\pi\)
\(620\) 0 0
\(621\) 19.6807 0.789761
\(622\) 0 0
\(623\) 4.28891 0.171832
\(624\) 0 0
\(625\) −20.2653 −0.810612
\(626\) 0 0
\(627\) 3.07233 0.122697
\(628\) 0 0
\(629\) −19.8324 −0.790769
\(630\) 0 0
\(631\) 4.19378 0.166952 0.0834758 0.996510i \(-0.473398\pi\)
0.0834758 + 0.996510i \(0.473398\pi\)
\(632\) 0 0
\(633\) 1.98858 0.0790389
\(634\) 0 0
\(635\) 33.1714 1.31637
\(636\) 0 0
\(637\) 26.9281 1.06693
\(638\) 0 0
\(639\) 8.55302 0.338352
\(640\) 0 0
\(641\) 18.0977 0.714815 0.357407 0.933949i \(-0.383661\pi\)
0.357407 + 0.933949i \(0.383661\pi\)
\(642\) 0 0
\(643\) 34.3118 1.35313 0.676563 0.736384i \(-0.263468\pi\)
0.676563 + 0.736384i \(0.263468\pi\)
\(644\) 0 0
\(645\) 2.67658 0.105390
\(646\) 0 0
\(647\) 42.9999 1.69050 0.845250 0.534372i \(-0.179452\pi\)
0.845250 + 0.534372i \(0.179452\pi\)
\(648\) 0 0
\(649\) −15.2847 −0.599978
\(650\) 0 0
\(651\) −2.94004 −0.115229
\(652\) 0 0
\(653\) −25.7091 −1.00607 −0.503037 0.864265i \(-0.667784\pi\)
−0.503037 + 0.864265i \(0.667784\pi\)
\(654\) 0 0
\(655\) −3.75939 −0.146892
\(656\) 0 0
\(657\) −5.89188 −0.229864
\(658\) 0 0
\(659\) 21.5003 0.837534 0.418767 0.908094i \(-0.362462\pi\)
0.418767 + 0.908094i \(0.362462\pi\)
\(660\) 0 0
\(661\) 43.9110 1.70794 0.853970 0.520322i \(-0.174188\pi\)
0.853970 + 0.520322i \(0.174188\pi\)
\(662\) 0 0
\(663\) −28.9509 −1.12436
\(664\) 0 0
\(665\) −0.411008 −0.0159382
\(666\) 0 0
\(667\) −31.0763 −1.20328
\(668\) 0 0
\(669\) −0.488946 −0.0189038
\(670\) 0 0
\(671\) −0.818674 −0.0316046
\(672\) 0 0
\(673\) 49.1559 1.89482 0.947410 0.320022i \(-0.103690\pi\)
0.947410 + 0.320022i \(0.103690\pi\)
\(674\) 0 0
\(675\) 4.58135 0.176336
\(676\) 0 0
\(677\) 23.1357 0.889178 0.444589 0.895735i \(-0.353350\pi\)
0.444589 + 0.895735i \(0.353350\pi\)
\(678\) 0 0
\(679\) −3.24739 −0.124623
\(680\) 0 0
\(681\) −26.7054 −1.02335
\(682\) 0 0
\(683\) 44.0487 1.68548 0.842739 0.538323i \(-0.180942\pi\)
0.842739 + 0.538323i \(0.180942\pi\)
\(684\) 0 0
\(685\) −12.0681 −0.461100
\(686\) 0 0
\(687\) −25.9170 −0.988797
\(688\) 0 0
\(689\) 25.0693 0.955065
\(690\) 0 0
\(691\) −16.0482 −0.610504 −0.305252 0.952272i \(-0.598741\pi\)
−0.305252 + 0.952272i \(0.598741\pi\)
\(692\) 0 0
\(693\) −1.28328 −0.0487477
\(694\) 0 0
\(695\) 17.5336 0.665086
\(696\) 0 0
\(697\) 44.3499 1.67987
\(698\) 0 0
\(699\) −13.7553 −0.520273
\(700\) 0 0
\(701\) −50.2864 −1.89929 −0.949646 0.313324i \(-0.898557\pi\)
−0.949646 + 0.313324i \(0.898557\pi\)
\(702\) 0 0
\(703\) −2.37230 −0.0894729
\(704\) 0 0
\(705\) −8.02718 −0.302321
\(706\) 0 0
\(707\) −4.41059 −0.165877
\(708\) 0 0
\(709\) 10.6030 0.398203 0.199102 0.979979i \(-0.436198\pi\)
0.199102 + 0.979979i \(0.436198\pi\)
\(710\) 0 0
\(711\) 4.69799 0.176188
\(712\) 0 0
\(713\) 25.7936 0.965977
\(714\) 0 0
\(715\) 27.5656 1.03089
\(716\) 0 0
\(717\) 12.8533 0.480016
\(718\) 0 0
\(719\) −50.7851 −1.89397 −0.946983 0.321284i \(-0.895886\pi\)
−0.946983 + 0.321284i \(0.895886\pi\)
\(720\) 0 0
\(721\) 3.94142 0.146786
\(722\) 0 0
\(723\) −31.0961 −1.15648
\(724\) 0 0
\(725\) −7.23404 −0.268666
\(726\) 0 0
\(727\) 17.9301 0.664990 0.332495 0.943105i \(-0.392110\pi\)
0.332495 + 0.943105i \(0.392110\pi\)
\(728\) 0 0
\(729\) 27.0669 1.00248
\(730\) 0 0
\(731\) −5.51046 −0.203812
\(732\) 0 0
\(733\) 26.8303 0.990999 0.495500 0.868608i \(-0.334985\pi\)
0.495500 + 0.868608i \(0.334985\pi\)
\(734\) 0 0
\(735\) 18.7746 0.692511
\(736\) 0 0
\(737\) −8.06433 −0.297053
\(738\) 0 0
\(739\) −25.1889 −0.926587 −0.463294 0.886205i \(-0.653332\pi\)
−0.463294 + 0.886205i \(0.653332\pi\)
\(740\) 0 0
\(741\) −3.46303 −0.127218
\(742\) 0 0
\(743\) −22.3360 −0.819430 −0.409715 0.912214i \(-0.634372\pi\)
−0.409715 + 0.912214i \(0.634372\pi\)
\(744\) 0 0
\(745\) −41.0763 −1.50492
\(746\) 0 0
\(747\) −8.95837 −0.327770
\(748\) 0 0
\(749\) −3.53277 −0.129085
\(750\) 0 0
\(751\) −23.4082 −0.854176 −0.427088 0.904210i \(-0.640461\pi\)
−0.427088 + 0.904210i \(0.640461\pi\)
\(752\) 0 0
\(753\) −31.8517 −1.16074
\(754\) 0 0
\(755\) 44.1312 1.60610
\(756\) 0 0
\(757\) 15.8828 0.577271 0.288635 0.957439i \(-0.406798\pi\)
0.288635 + 0.957439i \(0.406798\pi\)
\(758\) 0 0
\(759\) −16.0623 −0.583023
\(760\) 0 0
\(761\) 11.3967 0.413129 0.206564 0.978433i \(-0.433772\pi\)
0.206564 + 0.978433i \(0.433772\pi\)
\(762\) 0 0
\(763\) −0.652753 −0.0236312
\(764\) 0 0
\(765\) 14.1482 0.511528
\(766\) 0 0
\(767\) 17.2285 0.622085
\(768\) 0 0
\(769\) 28.4670 1.02655 0.513274 0.858225i \(-0.328432\pi\)
0.513274 + 0.858225i \(0.328432\pi\)
\(770\) 0 0
\(771\) −26.3469 −0.948861
\(772\) 0 0
\(773\) 22.8660 0.822432 0.411216 0.911538i \(-0.365104\pi\)
0.411216 + 0.911538i \(0.365104\pi\)
\(774\) 0 0
\(775\) 6.00431 0.215681
\(776\) 0 0
\(777\) −1.41367 −0.0507153
\(778\) 0 0
\(779\) 5.30501 0.190072
\(780\) 0 0
\(781\) −23.9198 −0.855919
\(782\) 0 0
\(783\) −49.9790 −1.78610
\(784\) 0 0
\(785\) 10.2282 0.365059
\(786\) 0 0
\(787\) 0.582587 0.0207670 0.0103835 0.999946i \(-0.496695\pi\)
0.0103835 + 0.999946i \(0.496695\pi\)
\(788\) 0 0
\(789\) −7.40371 −0.263579
\(790\) 0 0
\(791\) −3.81636 −0.135694
\(792\) 0 0
\(793\) 0.922785 0.0327691
\(794\) 0 0
\(795\) 17.4786 0.619903
\(796\) 0 0
\(797\) −4.59138 −0.162635 −0.0813176 0.996688i \(-0.525913\pi\)
−0.0813176 + 0.996688i \(0.525913\pi\)
\(798\) 0 0
\(799\) 16.5261 0.584651
\(800\) 0 0
\(801\) −17.6600 −0.623985
\(802\) 0 0
\(803\) 16.4776 0.581480
\(804\) 0 0
\(805\) 2.14877 0.0757342
\(806\) 0 0
\(807\) −23.8621 −0.839985
\(808\) 0 0
\(809\) −18.1700 −0.638824 −0.319412 0.947616i \(-0.603485\pi\)
−0.319412 + 0.947616i \(0.603485\pi\)
\(810\) 0 0
\(811\) 53.0220 1.86185 0.930926 0.365207i \(-0.119002\pi\)
0.930926 + 0.365207i \(0.119002\pi\)
\(812\) 0 0
\(813\) −6.16825 −0.216330
\(814\) 0 0
\(815\) −36.3849 −1.27451
\(816\) 0 0
\(817\) −0.659146 −0.0230606
\(818\) 0 0
\(819\) 1.44647 0.0505438
\(820\) 0 0
\(821\) 36.7124 1.28127 0.640635 0.767845i \(-0.278671\pi\)
0.640635 + 0.767845i \(0.278671\pi\)
\(822\) 0 0
\(823\) 49.3411 1.71992 0.859961 0.510360i \(-0.170488\pi\)
0.859961 + 0.510360i \(0.170488\pi\)
\(824\) 0 0
\(825\) −3.73902 −0.130176
\(826\) 0 0
\(827\) 34.0759 1.18494 0.592468 0.805594i \(-0.298154\pi\)
0.592468 + 0.805594i \(0.298154\pi\)
\(828\) 0 0
\(829\) −16.5307 −0.574134 −0.287067 0.957911i \(-0.592680\pi\)
−0.287067 + 0.957911i \(0.592680\pi\)
\(830\) 0 0
\(831\) 25.5092 0.884903
\(832\) 0 0
\(833\) −38.6525 −1.33923
\(834\) 0 0
\(835\) 47.3064 1.63711
\(836\) 0 0
\(837\) 41.4830 1.43386
\(838\) 0 0
\(839\) 13.6583 0.471538 0.235769 0.971809i \(-0.424239\pi\)
0.235769 + 0.971809i \(0.424239\pi\)
\(840\) 0 0
\(841\) 49.9179 1.72131
\(842\) 0 0
\(843\) 23.5276 0.810332
\(844\) 0 0
\(845\) −4.47443 −0.153925
\(846\) 0 0
\(847\) 0.286269 0.00983633
\(848\) 0 0
\(849\) −23.5100 −0.806862
\(850\) 0 0
\(851\) 12.4025 0.425151
\(852\) 0 0
\(853\) −28.4297 −0.973414 −0.486707 0.873565i \(-0.661802\pi\)
−0.486707 + 0.873565i \(0.661802\pi\)
\(854\) 0 0
\(855\) 1.69236 0.0578777
\(856\) 0 0
\(857\) 27.5759 0.941975 0.470988 0.882140i \(-0.343898\pi\)
0.470988 + 0.882140i \(0.343898\pi\)
\(858\) 0 0
\(859\) 28.7472 0.980843 0.490422 0.871485i \(-0.336843\pi\)
0.490422 + 0.871485i \(0.336843\pi\)
\(860\) 0 0
\(861\) 3.16131 0.107737
\(862\) 0 0
\(863\) −28.4792 −0.969444 −0.484722 0.874668i \(-0.661079\pi\)
−0.484722 + 0.874668i \(0.661079\pi\)
\(864\) 0 0
\(865\) 34.3950 1.16947
\(866\) 0 0
\(867\) 18.9791 0.644562
\(868\) 0 0
\(869\) −13.1387 −0.445699
\(870\) 0 0
\(871\) 9.08986 0.307998
\(872\) 0 0
\(873\) 13.3714 0.452554
\(874\) 0 0
\(875\) 3.57147 0.120738
\(876\) 0 0
\(877\) −38.9562 −1.31546 −0.657729 0.753255i \(-0.728483\pi\)
−0.657729 + 0.753255i \(0.728483\pi\)
\(878\) 0 0
\(879\) −4.16030 −0.140323
\(880\) 0 0
\(881\) −47.3697 −1.59593 −0.797963 0.602707i \(-0.794089\pi\)
−0.797963 + 0.602707i \(0.794089\pi\)
\(882\) 0 0
\(883\) −30.7696 −1.03548 −0.517739 0.855539i \(-0.673226\pi\)
−0.517739 + 0.855539i \(0.673226\pi\)
\(884\) 0 0
\(885\) 12.0119 0.403776
\(886\) 0 0
\(887\) 10.3300 0.346846 0.173423 0.984847i \(-0.444517\pi\)
0.173423 + 0.984847i \(0.444517\pi\)
\(888\) 0 0
\(889\) −4.86795 −0.163266
\(890\) 0 0
\(891\) −13.0098 −0.435844
\(892\) 0 0
\(893\) 1.97681 0.0661514
\(894\) 0 0
\(895\) 38.8291 1.29791
\(896\) 0 0
\(897\) 18.1049 0.604505
\(898\) 0 0
\(899\) −65.5025 −2.18463
\(900\) 0 0
\(901\) −35.9844 −1.19881
\(902\) 0 0
\(903\) −0.392791 −0.0130713
\(904\) 0 0
\(905\) −16.8258 −0.559309
\(906\) 0 0
\(907\) 48.0569 1.59570 0.797851 0.602854i \(-0.205970\pi\)
0.797851 + 0.602854i \(0.205970\pi\)
\(908\) 0 0
\(909\) 18.1610 0.602363
\(910\) 0 0
\(911\) −32.9823 −1.09275 −0.546376 0.837540i \(-0.683993\pi\)
−0.546376 + 0.837540i \(0.683993\pi\)
\(912\) 0 0
\(913\) 25.0535 0.829148
\(914\) 0 0
\(915\) 0.643376 0.0212694
\(916\) 0 0
\(917\) 0.551696 0.0182186
\(918\) 0 0
\(919\) 22.9775 0.757959 0.378979 0.925405i \(-0.376275\pi\)
0.378979 + 0.925405i \(0.376275\pi\)
\(920\) 0 0
\(921\) −0.289333 −0.00953384
\(922\) 0 0
\(923\) 26.9617 0.887455
\(924\) 0 0
\(925\) 2.88709 0.0949269
\(926\) 0 0
\(927\) −16.2291 −0.533035
\(928\) 0 0
\(929\) 33.4643 1.09793 0.548964 0.835846i \(-0.315022\pi\)
0.548964 + 0.835846i \(0.315022\pi\)
\(930\) 0 0
\(931\) −4.62351 −0.151529
\(932\) 0 0
\(933\) 22.9258 0.750556
\(934\) 0 0
\(935\) −39.5675 −1.29400
\(936\) 0 0
\(937\) −12.3697 −0.404101 −0.202050 0.979375i \(-0.564760\pi\)
−0.202050 + 0.979375i \(0.564760\pi\)
\(938\) 0 0
\(939\) 15.4458 0.504056
\(940\) 0 0
\(941\) −14.7118 −0.479590 −0.239795 0.970824i \(-0.577080\pi\)
−0.239795 + 0.970824i \(0.577080\pi\)
\(942\) 0 0
\(943\) −27.7348 −0.903171
\(944\) 0 0
\(945\) 3.45580 0.112417
\(946\) 0 0
\(947\) −49.1993 −1.59876 −0.799381 0.600824i \(-0.794839\pi\)
−0.799381 + 0.600824i \(0.794839\pi\)
\(948\) 0 0
\(949\) −18.5730 −0.602905
\(950\) 0 0
\(951\) 6.67001 0.216290
\(952\) 0 0
\(953\) 2.42440 0.0785342 0.0392671 0.999229i \(-0.487498\pi\)
0.0392671 + 0.999229i \(0.487498\pi\)
\(954\) 0 0
\(955\) 6.78984 0.219714
\(956\) 0 0
\(957\) 40.7899 1.31855
\(958\) 0 0
\(959\) 1.77101 0.0571890
\(960\) 0 0
\(961\) 23.3676 0.753792
\(962\) 0 0
\(963\) 14.5465 0.468755
\(964\) 0 0
\(965\) −45.6098 −1.46823
\(966\) 0 0
\(967\) −37.1967 −1.19617 −0.598083 0.801434i \(-0.704071\pi\)
−0.598083 + 0.801434i \(0.704071\pi\)
\(968\) 0 0
\(969\) 4.97083 0.159686
\(970\) 0 0
\(971\) −42.2843 −1.35697 −0.678484 0.734615i \(-0.737363\pi\)
−0.678484 + 0.734615i \(0.737363\pi\)
\(972\) 0 0
\(973\) −2.57307 −0.0824889
\(974\) 0 0
\(975\) 4.21451 0.134973
\(976\) 0 0
\(977\) −47.6762 −1.52530 −0.762648 0.646813i \(-0.776101\pi\)
−0.762648 + 0.646813i \(0.776101\pi\)
\(978\) 0 0
\(979\) 49.3889 1.57848
\(980\) 0 0
\(981\) 2.68777 0.0858139
\(982\) 0 0
\(983\) −26.4277 −0.842912 −0.421456 0.906849i \(-0.638481\pi\)
−0.421456 + 0.906849i \(0.638481\pi\)
\(984\) 0 0
\(985\) −25.0451 −0.798004
\(986\) 0 0
\(987\) 1.17800 0.0374961
\(988\) 0 0
\(989\) 3.44604 0.109578
\(990\) 0 0
\(991\) 20.0705 0.637561 0.318780 0.947829i \(-0.396727\pi\)
0.318780 + 0.947829i \(0.396727\pi\)
\(992\) 0 0
\(993\) −9.92211 −0.314869
\(994\) 0 0
\(995\) 37.3100 1.18281
\(996\) 0 0
\(997\) −42.8122 −1.35587 −0.677937 0.735120i \(-0.737126\pi\)
−0.677937 + 0.735120i \(0.737126\pi\)
\(998\) 0 0
\(999\) 19.9465 0.631079
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6544.2.a.i.1.14 20
4.3 odd 2 409.2.a.b.1.5 20
12.11 even 2 3681.2.a.i.1.16 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.5 20 4.3 odd 2
3681.2.a.i.1.16 20 12.11 even 2
6544.2.a.i.1.14 20 1.1 even 1 trivial