gp: [N,k,chi] = [650,4,Mod(599,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.599");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [4,0,0,-16,0,48,0,0,-76,0,-48]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 25 x^{4} + 25 x 4 + 2 5
x^4 + 25
:
β 1 \beta_{1} β 1 = = =
( ν 2 ) / 5 ( \nu^{2} ) / 5 ( ν 2 ) / 5
(v^2) / 5
β 2 \beta_{2} β 2 = = =
( ν 3 + 5 ν ) / 5 ( \nu^{3} + 5\nu ) / 5 ( ν 3 + 5 ν ) / 5
(v^3 + 5*v) / 5
β 3 \beta_{3} β 3 = = =
( − ν 3 + 5 ν ) / 5 ( -\nu^{3} + 5\nu ) / 5 ( − ν 3 + 5 ν ) / 5
(-v^3 + 5*v) / 5
ν \nu ν = = =
( β 3 + β 2 ) / 2 ( \beta_{3} + \beta_{2} ) / 2 ( β 3 + β 2 ) / 2
(b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
5 β 1 5\beta_1 5 β 1
5*b1
ν 3 \nu^{3} ν 3 = = =
( − 5 β 3 + 5 β 2 ) / 2 ( -5\beta_{3} + 5\beta_{2} ) / 2 ( − 5 β 3 + 5 β 2 ) / 2
(-5*b3 + 5*b2) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 650 , [ χ ] ) S_{4}^{\mathrm{new}}(650, [\chi]) S 4 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 92 T 3 2 + 676 T_{3}^{4} + 92T_{3}^{2} + 676 T 3 4 + 9 2 T 3 2 + 6 7 6
T3^4 + 92*T3^2 + 676
T 7 4 + 328 T 7 2 + 24336 T_{7}^{4} + 328T_{7}^{2} + 24336 T 7 4 + 3 2 8 T 7 2 + 2 4 3 3 6
T7^4 + 328*T7^2 + 24336
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
3 3 3
T 4 + 92 T 2 + 676 T^{4} + 92T^{2} + 676 T 4 + 9 2 T 2 + 6 7 6
T^4 + 92*T^2 + 676
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 328 T 2 + 24336 T^{4} + 328 T^{2} + 24336 T 4 + 3 2 8 T 2 + 2 4 3 3 6
T^4 + 328*T^2 + 24336
11 11 1 1
( T 2 + 24 T − 2106 ) 2 (T^{2} + 24 T - 2106)^{2} ( T 2 + 2 4 T − 2 1 0 6 ) 2
(T^2 + 24*T - 2106)^2
13 13 1 3
( T 2 + 169 ) 2 (T^{2} + 169)^{2} ( T 2 + 1 6 9 ) 2
(T^2 + 169)^2
17 17 1 7
T 4 + 4312 T 2 + 3111696 T^{4} + 4312 T^{2} + 3111696 T 4 + 4 3 1 2 T 2 + 3 1 1 1 6 9 6
T^4 + 4312*T^2 + 3111696
19 19 1 9
( T 2 − 32 T − 5994 ) 2 (T^{2} - 32 T - 5994)^{2} ( T 2 − 3 2 T − 5 9 9 4 ) 2
(T^2 - 32*T - 5994)^2
23 23 2 3
T 4 + 35228 T 2 + 17355556 T^{4} + 35228 T^{2} + 17355556 T 4 + 3 5 2 2 8 T 2 + 1 7 3 5 5 5 5 6
T^4 + 35228*T^2 + 17355556
29 29 2 9
( T 2 + 136 T − 31376 ) 2 (T^{2} + 136 T - 31376)^{2} ( T 2 + 1 3 6 T − 3 1 3 7 6 ) 2
(T^2 + 136*T - 31376)^2
31 31 3 1
( T 2 − 88 T − 14874 ) 2 (T^{2} - 88 T - 14874)^{2} ( T 2 − 8 8 T − 1 4 8 7 4 ) 2
(T^2 - 88*T - 14874)^2
37 37 3 7
T 4 + 7792 T 2 + 576 T^{4} + 7792T^{2} + 576 T 4 + 7 7 9 2 T 2 + 5 7 6
T^4 + 7792*T^2 + 576
41 41 4 1
( T 2 − 260 T + 14940 ) 2 (T^{2} - 260 T + 14940)^{2} ( T 2 − 2 6 0 T + 1 4 9 4 0 ) 2
(T^2 - 260*T + 14940)^2
43 43 4 3
T 4 + ⋯ + 49244048100 T^{4} + \cdots + 49244048100 T 4 + ⋯ + 4 9 2 4 4 0 4 8 1 0 0
T^4 + 444220*T^2 + 49244048100
47 47 4 7
T 4 + 97992 T 2 + 529184016 T^{4} + 97992 T^{2} + 529184016 T 4 + 9 7 9 9 2 T 2 + 5 2 9 1 8 4 0 1 6
T^4 + 97992*T^2 + 529184016
53 53 5 3
T 4 + ⋯ + 11388304656 T^{4} + \cdots + 11388304656 T 4 + ⋯ + 1 1 3 8 8 3 0 4 6 5 6
T^4 + 232792*T^2 + 11388304656
59 59 5 9
( T 2 − 720 T − 7290 ) 2 (T^{2} - 720 T - 7290)^{2} ( T 2 − 7 2 0 T − 7 2 9 0 ) 2
(T^2 - 720*T - 7290)^2
61 61 6 1
( T 2 + 136 T − 26736 ) 2 (T^{2} + 136 T - 26736)^{2} ( T 2 + 1 3 6 T − 2 6 7 3 6 ) 2
(T^2 + 136*T - 26736)^2
67 67 6 7
T 4 + ⋯ + 8760211216 T^{4} + \cdots + 8760211216 T 4 + ⋯ + 8 7 6 0 2 1 1 2 1 6
T^4 + 187352*T^2 + 8760211216
71 71 7 1
( T 2 − 360 T + 8390 ) 2 (T^{2} - 360 T + 8390)^{2} ( T 2 − 3 6 0 T + 8 3 9 0 ) 2
(T^2 - 360*T + 8390)^2
73 73 7 3
T 4 + ⋯ + 10824321600 T^{4} + \cdots + 10824321600 T 4 + ⋯ + 1 0 8 2 4 3 2 1 6 0 0
T^4 + 254320*T^2 + 10824321600
79 79 7 9
( T 2 − 1592 T + 632616 ) 2 (T^{2} - 1592 T + 632616)^{2} ( T 2 − 1 5 9 2 T + 6 3 2 6 1 6 ) 2
(T^2 - 1592*T + 632616)^2
83 83 8 3
T 4 + ⋯ + 6006250000 T^{4} + \cdots + 6006250000 T 4 + ⋯ + 6 0 0 6 2 5 0 0 0 0
T^4 + 245000*T^2 + 6006250000
89 89 8 9
( T 2 + 268 T − 1336284 ) 2 (T^{2} + 268 T - 1336284)^{2} ( T 2 + 2 6 8 T − 1 3 3 6 2 8 4 ) 2
(T^2 + 268*T - 1336284)^2
97 97 9 7
T 4 + ⋯ + 2680174991376 T^{4} + \cdots + 2680174991376 T 4 + ⋯ + 2 6 8 0 1 7 4 9 9 1 3 7 6
T^4 + 3674248*T^2 + 2680174991376
show more
show less