Properties

Label 725.2.a.i.1.5
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(1,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.294577.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - x^{2} + 7x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.45914\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.45914 q^{2} -3.33648 q^{3} +4.04739 q^{4} -8.20489 q^{6} -3.50903 q^{7} +5.03483 q^{8} +8.13211 q^{9} -3.17006 q^{11} -13.5040 q^{12} -4.61115 q^{13} -8.62920 q^{14} +4.28660 q^{16} +1.29916 q^{17} +19.9980 q^{18} -4.04739 q^{19} +11.7078 q^{21} -7.79563 q^{22} -2.57569 q^{23} -16.7986 q^{24} -11.3395 q^{26} -17.1232 q^{27} -14.2024 q^{28} -1.00000 q^{29} -0.423684 q^{31} +0.471703 q^{32} +10.5768 q^{33} +3.19482 q^{34} +32.9138 q^{36} +3.71028 q^{37} -9.95312 q^{38} +15.3850 q^{39} -10.3443 q^{41} +28.7912 q^{42} +4.57932 q^{43} -12.8305 q^{44} -6.33399 q^{46} +5.35453 q^{47} -14.3022 q^{48} +5.31326 q^{49} -4.33462 q^{51} -18.6631 q^{52} +0.0412739 q^{53} -42.1084 q^{54} -17.6674 q^{56} +13.5040 q^{57} -2.45914 q^{58} +2.86841 q^{59} -1.63042 q^{61} -1.04190 q^{62} -28.5358 q^{63} -7.41322 q^{64} +26.0100 q^{66} +0.464958 q^{67} +5.25821 q^{68} +8.59374 q^{69} -4.33807 q^{71} +40.9438 q^{72} +15.1207 q^{73} +9.12413 q^{74} -16.3814 q^{76} +11.1238 q^{77} +37.8340 q^{78} +10.2945 q^{79} +32.7348 q^{81} -25.4382 q^{82} -11.2606 q^{83} +47.3860 q^{84} +11.2612 q^{86} +3.33648 q^{87} -15.9607 q^{88} +16.6474 q^{89} +16.1806 q^{91} -10.4248 q^{92} +1.41361 q^{93} +13.1676 q^{94} -1.57383 q^{96} -3.96628 q^{97} +13.0661 q^{98} -25.7792 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 6 q^{3} + 4 q^{4} - q^{6} - 10 q^{7} + 3 q^{8} + 7 q^{9} + 2 q^{11} - 18 q^{12} - 8 q^{13} - 13 q^{14} + 6 q^{16} - 3 q^{17} + 16 q^{18} - 4 q^{19} + 15 q^{21} - 16 q^{22} - 3 q^{23} - 19 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45914 1.73888 0.869439 0.494040i \(-0.164481\pi\)
0.869439 + 0.494040i \(0.164481\pi\)
\(3\) −3.33648 −1.92632 −0.963159 0.268932i \(-0.913329\pi\)
−0.963159 + 0.268932i \(0.913329\pi\)
\(4\) 4.04739 2.02370
\(5\) 0 0
\(6\) −8.20489 −3.34963
\(7\) −3.50903 −1.32629 −0.663143 0.748492i \(-0.730778\pi\)
−0.663143 + 0.748492i \(0.730778\pi\)
\(8\) 5.03483 1.78008
\(9\) 8.13211 2.71070
\(10\) 0 0
\(11\) −3.17006 −0.955808 −0.477904 0.878412i \(-0.658603\pi\)
−0.477904 + 0.878412i \(0.658603\pi\)
\(12\) −13.5040 −3.89828
\(13\) −4.61115 −1.27890 −0.639451 0.768831i \(-0.720838\pi\)
−0.639451 + 0.768831i \(0.720838\pi\)
\(14\) −8.62920 −2.30625
\(15\) 0 0
\(16\) 4.28660 1.07165
\(17\) 1.29916 0.315092 0.157546 0.987512i \(-0.449642\pi\)
0.157546 + 0.987512i \(0.449642\pi\)
\(18\) 19.9980 4.71358
\(19\) −4.04739 −0.928536 −0.464268 0.885695i \(-0.653682\pi\)
−0.464268 + 0.885695i \(0.653682\pi\)
\(20\) 0 0
\(21\) 11.7078 2.55485
\(22\) −7.79563 −1.66203
\(23\) −2.57569 −0.537068 −0.268534 0.963270i \(-0.586539\pi\)
−0.268534 + 0.963270i \(0.586539\pi\)
\(24\) −16.7986 −3.42901
\(25\) 0 0
\(26\) −11.3395 −2.22386
\(27\) −17.1232 −3.29536
\(28\) −14.2024 −2.68400
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.423684 −0.0760959 −0.0380480 0.999276i \(-0.512114\pi\)
−0.0380480 + 0.999276i \(0.512114\pi\)
\(32\) 0.471703 0.0833861
\(33\) 10.5768 1.84119
\(34\) 3.19482 0.547907
\(35\) 0 0
\(36\) 32.9138 5.48564
\(37\) 3.71028 0.609967 0.304984 0.952358i \(-0.401349\pi\)
0.304984 + 0.952358i \(0.401349\pi\)
\(38\) −9.95312 −1.61461
\(39\) 15.3850 2.46357
\(40\) 0 0
\(41\) −10.3443 −1.61551 −0.807757 0.589516i \(-0.799319\pi\)
−0.807757 + 0.589516i \(0.799319\pi\)
\(42\) 28.7912 4.44257
\(43\) 4.57932 0.698340 0.349170 0.937059i \(-0.386464\pi\)
0.349170 + 0.937059i \(0.386464\pi\)
\(44\) −12.8305 −1.93426
\(45\) 0 0
\(46\) −6.33399 −0.933896
\(47\) 5.35453 0.781039 0.390519 0.920595i \(-0.372295\pi\)
0.390519 + 0.920595i \(0.372295\pi\)
\(48\) −14.3022 −2.06434
\(49\) 5.31326 0.759037
\(50\) 0 0
\(51\) −4.33462 −0.606968
\(52\) −18.6631 −2.58811
\(53\) 0.0412739 0.00566941 0.00283471 0.999996i \(-0.499098\pi\)
0.00283471 + 0.999996i \(0.499098\pi\)
\(54\) −42.1084 −5.73022
\(55\) 0 0
\(56\) −17.6674 −2.36090
\(57\) 13.5040 1.78865
\(58\) −2.45914 −0.322902
\(59\) 2.86841 0.373435 0.186718 0.982414i \(-0.440215\pi\)
0.186718 + 0.982414i \(0.440215\pi\)
\(60\) 0 0
\(61\) −1.63042 −0.208754 −0.104377 0.994538i \(-0.533285\pi\)
−0.104377 + 0.994538i \(0.533285\pi\)
\(62\) −1.04190 −0.132321
\(63\) −28.5358 −3.59517
\(64\) −7.41322 −0.926652
\(65\) 0 0
\(66\) 26.0100 3.20160
\(67\) 0.464958 0.0568037 0.0284018 0.999597i \(-0.490958\pi\)
0.0284018 + 0.999597i \(0.490958\pi\)
\(68\) 5.25821 0.637651
\(69\) 8.59374 1.03456
\(70\) 0 0
\(71\) −4.33807 −0.514834 −0.257417 0.966300i \(-0.582871\pi\)
−0.257417 + 0.966300i \(0.582871\pi\)
\(72\) 40.9438 4.82527
\(73\) 15.1207 1.76974 0.884872 0.465835i \(-0.154246\pi\)
0.884872 + 0.465835i \(0.154246\pi\)
\(74\) 9.12413 1.06066
\(75\) 0 0
\(76\) −16.3814 −1.87907
\(77\) 11.1238 1.26768
\(78\) 37.8340 4.28385
\(79\) 10.2945 1.15822 0.579108 0.815251i \(-0.303401\pi\)
0.579108 + 0.815251i \(0.303401\pi\)
\(80\) 0 0
\(81\) 32.7348 3.63721
\(82\) −25.4382 −2.80918
\(83\) −11.2606 −1.23601 −0.618007 0.786173i \(-0.712059\pi\)
−0.618007 + 0.786173i \(0.712059\pi\)
\(84\) 47.3860 5.17024
\(85\) 0 0
\(86\) 11.2612 1.21433
\(87\) 3.33648 0.357708
\(88\) −15.9607 −1.70142
\(89\) 16.6474 1.76463 0.882313 0.470663i \(-0.155985\pi\)
0.882313 + 0.470663i \(0.155985\pi\)
\(90\) 0 0
\(91\) 16.1806 1.69619
\(92\) −10.4248 −1.08686
\(93\) 1.41361 0.146585
\(94\) 13.1676 1.35813
\(95\) 0 0
\(96\) −1.57383 −0.160628
\(97\) −3.96628 −0.402714 −0.201357 0.979518i \(-0.564535\pi\)
−0.201357 + 0.979518i \(0.564535\pi\)
\(98\) 13.0661 1.31987
\(99\) −25.7792 −2.59091
\(100\) 0 0
\(101\) −2.82323 −0.280922 −0.140461 0.990086i \(-0.544858\pi\)
−0.140461 + 0.990086i \(0.544858\pi\)
\(102\) −10.6595 −1.05544
\(103\) −7.04988 −0.694645 −0.347323 0.937746i \(-0.612909\pi\)
−0.347323 + 0.937746i \(0.612909\pi\)
\(104\) −23.2164 −2.27655
\(105\) 0 0
\(106\) 0.101499 0.00985841
\(107\) 3.25962 0.315120 0.157560 0.987509i \(-0.449637\pi\)
0.157560 + 0.987509i \(0.449637\pi\)
\(108\) −69.3042 −6.66880
\(109\) −0.560643 −0.0536999 −0.0268499 0.999639i \(-0.508548\pi\)
−0.0268499 + 0.999639i \(0.508548\pi\)
\(110\) 0 0
\(111\) −12.3793 −1.17499
\(112\) −15.0418 −1.42132
\(113\) −13.3505 −1.25591 −0.627953 0.778252i \(-0.716107\pi\)
−0.627953 + 0.778252i \(0.716107\pi\)
\(114\) 33.2084 3.11025
\(115\) 0 0
\(116\) −4.04739 −0.375791
\(117\) −37.4984 −3.46673
\(118\) 7.05383 0.649358
\(119\) −4.55878 −0.417903
\(120\) 0 0
\(121\) −0.950746 −0.0864314
\(122\) −4.00944 −0.362998
\(123\) 34.5137 3.11199
\(124\) −1.71482 −0.153995
\(125\) 0 0
\(126\) −70.1736 −6.25156
\(127\) 16.3437 1.45027 0.725135 0.688607i \(-0.241777\pi\)
0.725135 + 0.688607i \(0.241777\pi\)
\(128\) −19.1736 −1.69472
\(129\) −15.2788 −1.34522
\(130\) 0 0
\(131\) 7.10277 0.620571 0.310286 0.950643i \(-0.399575\pi\)
0.310286 + 0.950643i \(0.399575\pi\)
\(132\) 42.8086 3.72601
\(133\) 14.2024 1.23150
\(134\) 1.14340 0.0987746
\(135\) 0 0
\(136\) 6.54105 0.560890
\(137\) −0.338571 −0.0289261 −0.0144630 0.999895i \(-0.504604\pi\)
−0.0144630 + 0.999895i \(0.504604\pi\)
\(138\) 21.1332 1.79898
\(139\) −13.1480 −1.11520 −0.557599 0.830110i \(-0.688277\pi\)
−0.557599 + 0.830110i \(0.688277\pi\)
\(140\) 0 0
\(141\) −17.8653 −1.50453
\(142\) −10.6679 −0.895234
\(143\) 14.6176 1.22239
\(144\) 34.8591 2.90492
\(145\) 0 0
\(146\) 37.1840 3.07737
\(147\) −17.7276 −1.46215
\(148\) 15.0170 1.23439
\(149\) −14.2553 −1.16784 −0.583919 0.811812i \(-0.698482\pi\)
−0.583919 + 0.811812i \(0.698482\pi\)
\(150\) 0 0
\(151\) 6.02626 0.490410 0.245205 0.969471i \(-0.421145\pi\)
0.245205 + 0.969471i \(0.421145\pi\)
\(152\) −20.3779 −1.65287
\(153\) 10.5649 0.854122
\(154\) 27.3550 2.20433
\(155\) 0 0
\(156\) 62.2692 4.98553
\(157\) −22.7417 −1.81499 −0.907494 0.420065i \(-0.862007\pi\)
−0.907494 + 0.420065i \(0.862007\pi\)
\(158\) 25.3156 2.01400
\(159\) −0.137710 −0.0109211
\(160\) 0 0
\(161\) 9.03816 0.712307
\(162\) 80.4997 6.32466
\(163\) −24.5842 −1.92558 −0.962791 0.270247i \(-0.912895\pi\)
−0.962791 + 0.270247i \(0.912895\pi\)
\(164\) −41.8676 −3.26931
\(165\) 0 0
\(166\) −27.6915 −2.14928
\(167\) 12.1715 0.941860 0.470930 0.882170i \(-0.343918\pi\)
0.470930 + 0.882170i \(0.343918\pi\)
\(168\) 58.9468 4.54785
\(169\) 8.26271 0.635593
\(170\) 0 0
\(171\) −32.9138 −2.51698
\(172\) 18.5343 1.41323
\(173\) −10.3682 −0.788280 −0.394140 0.919050i \(-0.628957\pi\)
−0.394140 + 0.919050i \(0.628957\pi\)
\(174\) 8.20489 0.622011
\(175\) 0 0
\(176\) −13.5888 −1.02429
\(177\) −9.57039 −0.719355
\(178\) 40.9385 3.06847
\(179\) 5.56095 0.415645 0.207822 0.978167i \(-0.433362\pi\)
0.207822 + 0.978167i \(0.433362\pi\)
\(180\) 0 0
\(181\) −18.2192 −1.35422 −0.677111 0.735881i \(-0.736768\pi\)
−0.677111 + 0.735881i \(0.736768\pi\)
\(182\) 39.7905 2.94947
\(183\) 5.43987 0.402127
\(184\) −12.9682 −0.956026
\(185\) 0 0
\(186\) 3.47628 0.254893
\(187\) −4.11841 −0.301168
\(188\) 21.6719 1.58059
\(189\) 60.0857 4.37059
\(190\) 0 0
\(191\) −9.51629 −0.688574 −0.344287 0.938864i \(-0.611879\pi\)
−0.344287 + 0.938864i \(0.611879\pi\)
\(192\) 24.7341 1.78503
\(193\) −7.95873 −0.572882 −0.286441 0.958098i \(-0.592472\pi\)
−0.286441 + 0.958098i \(0.592472\pi\)
\(194\) −9.75365 −0.700271
\(195\) 0 0
\(196\) 21.5048 1.53606
\(197\) 18.3498 1.30737 0.653686 0.756766i \(-0.273222\pi\)
0.653686 + 0.756766i \(0.273222\pi\)
\(198\) −63.3949 −4.50528
\(199\) −18.8066 −1.33317 −0.666583 0.745431i \(-0.732244\pi\)
−0.666583 + 0.745431i \(0.732244\pi\)
\(200\) 0 0
\(201\) −1.55132 −0.109422
\(202\) −6.94273 −0.488489
\(203\) 3.50903 0.246285
\(204\) −17.5439 −1.22832
\(205\) 0 0
\(206\) −17.3367 −1.20790
\(207\) −20.9458 −1.45583
\(208\) −19.7662 −1.37054
\(209\) 12.8305 0.887501
\(210\) 0 0
\(211\) 4.73351 0.325868 0.162934 0.986637i \(-0.447904\pi\)
0.162934 + 0.986637i \(0.447904\pi\)
\(212\) 0.167052 0.0114732
\(213\) 14.4739 0.991734
\(214\) 8.01588 0.547955
\(215\) 0 0
\(216\) −86.2124 −5.86601
\(217\) 1.48672 0.100925
\(218\) −1.37870 −0.0933775
\(219\) −50.4499 −3.40909
\(220\) 0 0
\(221\) −5.99062 −0.402973
\(222\) −30.4425 −2.04317
\(223\) 7.31989 0.490176 0.245088 0.969501i \(-0.421183\pi\)
0.245088 + 0.969501i \(0.421183\pi\)
\(224\) −1.65522 −0.110594
\(225\) 0 0
\(226\) −32.8307 −2.18387
\(227\) 15.8457 1.05172 0.525858 0.850572i \(-0.323744\pi\)
0.525858 + 0.850572i \(0.323744\pi\)
\(228\) 54.6562 3.61969
\(229\) 16.0440 1.06021 0.530107 0.847931i \(-0.322152\pi\)
0.530107 + 0.847931i \(0.322152\pi\)
\(230\) 0 0
\(231\) −37.1144 −2.44195
\(232\) −5.03483 −0.330553
\(233\) −18.9965 −1.24450 −0.622251 0.782818i \(-0.713782\pi\)
−0.622251 + 0.782818i \(0.713782\pi\)
\(234\) −92.2139 −6.02821
\(235\) 0 0
\(236\) 11.6096 0.755719
\(237\) −34.3473 −2.23109
\(238\) −11.2107 −0.726682
\(239\) −20.1139 −1.30106 −0.650531 0.759480i \(-0.725454\pi\)
−0.650531 + 0.759480i \(0.725454\pi\)
\(240\) 0 0
\(241\) −16.6785 −1.07435 −0.537177 0.843470i \(-0.680509\pi\)
−0.537177 + 0.843470i \(0.680509\pi\)
\(242\) −2.33802 −0.150294
\(243\) −57.8497 −3.71106
\(244\) −6.59896 −0.422455
\(245\) 0 0
\(246\) 84.8742 5.41138
\(247\) 18.6631 1.18751
\(248\) −2.13318 −0.135457
\(249\) 37.5708 2.38095
\(250\) 0 0
\(251\) 5.87363 0.370740 0.185370 0.982669i \(-0.440652\pi\)
0.185370 + 0.982669i \(0.440652\pi\)
\(252\) −115.495 −7.27553
\(253\) 8.16508 0.513334
\(254\) 40.1915 2.52184
\(255\) 0 0
\(256\) −32.3242 −2.02026
\(257\) 13.5371 0.844421 0.422210 0.906498i \(-0.361254\pi\)
0.422210 + 0.906498i \(0.361254\pi\)
\(258\) −37.5728 −2.33918
\(259\) −13.0195 −0.808991
\(260\) 0 0
\(261\) −8.13211 −0.503365
\(262\) 17.4667 1.07910
\(263\) 5.19055 0.320063 0.160031 0.987112i \(-0.448840\pi\)
0.160031 + 0.987112i \(0.448840\pi\)
\(264\) 53.2526 3.27747
\(265\) 0 0
\(266\) 34.9258 2.14144
\(267\) −55.5439 −3.39923
\(268\) 1.88187 0.114953
\(269\) −14.6610 −0.893894 −0.446947 0.894560i \(-0.647489\pi\)
−0.446947 + 0.894560i \(0.647489\pi\)
\(270\) 0 0
\(271\) 11.6971 0.710546 0.355273 0.934763i \(-0.384388\pi\)
0.355273 + 0.934763i \(0.384388\pi\)
\(272\) 5.56898 0.337669
\(273\) −53.9864 −3.26741
\(274\) −0.832596 −0.0502989
\(275\) 0 0
\(276\) 34.7822 2.09364
\(277\) 12.9375 0.777341 0.388670 0.921377i \(-0.372934\pi\)
0.388670 + 0.921377i \(0.372934\pi\)
\(278\) −32.3328 −1.93919
\(279\) −3.44544 −0.206273
\(280\) 0 0
\(281\) −7.94275 −0.473825 −0.236912 0.971531i \(-0.576135\pi\)
−0.236912 + 0.971531i \(0.576135\pi\)
\(282\) −43.9333 −2.61619
\(283\) −28.3465 −1.68502 −0.842512 0.538677i \(-0.818924\pi\)
−0.842512 + 0.538677i \(0.818924\pi\)
\(284\) −17.5579 −1.04187
\(285\) 0 0
\(286\) 35.9468 2.12558
\(287\) 36.2985 2.14264
\(288\) 3.83594 0.226035
\(289\) −15.3122 −0.900717
\(290\) 0 0
\(291\) 13.2334 0.775756
\(292\) 61.1994 3.58142
\(293\) 24.8491 1.45170 0.725849 0.687854i \(-0.241447\pi\)
0.725849 + 0.687854i \(0.241447\pi\)
\(294\) −43.5947 −2.54249
\(295\) 0 0
\(296\) 18.6807 1.08579
\(297\) 54.2814 3.14973
\(298\) −35.0558 −2.03073
\(299\) 11.8769 0.686858
\(300\) 0 0
\(301\) −16.0689 −0.926199
\(302\) 14.8194 0.852763
\(303\) 9.41966 0.541145
\(304\) −17.3496 −0.995065
\(305\) 0 0
\(306\) 25.9806 1.48521
\(307\) −9.99873 −0.570658 −0.285329 0.958430i \(-0.592103\pi\)
−0.285329 + 0.958430i \(0.592103\pi\)
\(308\) 45.0224 2.56539
\(309\) 23.5218 1.33811
\(310\) 0 0
\(311\) 1.63825 0.0928968 0.0464484 0.998921i \(-0.485210\pi\)
0.0464484 + 0.998921i \(0.485210\pi\)
\(312\) 77.4610 4.38537
\(313\) −1.93025 −0.109104 −0.0545522 0.998511i \(-0.517373\pi\)
−0.0545522 + 0.998511i \(0.517373\pi\)
\(314\) −55.9252 −3.15604
\(315\) 0 0
\(316\) 41.6657 2.34388
\(317\) −29.1121 −1.63510 −0.817549 0.575859i \(-0.804668\pi\)
−0.817549 + 0.575859i \(0.804668\pi\)
\(318\) −0.338648 −0.0189904
\(319\) 3.17006 0.177489
\(320\) 0 0
\(321\) −10.8757 −0.607021
\(322\) 22.2261 1.23861
\(323\) −5.25821 −0.292574
\(324\) 132.491 7.36060
\(325\) 0 0
\(326\) −60.4561 −3.34835
\(327\) 1.87058 0.103443
\(328\) −52.0820 −2.87575
\(329\) −18.7892 −1.03588
\(330\) 0 0
\(331\) −3.88586 −0.213586 −0.106793 0.994281i \(-0.534058\pi\)
−0.106793 + 0.994281i \(0.534058\pi\)
\(332\) −45.5761 −2.50132
\(333\) 30.1724 1.65344
\(334\) 29.9315 1.63778
\(335\) 0 0
\(336\) 50.1867 2.73791
\(337\) −4.54398 −0.247527 −0.123763 0.992312i \(-0.539496\pi\)
−0.123763 + 0.992312i \(0.539496\pi\)
\(338\) 20.3192 1.10522
\(339\) 44.5435 2.41927
\(340\) 0 0
\(341\) 1.34310 0.0727331
\(342\) −80.9399 −4.37673
\(343\) 5.91882 0.319586
\(344\) 23.0561 1.24310
\(345\) 0 0
\(346\) −25.4969 −1.37072
\(347\) −13.3348 −0.715848 −0.357924 0.933751i \(-0.616515\pi\)
−0.357924 + 0.933751i \(0.616515\pi\)
\(348\) 13.5040 0.723893
\(349\) 32.8243 1.75704 0.878522 0.477703i \(-0.158530\pi\)
0.878522 + 0.477703i \(0.158530\pi\)
\(350\) 0 0
\(351\) 78.9576 4.21444
\(352\) −1.49532 −0.0797011
\(353\) 18.4743 0.983286 0.491643 0.870797i \(-0.336397\pi\)
0.491643 + 0.870797i \(0.336397\pi\)
\(354\) −23.5350 −1.25087
\(355\) 0 0
\(356\) 67.3788 3.57107
\(357\) 15.2103 0.805014
\(358\) 13.6752 0.722756
\(359\) −25.8079 −1.36209 −0.681043 0.732243i \(-0.738474\pi\)
−0.681043 + 0.732243i \(0.738474\pi\)
\(360\) 0 0
\(361\) −2.61861 −0.137822
\(362\) −44.8036 −2.35483
\(363\) 3.17215 0.166494
\(364\) 65.4894 3.43258
\(365\) 0 0
\(366\) 13.3774 0.699250
\(367\) 13.7885 0.719753 0.359876 0.933000i \(-0.382819\pi\)
0.359876 + 0.933000i \(0.382819\pi\)
\(368\) −11.0410 −0.575549
\(369\) −84.1213 −4.37918
\(370\) 0 0
\(371\) −0.144831 −0.00751927
\(372\) 5.72145 0.296643
\(373\) 11.7048 0.606053 0.303026 0.952982i \(-0.402003\pi\)
0.303026 + 0.952982i \(0.402003\pi\)
\(374\) −10.1278 −0.523694
\(375\) 0 0
\(376\) 26.9592 1.39031
\(377\) 4.61115 0.237486
\(378\) 147.759 7.59992
\(379\) −10.4270 −0.535598 −0.267799 0.963475i \(-0.586296\pi\)
−0.267799 + 0.963475i \(0.586296\pi\)
\(380\) 0 0
\(381\) −54.5305 −2.79368
\(382\) −23.4019 −1.19735
\(383\) −12.0391 −0.615170 −0.307585 0.951521i \(-0.599521\pi\)
−0.307585 + 0.951521i \(0.599521\pi\)
\(384\) 63.9723 3.26457
\(385\) 0 0
\(386\) −19.5717 −0.996171
\(387\) 37.2395 1.89299
\(388\) −16.0531 −0.814972
\(389\) 16.5646 0.839858 0.419929 0.907557i \(-0.362055\pi\)
0.419929 + 0.907557i \(0.362055\pi\)
\(390\) 0 0
\(391\) −3.34623 −0.169226
\(392\) 26.7514 1.35115
\(393\) −23.6982 −1.19542
\(394\) 45.1249 2.27336
\(395\) 0 0
\(396\) −104.339 −5.24322
\(397\) 14.1044 0.707878 0.353939 0.935268i \(-0.384842\pi\)
0.353939 + 0.935268i \(0.384842\pi\)
\(398\) −46.2482 −2.31821
\(399\) −47.3860 −2.37227
\(400\) 0 0
\(401\) 11.7748 0.588007 0.294003 0.955804i \(-0.405012\pi\)
0.294003 + 0.955804i \(0.405012\pi\)
\(402\) −3.81493 −0.190271
\(403\) 1.95367 0.0973193
\(404\) −11.4267 −0.568501
\(405\) 0 0
\(406\) 8.62920 0.428260
\(407\) −11.7618 −0.583011
\(408\) −21.8241 −1.08045
\(409\) −32.5326 −1.60864 −0.804318 0.594199i \(-0.797469\pi\)
−0.804318 + 0.594199i \(0.797469\pi\)
\(410\) 0 0
\(411\) 1.12964 0.0557209
\(412\) −28.5336 −1.40575
\(413\) −10.0653 −0.495282
\(414\) −51.5087 −2.53152
\(415\) 0 0
\(416\) −2.17509 −0.106643
\(417\) 43.8680 2.14823
\(418\) 31.5520 1.54326
\(419\) 6.80130 0.332265 0.166133 0.986103i \(-0.446872\pi\)
0.166133 + 0.986103i \(0.446872\pi\)
\(420\) 0 0
\(421\) −5.08494 −0.247825 −0.123912 0.992293i \(-0.539544\pi\)
−0.123912 + 0.992293i \(0.539544\pi\)
\(422\) 11.6404 0.566645
\(423\) 43.5436 2.11716
\(424\) 0.207807 0.0100920
\(425\) 0 0
\(426\) 35.5934 1.72450
\(427\) 5.72119 0.276868
\(428\) 13.1930 0.637706
\(429\) −48.7714 −2.35470
\(430\) 0 0
\(431\) 17.0921 0.823295 0.411648 0.911343i \(-0.364953\pi\)
0.411648 + 0.911343i \(0.364953\pi\)
\(432\) −73.4002 −3.53147
\(433\) 7.10031 0.341219 0.170610 0.985339i \(-0.445426\pi\)
0.170610 + 0.985339i \(0.445426\pi\)
\(434\) 3.65605 0.175496
\(435\) 0 0
\(436\) −2.26914 −0.108672
\(437\) 10.4248 0.498687
\(438\) −124.064 −5.92799
\(439\) 12.1883 0.581718 0.290859 0.956766i \(-0.406059\pi\)
0.290859 + 0.956766i \(0.406059\pi\)
\(440\) 0 0
\(441\) 43.2080 2.05752
\(442\) −14.7318 −0.700720
\(443\) 0.994508 0.0472505 0.0236252 0.999721i \(-0.492479\pi\)
0.0236252 + 0.999721i \(0.492479\pi\)
\(444\) −50.1039 −2.37782
\(445\) 0 0
\(446\) 18.0007 0.852357
\(447\) 47.5625 2.24963
\(448\) 26.0132 1.22901
\(449\) −17.6484 −0.832881 −0.416441 0.909163i \(-0.636723\pi\)
−0.416441 + 0.909163i \(0.636723\pi\)
\(450\) 0 0
\(451\) 32.7921 1.54412
\(452\) −54.0345 −2.54157
\(453\) −20.1065 −0.944686
\(454\) 38.9669 1.82881
\(455\) 0 0
\(456\) 67.9906 3.18395
\(457\) −4.27450 −0.199953 −0.0999763 0.994990i \(-0.531877\pi\)
−0.0999763 + 0.994990i \(0.531877\pi\)
\(458\) 39.4544 1.84358
\(459\) −22.2457 −1.03834
\(460\) 0 0
\(461\) 1.36149 0.0634108 0.0317054 0.999497i \(-0.489906\pi\)
0.0317054 + 0.999497i \(0.489906\pi\)
\(462\) −91.2696 −4.24625
\(463\) 23.9028 1.11086 0.555429 0.831564i \(-0.312554\pi\)
0.555429 + 0.831564i \(0.312554\pi\)
\(464\) −4.28660 −0.199000
\(465\) 0 0
\(466\) −46.7151 −2.16404
\(467\) −13.0810 −0.605317 −0.302658 0.953099i \(-0.597874\pi\)
−0.302658 + 0.953099i \(0.597874\pi\)
\(468\) −151.771 −7.01560
\(469\) −1.63155 −0.0753379
\(470\) 0 0
\(471\) 75.8774 3.49624
\(472\) 14.4420 0.664745
\(473\) −14.5167 −0.667479
\(474\) −84.4649 −3.87960
\(475\) 0 0
\(476\) −18.4512 −0.845708
\(477\) 0.335644 0.0153681
\(478\) −49.4631 −2.26239
\(479\) 34.7395 1.58729 0.793643 0.608383i \(-0.208182\pi\)
0.793643 + 0.608383i \(0.208182\pi\)
\(480\) 0 0
\(481\) −17.1087 −0.780089
\(482\) −41.0147 −1.86817
\(483\) −30.1556 −1.37213
\(484\) −3.84804 −0.174911
\(485\) 0 0
\(486\) −142.261 −6.45308
\(487\) −18.3895 −0.833308 −0.416654 0.909065i \(-0.636797\pi\)
−0.416654 + 0.909065i \(0.636797\pi\)
\(488\) −8.20890 −0.371600
\(489\) 82.0247 3.70928
\(490\) 0 0
\(491\) 42.5512 1.92031 0.960155 0.279469i \(-0.0901583\pi\)
0.960155 + 0.279469i \(0.0901583\pi\)
\(492\) 139.690 6.29773
\(493\) −1.29916 −0.0585112
\(494\) 45.8953 2.06493
\(495\) 0 0
\(496\) −1.81616 −0.0815482
\(497\) 15.2224 0.682818
\(498\) 92.3921 4.14019
\(499\) −17.4618 −0.781699 −0.390849 0.920455i \(-0.627819\pi\)
−0.390849 + 0.920455i \(0.627819\pi\)
\(500\) 0 0
\(501\) −40.6100 −1.81432
\(502\) 14.4441 0.644672
\(503\) −14.4442 −0.644036 −0.322018 0.946734i \(-0.604361\pi\)
−0.322018 + 0.946734i \(0.604361\pi\)
\(504\) −143.673 −6.39970
\(505\) 0 0
\(506\) 20.0791 0.892625
\(507\) −27.5684 −1.22435
\(508\) 66.1494 2.93491
\(509\) −1.83780 −0.0814591 −0.0407295 0.999170i \(-0.512968\pi\)
−0.0407295 + 0.999170i \(0.512968\pi\)
\(510\) 0 0
\(511\) −53.0589 −2.34719
\(512\) −41.1426 −1.81827
\(513\) 69.3042 3.05986
\(514\) 33.2897 1.46834
\(515\) 0 0
\(516\) −61.8394 −2.72233
\(517\) −16.9742 −0.746523
\(518\) −32.0168 −1.40674
\(519\) 34.5933 1.51848
\(520\) 0 0
\(521\) 36.8440 1.61417 0.807083 0.590439i \(-0.201045\pi\)
0.807083 + 0.590439i \(0.201045\pi\)
\(522\) −19.9980 −0.875290
\(523\) −30.1607 −1.31883 −0.659417 0.751777i \(-0.729197\pi\)
−0.659417 + 0.751777i \(0.729197\pi\)
\(524\) 28.7477 1.25585
\(525\) 0 0
\(526\) 12.7643 0.556550
\(527\) −0.550433 −0.0239772
\(528\) 45.3387 1.97311
\(529\) −16.3658 −0.711558
\(530\) 0 0
\(531\) 23.3262 1.01227
\(532\) 57.4827 2.49219
\(533\) 47.6993 2.06609
\(534\) −136.590 −5.91085
\(535\) 0 0
\(536\) 2.34099 0.101115
\(537\) −18.5540 −0.800664
\(538\) −36.0534 −1.55437
\(539\) −16.8433 −0.725493
\(540\) 0 0
\(541\) 30.2558 1.30080 0.650400 0.759592i \(-0.274601\pi\)
0.650400 + 0.759592i \(0.274601\pi\)
\(542\) 28.7648 1.23555
\(543\) 60.7880 2.60866
\(544\) 0.612817 0.0262743
\(545\) 0 0
\(546\) −132.760 −5.68162
\(547\) 22.2206 0.950084 0.475042 0.879963i \(-0.342433\pi\)
0.475042 + 0.879963i \(0.342433\pi\)
\(548\) −1.37033 −0.0585376
\(549\) −13.2588 −0.565870
\(550\) 0 0
\(551\) 4.04739 0.172425
\(552\) 43.2681 1.84161
\(553\) −36.1235 −1.53613
\(554\) 31.8153 1.35170
\(555\) 0 0
\(556\) −53.2151 −2.25682
\(557\) −31.1531 −1.32000 −0.659999 0.751267i \(-0.729443\pi\)
−0.659999 + 0.751267i \(0.729443\pi\)
\(558\) −8.47285 −0.358684
\(559\) −21.1159 −0.893109
\(560\) 0 0
\(561\) 13.7410 0.580145
\(562\) −19.5324 −0.823923
\(563\) 20.2319 0.852675 0.426337 0.904564i \(-0.359804\pi\)
0.426337 + 0.904564i \(0.359804\pi\)
\(564\) −72.3079 −3.04471
\(565\) 0 0
\(566\) −69.7082 −2.93005
\(567\) −114.867 −4.82398
\(568\) −21.8415 −0.916447
\(569\) 23.1088 0.968773 0.484386 0.874854i \(-0.339043\pi\)
0.484386 + 0.874854i \(0.339043\pi\)
\(570\) 0 0
\(571\) −41.9425 −1.75524 −0.877620 0.479356i \(-0.840870\pi\)
−0.877620 + 0.479356i \(0.840870\pi\)
\(572\) 59.1632 2.47374
\(573\) 31.7509 1.32641
\(574\) 89.2634 3.72578
\(575\) 0 0
\(576\) −60.2851 −2.51188
\(577\) −19.8997 −0.828436 −0.414218 0.910178i \(-0.635945\pi\)
−0.414218 + 0.910178i \(0.635945\pi\)
\(578\) −37.6549 −1.56624
\(579\) 26.5541 1.10355
\(580\) 0 0
\(581\) 39.5138 1.63931
\(582\) 32.5429 1.34895
\(583\) −0.130841 −0.00541887
\(584\) 76.1302 3.15029
\(585\) 0 0
\(586\) 61.1075 2.52433
\(587\) −3.03862 −0.125417 −0.0627086 0.998032i \(-0.519974\pi\)
−0.0627086 + 0.998032i \(0.519974\pi\)
\(588\) −71.7505 −2.95894
\(589\) 1.71482 0.0706577
\(590\) 0 0
\(591\) −61.2239 −2.51841
\(592\) 15.9045 0.653671
\(593\) −40.8122 −1.67596 −0.837979 0.545703i \(-0.816263\pi\)
−0.837979 + 0.545703i \(0.816263\pi\)
\(594\) 133.486 5.47699
\(595\) 0 0
\(596\) −57.6967 −2.36335
\(597\) 62.7479 2.56810
\(598\) 29.2070 1.19436
\(599\) 15.7500 0.643530 0.321765 0.946820i \(-0.395724\pi\)
0.321765 + 0.946820i \(0.395724\pi\)
\(600\) 0 0
\(601\) 1.00387 0.0409489 0.0204745 0.999790i \(-0.493482\pi\)
0.0204745 + 0.999790i \(0.493482\pi\)
\(602\) −39.5159 −1.61055
\(603\) 3.78109 0.153978
\(604\) 24.3906 0.992441
\(605\) 0 0
\(606\) 23.1643 0.940985
\(607\) 30.6666 1.24472 0.622360 0.782731i \(-0.286174\pi\)
0.622360 + 0.782731i \(0.286174\pi\)
\(608\) −1.90917 −0.0774269
\(609\) −11.7078 −0.474424
\(610\) 0 0
\(611\) −24.6905 −0.998873
\(612\) 42.7603 1.72848
\(613\) 3.13840 0.126759 0.0633793 0.997990i \(-0.479812\pi\)
0.0633793 + 0.997990i \(0.479812\pi\)
\(614\) −24.5883 −0.992304
\(615\) 0 0
\(616\) 56.0065 2.25657
\(617\) 48.0571 1.93471 0.967353 0.253434i \(-0.0815602\pi\)
0.967353 + 0.253434i \(0.0815602\pi\)
\(618\) 57.8435 2.32681
\(619\) 42.0099 1.68852 0.844260 0.535934i \(-0.180040\pi\)
0.844260 + 0.535934i \(0.180040\pi\)
\(620\) 0 0
\(621\) 44.1040 1.76983
\(622\) 4.02870 0.161536
\(623\) −58.4163 −2.34040
\(624\) 65.9494 2.64009
\(625\) 0 0
\(626\) −4.74677 −0.189719
\(627\) −42.8086 −1.70961
\(628\) −92.0447 −3.67298
\(629\) 4.82025 0.192196
\(630\) 0 0
\(631\) −20.9064 −0.832271 −0.416135 0.909303i \(-0.636616\pi\)
−0.416135 + 0.909303i \(0.636616\pi\)
\(632\) 51.8309 2.06172
\(633\) −15.7933 −0.627726
\(634\) −71.5909 −2.84324
\(635\) 0 0
\(636\) −0.557365 −0.0221010
\(637\) −24.5002 −0.970734
\(638\) 7.79563 0.308632
\(639\) −35.2776 −1.39556
\(640\) 0 0
\(641\) 17.6324 0.696439 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(642\) −26.7448 −1.05553
\(643\) −9.33296 −0.368056 −0.184028 0.982921i \(-0.558914\pi\)
−0.184028 + 0.982921i \(0.558914\pi\)
\(644\) 36.5810 1.44149
\(645\) 0 0
\(646\) −12.9307 −0.508751
\(647\) −6.08656 −0.239287 −0.119644 0.992817i \(-0.538175\pi\)
−0.119644 + 0.992817i \(0.538175\pi\)
\(648\) 164.815 6.47453
\(649\) −9.09302 −0.356932
\(650\) 0 0
\(651\) −4.96041 −0.194414
\(652\) −99.5018 −3.89679
\(653\) −15.8120 −0.618770 −0.309385 0.950937i \(-0.600123\pi\)
−0.309385 + 0.950937i \(0.600123\pi\)
\(654\) 4.60002 0.179875
\(655\) 0 0
\(656\) −44.3420 −1.73127
\(657\) 122.963 4.79725
\(658\) −46.2053 −1.80127
\(659\) 38.2114 1.48850 0.744252 0.667899i \(-0.232806\pi\)
0.744252 + 0.667899i \(0.232806\pi\)
\(660\) 0 0
\(661\) −32.2183 −1.25315 −0.626573 0.779362i \(-0.715543\pi\)
−0.626573 + 0.779362i \(0.715543\pi\)
\(662\) −9.55590 −0.371401
\(663\) 19.9876 0.776253
\(664\) −56.6953 −2.20021
\(665\) 0 0
\(666\) 74.1984 2.87513
\(667\) 2.57569 0.0997311
\(668\) 49.2629 1.90604
\(669\) −24.4227 −0.944235
\(670\) 0 0
\(671\) 5.16853 0.199529
\(672\) 5.52260 0.213039
\(673\) 31.8086 1.22613 0.613065 0.790033i \(-0.289936\pi\)
0.613065 + 0.790033i \(0.289936\pi\)
\(674\) −11.1743 −0.430418
\(675\) 0 0
\(676\) 33.4424 1.28625
\(677\) −10.6030 −0.407507 −0.203754 0.979022i \(-0.565314\pi\)
−0.203754 + 0.979022i \(0.565314\pi\)
\(678\) 109.539 4.20682
\(679\) 13.9178 0.534115
\(680\) 0 0
\(681\) −52.8689 −2.02594
\(682\) 3.30288 0.126474
\(683\) −12.2980 −0.470572 −0.235286 0.971926i \(-0.575603\pi\)
−0.235286 + 0.971926i \(0.575603\pi\)
\(684\) −133.215 −5.09361
\(685\) 0 0
\(686\) 14.5552 0.555722
\(687\) −53.5304 −2.04231
\(688\) 19.6297 0.748376
\(689\) −0.190320 −0.00725063
\(690\) 0 0
\(691\) 20.5877 0.783193 0.391596 0.920137i \(-0.371923\pi\)
0.391596 + 0.920137i \(0.371923\pi\)
\(692\) −41.9642 −1.59524
\(693\) 90.4600 3.43629
\(694\) −32.7921 −1.24477
\(695\) 0 0
\(696\) 16.7986 0.636750
\(697\) −13.4389 −0.509036
\(698\) 80.7196 3.05528
\(699\) 63.3815 2.39731
\(700\) 0 0
\(701\) −31.8857 −1.20431 −0.602153 0.798380i \(-0.705690\pi\)
−0.602153 + 0.798380i \(0.705690\pi\)
\(702\) 194.168 7.32840
\(703\) −15.0170 −0.566376
\(704\) 23.5003 0.885701
\(705\) 0 0
\(706\) 45.4309 1.70981
\(707\) 9.90679 0.372583
\(708\) −38.7351 −1.45576
\(709\) −37.0325 −1.39079 −0.695393 0.718630i \(-0.744769\pi\)
−0.695393 + 0.718630i \(0.744769\pi\)
\(710\) 0 0
\(711\) 83.7156 3.13958
\(712\) 83.8171 3.14118
\(713\) 1.09128 0.0408687
\(714\) 37.4043 1.39982
\(715\) 0 0
\(716\) 22.5073 0.841139
\(717\) 67.1098 2.50626
\(718\) −63.4653 −2.36850
\(719\) 2.30674 0.0860268 0.0430134 0.999074i \(-0.486304\pi\)
0.0430134 + 0.999074i \(0.486304\pi\)
\(720\) 0 0
\(721\) 24.7382 0.921299
\(722\) −6.43955 −0.239655
\(723\) 55.6474 2.06955
\(724\) −73.7402 −2.74053
\(725\) 0 0
\(726\) 7.80077 0.289514
\(727\) −30.0583 −1.11480 −0.557401 0.830243i \(-0.688201\pi\)
−0.557401 + 0.830243i \(0.688201\pi\)
\(728\) 81.4668 3.01936
\(729\) 94.8098 3.51147
\(730\) 0 0
\(731\) 5.94926 0.220042
\(732\) 22.0173 0.813783
\(733\) −49.7450 −1.83738 −0.918688 0.394985i \(-0.870750\pi\)
−0.918688 + 0.394985i \(0.870750\pi\)
\(734\) 33.9079 1.25156
\(735\) 0 0
\(736\) −1.21496 −0.0447840
\(737\) −1.47394 −0.0542934
\(738\) −206.866 −7.61486
\(739\) −46.1269 −1.69681 −0.848404 0.529350i \(-0.822436\pi\)
−0.848404 + 0.529350i \(0.822436\pi\)
\(740\) 0 0
\(741\) −62.2692 −2.28752
\(742\) −0.356161 −0.0130751
\(743\) 14.0745 0.516345 0.258172 0.966099i \(-0.416880\pi\)
0.258172 + 0.966099i \(0.416880\pi\)
\(744\) 7.11731 0.260933
\(745\) 0 0
\(746\) 28.7839 1.05385
\(747\) −91.5725 −3.35046
\(748\) −16.6688 −0.609472
\(749\) −11.4381 −0.417939
\(750\) 0 0
\(751\) 6.40760 0.233817 0.116908 0.993143i \(-0.462702\pi\)
0.116908 + 0.993143i \(0.462702\pi\)
\(752\) 22.9527 0.837000
\(753\) −19.5972 −0.714163
\(754\) 11.3395 0.412960
\(755\) 0 0
\(756\) 243.190 8.84474
\(757\) −37.6194 −1.36730 −0.683651 0.729809i \(-0.739609\pi\)
−0.683651 + 0.729809i \(0.739609\pi\)
\(758\) −25.6415 −0.931339
\(759\) −27.2426 −0.988845
\(760\) 0 0
\(761\) −7.98770 −0.289554 −0.144777 0.989464i \(-0.546246\pi\)
−0.144777 + 0.989464i \(0.546246\pi\)
\(762\) −134.098 −4.85787
\(763\) 1.96731 0.0712214
\(764\) −38.5161 −1.39347
\(765\) 0 0
\(766\) −29.6059 −1.06970
\(767\) −13.2267 −0.477587
\(768\) 107.849 3.89166
\(769\) −12.3260 −0.444486 −0.222243 0.974991i \(-0.571338\pi\)
−0.222243 + 0.974991i \(0.571338\pi\)
\(770\) 0 0
\(771\) −45.1663 −1.62662
\(772\) −32.2121 −1.15934
\(773\) 46.9639 1.68917 0.844587 0.535419i \(-0.179846\pi\)
0.844587 + 0.535419i \(0.179846\pi\)
\(774\) 91.5774 3.29168
\(775\) 0 0
\(776\) −19.9695 −0.716865
\(777\) 43.4393 1.55837
\(778\) 40.7347 1.46041
\(779\) 41.8676 1.50006
\(780\) 0 0
\(781\) 13.7519 0.492082
\(782\) −8.22886 −0.294264
\(783\) 17.1232 0.611933
\(784\) 22.7758 0.813422
\(785\) 0 0
\(786\) −58.2774 −2.07869
\(787\) −35.1053 −1.25137 −0.625684 0.780076i \(-0.715180\pi\)
−0.625684 + 0.780076i \(0.715180\pi\)
\(788\) 74.2690 2.64572
\(789\) −17.3182 −0.616543
\(790\) 0 0
\(791\) 46.8471 1.66569
\(792\) −129.794 −4.61203
\(793\) 7.51812 0.266976
\(794\) 34.6847 1.23091
\(795\) 0 0
\(796\) −76.1177 −2.69792
\(797\) 36.4490 1.29109 0.645546 0.763722i \(-0.276630\pi\)
0.645546 + 0.763722i \(0.276630\pi\)
\(798\) −116.529 −4.12509
\(799\) 6.95639 0.246099
\(800\) 0 0
\(801\) 135.379 4.78338
\(802\) 28.9560 1.02247
\(803\) −47.9334 −1.69153
\(804\) −6.27882 −0.221437
\(805\) 0 0
\(806\) 4.80436 0.169226
\(807\) 48.9160 1.72192
\(808\) −14.2145 −0.500064
\(809\) 50.3845 1.77142 0.885712 0.464235i \(-0.153671\pi\)
0.885712 + 0.464235i \(0.153671\pi\)
\(810\) 0 0
\(811\) 44.6328 1.56727 0.783635 0.621221i \(-0.213363\pi\)
0.783635 + 0.621221i \(0.213363\pi\)
\(812\) 14.2024 0.498407
\(813\) −39.0271 −1.36874
\(814\) −28.9240 −1.01379
\(815\) 0 0
\(816\) −18.5808 −0.650458
\(817\) −18.5343 −0.648433
\(818\) −80.0025 −2.79722
\(819\) 131.583 4.59787
\(820\) 0 0
\(821\) 25.6437 0.894971 0.447486 0.894291i \(-0.352320\pi\)
0.447486 + 0.894291i \(0.352320\pi\)
\(822\) 2.77794 0.0968918
\(823\) 4.74708 0.165473 0.0827364 0.996571i \(-0.473634\pi\)
0.0827364 + 0.996571i \(0.473634\pi\)
\(824\) −35.4950 −1.23653
\(825\) 0 0
\(826\) −24.7521 −0.861235
\(827\) 16.8954 0.587509 0.293755 0.955881i \(-0.405095\pi\)
0.293755 + 0.955881i \(0.405095\pi\)
\(828\) −84.7758 −2.94616
\(829\) −31.1447 −1.08170 −0.540850 0.841119i \(-0.681897\pi\)
−0.540850 + 0.841119i \(0.681897\pi\)
\(830\) 0 0
\(831\) −43.1658 −1.49741
\(832\) 34.1835 1.18510
\(833\) 6.90277 0.239167
\(834\) 107.878 3.73550
\(835\) 0 0
\(836\) 51.9299 1.79603
\(837\) 7.25482 0.250763
\(838\) 16.7254 0.577769
\(839\) 20.3277 0.701791 0.350896 0.936415i \(-0.385877\pi\)
0.350896 + 0.936415i \(0.385877\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −12.5046 −0.430937
\(843\) 26.5008 0.912737
\(844\) 19.1584 0.659458
\(845\) 0 0
\(846\) 107.080 3.68149
\(847\) 3.33619 0.114633
\(848\) 0.176925 0.00607563
\(849\) 94.5776 3.24589
\(850\) 0 0
\(851\) −9.55654 −0.327594
\(852\) 58.5815 2.00697
\(853\) 48.0623 1.64562 0.822810 0.568316i \(-0.192405\pi\)
0.822810 + 0.568316i \(0.192405\pi\)
\(854\) 14.0692 0.481439
\(855\) 0 0
\(856\) 16.4117 0.560939
\(857\) 24.0426 0.821280 0.410640 0.911797i \(-0.365305\pi\)
0.410640 + 0.911797i \(0.365305\pi\)
\(858\) −119.936 −4.09454
\(859\) −38.8389 −1.32517 −0.662583 0.748988i \(-0.730540\pi\)
−0.662583 + 0.748988i \(0.730540\pi\)
\(860\) 0 0
\(861\) −121.109 −4.12740
\(862\) 42.0318 1.43161
\(863\) −43.5717 −1.48320 −0.741599 0.670843i \(-0.765932\pi\)
−0.741599 + 0.670843i \(0.765932\pi\)
\(864\) −8.07705 −0.274787
\(865\) 0 0
\(866\) 17.4607 0.593338
\(867\) 51.0888 1.73507
\(868\) 6.01733 0.204242
\(869\) −32.6340 −1.10703
\(870\) 0 0
\(871\) −2.14399 −0.0726464
\(872\) −2.82275 −0.0955902
\(873\) −32.2542 −1.09164
\(874\) 25.6362 0.867156
\(875\) 0 0
\(876\) −204.191 −6.89896
\(877\) −33.4549 −1.12969 −0.564846 0.825197i \(-0.691064\pi\)
−0.564846 + 0.825197i \(0.691064\pi\)
\(878\) 29.9729 1.01154
\(879\) −82.9085 −2.79643
\(880\) 0 0
\(881\) −17.1987 −0.579440 −0.289720 0.957111i \(-0.593562\pi\)
−0.289720 + 0.957111i \(0.593562\pi\)
\(882\) 106.255 3.57778
\(883\) −31.2157 −1.05049 −0.525247 0.850950i \(-0.676027\pi\)
−0.525247 + 0.850950i \(0.676027\pi\)
\(884\) −24.2464 −0.815494
\(885\) 0 0
\(886\) 2.44564 0.0821628
\(887\) 50.3074 1.68916 0.844579 0.535430i \(-0.179851\pi\)
0.844579 + 0.535430i \(0.179851\pi\)
\(888\) −62.3277 −2.09158
\(889\) −57.3505 −1.92347
\(890\) 0 0
\(891\) −103.771 −3.47647
\(892\) 29.6265 0.991968
\(893\) −21.6719 −0.725222
\(894\) 116.963 3.91183
\(895\) 0 0
\(896\) 67.2806 2.24769
\(897\) −39.6270 −1.32311
\(898\) −43.4001 −1.44828
\(899\) 0.423684 0.0141307
\(900\) 0 0
\(901\) 0.0536214 0.00178639
\(902\) 80.6406 2.68504
\(903\) 53.6137 1.78415
\(904\) −67.2173 −2.23562
\(905\) 0 0
\(906\) −49.4448 −1.64269
\(907\) −40.2681 −1.33708 −0.668540 0.743676i \(-0.733080\pi\)
−0.668540 + 0.743676i \(0.733080\pi\)
\(908\) 64.1338 2.12835
\(909\) −22.9588 −0.761496
\(910\) 0 0
\(911\) −46.0923 −1.52710 −0.763552 0.645746i \(-0.776547\pi\)
−0.763552 + 0.645746i \(0.776547\pi\)
\(912\) 57.8865 1.91681
\(913\) 35.6968 1.18139
\(914\) −10.5116 −0.347693
\(915\) 0 0
\(916\) 64.9362 2.14555
\(917\) −24.9238 −0.823056
\(918\) −54.7055 −1.80555
\(919\) −10.9441 −0.361012 −0.180506 0.983574i \(-0.557773\pi\)
−0.180506 + 0.983574i \(0.557773\pi\)
\(920\) 0 0
\(921\) 33.3606 1.09927
\(922\) 3.34809 0.110264
\(923\) 20.0035 0.658423
\(924\) −150.216 −4.94176
\(925\) 0 0
\(926\) 58.7804 1.93165
\(927\) −57.3304 −1.88298
\(928\) −0.471703 −0.0154844
\(929\) −50.6115 −1.66051 −0.830255 0.557384i \(-0.811805\pi\)
−0.830255 + 0.557384i \(0.811805\pi\)
\(930\) 0 0
\(931\) −21.5048 −0.704793
\(932\) −76.8863 −2.51849
\(933\) −5.46600 −0.178949
\(934\) −32.1681 −1.05257
\(935\) 0 0
\(936\) −188.798 −6.17106
\(937\) −18.9658 −0.619585 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(938\) −4.01222 −0.131003
\(939\) 6.44025 0.210170
\(940\) 0 0
\(941\) −37.2758 −1.21516 −0.607579 0.794260i \(-0.707859\pi\)
−0.607579 + 0.794260i \(0.707859\pi\)
\(942\) 186.593 6.07954
\(943\) 26.6438 0.867642
\(944\) 12.2957 0.400192
\(945\) 0 0
\(946\) −35.6987 −1.16066
\(947\) −25.3754 −0.824591 −0.412296 0.911050i \(-0.635273\pi\)
−0.412296 + 0.911050i \(0.635273\pi\)
\(948\) −139.017 −4.51506
\(949\) −69.7238 −2.26333
\(950\) 0 0
\(951\) 97.1320 3.14972
\(952\) −22.9527 −0.743902
\(953\) −43.6572 −1.41419 −0.707097 0.707116i \(-0.749996\pi\)
−0.707097 + 0.707116i \(0.749996\pi\)
\(954\) 0.825397 0.0267232
\(955\) 0 0
\(956\) −81.4090 −2.63295
\(957\) −10.5768 −0.341900
\(958\) 85.4294 2.76010
\(959\) 1.18806 0.0383643
\(960\) 0 0
\(961\) −30.8205 −0.994209
\(962\) −42.0727 −1.35648
\(963\) 26.5076 0.854195
\(964\) −67.5043 −2.17417
\(965\) 0 0
\(966\) −74.1571 −2.38597
\(967\) −28.4146 −0.913751 −0.456875 0.889531i \(-0.651032\pi\)
−0.456875 + 0.889531i \(0.651032\pi\)
\(968\) −4.78685 −0.153855
\(969\) 17.5439 0.563591
\(970\) 0 0
\(971\) 6.34773 0.203708 0.101854 0.994799i \(-0.467523\pi\)
0.101854 + 0.994799i \(0.467523\pi\)
\(972\) −234.140 −7.51005
\(973\) 46.1366 1.47907
\(974\) −45.2225 −1.44902
\(975\) 0 0
\(976\) −6.98897 −0.223711
\(977\) 6.78708 0.217138 0.108569 0.994089i \(-0.465373\pi\)
0.108569 + 0.994089i \(0.465373\pi\)
\(978\) 201.711 6.44999
\(979\) −52.7733 −1.68664
\(980\) 0 0
\(981\) −4.55921 −0.145564
\(982\) 104.640 3.33918
\(983\) 33.2974 1.06202 0.531011 0.847365i \(-0.321812\pi\)
0.531011 + 0.847365i \(0.321812\pi\)
\(984\) 173.771 5.53961
\(985\) 0 0
\(986\) −3.19482 −0.101744
\(987\) 62.6898 1.99544
\(988\) 75.5370 2.40315
\(989\) −11.7949 −0.375056
\(990\) 0 0
\(991\) 23.2716 0.739247 0.369623 0.929182i \(-0.379487\pi\)
0.369623 + 0.929182i \(0.379487\pi\)
\(992\) −0.199853 −0.00634534
\(993\) 12.9651 0.411435
\(994\) 37.4341 1.18734
\(995\) 0 0
\(996\) 152.064 4.81833
\(997\) 18.5645 0.587945 0.293973 0.955814i \(-0.405023\pi\)
0.293973 + 0.955814i \(0.405023\pi\)
\(998\) −42.9412 −1.35928
\(999\) −63.5319 −2.01006
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.i.1.5 5
3.2 odd 2 6525.2.a.bo.1.1 5
5.2 odd 4 725.2.b.g.349.10 10
5.3 odd 4 725.2.b.g.349.1 10
5.4 even 2 725.2.a.j.1.1 yes 5
15.14 odd 2 6525.2.a.bp.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.i.1.5 5 1.1 even 1 trivial
725.2.a.j.1.1 yes 5 5.4 even 2
725.2.b.g.349.1 10 5.3 odd 4
725.2.b.g.349.10 10 5.2 odd 4
6525.2.a.bo.1.1 5 3.2 odd 2
6525.2.a.bp.1.5 5 15.14 odd 2