Properties

Label 6525.2.a.bo.1.1
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,4,0,0,-10,-3,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.294577.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - x^{2} + 7x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 725)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.45914\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.45914 q^{2} +4.04739 q^{4} -3.50903 q^{7} -5.03483 q^{8} +3.17006 q^{11} -4.61115 q^{13} +8.62920 q^{14} +4.28660 q^{16} -1.29916 q^{17} -4.04739 q^{19} -7.79563 q^{22} +2.57569 q^{23} +11.3395 q^{26} -14.2024 q^{28} +1.00000 q^{29} -0.423684 q^{31} -0.471703 q^{32} +3.19482 q^{34} +3.71028 q^{37} +9.95312 q^{38} +10.3443 q^{41} +4.57932 q^{43} +12.8305 q^{44} -6.33399 q^{46} -5.35453 q^{47} +5.31326 q^{49} -18.6631 q^{52} -0.0412739 q^{53} +17.6674 q^{56} -2.45914 q^{58} -2.86841 q^{59} -1.63042 q^{61} +1.04190 q^{62} -7.41322 q^{64} +0.464958 q^{67} -5.25821 q^{68} +4.33807 q^{71} +15.1207 q^{73} -9.12413 q^{74} -16.3814 q^{76} -11.1238 q^{77} +10.2945 q^{79} -25.4382 q^{82} +11.2606 q^{83} -11.2612 q^{86} -15.9607 q^{88} -16.6474 q^{89} +16.1806 q^{91} +10.4248 q^{92} +13.1676 q^{94} -3.96628 q^{97} -13.0661 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{4} - 10 q^{7} - 3 q^{8} - 2 q^{11} - 8 q^{13} + 13 q^{14} + 6 q^{16} + 3 q^{17} - 4 q^{19} - 16 q^{22} + 3 q^{23} + 4 q^{26} - 10 q^{28} + 5 q^{29} + 5 q^{31} + 4 q^{32} - 9 q^{34} - 4 q^{37}+ \cdots - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.45914 −1.73888 −0.869439 0.494040i \(-0.835519\pi\)
−0.869439 + 0.494040i \(0.835519\pi\)
\(3\) 0 0
\(4\) 4.04739 2.02370
\(5\) 0 0
\(6\) 0 0
\(7\) −3.50903 −1.32629 −0.663143 0.748492i \(-0.730778\pi\)
−0.663143 + 0.748492i \(0.730778\pi\)
\(8\) −5.03483 −1.78008
\(9\) 0 0
\(10\) 0 0
\(11\) 3.17006 0.955808 0.477904 0.878412i \(-0.341397\pi\)
0.477904 + 0.878412i \(0.341397\pi\)
\(12\) 0 0
\(13\) −4.61115 −1.27890 −0.639451 0.768831i \(-0.720838\pi\)
−0.639451 + 0.768831i \(0.720838\pi\)
\(14\) 8.62920 2.30625
\(15\) 0 0
\(16\) 4.28660 1.07165
\(17\) −1.29916 −0.315092 −0.157546 0.987512i \(-0.550358\pi\)
−0.157546 + 0.987512i \(0.550358\pi\)
\(18\) 0 0
\(19\) −4.04739 −0.928536 −0.464268 0.885695i \(-0.653682\pi\)
−0.464268 + 0.885695i \(0.653682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −7.79563 −1.66203
\(23\) 2.57569 0.537068 0.268534 0.963270i \(-0.413461\pi\)
0.268534 + 0.963270i \(0.413461\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 11.3395 2.22386
\(27\) 0 0
\(28\) −14.2024 −2.68400
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −0.423684 −0.0760959 −0.0380480 0.999276i \(-0.512114\pi\)
−0.0380480 + 0.999276i \(0.512114\pi\)
\(32\) −0.471703 −0.0833861
\(33\) 0 0
\(34\) 3.19482 0.547907
\(35\) 0 0
\(36\) 0 0
\(37\) 3.71028 0.609967 0.304984 0.952358i \(-0.401349\pi\)
0.304984 + 0.952358i \(0.401349\pi\)
\(38\) 9.95312 1.61461
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3443 1.61551 0.807757 0.589516i \(-0.200681\pi\)
0.807757 + 0.589516i \(0.200681\pi\)
\(42\) 0 0
\(43\) 4.57932 0.698340 0.349170 0.937059i \(-0.386464\pi\)
0.349170 + 0.937059i \(0.386464\pi\)
\(44\) 12.8305 1.93426
\(45\) 0 0
\(46\) −6.33399 −0.933896
\(47\) −5.35453 −0.781039 −0.390519 0.920595i \(-0.627705\pi\)
−0.390519 + 0.920595i \(0.627705\pi\)
\(48\) 0 0
\(49\) 5.31326 0.759037
\(50\) 0 0
\(51\) 0 0
\(52\) −18.6631 −2.58811
\(53\) −0.0412739 −0.00566941 −0.00283471 0.999996i \(-0.500902\pi\)
−0.00283471 + 0.999996i \(0.500902\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.6674 2.36090
\(57\) 0 0
\(58\) −2.45914 −0.322902
\(59\) −2.86841 −0.373435 −0.186718 0.982414i \(-0.559785\pi\)
−0.186718 + 0.982414i \(0.559785\pi\)
\(60\) 0 0
\(61\) −1.63042 −0.208754 −0.104377 0.994538i \(-0.533285\pi\)
−0.104377 + 0.994538i \(0.533285\pi\)
\(62\) 1.04190 0.132321
\(63\) 0 0
\(64\) −7.41322 −0.926652
\(65\) 0 0
\(66\) 0 0
\(67\) 0.464958 0.0568037 0.0284018 0.999597i \(-0.490958\pi\)
0.0284018 + 0.999597i \(0.490958\pi\)
\(68\) −5.25821 −0.637651
\(69\) 0 0
\(70\) 0 0
\(71\) 4.33807 0.514834 0.257417 0.966300i \(-0.417129\pi\)
0.257417 + 0.966300i \(0.417129\pi\)
\(72\) 0 0
\(73\) 15.1207 1.76974 0.884872 0.465835i \(-0.154246\pi\)
0.884872 + 0.465835i \(0.154246\pi\)
\(74\) −9.12413 −1.06066
\(75\) 0 0
\(76\) −16.3814 −1.87907
\(77\) −11.1238 −1.26768
\(78\) 0 0
\(79\) 10.2945 1.15822 0.579108 0.815251i \(-0.303401\pi\)
0.579108 + 0.815251i \(0.303401\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −25.4382 −2.80918
\(83\) 11.2606 1.23601 0.618007 0.786173i \(-0.287941\pi\)
0.618007 + 0.786173i \(0.287941\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −11.2612 −1.21433
\(87\) 0 0
\(88\) −15.9607 −1.70142
\(89\) −16.6474 −1.76463 −0.882313 0.470663i \(-0.844015\pi\)
−0.882313 + 0.470663i \(0.844015\pi\)
\(90\) 0 0
\(91\) 16.1806 1.69619
\(92\) 10.4248 1.08686
\(93\) 0 0
\(94\) 13.1676 1.35813
\(95\) 0 0
\(96\) 0 0
\(97\) −3.96628 −0.402714 −0.201357 0.979518i \(-0.564535\pi\)
−0.201357 + 0.979518i \(0.564535\pi\)
\(98\) −13.0661 −1.31987
\(99\) 0 0
\(100\) 0 0
\(101\) 2.82323 0.280922 0.140461 0.990086i \(-0.455142\pi\)
0.140461 + 0.990086i \(0.455142\pi\)
\(102\) 0 0
\(103\) −7.04988 −0.694645 −0.347323 0.937746i \(-0.612909\pi\)
−0.347323 + 0.937746i \(0.612909\pi\)
\(104\) 23.2164 2.27655
\(105\) 0 0
\(106\) 0.101499 0.00985841
\(107\) −3.25962 −0.315120 −0.157560 0.987509i \(-0.550363\pi\)
−0.157560 + 0.987509i \(0.550363\pi\)
\(108\) 0 0
\(109\) −0.560643 −0.0536999 −0.0268499 0.999639i \(-0.508548\pi\)
−0.0268499 + 0.999639i \(0.508548\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −15.0418 −1.42132
\(113\) 13.3505 1.25591 0.627953 0.778252i \(-0.283893\pi\)
0.627953 + 0.778252i \(0.283893\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.04739 0.375791
\(117\) 0 0
\(118\) 7.05383 0.649358
\(119\) 4.55878 0.417903
\(120\) 0 0
\(121\) −0.950746 −0.0864314
\(122\) 4.00944 0.362998
\(123\) 0 0
\(124\) −1.71482 −0.153995
\(125\) 0 0
\(126\) 0 0
\(127\) 16.3437 1.45027 0.725135 0.688607i \(-0.241777\pi\)
0.725135 + 0.688607i \(0.241777\pi\)
\(128\) 19.1736 1.69472
\(129\) 0 0
\(130\) 0 0
\(131\) −7.10277 −0.620571 −0.310286 0.950643i \(-0.600425\pi\)
−0.310286 + 0.950643i \(0.600425\pi\)
\(132\) 0 0
\(133\) 14.2024 1.23150
\(134\) −1.14340 −0.0987746
\(135\) 0 0
\(136\) 6.54105 0.560890
\(137\) 0.338571 0.0289261 0.0144630 0.999895i \(-0.495396\pi\)
0.0144630 + 0.999895i \(0.495396\pi\)
\(138\) 0 0
\(139\) −13.1480 −1.11520 −0.557599 0.830110i \(-0.688277\pi\)
−0.557599 + 0.830110i \(0.688277\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.6679 −0.895234
\(143\) −14.6176 −1.22239
\(144\) 0 0
\(145\) 0 0
\(146\) −37.1840 −3.07737
\(147\) 0 0
\(148\) 15.0170 1.23439
\(149\) 14.2553 1.16784 0.583919 0.811812i \(-0.301518\pi\)
0.583919 + 0.811812i \(0.301518\pi\)
\(150\) 0 0
\(151\) 6.02626 0.490410 0.245205 0.969471i \(-0.421145\pi\)
0.245205 + 0.969471i \(0.421145\pi\)
\(152\) 20.3779 1.65287
\(153\) 0 0
\(154\) 27.3550 2.20433
\(155\) 0 0
\(156\) 0 0
\(157\) −22.7417 −1.81499 −0.907494 0.420065i \(-0.862007\pi\)
−0.907494 + 0.420065i \(0.862007\pi\)
\(158\) −25.3156 −2.01400
\(159\) 0 0
\(160\) 0 0
\(161\) −9.03816 −0.712307
\(162\) 0 0
\(163\) −24.5842 −1.92558 −0.962791 0.270247i \(-0.912895\pi\)
−0.962791 + 0.270247i \(0.912895\pi\)
\(164\) 41.8676 3.26931
\(165\) 0 0
\(166\) −27.6915 −2.14928
\(167\) −12.1715 −0.941860 −0.470930 0.882170i \(-0.656082\pi\)
−0.470930 + 0.882170i \(0.656082\pi\)
\(168\) 0 0
\(169\) 8.26271 0.635593
\(170\) 0 0
\(171\) 0 0
\(172\) 18.5343 1.41323
\(173\) 10.3682 0.788280 0.394140 0.919050i \(-0.371043\pi\)
0.394140 + 0.919050i \(0.371043\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.5888 1.02429
\(177\) 0 0
\(178\) 40.9385 3.06847
\(179\) −5.56095 −0.415645 −0.207822 0.978167i \(-0.566638\pi\)
−0.207822 + 0.978167i \(0.566638\pi\)
\(180\) 0 0
\(181\) −18.2192 −1.35422 −0.677111 0.735881i \(-0.736768\pi\)
−0.677111 + 0.735881i \(0.736768\pi\)
\(182\) −39.7905 −2.94947
\(183\) 0 0
\(184\) −12.9682 −0.956026
\(185\) 0 0
\(186\) 0 0
\(187\) −4.11841 −0.301168
\(188\) −21.6719 −1.58059
\(189\) 0 0
\(190\) 0 0
\(191\) 9.51629 0.688574 0.344287 0.938864i \(-0.388121\pi\)
0.344287 + 0.938864i \(0.388121\pi\)
\(192\) 0 0
\(193\) −7.95873 −0.572882 −0.286441 0.958098i \(-0.592472\pi\)
−0.286441 + 0.958098i \(0.592472\pi\)
\(194\) 9.75365 0.700271
\(195\) 0 0
\(196\) 21.5048 1.53606
\(197\) −18.3498 −1.30737 −0.653686 0.756766i \(-0.726778\pi\)
−0.653686 + 0.756766i \(0.726778\pi\)
\(198\) 0 0
\(199\) −18.8066 −1.33317 −0.666583 0.745431i \(-0.732244\pi\)
−0.666583 + 0.745431i \(0.732244\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −6.94273 −0.488489
\(203\) −3.50903 −0.246285
\(204\) 0 0
\(205\) 0 0
\(206\) 17.3367 1.20790
\(207\) 0 0
\(208\) −19.7662 −1.37054
\(209\) −12.8305 −0.887501
\(210\) 0 0
\(211\) 4.73351 0.325868 0.162934 0.986637i \(-0.447904\pi\)
0.162934 + 0.986637i \(0.447904\pi\)
\(212\) −0.167052 −0.0114732
\(213\) 0 0
\(214\) 8.01588 0.547955
\(215\) 0 0
\(216\) 0 0
\(217\) 1.48672 0.100925
\(218\) 1.37870 0.0933775
\(219\) 0 0
\(220\) 0 0
\(221\) 5.99062 0.402973
\(222\) 0 0
\(223\) 7.31989 0.490176 0.245088 0.969501i \(-0.421183\pi\)
0.245088 + 0.969501i \(0.421183\pi\)
\(224\) 1.65522 0.110594
\(225\) 0 0
\(226\) −32.8307 −2.18387
\(227\) −15.8457 −1.05172 −0.525858 0.850572i \(-0.676256\pi\)
−0.525858 + 0.850572i \(0.676256\pi\)
\(228\) 0 0
\(229\) 16.0440 1.06021 0.530107 0.847931i \(-0.322152\pi\)
0.530107 + 0.847931i \(0.322152\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.03483 −0.330553
\(233\) 18.9965 1.24450 0.622251 0.782818i \(-0.286218\pi\)
0.622251 + 0.782818i \(0.286218\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.6096 −0.755719
\(237\) 0 0
\(238\) −11.2107 −0.726682
\(239\) 20.1139 1.30106 0.650531 0.759480i \(-0.274546\pi\)
0.650531 + 0.759480i \(0.274546\pi\)
\(240\) 0 0
\(241\) −16.6785 −1.07435 −0.537177 0.843470i \(-0.680509\pi\)
−0.537177 + 0.843470i \(0.680509\pi\)
\(242\) 2.33802 0.150294
\(243\) 0 0
\(244\) −6.59896 −0.422455
\(245\) 0 0
\(246\) 0 0
\(247\) 18.6631 1.18751
\(248\) 2.13318 0.135457
\(249\) 0 0
\(250\) 0 0
\(251\) −5.87363 −0.370740 −0.185370 0.982669i \(-0.559348\pi\)
−0.185370 + 0.982669i \(0.559348\pi\)
\(252\) 0 0
\(253\) 8.16508 0.513334
\(254\) −40.1915 −2.52184
\(255\) 0 0
\(256\) −32.3242 −2.02026
\(257\) −13.5371 −0.844421 −0.422210 0.906498i \(-0.638746\pi\)
−0.422210 + 0.906498i \(0.638746\pi\)
\(258\) 0 0
\(259\) −13.0195 −0.808991
\(260\) 0 0
\(261\) 0 0
\(262\) 17.4667 1.07910
\(263\) −5.19055 −0.320063 −0.160031 0.987112i \(-0.551160\pi\)
−0.160031 + 0.987112i \(0.551160\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −34.9258 −2.14144
\(267\) 0 0
\(268\) 1.88187 0.114953
\(269\) 14.6610 0.893894 0.446947 0.894560i \(-0.352511\pi\)
0.446947 + 0.894560i \(0.352511\pi\)
\(270\) 0 0
\(271\) 11.6971 0.710546 0.355273 0.934763i \(-0.384388\pi\)
0.355273 + 0.934763i \(0.384388\pi\)
\(272\) −5.56898 −0.337669
\(273\) 0 0
\(274\) −0.832596 −0.0502989
\(275\) 0 0
\(276\) 0 0
\(277\) 12.9375 0.777341 0.388670 0.921377i \(-0.372934\pi\)
0.388670 + 0.921377i \(0.372934\pi\)
\(278\) 32.3328 1.93919
\(279\) 0 0
\(280\) 0 0
\(281\) 7.94275 0.473825 0.236912 0.971531i \(-0.423865\pi\)
0.236912 + 0.971531i \(0.423865\pi\)
\(282\) 0 0
\(283\) −28.3465 −1.68502 −0.842512 0.538677i \(-0.818924\pi\)
−0.842512 + 0.538677i \(0.818924\pi\)
\(284\) 17.5579 1.04187
\(285\) 0 0
\(286\) 35.9468 2.12558
\(287\) −36.2985 −2.14264
\(288\) 0 0
\(289\) −15.3122 −0.900717
\(290\) 0 0
\(291\) 0 0
\(292\) 61.1994 3.58142
\(293\) −24.8491 −1.45170 −0.725849 0.687854i \(-0.758553\pi\)
−0.725849 + 0.687854i \(0.758553\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.6807 −1.08579
\(297\) 0 0
\(298\) −35.0558 −2.03073
\(299\) −11.8769 −0.686858
\(300\) 0 0
\(301\) −16.0689 −0.926199
\(302\) −14.8194 −0.852763
\(303\) 0 0
\(304\) −17.3496 −0.995065
\(305\) 0 0
\(306\) 0 0
\(307\) −9.99873 −0.570658 −0.285329 0.958430i \(-0.592103\pi\)
−0.285329 + 0.958430i \(0.592103\pi\)
\(308\) −45.0224 −2.56539
\(309\) 0 0
\(310\) 0 0
\(311\) −1.63825 −0.0928968 −0.0464484 0.998921i \(-0.514790\pi\)
−0.0464484 + 0.998921i \(0.514790\pi\)
\(312\) 0 0
\(313\) −1.93025 −0.109104 −0.0545522 0.998511i \(-0.517373\pi\)
−0.0545522 + 0.998511i \(0.517373\pi\)
\(314\) 55.9252 3.15604
\(315\) 0 0
\(316\) 41.6657 2.34388
\(317\) 29.1121 1.63510 0.817549 0.575859i \(-0.195332\pi\)
0.817549 + 0.575859i \(0.195332\pi\)
\(318\) 0 0
\(319\) 3.17006 0.177489
\(320\) 0 0
\(321\) 0 0
\(322\) 22.2261 1.23861
\(323\) 5.25821 0.292574
\(324\) 0 0
\(325\) 0 0
\(326\) 60.4561 3.34835
\(327\) 0 0
\(328\) −52.0820 −2.87575
\(329\) 18.7892 1.03588
\(330\) 0 0
\(331\) −3.88586 −0.213586 −0.106793 0.994281i \(-0.534058\pi\)
−0.106793 + 0.994281i \(0.534058\pi\)
\(332\) 45.5761 2.50132
\(333\) 0 0
\(334\) 29.9315 1.63778
\(335\) 0 0
\(336\) 0 0
\(337\) −4.54398 −0.247527 −0.123763 0.992312i \(-0.539496\pi\)
−0.123763 + 0.992312i \(0.539496\pi\)
\(338\) −20.3192 −1.10522
\(339\) 0 0
\(340\) 0 0
\(341\) −1.34310 −0.0727331
\(342\) 0 0
\(343\) 5.91882 0.319586
\(344\) −23.0561 −1.24310
\(345\) 0 0
\(346\) −25.4969 −1.37072
\(347\) 13.3348 0.715848 0.357924 0.933751i \(-0.383485\pi\)
0.357924 + 0.933751i \(0.383485\pi\)
\(348\) 0 0
\(349\) 32.8243 1.75704 0.878522 0.477703i \(-0.158530\pi\)
0.878522 + 0.477703i \(0.158530\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.49532 −0.0797011
\(353\) −18.4743 −0.983286 −0.491643 0.870797i \(-0.663603\pi\)
−0.491643 + 0.870797i \(0.663603\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −67.3788 −3.57107
\(357\) 0 0
\(358\) 13.6752 0.722756
\(359\) 25.8079 1.36209 0.681043 0.732243i \(-0.261526\pi\)
0.681043 + 0.732243i \(0.261526\pi\)
\(360\) 0 0
\(361\) −2.61861 −0.137822
\(362\) 44.8036 2.35483
\(363\) 0 0
\(364\) 65.4894 3.43258
\(365\) 0 0
\(366\) 0 0
\(367\) 13.7885 0.719753 0.359876 0.933000i \(-0.382819\pi\)
0.359876 + 0.933000i \(0.382819\pi\)
\(368\) 11.0410 0.575549
\(369\) 0 0
\(370\) 0 0
\(371\) 0.144831 0.00751927
\(372\) 0 0
\(373\) 11.7048 0.606053 0.303026 0.952982i \(-0.402003\pi\)
0.303026 + 0.952982i \(0.402003\pi\)
\(374\) 10.1278 0.523694
\(375\) 0 0
\(376\) 26.9592 1.39031
\(377\) −4.61115 −0.237486
\(378\) 0 0
\(379\) −10.4270 −0.535598 −0.267799 0.963475i \(-0.586296\pi\)
−0.267799 + 0.963475i \(0.586296\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −23.4019 −1.19735
\(383\) 12.0391 0.615170 0.307585 0.951521i \(-0.400479\pi\)
0.307585 + 0.951521i \(0.400479\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.5717 0.996171
\(387\) 0 0
\(388\) −16.0531 −0.814972
\(389\) −16.5646 −0.839858 −0.419929 0.907557i \(-0.637945\pi\)
−0.419929 + 0.907557i \(0.637945\pi\)
\(390\) 0 0
\(391\) −3.34623 −0.169226
\(392\) −26.7514 −1.35115
\(393\) 0 0
\(394\) 45.1249 2.27336
\(395\) 0 0
\(396\) 0 0
\(397\) 14.1044 0.707878 0.353939 0.935268i \(-0.384842\pi\)
0.353939 + 0.935268i \(0.384842\pi\)
\(398\) 46.2482 2.31821
\(399\) 0 0
\(400\) 0 0
\(401\) −11.7748 −0.588007 −0.294003 0.955804i \(-0.594988\pi\)
−0.294003 + 0.955804i \(0.594988\pi\)
\(402\) 0 0
\(403\) 1.95367 0.0973193
\(404\) 11.4267 0.568501
\(405\) 0 0
\(406\) 8.62920 0.428260
\(407\) 11.7618 0.583011
\(408\) 0 0
\(409\) −32.5326 −1.60864 −0.804318 0.594199i \(-0.797469\pi\)
−0.804318 + 0.594199i \(0.797469\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −28.5336 −1.40575
\(413\) 10.0653 0.495282
\(414\) 0 0
\(415\) 0 0
\(416\) 2.17509 0.106643
\(417\) 0 0
\(418\) 31.5520 1.54326
\(419\) −6.80130 −0.332265 −0.166133 0.986103i \(-0.553128\pi\)
−0.166133 + 0.986103i \(0.553128\pi\)
\(420\) 0 0
\(421\) −5.08494 −0.247825 −0.123912 0.992293i \(-0.539544\pi\)
−0.123912 + 0.992293i \(0.539544\pi\)
\(422\) −11.6404 −0.566645
\(423\) 0 0
\(424\) 0.207807 0.0100920
\(425\) 0 0
\(426\) 0 0
\(427\) 5.72119 0.276868
\(428\) −13.1930 −0.637706
\(429\) 0 0
\(430\) 0 0
\(431\) −17.0921 −0.823295 −0.411648 0.911343i \(-0.635047\pi\)
−0.411648 + 0.911343i \(0.635047\pi\)
\(432\) 0 0
\(433\) 7.10031 0.341219 0.170610 0.985339i \(-0.445426\pi\)
0.170610 + 0.985339i \(0.445426\pi\)
\(434\) −3.65605 −0.175496
\(435\) 0 0
\(436\) −2.26914 −0.108672
\(437\) −10.4248 −0.498687
\(438\) 0 0
\(439\) 12.1883 0.581718 0.290859 0.956766i \(-0.406059\pi\)
0.290859 + 0.956766i \(0.406059\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −14.7318 −0.700720
\(443\) −0.994508 −0.0472505 −0.0236252 0.999721i \(-0.507521\pi\)
−0.0236252 + 0.999721i \(0.507521\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −18.0007 −0.852357
\(447\) 0 0
\(448\) 26.0132 1.22901
\(449\) 17.6484 0.832881 0.416441 0.909163i \(-0.363277\pi\)
0.416441 + 0.909163i \(0.363277\pi\)
\(450\) 0 0
\(451\) 32.7921 1.54412
\(452\) 54.0345 2.54157
\(453\) 0 0
\(454\) 38.9669 1.82881
\(455\) 0 0
\(456\) 0 0
\(457\) −4.27450 −0.199953 −0.0999763 0.994990i \(-0.531877\pi\)
−0.0999763 + 0.994990i \(0.531877\pi\)
\(458\) −39.4544 −1.84358
\(459\) 0 0
\(460\) 0 0
\(461\) −1.36149 −0.0634108 −0.0317054 0.999497i \(-0.510094\pi\)
−0.0317054 + 0.999497i \(0.510094\pi\)
\(462\) 0 0
\(463\) 23.9028 1.11086 0.555429 0.831564i \(-0.312554\pi\)
0.555429 + 0.831564i \(0.312554\pi\)
\(464\) 4.28660 0.199000
\(465\) 0 0
\(466\) −46.7151 −2.16404
\(467\) 13.0810 0.605317 0.302658 0.953099i \(-0.402126\pi\)
0.302658 + 0.953099i \(0.402126\pi\)
\(468\) 0 0
\(469\) −1.63155 −0.0753379
\(470\) 0 0
\(471\) 0 0
\(472\) 14.4420 0.664745
\(473\) 14.5167 0.667479
\(474\) 0 0
\(475\) 0 0
\(476\) 18.4512 0.845708
\(477\) 0 0
\(478\) −49.4631 −2.26239
\(479\) −34.7395 −1.58729 −0.793643 0.608383i \(-0.791818\pi\)
−0.793643 + 0.608383i \(0.791818\pi\)
\(480\) 0 0
\(481\) −17.1087 −0.780089
\(482\) 41.0147 1.86817
\(483\) 0 0
\(484\) −3.84804 −0.174911
\(485\) 0 0
\(486\) 0 0
\(487\) −18.3895 −0.833308 −0.416654 0.909065i \(-0.636797\pi\)
−0.416654 + 0.909065i \(0.636797\pi\)
\(488\) 8.20890 0.371600
\(489\) 0 0
\(490\) 0 0
\(491\) −42.5512 −1.92031 −0.960155 0.279469i \(-0.909842\pi\)
−0.960155 + 0.279469i \(0.909842\pi\)
\(492\) 0 0
\(493\) −1.29916 −0.0585112
\(494\) −45.8953 −2.06493
\(495\) 0 0
\(496\) −1.81616 −0.0815482
\(497\) −15.2224 −0.682818
\(498\) 0 0
\(499\) −17.4618 −0.781699 −0.390849 0.920455i \(-0.627819\pi\)
−0.390849 + 0.920455i \(0.627819\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 14.4441 0.644672
\(503\) 14.4442 0.644036 0.322018 0.946734i \(-0.395639\pi\)
0.322018 + 0.946734i \(0.395639\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −20.0791 −0.892625
\(507\) 0 0
\(508\) 66.1494 2.93491
\(509\) 1.83780 0.0814591 0.0407295 0.999170i \(-0.487032\pi\)
0.0407295 + 0.999170i \(0.487032\pi\)
\(510\) 0 0
\(511\) −53.0589 −2.34719
\(512\) 41.1426 1.81827
\(513\) 0 0
\(514\) 33.2897 1.46834
\(515\) 0 0
\(516\) 0 0
\(517\) −16.9742 −0.746523
\(518\) 32.0168 1.40674
\(519\) 0 0
\(520\) 0 0
\(521\) −36.8440 −1.61417 −0.807083 0.590439i \(-0.798955\pi\)
−0.807083 + 0.590439i \(0.798955\pi\)
\(522\) 0 0
\(523\) −30.1607 −1.31883 −0.659417 0.751777i \(-0.729197\pi\)
−0.659417 + 0.751777i \(0.729197\pi\)
\(524\) −28.7477 −1.25585
\(525\) 0 0
\(526\) 12.7643 0.556550
\(527\) 0.550433 0.0239772
\(528\) 0 0
\(529\) −16.3658 −0.711558
\(530\) 0 0
\(531\) 0 0
\(532\) 57.4827 2.49219
\(533\) −47.6993 −2.06609
\(534\) 0 0
\(535\) 0 0
\(536\) −2.34099 −0.101115
\(537\) 0 0
\(538\) −36.0534 −1.55437
\(539\) 16.8433 0.725493
\(540\) 0 0
\(541\) 30.2558 1.30080 0.650400 0.759592i \(-0.274601\pi\)
0.650400 + 0.759592i \(0.274601\pi\)
\(542\) −28.7648 −1.23555
\(543\) 0 0
\(544\) 0.612817 0.0262743
\(545\) 0 0
\(546\) 0 0
\(547\) 22.2206 0.950084 0.475042 0.879963i \(-0.342433\pi\)
0.475042 + 0.879963i \(0.342433\pi\)
\(548\) 1.37033 0.0585376
\(549\) 0 0
\(550\) 0 0
\(551\) −4.04739 −0.172425
\(552\) 0 0
\(553\) −36.1235 −1.53613
\(554\) −31.8153 −1.35170
\(555\) 0 0
\(556\) −53.2151 −2.25682
\(557\) 31.1531 1.32000 0.659999 0.751267i \(-0.270557\pi\)
0.659999 + 0.751267i \(0.270557\pi\)
\(558\) 0 0
\(559\) −21.1159 −0.893109
\(560\) 0 0
\(561\) 0 0
\(562\) −19.5324 −0.823923
\(563\) −20.2319 −0.852675 −0.426337 0.904564i \(-0.640196\pi\)
−0.426337 + 0.904564i \(0.640196\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 69.7082 2.93005
\(567\) 0 0
\(568\) −21.8415 −0.916447
\(569\) −23.1088 −0.968773 −0.484386 0.874854i \(-0.660957\pi\)
−0.484386 + 0.874854i \(0.660957\pi\)
\(570\) 0 0
\(571\) −41.9425 −1.75524 −0.877620 0.479356i \(-0.840870\pi\)
−0.877620 + 0.479356i \(0.840870\pi\)
\(572\) −59.1632 −2.47374
\(573\) 0 0
\(574\) 89.2634 3.72578
\(575\) 0 0
\(576\) 0 0
\(577\) −19.8997 −0.828436 −0.414218 0.910178i \(-0.635945\pi\)
−0.414218 + 0.910178i \(0.635945\pi\)
\(578\) 37.6549 1.56624
\(579\) 0 0
\(580\) 0 0
\(581\) −39.5138 −1.63931
\(582\) 0 0
\(583\) −0.130841 −0.00541887
\(584\) −76.1302 −3.15029
\(585\) 0 0
\(586\) 61.1075 2.52433
\(587\) 3.03862 0.125417 0.0627086 0.998032i \(-0.480026\pi\)
0.0627086 + 0.998032i \(0.480026\pi\)
\(588\) 0 0
\(589\) 1.71482 0.0706577
\(590\) 0 0
\(591\) 0 0
\(592\) 15.9045 0.653671
\(593\) 40.8122 1.67596 0.837979 0.545703i \(-0.183737\pi\)
0.837979 + 0.545703i \(0.183737\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 57.6967 2.36335
\(597\) 0 0
\(598\) 29.2070 1.19436
\(599\) −15.7500 −0.643530 −0.321765 0.946820i \(-0.604276\pi\)
−0.321765 + 0.946820i \(0.604276\pi\)
\(600\) 0 0
\(601\) 1.00387 0.0409489 0.0204745 0.999790i \(-0.493482\pi\)
0.0204745 + 0.999790i \(0.493482\pi\)
\(602\) 39.5159 1.61055
\(603\) 0 0
\(604\) 24.3906 0.992441
\(605\) 0 0
\(606\) 0 0
\(607\) 30.6666 1.24472 0.622360 0.782731i \(-0.286174\pi\)
0.622360 + 0.782731i \(0.286174\pi\)
\(608\) 1.90917 0.0774269
\(609\) 0 0
\(610\) 0 0
\(611\) 24.6905 0.998873
\(612\) 0 0
\(613\) 3.13840 0.126759 0.0633793 0.997990i \(-0.479812\pi\)
0.0633793 + 0.997990i \(0.479812\pi\)
\(614\) 24.5883 0.992304
\(615\) 0 0
\(616\) 56.0065 2.25657
\(617\) −48.0571 −1.93471 −0.967353 0.253434i \(-0.918440\pi\)
−0.967353 + 0.253434i \(0.918440\pi\)
\(618\) 0 0
\(619\) 42.0099 1.68852 0.844260 0.535934i \(-0.180040\pi\)
0.844260 + 0.535934i \(0.180040\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.02870 0.161536
\(623\) 58.4163 2.34040
\(624\) 0 0
\(625\) 0 0
\(626\) 4.74677 0.189719
\(627\) 0 0
\(628\) −92.0447 −3.67298
\(629\) −4.82025 −0.192196
\(630\) 0 0
\(631\) −20.9064 −0.832271 −0.416135 0.909303i \(-0.636616\pi\)
−0.416135 + 0.909303i \(0.636616\pi\)
\(632\) −51.8309 −2.06172
\(633\) 0 0
\(634\) −71.5909 −2.84324
\(635\) 0 0
\(636\) 0 0
\(637\) −24.5002 −0.970734
\(638\) −7.79563 −0.308632
\(639\) 0 0
\(640\) 0 0
\(641\) −17.6324 −0.696439 −0.348220 0.937413i \(-0.613214\pi\)
−0.348220 + 0.937413i \(0.613214\pi\)
\(642\) 0 0
\(643\) −9.33296 −0.368056 −0.184028 0.982921i \(-0.558914\pi\)
−0.184028 + 0.982921i \(0.558914\pi\)
\(644\) −36.5810 −1.44149
\(645\) 0 0
\(646\) −12.9307 −0.508751
\(647\) 6.08656 0.239287 0.119644 0.992817i \(-0.461825\pi\)
0.119644 + 0.992817i \(0.461825\pi\)
\(648\) 0 0
\(649\) −9.09302 −0.356932
\(650\) 0 0
\(651\) 0 0
\(652\) −99.5018 −3.89679
\(653\) 15.8120 0.618770 0.309385 0.950937i \(-0.399877\pi\)
0.309385 + 0.950937i \(0.399877\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 44.3420 1.73127
\(657\) 0 0
\(658\) −46.2053 −1.80127
\(659\) −38.2114 −1.48850 −0.744252 0.667899i \(-0.767194\pi\)
−0.744252 + 0.667899i \(0.767194\pi\)
\(660\) 0 0
\(661\) −32.2183 −1.25315 −0.626573 0.779362i \(-0.715543\pi\)
−0.626573 + 0.779362i \(0.715543\pi\)
\(662\) 9.55590 0.371401
\(663\) 0 0
\(664\) −56.6953 −2.20021
\(665\) 0 0
\(666\) 0 0
\(667\) 2.57569 0.0997311
\(668\) −49.2629 −1.90604
\(669\) 0 0
\(670\) 0 0
\(671\) −5.16853 −0.199529
\(672\) 0 0
\(673\) 31.8086 1.22613 0.613065 0.790033i \(-0.289936\pi\)
0.613065 + 0.790033i \(0.289936\pi\)
\(674\) 11.1743 0.430418
\(675\) 0 0
\(676\) 33.4424 1.28625
\(677\) 10.6030 0.407507 0.203754 0.979022i \(-0.434686\pi\)
0.203754 + 0.979022i \(0.434686\pi\)
\(678\) 0 0
\(679\) 13.9178 0.534115
\(680\) 0 0
\(681\) 0 0
\(682\) 3.30288 0.126474
\(683\) 12.2980 0.470572 0.235286 0.971926i \(-0.424397\pi\)
0.235286 + 0.971926i \(0.424397\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −14.5552 −0.555722
\(687\) 0 0
\(688\) 19.6297 0.748376
\(689\) 0.190320 0.00725063
\(690\) 0 0
\(691\) 20.5877 0.783193 0.391596 0.920137i \(-0.371923\pi\)
0.391596 + 0.920137i \(0.371923\pi\)
\(692\) 41.9642 1.59524
\(693\) 0 0
\(694\) −32.7921 −1.24477
\(695\) 0 0
\(696\) 0 0
\(697\) −13.4389 −0.509036
\(698\) −80.7196 −3.05528
\(699\) 0 0
\(700\) 0 0
\(701\) 31.8857 1.20431 0.602153 0.798380i \(-0.294310\pi\)
0.602153 + 0.798380i \(0.294310\pi\)
\(702\) 0 0
\(703\) −15.0170 −0.566376
\(704\) −23.5003 −0.885701
\(705\) 0 0
\(706\) 45.4309 1.70981
\(707\) −9.90679 −0.372583
\(708\) 0 0
\(709\) −37.0325 −1.39079 −0.695393 0.718630i \(-0.744769\pi\)
−0.695393 + 0.718630i \(0.744769\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 83.8171 3.14118
\(713\) −1.09128 −0.0408687
\(714\) 0 0
\(715\) 0 0
\(716\) −22.5073 −0.841139
\(717\) 0 0
\(718\) −63.4653 −2.36850
\(719\) −2.30674 −0.0860268 −0.0430134 0.999074i \(-0.513696\pi\)
−0.0430134 + 0.999074i \(0.513696\pi\)
\(720\) 0 0
\(721\) 24.7382 0.921299
\(722\) 6.43955 0.239655
\(723\) 0 0
\(724\) −73.7402 −2.74053
\(725\) 0 0
\(726\) 0 0
\(727\) −30.0583 −1.11480 −0.557401 0.830243i \(-0.688201\pi\)
−0.557401 + 0.830243i \(0.688201\pi\)
\(728\) −81.4668 −3.01936
\(729\) 0 0
\(730\) 0 0
\(731\) −5.94926 −0.220042
\(732\) 0 0
\(733\) −49.7450 −1.83738 −0.918688 0.394985i \(-0.870750\pi\)
−0.918688 + 0.394985i \(0.870750\pi\)
\(734\) −33.9079 −1.25156
\(735\) 0 0
\(736\) −1.21496 −0.0447840
\(737\) 1.47394 0.0542934
\(738\) 0 0
\(739\) −46.1269 −1.69681 −0.848404 0.529350i \(-0.822436\pi\)
−0.848404 + 0.529350i \(0.822436\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.356161 −0.0130751
\(743\) −14.0745 −0.516345 −0.258172 0.966099i \(-0.583120\pi\)
−0.258172 + 0.966099i \(0.583120\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −28.7839 −1.05385
\(747\) 0 0
\(748\) −16.6688 −0.609472
\(749\) 11.4381 0.417939
\(750\) 0 0
\(751\) 6.40760 0.233817 0.116908 0.993143i \(-0.462702\pi\)
0.116908 + 0.993143i \(0.462702\pi\)
\(752\) −22.9527 −0.837000
\(753\) 0 0
\(754\) 11.3395 0.412960
\(755\) 0 0
\(756\) 0 0
\(757\) −37.6194 −1.36730 −0.683651 0.729809i \(-0.739609\pi\)
−0.683651 + 0.729809i \(0.739609\pi\)
\(758\) 25.6415 0.931339
\(759\) 0 0
\(760\) 0 0
\(761\) 7.98770 0.289554 0.144777 0.989464i \(-0.453754\pi\)
0.144777 + 0.989464i \(0.453754\pi\)
\(762\) 0 0
\(763\) 1.96731 0.0712214
\(764\) 38.5161 1.39347
\(765\) 0 0
\(766\) −29.6059 −1.06970
\(767\) 13.2267 0.477587
\(768\) 0 0
\(769\) −12.3260 −0.444486 −0.222243 0.974991i \(-0.571338\pi\)
−0.222243 + 0.974991i \(0.571338\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −32.2121 −1.15934
\(773\) −46.9639 −1.68917 −0.844587 0.535419i \(-0.820154\pi\)
−0.844587 + 0.535419i \(0.820154\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 19.9695 0.716865
\(777\) 0 0
\(778\) 40.7347 1.46041
\(779\) −41.8676 −1.50006
\(780\) 0 0
\(781\) 13.7519 0.492082
\(782\) 8.22886 0.294264
\(783\) 0 0
\(784\) 22.7758 0.813422
\(785\) 0 0
\(786\) 0 0
\(787\) −35.1053 −1.25137 −0.625684 0.780076i \(-0.715180\pi\)
−0.625684 + 0.780076i \(0.715180\pi\)
\(788\) −74.2690 −2.64572
\(789\) 0 0
\(790\) 0 0
\(791\) −46.8471 −1.66569
\(792\) 0 0
\(793\) 7.51812 0.266976
\(794\) −34.6847 −1.23091
\(795\) 0 0
\(796\) −76.1177 −2.69792
\(797\) −36.4490 −1.29109 −0.645546 0.763722i \(-0.723370\pi\)
−0.645546 + 0.763722i \(0.723370\pi\)
\(798\) 0 0
\(799\) 6.95639 0.246099
\(800\) 0 0
\(801\) 0 0
\(802\) 28.9560 1.02247
\(803\) 47.9334 1.69153
\(804\) 0 0
\(805\) 0 0
\(806\) −4.80436 −0.169226
\(807\) 0 0
\(808\) −14.2145 −0.500064
\(809\) −50.3845 −1.77142 −0.885712 0.464235i \(-0.846329\pi\)
−0.885712 + 0.464235i \(0.846329\pi\)
\(810\) 0 0
\(811\) 44.6328 1.56727 0.783635 0.621221i \(-0.213363\pi\)
0.783635 + 0.621221i \(0.213363\pi\)
\(812\) −14.2024 −0.498407
\(813\) 0 0
\(814\) −28.9240 −1.01379
\(815\) 0 0
\(816\) 0 0
\(817\) −18.5343 −0.648433
\(818\) 80.0025 2.79722
\(819\) 0 0
\(820\) 0 0
\(821\) −25.6437 −0.894971 −0.447486 0.894291i \(-0.647680\pi\)
−0.447486 + 0.894291i \(0.647680\pi\)
\(822\) 0 0
\(823\) 4.74708 0.165473 0.0827364 0.996571i \(-0.473634\pi\)
0.0827364 + 0.996571i \(0.473634\pi\)
\(824\) 35.4950 1.23653
\(825\) 0 0
\(826\) −24.7521 −0.861235
\(827\) −16.8954 −0.587509 −0.293755 0.955881i \(-0.594905\pi\)
−0.293755 + 0.955881i \(0.594905\pi\)
\(828\) 0 0
\(829\) −31.1447 −1.08170 −0.540850 0.841119i \(-0.681897\pi\)
−0.540850 + 0.841119i \(0.681897\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 34.1835 1.18510
\(833\) −6.90277 −0.239167
\(834\) 0 0
\(835\) 0 0
\(836\) −51.9299 −1.79603
\(837\) 0 0
\(838\) 16.7254 0.577769
\(839\) −20.3277 −0.701791 −0.350896 0.936415i \(-0.614123\pi\)
−0.350896 + 0.936415i \(0.614123\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 12.5046 0.430937
\(843\) 0 0
\(844\) 19.1584 0.659458
\(845\) 0 0
\(846\) 0 0
\(847\) 3.33619 0.114633
\(848\) −0.176925 −0.00607563
\(849\) 0 0
\(850\) 0 0
\(851\) 9.55654 0.327594
\(852\) 0 0
\(853\) 48.0623 1.64562 0.822810 0.568316i \(-0.192405\pi\)
0.822810 + 0.568316i \(0.192405\pi\)
\(854\) −14.0692 −0.481439
\(855\) 0 0
\(856\) 16.4117 0.560939
\(857\) −24.0426 −0.821280 −0.410640 0.911797i \(-0.634695\pi\)
−0.410640 + 0.911797i \(0.634695\pi\)
\(858\) 0 0
\(859\) −38.8389 −1.32517 −0.662583 0.748988i \(-0.730540\pi\)
−0.662583 + 0.748988i \(0.730540\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42.0318 1.43161
\(863\) 43.5717 1.48320 0.741599 0.670843i \(-0.234068\pi\)
0.741599 + 0.670843i \(0.234068\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −17.4607 −0.593338
\(867\) 0 0
\(868\) 6.01733 0.204242
\(869\) 32.6340 1.10703
\(870\) 0 0
\(871\) −2.14399 −0.0726464
\(872\) 2.82275 0.0955902
\(873\) 0 0
\(874\) 25.6362 0.867156
\(875\) 0 0
\(876\) 0 0
\(877\) −33.4549 −1.12969 −0.564846 0.825197i \(-0.691064\pi\)
−0.564846 + 0.825197i \(0.691064\pi\)
\(878\) −29.9729 −1.01154
\(879\) 0 0
\(880\) 0 0
\(881\) 17.1987 0.579440 0.289720 0.957111i \(-0.406438\pi\)
0.289720 + 0.957111i \(0.406438\pi\)
\(882\) 0 0
\(883\) −31.2157 −1.05049 −0.525247 0.850950i \(-0.676027\pi\)
−0.525247 + 0.850950i \(0.676027\pi\)
\(884\) 24.2464 0.815494
\(885\) 0 0
\(886\) 2.44564 0.0821628
\(887\) −50.3074 −1.68916 −0.844579 0.535430i \(-0.820149\pi\)
−0.844579 + 0.535430i \(0.820149\pi\)
\(888\) 0 0
\(889\) −57.3505 −1.92347
\(890\) 0 0
\(891\) 0 0
\(892\) 29.6265 0.991968
\(893\) 21.6719 0.725222
\(894\) 0 0
\(895\) 0 0
\(896\) −67.2806 −2.24769
\(897\) 0 0
\(898\) −43.4001 −1.44828
\(899\) −0.423684 −0.0141307
\(900\) 0 0
\(901\) 0.0536214 0.00178639
\(902\) −80.6406 −2.68504
\(903\) 0 0
\(904\) −67.2173 −2.23562
\(905\) 0 0
\(906\) 0 0
\(907\) −40.2681 −1.33708 −0.668540 0.743676i \(-0.733080\pi\)
−0.668540 + 0.743676i \(0.733080\pi\)
\(908\) −64.1338 −2.12835
\(909\) 0 0
\(910\) 0 0
\(911\) 46.0923 1.52710 0.763552 0.645746i \(-0.223453\pi\)
0.763552 + 0.645746i \(0.223453\pi\)
\(912\) 0 0
\(913\) 35.6968 1.18139
\(914\) 10.5116 0.347693
\(915\) 0 0
\(916\) 64.9362 2.14555
\(917\) 24.9238 0.823056
\(918\) 0 0
\(919\) −10.9441 −0.361012 −0.180506 0.983574i \(-0.557773\pi\)
−0.180506 + 0.983574i \(0.557773\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3.34809 0.110264
\(923\) −20.0035 −0.658423
\(924\) 0 0
\(925\) 0 0
\(926\) −58.7804 −1.93165
\(927\) 0 0
\(928\) −0.471703 −0.0154844
\(929\) 50.6115 1.66051 0.830255 0.557384i \(-0.188195\pi\)
0.830255 + 0.557384i \(0.188195\pi\)
\(930\) 0 0
\(931\) −21.5048 −0.704793
\(932\) 76.8863 2.51849
\(933\) 0 0
\(934\) −32.1681 −1.05257
\(935\) 0 0
\(936\) 0 0
\(937\) −18.9658 −0.619585 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(938\) 4.01222 0.131003
\(939\) 0 0
\(940\) 0 0
\(941\) 37.2758 1.21516 0.607579 0.794260i \(-0.292141\pi\)
0.607579 + 0.794260i \(0.292141\pi\)
\(942\) 0 0
\(943\) 26.6438 0.867642
\(944\) −12.2957 −0.400192
\(945\) 0 0
\(946\) −35.6987 −1.16066
\(947\) 25.3754 0.824591 0.412296 0.911050i \(-0.364727\pi\)
0.412296 + 0.911050i \(0.364727\pi\)
\(948\) 0 0
\(949\) −69.7238 −2.26333
\(950\) 0 0
\(951\) 0 0
\(952\) −22.9527 −0.743902
\(953\) 43.6572 1.41419 0.707097 0.707116i \(-0.250004\pi\)
0.707097 + 0.707116i \(0.250004\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 81.4090 2.63295
\(957\) 0 0
\(958\) 85.4294 2.76010
\(959\) −1.18806 −0.0383643
\(960\) 0 0
\(961\) −30.8205 −0.994209
\(962\) 42.0727 1.35648
\(963\) 0 0
\(964\) −67.5043 −2.17417
\(965\) 0 0
\(966\) 0 0
\(967\) −28.4146 −0.913751 −0.456875 0.889531i \(-0.651032\pi\)
−0.456875 + 0.889531i \(0.651032\pi\)
\(968\) 4.78685 0.153855
\(969\) 0 0
\(970\) 0 0
\(971\) −6.34773 −0.203708 −0.101854 0.994799i \(-0.532477\pi\)
−0.101854 + 0.994799i \(0.532477\pi\)
\(972\) 0 0
\(973\) 46.1366 1.47907
\(974\) 45.2225 1.44902
\(975\) 0 0
\(976\) −6.98897 −0.223711
\(977\) −6.78708 −0.217138 −0.108569 0.994089i \(-0.534627\pi\)
−0.108569 + 0.994089i \(0.534627\pi\)
\(978\) 0 0
\(979\) −52.7733 −1.68664
\(980\) 0 0
\(981\) 0 0
\(982\) 104.640 3.33918
\(983\) −33.2974 −1.06202 −0.531011 0.847365i \(-0.678188\pi\)
−0.531011 + 0.847365i \(0.678188\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.19482 0.101744
\(987\) 0 0
\(988\) 75.5370 2.40315
\(989\) 11.7949 0.375056
\(990\) 0 0
\(991\) 23.2716 0.739247 0.369623 0.929182i \(-0.379487\pi\)
0.369623 + 0.929182i \(0.379487\pi\)
\(992\) 0.199853 0.00634534
\(993\) 0 0
\(994\) 37.4341 1.18734
\(995\) 0 0
\(996\) 0 0
\(997\) 18.5645 0.587945 0.293973 0.955814i \(-0.405023\pi\)
0.293973 + 0.955814i \(0.405023\pi\)
\(998\) 42.9412 1.35928
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bo.1.1 5
3.2 odd 2 725.2.a.i.1.5 5
5.4 even 2 6525.2.a.bp.1.5 5
15.2 even 4 725.2.b.g.349.10 10
15.8 even 4 725.2.b.g.349.1 10
15.14 odd 2 725.2.a.j.1.1 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.i.1.5 5 3.2 odd 2
725.2.a.j.1.1 yes 5 15.14 odd 2
725.2.b.g.349.1 10 15.8 even 4
725.2.b.g.349.10 10 15.2 even 4
6525.2.a.bo.1.1 5 1.1 even 1 trivial
6525.2.a.bp.1.5 5 5.4 even 2