Properties

Label 650.4.b.o
Level 650650
Weight 44
Character orbit 650.b
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,48,0,0,-76,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,10)\Q(i, \sqrt{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+25 x^{4} + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β1q2+(β2+6β1)q34q4+(2β3+12)q6+(4β22β1)q7+8β1q8+(12β319)q9+(15β312)q11++(429β3+2028)q99+O(q100) q - 2 \beta_1 q^{2} + ( - \beta_{2} + 6 \beta_1) q^{3} - 4 q^{4} + ( - 2 \beta_{3} + 12) q^{6} + ( - 4 \beta_{2} - 2 \beta_1) q^{7} + 8 \beta_1 q^{8} + (12 \beta_{3} - 19) q^{9} + (15 \beta_{3} - 12) q^{11}+ \cdots + ( - 429 \beta_{3} + 2028) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q4+48q676q948q1116q14+64q16+64q19112q21192q24104q26272q29+176q31112q34+304q36+312q39+520q41++8112q99+O(q100) 4 q - 16 q^{4} + 48 q^{6} - 76 q^{9} - 48 q^{11} - 16 q^{14} + 64 q^{16} + 64 q^{19} - 112 q^{21} - 192 q^{24} - 104 q^{26} - 272 q^{29} + 176 q^{31} - 112 q^{34} + 304 q^{36} + 312 q^{39} + 520 q^{41}+ \cdots + 8112 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+25 x^{4} + 25 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/5 ( \nu^{2} ) / 5 Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/5 ( \nu^{3} + 5\nu ) / 5 Copy content Toggle raw display
β3\beta_{3}== (ν3+5ν)/5 ( -\nu^{3} + 5\nu ) / 5 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 5β1 5\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (5β3+5β2)/2 ( -5\beta_{3} + 5\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
1.58114 + 1.58114i
−1.58114 1.58114i
−1.58114 + 1.58114i
1.58114 1.58114i
2.00000i 2.83772i −4.00000 0 5.67544 14.6491i 8.00000i 18.9473 0
599.2 2.00000i 9.16228i −4.00000 0 18.3246 10.6491i 8.00000i −56.9473 0
599.3 2.00000i 9.16228i −4.00000 0 18.3246 10.6491i 8.00000i −56.9473 0
599.4 2.00000i 2.83772i −4.00000 0 5.67544 14.6491i 8.00000i 18.9473 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.o 4
5.b even 2 1 inner 650.4.b.o 4
5.c odd 4 1 130.4.a.g 2
5.c odd 4 1 650.4.a.j 2
15.e even 4 1 1170.4.a.r 2
20.e even 4 1 1040.4.a.g 2
65.h odd 4 1 1690.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.g 2 5.c odd 4 1
650.4.a.j 2 5.c odd 4 1
650.4.b.o 4 1.a even 1 1 trivial
650.4.b.o 4 5.b even 2 1 inner
1040.4.a.g 2 20.e even 4 1
1170.4.a.r 2 15.e even 4 1
1690.4.a.p 2 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T34+92T32+676 T_{3}^{4} + 92T_{3}^{2} + 676 Copy content Toggle raw display
T74+328T72+24336 T_{7}^{4} + 328T_{7}^{2} + 24336 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
33 T4+92T2+676 T^{4} + 92T^{2} + 676 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+328T2+24336 T^{4} + 328 T^{2} + 24336 Copy content Toggle raw display
1111 (T2+24T2106)2 (T^{2} + 24 T - 2106)^{2} Copy content Toggle raw display
1313 (T2+169)2 (T^{2} + 169)^{2} Copy content Toggle raw display
1717 T4+4312T2+3111696 T^{4} + 4312 T^{2} + 3111696 Copy content Toggle raw display
1919 (T232T5994)2 (T^{2} - 32 T - 5994)^{2} Copy content Toggle raw display
2323 T4+35228T2+17355556 T^{4} + 35228 T^{2} + 17355556 Copy content Toggle raw display
2929 (T2+136T31376)2 (T^{2} + 136 T - 31376)^{2} Copy content Toggle raw display
3131 (T288T14874)2 (T^{2} - 88 T - 14874)^{2} Copy content Toggle raw display
3737 T4+7792T2+576 T^{4} + 7792T^{2} + 576 Copy content Toggle raw display
4141 (T2260T+14940)2 (T^{2} - 260 T + 14940)^{2} Copy content Toggle raw display
4343 T4++49244048100 T^{4} + \cdots + 49244048100 Copy content Toggle raw display
4747 T4+97992T2+529184016 T^{4} + 97992 T^{2} + 529184016 Copy content Toggle raw display
5353 T4++11388304656 T^{4} + \cdots + 11388304656 Copy content Toggle raw display
5959 (T2720T7290)2 (T^{2} - 720 T - 7290)^{2} Copy content Toggle raw display
6161 (T2+136T26736)2 (T^{2} + 136 T - 26736)^{2} Copy content Toggle raw display
6767 T4++8760211216 T^{4} + \cdots + 8760211216 Copy content Toggle raw display
7171 (T2360T+8390)2 (T^{2} - 360 T + 8390)^{2} Copy content Toggle raw display
7373 T4++10824321600 T^{4} + \cdots + 10824321600 Copy content Toggle raw display
7979 (T21592T+632616)2 (T^{2} - 1592 T + 632616)^{2} Copy content Toggle raw display
8383 T4++6006250000 T^{4} + \cdots + 6006250000 Copy content Toggle raw display
8989 (T2+268T1336284)2 (T^{2} + 268 T - 1336284)^{2} Copy content Toggle raw display
9797 T4++2680174991376 T^{4} + \cdots + 2680174991376 Copy content Toggle raw display
show more
show less