Properties

Label 409.2.a.b.1.5
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.38030\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.38030 q^{2} -1.32806 q^{3} -0.0947758 q^{4} -2.04589 q^{5} +1.83312 q^{6} -0.300238 q^{7} +2.89142 q^{8} -1.23626 q^{9} +2.82394 q^{10} -3.45738 q^{11} +0.125868 q^{12} -3.89705 q^{13} +0.414418 q^{14} +2.71707 q^{15} -3.80147 q^{16} +5.59382 q^{17} +1.70640 q^{18} -0.669118 q^{19} +0.193901 q^{20} +0.398734 q^{21} +4.77222 q^{22} +3.49818 q^{23} -3.83997 q^{24} -0.814317 q^{25} +5.37910 q^{26} +5.62600 q^{27} +0.0284553 q^{28} +8.88357 q^{29} -3.75037 q^{30} +7.37344 q^{31} -0.535674 q^{32} +4.59161 q^{33} -7.72114 q^{34} +0.614254 q^{35} +0.117167 q^{36} -3.54541 q^{37} +0.923582 q^{38} +5.17552 q^{39} -5.91553 q^{40} +7.92837 q^{41} -0.550371 q^{42} +0.985097 q^{43} +0.327676 q^{44} +2.52925 q^{45} -4.82853 q^{46} -2.95435 q^{47} +5.04858 q^{48} -6.90986 q^{49} +1.12400 q^{50} -7.42893 q^{51} +0.369346 q^{52} -6.43289 q^{53} -7.76556 q^{54} +7.07343 q^{55} -0.868112 q^{56} +0.888629 q^{57} -12.2620 q^{58} +4.42090 q^{59} -0.257513 q^{60} -0.236790 q^{61} -10.1775 q^{62} +0.371170 q^{63} +8.34232 q^{64} +7.97296 q^{65} -6.33779 q^{66} +2.33250 q^{67} -0.530159 q^{68} -4.64579 q^{69} -0.847854 q^{70} +6.91848 q^{71} -3.57453 q^{72} +4.76591 q^{73} +4.89373 q^{74} +1.08146 q^{75} +0.0634161 q^{76} +1.03804 q^{77} -7.14377 q^{78} +3.80018 q^{79} +7.77740 q^{80} -3.76290 q^{81} -10.9435 q^{82} -7.24637 q^{83} -0.0377903 q^{84} -11.4444 q^{85} -1.35973 q^{86} -11.7979 q^{87} -9.99672 q^{88} +14.2851 q^{89} -3.49112 q^{90} +1.17004 q^{91} -0.331542 q^{92} -9.79237 q^{93} +4.07789 q^{94} +1.36894 q^{95} +0.711407 q^{96} -10.8161 q^{97} +9.53767 q^{98} +4.27421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38030 −0.976018 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(3\) −1.32806 −0.766756 −0.383378 0.923592i \(-0.625239\pi\)
−0.383378 + 0.923592i \(0.625239\pi\)
\(4\) −0.0947758 −0.0473879
\(5\) −2.04589 −0.914952 −0.457476 0.889222i \(-0.651246\pi\)
−0.457476 + 0.889222i \(0.651246\pi\)
\(6\) 1.83312 0.748368
\(7\) −0.300238 −0.113479 −0.0567396 0.998389i \(-0.518070\pi\)
−0.0567396 + 0.998389i \(0.518070\pi\)
\(8\) 2.89142 1.02227
\(9\) −1.23626 −0.412085
\(10\) 2.82394 0.893010
\(11\) −3.45738 −1.04244 −0.521220 0.853423i \(-0.674523\pi\)
−0.521220 + 0.853423i \(0.674523\pi\)
\(12\) 0.125868 0.0363350
\(13\) −3.89705 −1.08085 −0.540424 0.841393i \(-0.681736\pi\)
−0.540424 + 0.841393i \(0.681736\pi\)
\(14\) 0.414418 0.110758
\(15\) 2.71707 0.701545
\(16\) −3.80147 −0.950366
\(17\) 5.59382 1.35670 0.678350 0.734739i \(-0.262695\pi\)
0.678350 + 0.734739i \(0.262695\pi\)
\(18\) 1.70640 0.402203
\(19\) −0.669118 −0.153506 −0.0767531 0.997050i \(-0.524455\pi\)
−0.0767531 + 0.997050i \(0.524455\pi\)
\(20\) 0.193901 0.0433576
\(21\) 0.398734 0.0870108
\(22\) 4.77222 1.01744
\(23\) 3.49818 0.729420 0.364710 0.931121i \(-0.381168\pi\)
0.364710 + 0.931121i \(0.381168\pi\)
\(24\) −3.83997 −0.783832
\(25\) −0.814317 −0.162863
\(26\) 5.37910 1.05493
\(27\) 5.62600 1.08272
\(28\) 0.0284553 0.00537754
\(29\) 8.88357 1.64964 0.824819 0.565397i \(-0.191277\pi\)
0.824819 + 0.565397i \(0.191277\pi\)
\(30\) −3.75037 −0.684721
\(31\) 7.37344 1.32431 0.662154 0.749368i \(-0.269642\pi\)
0.662154 + 0.749368i \(0.269642\pi\)
\(32\) −0.535674 −0.0946947
\(33\) 4.59161 0.799297
\(34\) −7.72114 −1.32416
\(35\) 0.614254 0.103828
\(36\) 0.117167 0.0195279
\(37\) −3.54541 −0.582862 −0.291431 0.956592i \(-0.594131\pi\)
−0.291431 + 0.956592i \(0.594131\pi\)
\(38\) 0.923582 0.149825
\(39\) 5.17552 0.828747
\(40\) −5.91553 −0.935328
\(41\) 7.92837 1.23820 0.619102 0.785311i \(-0.287497\pi\)
0.619102 + 0.785311i \(0.287497\pi\)
\(42\) −0.550371 −0.0849242
\(43\) 0.985097 0.150226 0.0751130 0.997175i \(-0.476068\pi\)
0.0751130 + 0.997175i \(0.476068\pi\)
\(44\) 0.327676 0.0493990
\(45\) 2.52925 0.377038
\(46\) −4.82853 −0.711927
\(47\) −2.95435 −0.430936 −0.215468 0.976511i \(-0.569128\pi\)
−0.215468 + 0.976511i \(0.569128\pi\)
\(48\) 5.04858 0.728699
\(49\) −6.90986 −0.987122
\(50\) 1.12400 0.158958
\(51\) −7.42893 −1.04026
\(52\) 0.369346 0.0512191
\(53\) −6.43289 −0.883625 −0.441813 0.897107i \(-0.645664\pi\)
−0.441813 + 0.897107i \(0.645664\pi\)
\(54\) −7.76556 −1.05676
\(55\) 7.07343 0.953782
\(56\) −0.868112 −0.116006
\(57\) 0.888629 0.117702
\(58\) −12.2620 −1.61008
\(59\) 4.42090 0.575552 0.287776 0.957698i \(-0.407084\pi\)
0.287776 + 0.957698i \(0.407084\pi\)
\(60\) −0.257513 −0.0332447
\(61\) −0.236790 −0.0303179 −0.0151590 0.999885i \(-0.504825\pi\)
−0.0151590 + 0.999885i \(0.504825\pi\)
\(62\) −10.1775 −1.29255
\(63\) 0.371170 0.0467631
\(64\) 8.34232 1.04279
\(65\) 7.97296 0.988924
\(66\) −6.33779 −0.780128
\(67\) 2.33250 0.284960 0.142480 0.989798i \(-0.454492\pi\)
0.142480 + 0.989798i \(0.454492\pi\)
\(68\) −0.530159 −0.0642912
\(69\) −4.64579 −0.559287
\(70\) −0.847854 −0.101338
\(71\) 6.91848 0.821073 0.410536 0.911844i \(-0.365341\pi\)
0.410536 + 0.911844i \(0.365341\pi\)
\(72\) −3.57453 −0.421262
\(73\) 4.76591 0.557807 0.278904 0.960319i \(-0.410029\pi\)
0.278904 + 0.960319i \(0.410029\pi\)
\(74\) 4.89373 0.568884
\(75\) 1.08146 0.124876
\(76\) 0.0634161 0.00727433
\(77\) 1.03804 0.118295
\(78\) −7.14377 −0.808872
\(79\) 3.80018 0.427553 0.213777 0.976883i \(-0.431423\pi\)
0.213777 + 0.976883i \(0.431423\pi\)
\(80\) 7.77740 0.869539
\(81\) −3.76290 −0.418100
\(82\) −10.9435 −1.20851
\(83\) −7.24637 −0.795392 −0.397696 0.917517i \(-0.630190\pi\)
−0.397696 + 0.917517i \(0.630190\pi\)
\(84\) −0.0377903 −0.00412326
\(85\) −11.4444 −1.24132
\(86\) −1.35973 −0.146623
\(87\) −11.7979 −1.26487
\(88\) −9.99672 −1.06565
\(89\) 14.2851 1.51421 0.757107 0.653291i \(-0.226612\pi\)
0.757107 + 0.653291i \(0.226612\pi\)
\(90\) −3.49112 −0.367996
\(91\) 1.17004 0.122654
\(92\) −0.331542 −0.0345657
\(93\) −9.79237 −1.01542
\(94\) 4.07789 0.420602
\(95\) 1.36894 0.140451
\(96\) 0.711407 0.0726077
\(97\) −10.8161 −1.09820 −0.549102 0.835755i \(-0.685030\pi\)
−0.549102 + 0.835755i \(0.685030\pi\)
\(98\) 9.53767 0.963450
\(99\) 4.27421 0.429574
\(100\) 0.0771775 0.00771775
\(101\) −14.6903 −1.46174 −0.730872 0.682515i \(-0.760886\pi\)
−0.730872 + 0.682515i \(0.760886\pi\)
\(102\) 10.2541 1.01531
\(103\) −13.1277 −1.29351 −0.646753 0.762699i \(-0.723874\pi\)
−0.646753 + 0.762699i \(0.723874\pi\)
\(104\) −11.2680 −1.10492
\(105\) −0.815767 −0.0796107
\(106\) 8.87931 0.862435
\(107\) 11.7666 1.13752 0.568760 0.822504i \(-0.307423\pi\)
0.568760 + 0.822504i \(0.307423\pi\)
\(108\) −0.533209 −0.0513080
\(109\) −2.17412 −0.208243 −0.104122 0.994565i \(-0.533203\pi\)
−0.104122 + 0.994565i \(0.533203\pi\)
\(110\) −9.76345 −0.930908
\(111\) 4.70852 0.446913
\(112\) 1.14134 0.107847
\(113\) −12.7111 −1.19576 −0.597881 0.801585i \(-0.703991\pi\)
−0.597881 + 0.801585i \(0.703991\pi\)
\(114\) −1.22657 −0.114879
\(115\) −7.15690 −0.667384
\(116\) −0.841948 −0.0781729
\(117\) 4.81776 0.445402
\(118\) −6.10216 −0.561750
\(119\) −1.67947 −0.153957
\(120\) 7.85618 0.717168
\(121\) 0.953476 0.0866796
\(122\) 0.326841 0.0295908
\(123\) −10.5294 −0.949400
\(124\) −0.698823 −0.0627562
\(125\) 11.8955 1.06396
\(126\) −0.512326 −0.0456416
\(127\) 16.2137 1.43873 0.719365 0.694633i \(-0.244433\pi\)
0.719365 + 0.694633i \(0.244433\pi\)
\(128\) −10.4435 −0.923088
\(129\) −1.30827 −0.115187
\(130\) −11.0051 −0.965208
\(131\) −1.83753 −0.160546 −0.0802729 0.996773i \(-0.525579\pi\)
−0.0802729 + 0.996773i \(0.525579\pi\)
\(132\) −0.435173 −0.0378770
\(133\) 0.200894 0.0174197
\(134\) −3.21954 −0.278126
\(135\) −11.5102 −0.990641
\(136\) 16.1741 1.38691
\(137\) 5.89871 0.503961 0.251980 0.967732i \(-0.418918\pi\)
0.251980 + 0.967732i \(0.418918\pi\)
\(138\) 6.41257 0.545875
\(139\) 8.57012 0.726908 0.363454 0.931612i \(-0.381597\pi\)
0.363454 + 0.931612i \(0.381597\pi\)
\(140\) −0.0582164 −0.00492019
\(141\) 3.92356 0.330423
\(142\) −9.54957 −0.801382
\(143\) 13.4736 1.12672
\(144\) 4.69958 0.391632
\(145\) −18.1749 −1.50934
\(146\) −6.57837 −0.544430
\(147\) 9.17671 0.756882
\(148\) 0.336019 0.0276206
\(149\) 20.0774 1.64481 0.822403 0.568905i \(-0.192633\pi\)
0.822403 + 0.568905i \(0.192633\pi\)
\(150\) −1.49274 −0.121882
\(151\) 21.5706 1.75539 0.877696 0.479218i \(-0.159080\pi\)
0.877696 + 0.479218i \(0.159080\pi\)
\(152\) −1.93470 −0.156925
\(153\) −6.91539 −0.559076
\(154\) −1.43280 −0.115458
\(155\) −15.0853 −1.21168
\(156\) −0.490514 −0.0392726
\(157\) −4.99937 −0.398993 −0.199497 0.979899i \(-0.563931\pi\)
−0.199497 + 0.979899i \(0.563931\pi\)
\(158\) −5.24538 −0.417300
\(159\) 8.54327 0.677525
\(160\) 1.09593 0.0866411
\(161\) −1.05028 −0.0827740
\(162\) 5.19393 0.408074
\(163\) −17.7843 −1.39298 −0.696488 0.717568i \(-0.745255\pi\)
−0.696488 + 0.717568i \(0.745255\pi\)
\(164\) −0.751418 −0.0586759
\(165\) −9.39395 −0.731318
\(166\) 10.0022 0.776318
\(167\) 23.1226 1.78928 0.894640 0.446787i \(-0.147432\pi\)
0.894640 + 0.446787i \(0.147432\pi\)
\(168\) 1.15290 0.0889485
\(169\) 2.18703 0.168233
\(170\) 15.7966 1.21155
\(171\) 0.827201 0.0632576
\(172\) −0.0933634 −0.00711889
\(173\) −16.8117 −1.27817 −0.639087 0.769135i \(-0.720687\pi\)
−0.639087 + 0.769135i \(0.720687\pi\)
\(174\) 16.2847 1.23454
\(175\) 0.244489 0.0184816
\(176\) 13.1431 0.990699
\(177\) −5.87122 −0.441308
\(178\) −19.7176 −1.47790
\(179\) 18.9790 1.41856 0.709280 0.704927i \(-0.249020\pi\)
0.709280 + 0.704927i \(0.249020\pi\)
\(180\) −0.239712 −0.0178670
\(181\) 8.22419 0.611299 0.305649 0.952144i \(-0.401126\pi\)
0.305649 + 0.952144i \(0.401126\pi\)
\(182\) −1.61501 −0.119712
\(183\) 0.314472 0.0232464
\(184\) 10.1147 0.745664
\(185\) 7.25354 0.533291
\(186\) 13.5164 0.991070
\(187\) −19.3400 −1.41428
\(188\) 0.280001 0.0204212
\(189\) −1.68914 −0.122867
\(190\) −1.88955 −0.137082
\(191\) 3.31876 0.240137 0.120069 0.992766i \(-0.461689\pi\)
0.120069 + 0.992766i \(0.461689\pi\)
\(192\) −11.0791 −0.799566
\(193\) 22.2933 1.60471 0.802355 0.596848i \(-0.203580\pi\)
0.802355 + 0.596848i \(0.203580\pi\)
\(194\) 14.9294 1.07187
\(195\) −10.5886 −0.758263
\(196\) 0.654887 0.0467777
\(197\) 12.2417 0.872182 0.436091 0.899903i \(-0.356363\pi\)
0.436091 + 0.899903i \(0.356363\pi\)
\(198\) −5.89968 −0.419272
\(199\) 18.2365 1.29275 0.646377 0.763018i \(-0.276283\pi\)
0.646377 + 0.763018i \(0.276283\pi\)
\(200\) −2.35453 −0.166490
\(201\) −3.09770 −0.218495
\(202\) 20.2771 1.42669
\(203\) −2.66718 −0.187200
\(204\) 0.704083 0.0492956
\(205\) −16.2206 −1.13290
\(206\) 18.1201 1.26249
\(207\) −4.32464 −0.300583
\(208\) 14.8145 1.02720
\(209\) 2.31339 0.160021
\(210\) 1.12600 0.0777015
\(211\) −1.49736 −0.103082 −0.0515411 0.998671i \(-0.516413\pi\)
−0.0515411 + 0.998671i \(0.516413\pi\)
\(212\) 0.609682 0.0418731
\(213\) −9.18816 −0.629563
\(214\) −16.2414 −1.11024
\(215\) −2.01540 −0.137449
\(216\) 16.2671 1.10684
\(217\) −2.21378 −0.150281
\(218\) 3.00094 0.203249
\(219\) −6.32941 −0.427702
\(220\) −0.670390 −0.0451977
\(221\) −21.7994 −1.46639
\(222\) −6.49916 −0.436195
\(223\) 0.368166 0.0246542 0.0123271 0.999924i \(-0.496076\pi\)
0.0123271 + 0.999924i \(0.496076\pi\)
\(224\) 0.160829 0.0107459
\(225\) 1.00670 0.0671136
\(226\) 17.5452 1.16709
\(227\) 20.1086 1.33465 0.667326 0.744765i \(-0.267439\pi\)
0.667326 + 0.744765i \(0.267439\pi\)
\(228\) −0.0842205 −0.00557764
\(229\) −19.5150 −1.28958 −0.644792 0.764358i \(-0.723056\pi\)
−0.644792 + 0.764358i \(0.723056\pi\)
\(230\) 9.87865 0.651379
\(231\) −1.37857 −0.0907035
\(232\) 25.6861 1.68638
\(233\) −10.3574 −0.678537 −0.339269 0.940690i \(-0.610180\pi\)
−0.339269 + 0.940690i \(0.610180\pi\)
\(234\) −6.64994 −0.434720
\(235\) 6.04429 0.394286
\(236\) −0.418994 −0.0272742
\(237\) −5.04687 −0.327829
\(238\) 2.31818 0.150265
\(239\) −9.67826 −0.626034 −0.313017 0.949747i \(-0.601340\pi\)
−0.313017 + 0.949747i \(0.601340\pi\)
\(240\) −10.3289 −0.666725
\(241\) −23.4147 −1.50827 −0.754137 0.656718i \(-0.771944\pi\)
−0.754137 + 0.656718i \(0.771944\pi\)
\(242\) −1.31608 −0.0846009
\(243\) −11.8806 −0.762144
\(244\) 0.0224420 0.00143670
\(245\) 14.1368 0.903169
\(246\) 14.5337 0.926632
\(247\) 2.60759 0.165917
\(248\) 21.3197 1.35380
\(249\) 9.62362 0.609872
\(250\) −16.4193 −1.03845
\(251\) 23.9836 1.51383 0.756917 0.653511i \(-0.226705\pi\)
0.756917 + 0.653511i \(0.226705\pi\)
\(252\) −0.0351780 −0.00221600
\(253\) −12.0945 −0.760376
\(254\) −22.3797 −1.40423
\(255\) 15.1988 0.951786
\(256\) −2.26943 −0.141839
\(257\) −19.8386 −1.23750 −0.618750 0.785588i \(-0.712361\pi\)
−0.618750 + 0.785588i \(0.712361\pi\)
\(258\) 1.80580 0.112424
\(259\) 1.06447 0.0661427
\(260\) −0.755644 −0.0468630
\(261\) −10.9824 −0.679792
\(262\) 2.53634 0.156696
\(263\) 5.57483 0.343759 0.171879 0.985118i \(-0.445016\pi\)
0.171879 + 0.985118i \(0.445016\pi\)
\(264\) 13.2763 0.817097
\(265\) 13.1610 0.808475
\(266\) −0.277294 −0.0170020
\(267\) −18.9714 −1.16103
\(268\) −0.221064 −0.0135036
\(269\) −17.9676 −1.09550 −0.547752 0.836641i \(-0.684516\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(270\) 15.8875 0.966884
\(271\) 4.64456 0.282137 0.141068 0.990000i \(-0.454946\pi\)
0.141068 + 0.990000i \(0.454946\pi\)
\(272\) −21.2647 −1.28936
\(273\) −1.55389 −0.0940455
\(274\) −8.14198 −0.491875
\(275\) 2.81540 0.169775
\(276\) 0.440308 0.0265034
\(277\) 19.2078 1.15409 0.577043 0.816714i \(-0.304206\pi\)
0.577043 + 0.816714i \(0.304206\pi\)
\(278\) −11.8293 −0.709476
\(279\) −9.11545 −0.545728
\(280\) 1.77606 0.106140
\(281\) 17.7157 1.05683 0.528416 0.848986i \(-0.322786\pi\)
0.528416 + 0.848986i \(0.322786\pi\)
\(282\) −5.41568 −0.322499
\(283\) 17.7025 1.05231 0.526153 0.850390i \(-0.323634\pi\)
0.526153 + 0.850390i \(0.323634\pi\)
\(284\) −0.655705 −0.0389089
\(285\) −1.81804 −0.107691
\(286\) −18.5976 −1.09970
\(287\) −2.38040 −0.140510
\(288\) 0.662230 0.0390223
\(289\) 14.2908 0.840636
\(290\) 25.0867 1.47314
\(291\) 14.3644 0.842054
\(292\) −0.451693 −0.0264333
\(293\) −3.13261 −0.183009 −0.0915047 0.995805i \(-0.529168\pi\)
−0.0915047 + 0.995805i \(0.529168\pi\)
\(294\) −12.6666 −0.738731
\(295\) −9.04469 −0.526602
\(296\) −10.2513 −0.595842
\(297\) −19.4512 −1.12867
\(298\) −27.7128 −1.60536
\(299\) −13.6326 −0.788392
\(300\) −0.102496 −0.00591763
\(301\) −0.295763 −0.0170475
\(302\) −29.7739 −1.71329
\(303\) 19.5097 1.12080
\(304\) 2.54363 0.145887
\(305\) 0.484448 0.0277394
\(306\) 9.54530 0.545669
\(307\) 0.217861 0.0124340 0.00621700 0.999981i \(-0.498021\pi\)
0.00621700 + 0.999981i \(0.498021\pi\)
\(308\) −0.0983806 −0.00560576
\(309\) 17.4343 0.991804
\(310\) 20.8222 1.18262
\(311\) −17.2626 −0.978872 −0.489436 0.872039i \(-0.662797\pi\)
−0.489436 + 0.872039i \(0.662797\pi\)
\(312\) 14.9646 0.847203
\(313\) 11.6304 0.657388 0.328694 0.944437i \(-0.393392\pi\)
0.328694 + 0.944437i \(0.393392\pi\)
\(314\) 6.90062 0.389425
\(315\) −0.759376 −0.0427860
\(316\) −0.360165 −0.0202609
\(317\) 5.02237 0.282085 0.141042 0.990004i \(-0.454955\pi\)
0.141042 + 0.990004i \(0.454955\pi\)
\(318\) −11.7923 −0.661277
\(319\) −30.7139 −1.71965
\(320\) −17.0675 −0.954103
\(321\) −15.6267 −0.872200
\(322\) 1.44971 0.0807889
\(323\) −3.74292 −0.208262
\(324\) 0.356632 0.0198129
\(325\) 3.17344 0.176031
\(326\) 24.5477 1.35957
\(327\) 2.88736 0.159672
\(328\) 22.9242 1.26578
\(329\) 0.887007 0.0489023
\(330\) 12.9665 0.713780
\(331\) 7.47113 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(332\) 0.686780 0.0376920
\(333\) 4.38303 0.240189
\(334\) −31.9161 −1.74637
\(335\) −4.77204 −0.260724
\(336\) −1.51577 −0.0826922
\(337\) 14.1266 0.769525 0.384763 0.923016i \(-0.374283\pi\)
0.384763 + 0.923016i \(0.374283\pi\)
\(338\) −3.01875 −0.164198
\(339\) 16.8811 0.916858
\(340\) 1.08465 0.0588233
\(341\) −25.4928 −1.38051
\(342\) −1.14178 −0.0617406
\(343\) 4.17626 0.225497
\(344\) 2.84833 0.153571
\(345\) 9.50479 0.511721
\(346\) 23.2052 1.24752
\(347\) −17.3816 −0.933091 −0.466546 0.884497i \(-0.654502\pi\)
−0.466546 + 0.884497i \(0.654502\pi\)
\(348\) 1.11816 0.0599395
\(349\) −11.3743 −0.608850 −0.304425 0.952536i \(-0.598464\pi\)
−0.304425 + 0.952536i \(0.598464\pi\)
\(350\) −0.337467 −0.0180384
\(351\) −21.9248 −1.17026
\(352\) 1.85203 0.0987135
\(353\) −27.8215 −1.48079 −0.740395 0.672172i \(-0.765362\pi\)
−0.740395 + 0.672172i \(0.765362\pi\)
\(354\) 8.10404 0.430725
\(355\) −14.1545 −0.751242
\(356\) −1.35388 −0.0717554
\(357\) 2.23044 0.118048
\(358\) −26.1967 −1.38454
\(359\) 31.8150 1.67913 0.839567 0.543257i \(-0.182809\pi\)
0.839567 + 0.543257i \(0.182809\pi\)
\(360\) 7.31311 0.385435
\(361\) −18.5523 −0.976436
\(362\) −11.3518 −0.596639
\(363\) −1.26627 −0.0664621
\(364\) −0.110892 −0.00581230
\(365\) −9.75054 −0.510367
\(366\) −0.434065 −0.0226890
\(367\) −3.39169 −0.177045 −0.0885224 0.996074i \(-0.528214\pi\)
−0.0885224 + 0.996074i \(0.528214\pi\)
\(368\) −13.2982 −0.693216
\(369\) −9.80150 −0.510246
\(370\) −10.0120 −0.520501
\(371\) 1.93140 0.100273
\(372\) 0.928079 0.0481187
\(373\) 16.6667 0.862970 0.431485 0.902120i \(-0.357990\pi\)
0.431485 + 0.902120i \(0.357990\pi\)
\(374\) 26.6949 1.38036
\(375\) −15.7979 −0.815801
\(376\) −8.54226 −0.440533
\(377\) −34.6198 −1.78301
\(378\) 2.33151 0.119920
\(379\) 6.52444 0.335138 0.167569 0.985860i \(-0.446408\pi\)
0.167569 + 0.985860i \(0.446408\pi\)
\(380\) −0.129743 −0.00665566
\(381\) −21.5327 −1.10315
\(382\) −4.58089 −0.234378
\(383\) 8.66460 0.442740 0.221370 0.975190i \(-0.428947\pi\)
0.221370 + 0.975190i \(0.428947\pi\)
\(384\) 13.8697 0.707783
\(385\) −2.12371 −0.108234
\(386\) −30.7715 −1.56623
\(387\) −1.21783 −0.0619059
\(388\) 1.02510 0.0520416
\(389\) 25.3450 1.28504 0.642522 0.766267i \(-0.277888\pi\)
0.642522 + 0.766267i \(0.277888\pi\)
\(390\) 14.6154 0.740079
\(391\) 19.5682 0.989604
\(392\) −19.9793 −1.00911
\(393\) 2.44035 0.123099
\(394\) −16.8971 −0.851266
\(395\) −7.77476 −0.391191
\(396\) −0.405091 −0.0203566
\(397\) 17.7609 0.891394 0.445697 0.895184i \(-0.352956\pi\)
0.445697 + 0.895184i \(0.352956\pi\)
\(398\) −25.1719 −1.26175
\(399\) −0.266800 −0.0133567
\(400\) 3.09560 0.154780
\(401\) 6.25522 0.312371 0.156185 0.987728i \(-0.450080\pi\)
0.156185 + 0.987728i \(0.450080\pi\)
\(402\) 4.27574 0.213255
\(403\) −28.7347 −1.43138
\(404\) 1.39229 0.0692689
\(405\) 7.69850 0.382542
\(406\) 3.68151 0.182710
\(407\) 12.2578 0.607598
\(408\) −21.4801 −1.06342
\(409\) 1.00000 0.0494468
\(410\) 22.3893 1.10573
\(411\) −7.83384 −0.386415
\(412\) 1.24418 0.0612965
\(413\) −1.32732 −0.0653132
\(414\) 5.96929 0.293375
\(415\) 14.8253 0.727746
\(416\) 2.08755 0.102351
\(417\) −11.3816 −0.557361
\(418\) −3.19317 −0.156183
\(419\) −17.4774 −0.853825 −0.426913 0.904293i \(-0.640399\pi\)
−0.426913 + 0.904293i \(0.640399\pi\)
\(420\) 0.0773149 0.00377258
\(421\) 23.7864 1.15928 0.579640 0.814872i \(-0.303193\pi\)
0.579640 + 0.814872i \(0.303193\pi\)
\(422\) 2.06680 0.100610
\(423\) 3.65233 0.177583
\(424\) −18.6002 −0.903304
\(425\) −4.55514 −0.220957
\(426\) 12.6824 0.614465
\(427\) 0.0710934 0.00344045
\(428\) −1.11519 −0.0539047
\(429\) −17.8937 −0.863918
\(430\) 2.78186 0.134153
\(431\) 9.72228 0.468306 0.234153 0.972200i \(-0.424768\pi\)
0.234153 + 0.972200i \(0.424768\pi\)
\(432\) −21.3871 −1.02899
\(433\) 12.8718 0.618582 0.309291 0.950968i \(-0.399908\pi\)
0.309291 + 0.950968i \(0.399908\pi\)
\(434\) 3.05568 0.146677
\(435\) 24.1373 1.15729
\(436\) 0.206054 0.00986820
\(437\) −2.34069 −0.111970
\(438\) 8.73648 0.417445
\(439\) 16.3107 0.778466 0.389233 0.921139i \(-0.372740\pi\)
0.389233 + 0.921139i \(0.372740\pi\)
\(440\) 20.4522 0.975022
\(441\) 8.54235 0.406779
\(442\) 30.0897 1.43122
\(443\) −20.7520 −0.985957 −0.492978 0.870042i \(-0.664092\pi\)
−0.492978 + 0.870042i \(0.664092\pi\)
\(444\) −0.446254 −0.0211783
\(445\) −29.2257 −1.38543
\(446\) −0.508179 −0.0240630
\(447\) −26.6640 −1.26116
\(448\) −2.50468 −0.118335
\(449\) −14.7710 −0.697086 −0.348543 0.937293i \(-0.613324\pi\)
−0.348543 + 0.937293i \(0.613324\pi\)
\(450\) −1.38955 −0.0655041
\(451\) −27.4114 −1.29075
\(452\) 1.20471 0.0566647
\(453\) −28.6471 −1.34596
\(454\) −27.7558 −1.30265
\(455\) −2.39378 −0.112222
\(456\) 2.56939 0.120323
\(457\) −15.0736 −0.705113 −0.352557 0.935790i \(-0.614688\pi\)
−0.352557 + 0.935790i \(0.614688\pi\)
\(458\) 26.9365 1.25866
\(459\) 31.4708 1.46893
\(460\) 0.678301 0.0316259
\(461\) −19.8978 −0.926733 −0.463366 0.886167i \(-0.653359\pi\)
−0.463366 + 0.886167i \(0.653359\pi\)
\(462\) 1.90284 0.0885283
\(463\) −27.4958 −1.27784 −0.638919 0.769274i \(-0.720618\pi\)
−0.638919 + 0.769274i \(0.720618\pi\)
\(464\) −33.7706 −1.56776
\(465\) 20.0342 0.929061
\(466\) 14.2963 0.662265
\(467\) −18.1186 −0.838429 −0.419215 0.907887i \(-0.637695\pi\)
−0.419215 + 0.907887i \(0.637695\pi\)
\(468\) −0.456607 −0.0211066
\(469\) −0.700303 −0.0323370
\(470\) −8.34292 −0.384830
\(471\) 6.63946 0.305930
\(472\) 12.7827 0.588370
\(473\) −3.40586 −0.156601
\(474\) 6.96618 0.319967
\(475\) 0.544874 0.0250005
\(476\) 0.159174 0.00729571
\(477\) 7.95270 0.364129
\(478\) 13.3589 0.611021
\(479\) 1.62305 0.0741590 0.0370795 0.999312i \(-0.488195\pi\)
0.0370795 + 0.999312i \(0.488195\pi\)
\(480\) −1.45546 −0.0664325
\(481\) 13.8167 0.629985
\(482\) 32.3193 1.47210
\(483\) 1.39484 0.0634674
\(484\) −0.0903664 −0.00410757
\(485\) 22.1285 1.00480
\(486\) 16.3988 0.743866
\(487\) 17.6722 0.800805 0.400403 0.916339i \(-0.368870\pi\)
0.400403 + 0.916339i \(0.368870\pi\)
\(488\) −0.684660 −0.0309931
\(489\) 23.6187 1.06807
\(490\) −19.5131 −0.881510
\(491\) 40.4253 1.82437 0.912183 0.409782i \(-0.134395\pi\)
0.912183 + 0.409782i \(0.134395\pi\)
\(492\) 0.997928 0.0449901
\(493\) 49.6931 2.23806
\(494\) −3.59925 −0.161938
\(495\) −8.74457 −0.393039
\(496\) −28.0299 −1.25858
\(497\) −2.07719 −0.0931747
\(498\) −13.2835 −0.595246
\(499\) −2.67593 −0.119791 −0.0598955 0.998205i \(-0.519077\pi\)
−0.0598955 + 0.998205i \(0.519077\pi\)
\(500\) −1.12740 −0.0504190
\(501\) −30.7082 −1.37194
\(502\) −33.1046 −1.47753
\(503\) 13.3355 0.594599 0.297300 0.954784i \(-0.403914\pi\)
0.297300 + 0.954784i \(0.403914\pi\)
\(504\) 1.07321 0.0478045
\(505\) 30.0549 1.33742
\(506\) 16.6941 0.742141
\(507\) −2.90450 −0.128994
\(508\) −1.53666 −0.0681783
\(509\) 32.0232 1.41940 0.709702 0.704502i \(-0.248830\pi\)
0.709702 + 0.704502i \(0.248830\pi\)
\(510\) −20.9789 −0.928961
\(511\) −1.43090 −0.0632995
\(512\) 24.0196 1.06153
\(513\) −3.76446 −0.166205
\(514\) 27.3833 1.20782
\(515\) 26.8578 1.18350
\(516\) 0.123992 0.00545845
\(517\) 10.2143 0.449225
\(518\) −1.46928 −0.0645565
\(519\) 22.3270 0.980047
\(520\) 23.0531 1.01095
\(521\) 24.3133 1.06519 0.532594 0.846371i \(-0.321217\pi\)
0.532594 + 0.846371i \(0.321217\pi\)
\(522\) 15.1589 0.663489
\(523\) −3.22360 −0.140958 −0.0704791 0.997513i \(-0.522453\pi\)
−0.0704791 + 0.997513i \(0.522453\pi\)
\(524\) 0.174153 0.00760793
\(525\) −0.324696 −0.0141709
\(526\) −7.69493 −0.335515
\(527\) 41.2457 1.79669
\(528\) −17.4548 −0.759625
\(529\) −10.7628 −0.467946
\(530\) −18.1661 −0.789086
\(531\) −5.46536 −0.237177
\(532\) −0.0190399 −0.000825485 0
\(533\) −30.8973 −1.33831
\(534\) 26.1862 1.13319
\(535\) −24.0732 −1.04078
\(536\) 6.74422 0.291306
\(537\) −25.2053 −1.08769
\(538\) 24.8007 1.06923
\(539\) 23.8900 1.02902
\(540\) 1.09089 0.0469444
\(541\) −26.5420 −1.14113 −0.570564 0.821253i \(-0.693275\pi\)
−0.570564 + 0.821253i \(0.693275\pi\)
\(542\) −6.41087 −0.275371
\(543\) −10.9222 −0.468717
\(544\) −2.99646 −0.128472
\(545\) 4.44802 0.190532
\(546\) 2.14483 0.0917901
\(547\) 20.5342 0.877981 0.438990 0.898492i \(-0.355336\pi\)
0.438990 + 0.898492i \(0.355336\pi\)
\(548\) −0.559055 −0.0238816
\(549\) 0.292734 0.0124936
\(550\) −3.88610 −0.165704
\(551\) −5.94416 −0.253230
\(552\) −13.4329 −0.571742
\(553\) −1.14096 −0.0485184
\(554\) −26.5125 −1.12641
\(555\) −9.63313 −0.408904
\(556\) −0.812240 −0.0344466
\(557\) 33.5780 1.42275 0.711373 0.702814i \(-0.248073\pi\)
0.711373 + 0.702814i \(0.248073\pi\)
\(558\) 12.5820 0.532641
\(559\) −3.83898 −0.162371
\(560\) −2.33507 −0.0986746
\(561\) 25.6846 1.08441
\(562\) −24.4530 −1.03149
\(563\) −34.2480 −1.44338 −0.721692 0.692215i \(-0.756635\pi\)
−0.721692 + 0.692215i \(0.756635\pi\)
\(564\) −0.371858 −0.0156580
\(565\) 26.0056 1.09406
\(566\) −24.4348 −1.02707
\(567\) 1.12977 0.0474457
\(568\) 20.0042 0.839358
\(569\) 7.92621 0.332284 0.166142 0.986102i \(-0.446869\pi\)
0.166142 + 0.986102i \(0.446869\pi\)
\(570\) 2.50944 0.105109
\(571\) 16.8742 0.706165 0.353082 0.935592i \(-0.385134\pi\)
0.353082 + 0.935592i \(0.385134\pi\)
\(572\) −1.27697 −0.0533928
\(573\) −4.40752 −0.184127
\(574\) 3.28566 0.137141
\(575\) −2.84862 −0.118796
\(576\) −10.3132 −0.429718
\(577\) −4.20001 −0.174849 −0.0874244 0.996171i \(-0.527864\pi\)
−0.0874244 + 0.996171i \(0.527864\pi\)
\(578\) −19.7256 −0.820476
\(579\) −29.6069 −1.23042
\(580\) 1.72254 0.0715244
\(581\) 2.17563 0.0902605
\(582\) −19.8271 −0.821861
\(583\) 22.2409 0.921126
\(584\) 13.7802 0.570230
\(585\) −9.85662 −0.407521
\(586\) 4.32394 0.178620
\(587\) 26.0714 1.07608 0.538042 0.842918i \(-0.319164\pi\)
0.538042 + 0.842918i \(0.319164\pi\)
\(588\) −0.869730 −0.0358670
\(589\) −4.93370 −0.203289
\(590\) 12.4844 0.513974
\(591\) −16.2577 −0.668751
\(592\) 13.4778 0.553932
\(593\) −30.8085 −1.26515 −0.632577 0.774497i \(-0.718003\pi\)
−0.632577 + 0.774497i \(0.718003\pi\)
\(594\) 26.8485 1.10161
\(595\) 3.43603 0.140863
\(596\) −1.90285 −0.0779439
\(597\) −24.2192 −0.991227
\(598\) 18.8170 0.769485
\(599\) −9.25916 −0.378319 −0.189159 0.981946i \(-0.560576\pi\)
−0.189159 + 0.981946i \(0.560576\pi\)
\(600\) 3.12696 0.127657
\(601\) 6.56273 0.267699 0.133850 0.991002i \(-0.457266\pi\)
0.133850 + 0.991002i \(0.457266\pi\)
\(602\) 0.408242 0.0166387
\(603\) −2.88356 −0.117428
\(604\) −2.04437 −0.0831843
\(605\) −1.95071 −0.0793077
\(606\) −26.9291 −1.09392
\(607\) −14.5775 −0.591682 −0.295841 0.955237i \(-0.595600\pi\)
−0.295841 + 0.955237i \(0.595600\pi\)
\(608\) 0.358429 0.0145362
\(609\) 3.54218 0.143536
\(610\) −0.668683 −0.0270742
\(611\) 11.5133 0.465777
\(612\) 0.655412 0.0264934
\(613\) −6.37447 −0.257462 −0.128731 0.991680i \(-0.541090\pi\)
−0.128731 + 0.991680i \(0.541090\pi\)
\(614\) −0.300714 −0.0121358
\(615\) 21.5420 0.868655
\(616\) 3.00139 0.120930
\(617\) 6.10386 0.245732 0.122866 0.992423i \(-0.460791\pi\)
0.122866 + 0.992423i \(0.460791\pi\)
\(618\) −24.0646 −0.968019
\(619\) −20.0277 −0.804981 −0.402491 0.915424i \(-0.631855\pi\)
−0.402491 + 0.915424i \(0.631855\pi\)
\(620\) 1.42972 0.0574189
\(621\) 19.6807 0.789761
\(622\) 23.8275 0.955397
\(623\) −4.28891 −0.171832
\(624\) −19.6746 −0.787613
\(625\) −20.2653 −0.810612
\(626\) −16.0534 −0.641622
\(627\) −3.07233 −0.122697
\(628\) 0.473819 0.0189074
\(629\) −19.8324 −0.790769
\(630\) 1.04816 0.0417599
\(631\) −4.19378 −0.166952 −0.0834758 0.996510i \(-0.526602\pi\)
−0.0834758 + 0.996510i \(0.526602\pi\)
\(632\) 10.9879 0.437075
\(633\) 1.98858 0.0790389
\(634\) −6.93237 −0.275320
\(635\) −33.1714 −1.31637
\(636\) −0.809695 −0.0321065
\(637\) 26.9281 1.06693
\(638\) 42.3943 1.67841
\(639\) −8.55302 −0.338352
\(640\) 21.3664 0.844581
\(641\) 18.0977 0.714815 0.357407 0.933949i \(-0.383661\pi\)
0.357407 + 0.933949i \(0.383661\pi\)
\(642\) 21.5696 0.851283
\(643\) −34.3118 −1.35313 −0.676563 0.736384i \(-0.736532\pi\)
−0.676563 + 0.736384i \(0.736532\pi\)
\(644\) 0.0995415 0.00392248
\(645\) 2.67658 0.105390
\(646\) 5.16635 0.203267
\(647\) −42.9999 −1.69050 −0.845250 0.534372i \(-0.820548\pi\)
−0.845250 + 0.534372i \(0.820548\pi\)
\(648\) −10.8801 −0.427412
\(649\) −15.2847 −0.599978
\(650\) −4.38029 −0.171809
\(651\) 2.94004 0.115229
\(652\) 1.68552 0.0660102
\(653\) −25.7091 −1.00607 −0.503037 0.864265i \(-0.667784\pi\)
−0.503037 + 0.864265i \(0.667784\pi\)
\(654\) −3.98543 −0.155842
\(655\) 3.75939 0.146892
\(656\) −30.1394 −1.17675
\(657\) −5.89188 −0.229864
\(658\) −1.22433 −0.0477295
\(659\) −21.5003 −0.837534 −0.418767 0.908094i \(-0.637538\pi\)
−0.418767 + 0.908094i \(0.637538\pi\)
\(660\) 0.890319 0.0346556
\(661\) 43.9110 1.70794 0.853970 0.520322i \(-0.174188\pi\)
0.853970 + 0.520322i \(0.174188\pi\)
\(662\) −10.3124 −0.400803
\(663\) 28.9509 1.12436
\(664\) −20.9523 −0.813106
\(665\) −0.411008 −0.0159382
\(666\) −6.04990 −0.234429
\(667\) 31.0763 1.20328
\(668\) −2.19146 −0.0847902
\(669\) −0.488946 −0.0189038
\(670\) 6.58684 0.254472
\(671\) 0.818674 0.0316046
\(672\) −0.213591 −0.00823946
\(673\) 49.1559 1.89482 0.947410 0.320022i \(-0.103690\pi\)
0.947410 + 0.320022i \(0.103690\pi\)
\(674\) −19.4989 −0.751071
\(675\) −4.58135 −0.176336
\(676\) −0.207277 −0.00797220
\(677\) 23.1357 0.889178 0.444589 0.895735i \(-0.353350\pi\)
0.444589 + 0.895735i \(0.353350\pi\)
\(678\) −23.3010 −0.894870
\(679\) 3.24739 0.124623
\(680\) −33.0904 −1.26896
\(681\) −26.7054 −1.02335
\(682\) 35.1876 1.34740
\(683\) −44.0487 −1.68548 −0.842739 0.538323i \(-0.819058\pi\)
−0.842739 + 0.538323i \(0.819058\pi\)
\(684\) −0.0783986 −0.00299764
\(685\) −12.0681 −0.461100
\(686\) −5.76449 −0.220089
\(687\) 25.9170 0.988797
\(688\) −3.74481 −0.142770
\(689\) 25.0693 0.955065
\(690\) −13.1194 −0.499449
\(691\) 16.0482 0.610504 0.305252 0.952272i \(-0.401259\pi\)
0.305252 + 0.952272i \(0.401259\pi\)
\(692\) 1.59335 0.0605699
\(693\) −1.28328 −0.0487477
\(694\) 23.9918 0.910714
\(695\) −17.5336 −0.665086
\(696\) −34.1127 −1.29304
\(697\) 44.3499 1.67987
\(698\) 15.6999 0.594249
\(699\) 13.7553 0.520273
\(700\) −0.0231716 −0.000875804 0
\(701\) −50.2864 −1.89929 −0.949646 0.313324i \(-0.898557\pi\)
−0.949646 + 0.313324i \(0.898557\pi\)
\(702\) 30.2628 1.14220
\(703\) 2.37230 0.0894729
\(704\) −28.8426 −1.08705
\(705\) −8.02718 −0.302321
\(706\) 38.4020 1.44528
\(707\) 4.41059 0.165877
\(708\) 0.556450 0.0209127
\(709\) 10.6030 0.398203 0.199102 0.979979i \(-0.436198\pi\)
0.199102 + 0.979979i \(0.436198\pi\)
\(710\) 19.5374 0.733226
\(711\) −4.69799 −0.176188
\(712\) 41.3040 1.54793
\(713\) 25.7936 0.965977
\(714\) −3.07868 −0.115217
\(715\) −27.5656 −1.03089
\(716\) −1.79875 −0.0672225
\(717\) 12.8533 0.480016
\(718\) −43.9142 −1.63887
\(719\) 50.7851 1.89397 0.946983 0.321284i \(-0.104114\pi\)
0.946983 + 0.321284i \(0.104114\pi\)
\(720\) −9.61485 −0.358324
\(721\) 3.94142 0.146786
\(722\) 25.6077 0.953019
\(723\) 31.0961 1.15648
\(724\) −0.779454 −0.0289682
\(725\) −7.23404 −0.268666
\(726\) 1.74784 0.0648683
\(727\) −17.9301 −0.664990 −0.332495 0.943105i \(-0.607890\pi\)
−0.332495 + 0.943105i \(0.607890\pi\)
\(728\) 3.38308 0.125385
\(729\) 27.0669 1.00248
\(730\) 13.4587 0.498127
\(731\) 5.51046 0.203812
\(732\) −0.0298043 −0.00110160
\(733\) 26.8303 0.990999 0.495500 0.868608i \(-0.334985\pi\)
0.495500 + 0.868608i \(0.334985\pi\)
\(734\) 4.68155 0.172799
\(735\) −18.7746 −0.692511
\(736\) −1.87388 −0.0690722
\(737\) −8.06433 −0.297053
\(738\) 13.5290 0.498009
\(739\) 25.1889 0.926587 0.463294 0.886205i \(-0.346668\pi\)
0.463294 + 0.886205i \(0.346668\pi\)
\(740\) −0.687460 −0.0252715
\(741\) −3.46303 −0.127218
\(742\) −2.66590 −0.0978683
\(743\) 22.3360 0.819430 0.409715 0.912214i \(-0.365628\pi\)
0.409715 + 0.912214i \(0.365628\pi\)
\(744\) −28.3138 −1.03803
\(745\) −41.0763 −1.50492
\(746\) −23.0051 −0.842275
\(747\) 8.95837 0.327770
\(748\) 1.83296 0.0670196
\(749\) −3.53277 −0.129085
\(750\) 21.8058 0.796237
\(751\) 23.4082 0.854176 0.427088 0.904210i \(-0.359539\pi\)
0.427088 + 0.904210i \(0.359539\pi\)
\(752\) 11.2309 0.409547
\(753\) −31.8517 −1.16074
\(754\) 47.7856 1.74025
\(755\) −44.1312 −1.60610
\(756\) 0.160089 0.00582239
\(757\) 15.8828 0.577271 0.288635 0.957439i \(-0.406798\pi\)
0.288635 + 0.957439i \(0.406798\pi\)
\(758\) −9.00567 −0.327101
\(759\) 16.0623 0.583023
\(760\) 3.95819 0.143579
\(761\) 11.3967 0.413129 0.206564 0.978433i \(-0.433772\pi\)
0.206564 + 0.978433i \(0.433772\pi\)
\(762\) 29.7216 1.07670
\(763\) 0.652753 0.0236312
\(764\) −0.314538 −0.0113796
\(765\) 14.1482 0.511528
\(766\) −11.9597 −0.432123
\(767\) −17.2285 −0.622085
\(768\) 3.01394 0.108756
\(769\) 28.4670 1.02655 0.513274 0.858225i \(-0.328432\pi\)
0.513274 + 0.858225i \(0.328432\pi\)
\(770\) 2.93135 0.105639
\(771\) 26.3469 0.948861
\(772\) −2.11287 −0.0760438
\(773\) 22.8660 0.822432 0.411216 0.911538i \(-0.365104\pi\)
0.411216 + 0.911538i \(0.365104\pi\)
\(774\) 1.68097 0.0604213
\(775\) −6.00431 −0.215681
\(776\) −31.2737 −1.12266
\(777\) −1.41367 −0.0507153
\(778\) −34.9837 −1.25423
\(779\) −5.30501 −0.190072
\(780\) 1.00354 0.0359325
\(781\) −23.9198 −0.855919
\(782\) −27.0099 −0.965872
\(783\) 49.9790 1.78610
\(784\) 26.2676 0.938128
\(785\) 10.2282 0.365059
\(786\) −3.36841 −0.120147
\(787\) −0.582587 −0.0207670 −0.0103835 0.999946i \(-0.503305\pi\)
−0.0103835 + 0.999946i \(0.503305\pi\)
\(788\) −1.16021 −0.0413309
\(789\) −7.40371 −0.263579
\(790\) 10.7315 0.381809
\(791\) 3.81636 0.135694
\(792\) 12.3585 0.439140
\(793\) 0.922785 0.0327691
\(794\) −24.5153 −0.870017
\(795\) −17.4786 −0.619903
\(796\) −1.72838 −0.0612609
\(797\) −4.59138 −0.162635 −0.0813176 0.996688i \(-0.525913\pi\)
−0.0813176 + 0.996688i \(0.525913\pi\)
\(798\) 0.368263 0.0130364
\(799\) −16.5261 −0.584651
\(800\) 0.436208 0.0154223
\(801\) −17.6600 −0.623985
\(802\) −8.63407 −0.304880
\(803\) −16.4776 −0.581480
\(804\) 0.293587 0.0103540
\(805\) 2.14877 0.0757342
\(806\) 39.6624 1.39705
\(807\) 23.8621 0.839985
\(808\) −42.4759 −1.49430
\(809\) −18.1700 −0.638824 −0.319412 0.947616i \(-0.603485\pi\)
−0.319412 + 0.947616i \(0.603485\pi\)
\(810\) −10.6262 −0.373368
\(811\) −53.0220 −1.86185 −0.930926 0.365207i \(-0.880998\pi\)
−0.930926 + 0.365207i \(0.880998\pi\)
\(812\) 0.252784 0.00887099
\(813\) −6.16825 −0.216330
\(814\) −16.9195 −0.593027
\(815\) 36.3849 1.27451
\(816\) 28.2408 0.988626
\(817\) −0.659146 −0.0230606
\(818\) −1.38030 −0.0482610
\(819\) −1.44647 −0.0505438
\(820\) 1.53732 0.0536856
\(821\) 36.7124 1.28127 0.640635 0.767845i \(-0.278671\pi\)
0.640635 + 0.767845i \(0.278671\pi\)
\(822\) 10.8130 0.377148
\(823\) −49.3411 −1.71992 −0.859961 0.510360i \(-0.829512\pi\)
−0.859961 + 0.510360i \(0.829512\pi\)
\(824\) −37.9575 −1.32231
\(825\) −3.73902 −0.130176
\(826\) 1.83210 0.0637469
\(827\) −34.0759 −1.18494 −0.592468 0.805594i \(-0.701846\pi\)
−0.592468 + 0.805594i \(0.701846\pi\)
\(828\) 0.409871 0.0142440
\(829\) −16.5307 −0.574134 −0.287067 0.957911i \(-0.592680\pi\)
−0.287067 + 0.957911i \(0.592680\pi\)
\(830\) −20.4633 −0.710293
\(831\) −25.5092 −0.884903
\(832\) −32.5105 −1.12710
\(833\) −38.6525 −1.33923
\(834\) 15.7101 0.543995
\(835\) −47.3064 −1.63711
\(836\) −0.219254 −0.00758305
\(837\) 41.4830 1.43386
\(838\) 24.1240 0.833349
\(839\) −13.6583 −0.471538 −0.235769 0.971809i \(-0.575761\pi\)
−0.235769 + 0.971809i \(0.575761\pi\)
\(840\) −2.35872 −0.0813836
\(841\) 49.9179 1.72131
\(842\) −32.8324 −1.13148
\(843\) −23.5276 −0.810332
\(844\) 0.141913 0.00488485
\(845\) −4.47443 −0.153925
\(846\) −5.04131 −0.173324
\(847\) −0.286269 −0.00983633
\(848\) 24.4544 0.839768
\(849\) −23.5100 −0.806862
\(850\) 6.28745 0.215658
\(851\) −12.4025 −0.425151
\(852\) 0.870815 0.0298336
\(853\) −28.4297 −0.973414 −0.486707 0.873565i \(-0.661802\pi\)
−0.486707 + 0.873565i \(0.661802\pi\)
\(854\) −0.0981301 −0.00335794
\(855\) −1.69236 −0.0578777
\(856\) 34.0221 1.16285
\(857\) 27.5759 0.941975 0.470988 0.882140i \(-0.343898\pi\)
0.470988 + 0.882140i \(0.343898\pi\)
\(858\) 24.6987 0.843200
\(859\) −28.7472 −0.980843 −0.490422 0.871485i \(-0.663157\pi\)
−0.490422 + 0.871485i \(0.663157\pi\)
\(860\) 0.191012 0.00651344
\(861\) 3.16131 0.107737
\(862\) −13.4197 −0.457075
\(863\) 28.4792 0.969444 0.484722 0.874668i \(-0.338921\pi\)
0.484722 + 0.874668i \(0.338921\pi\)
\(864\) −3.01370 −0.102528
\(865\) 34.3950 1.16947
\(866\) −17.7670 −0.603747
\(867\) −18.9791 −0.644562
\(868\) 0.209813 0.00712152
\(869\) −13.1387 −0.445699
\(870\) −33.3167 −1.12954
\(871\) −9.08986 −0.307998
\(872\) −6.28629 −0.212881
\(873\) 13.3714 0.452554
\(874\) 3.23085 0.109285
\(875\) −3.57147 −0.120738
\(876\) 0.599875 0.0202679
\(877\) −38.9562 −1.31546 −0.657729 0.753255i \(-0.728483\pi\)
−0.657729 + 0.753255i \(0.728483\pi\)
\(878\) −22.5136 −0.759797
\(879\) 4.16030 0.140323
\(880\) −26.8894 −0.906442
\(881\) −47.3697 −1.59593 −0.797963 0.602707i \(-0.794089\pi\)
−0.797963 + 0.602707i \(0.794089\pi\)
\(882\) −11.7910 −0.397023
\(883\) 30.7696 1.03548 0.517739 0.855539i \(-0.326774\pi\)
0.517739 + 0.855539i \(0.326774\pi\)
\(884\) 2.06606 0.0694890
\(885\) 12.0119 0.403776
\(886\) 28.6439 0.962312
\(887\) −10.3300 −0.346846 −0.173423 0.984847i \(-0.555483\pi\)
−0.173423 + 0.984847i \(0.555483\pi\)
\(888\) 13.6143 0.456866
\(889\) −4.86795 −0.163266
\(890\) 40.3402 1.35221
\(891\) 13.0098 0.435844
\(892\) −0.0348932 −0.00116831
\(893\) 1.97681 0.0661514
\(894\) 36.8043 1.23092
\(895\) −38.8291 −1.29791
\(896\) 3.13555 0.104751
\(897\) 18.1049 0.604505
\(898\) 20.3884 0.680369
\(899\) 65.5025 2.18463
\(900\) −0.0954112 −0.00318037
\(901\) −35.9844 −1.19881
\(902\) 37.8359 1.25980
\(903\) 0.392791 0.0130713
\(904\) −36.7532 −1.22239
\(905\) −16.8258 −0.559309
\(906\) 39.5415 1.31368
\(907\) −48.0569 −1.59570 −0.797851 0.602854i \(-0.794030\pi\)
−0.797851 + 0.602854i \(0.794030\pi\)
\(908\) −1.90581 −0.0632464
\(909\) 18.1610 0.602363
\(910\) 3.30413 0.109531
\(911\) 32.9823 1.09275 0.546376 0.837540i \(-0.316007\pi\)
0.546376 + 0.837540i \(0.316007\pi\)
\(912\) −3.37809 −0.111860
\(913\) 25.0535 0.829148
\(914\) 20.8061 0.688204
\(915\) −0.643376 −0.0212694
\(916\) 1.84955 0.0611107
\(917\) 0.551696 0.0182186
\(918\) −43.4392 −1.43371
\(919\) −22.9775 −0.757959 −0.378979 0.925405i \(-0.623725\pi\)
−0.378979 + 0.925405i \(0.623725\pi\)
\(920\) −20.6936 −0.682247
\(921\) −0.289333 −0.00953384
\(922\) 27.4649 0.904508
\(923\) −26.9617 −0.887455
\(924\) 0.130655 0.00429825
\(925\) 2.88709 0.0949269
\(926\) 37.9524 1.24719
\(927\) 16.2291 0.533035
\(928\) −4.75870 −0.156212
\(929\) 33.4643 1.09793 0.548964 0.835846i \(-0.315022\pi\)
0.548964 + 0.835846i \(0.315022\pi\)
\(930\) −27.6531 −0.906781
\(931\) 4.62351 0.151529
\(932\) 0.981633 0.0321545
\(933\) 22.9258 0.750556
\(934\) 25.0091 0.818323
\(935\) 39.5675 1.29400
\(936\) 13.9301 0.455321
\(937\) −12.3697 −0.404101 −0.202050 0.979375i \(-0.564760\pi\)
−0.202050 + 0.979375i \(0.564760\pi\)
\(938\) 0.966627 0.0315615
\(939\) −15.4458 −0.504056
\(940\) −0.572852 −0.0186844
\(941\) −14.7118 −0.479590 −0.239795 0.970824i \(-0.577080\pi\)
−0.239795 + 0.970824i \(0.577080\pi\)
\(942\) −9.16444 −0.298594
\(943\) 27.7348 0.903171
\(944\) −16.8059 −0.546985
\(945\) 3.45580 0.112417
\(946\) 4.70110 0.152846
\(947\) 49.1993 1.59876 0.799381 0.600824i \(-0.205161\pi\)
0.799381 + 0.600824i \(0.205161\pi\)
\(948\) 0.478321 0.0155351
\(949\) −18.5730 −0.602905
\(950\) −0.752088 −0.0244010
\(951\) −6.67001 −0.216290
\(952\) −4.85606 −0.157386
\(953\) 2.42440 0.0785342 0.0392671 0.999229i \(-0.487498\pi\)
0.0392671 + 0.999229i \(0.487498\pi\)
\(954\) −10.9771 −0.355397
\(955\) −6.78984 −0.219714
\(956\) 0.917264 0.0296665
\(957\) 40.7899 1.31855
\(958\) −2.24029 −0.0723805
\(959\) −1.77101 −0.0571890
\(960\) 22.6667 0.731564
\(961\) 23.3676 0.753792
\(962\) −19.0711 −0.614877
\(963\) −14.5465 −0.468755
\(964\) 2.21915 0.0714739
\(965\) −45.6098 −1.46823
\(966\) −1.92530 −0.0619454
\(967\) 37.1967 1.19617 0.598083 0.801434i \(-0.295929\pi\)
0.598083 + 0.801434i \(0.295929\pi\)
\(968\) 2.75690 0.0886100
\(969\) 4.97083 0.159686
\(970\) −30.5439 −0.980707
\(971\) 42.2843 1.35697 0.678484 0.734615i \(-0.262637\pi\)
0.678484 + 0.734615i \(0.262637\pi\)
\(972\) 1.12600 0.0361164
\(973\) −2.57307 −0.0824889
\(974\) −24.3930 −0.781601
\(975\) −4.21451 −0.134973
\(976\) 0.900151 0.0288131
\(977\) −47.6762 −1.52530 −0.762648 0.646813i \(-0.776101\pi\)
−0.762648 + 0.646813i \(0.776101\pi\)
\(978\) −32.6008 −1.04246
\(979\) −49.3889 −1.57848
\(980\) −1.33983 −0.0427993
\(981\) 2.68777 0.0858139
\(982\) −55.7989 −1.78062
\(983\) 26.4277 0.842912 0.421456 0.906849i \(-0.361519\pi\)
0.421456 + 0.906849i \(0.361519\pi\)
\(984\) −30.4448 −0.970543
\(985\) −25.0451 −0.798004
\(986\) −68.5913 −2.18439
\(987\) −1.17800 −0.0374961
\(988\) −0.247136 −0.00786245
\(989\) 3.44604 0.109578
\(990\) 12.0701 0.383614
\(991\) −20.0705 −0.637561 −0.318780 0.947829i \(-0.603273\pi\)
−0.318780 + 0.947829i \(0.603273\pi\)
\(992\) −3.94976 −0.125405
\(993\) −9.92211 −0.314869
\(994\) 2.86714 0.0909402
\(995\) −37.3100 −1.18281
\(996\) −0.912086 −0.0289005
\(997\) −42.8122 −1.35587 −0.677937 0.735120i \(-0.737126\pi\)
−0.677937 + 0.735120i \(0.737126\pi\)
\(998\) 3.69358 0.116918
\(999\) −19.9465 −0.631079
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.5 20
3.2 odd 2 3681.2.a.i.1.16 20
4.3 odd 2 6544.2.a.i.1.14 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.5 20 1.1 even 1 trivial
3681.2.a.i.1.16 20 3.2 odd 2
6544.2.a.i.1.14 20 4.3 odd 2