Properties

Label 650.4.b.j
Level 650650
Weight 44
Character orbit 650.b
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-12,0,0,-46,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,145)\Q(i, \sqrt{145})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+73x2+1296 x^{4} + 73x^{2} + 1296 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β2q2+(β2+β1)q34q4+(2β34)q6+(20β2β1)q7+8β2q8+(3β313)q9+(10β3+13)q11++(139β31249)q99+O(q100) q - 2 \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 4 q^{4} + (2 \beta_{3} - 4) q^{6} + (20 \beta_{2} - \beta_1) q^{7} + 8 \beta_{2} q^{8} + (3 \beta_{3} - 13) q^{9} + ( - 10 \beta_{3} + 13) q^{11}+ \cdots + (139 \beta_{3} - 1249) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q412q646q9+32q11+164q14+64q16246q19+268q21+48q24104q26+798q29714q31+48q34+184q3678q3990q41128q44+4718q99+O(q100) 4 q - 16 q^{4} - 12 q^{6} - 46 q^{9} + 32 q^{11} + 164 q^{14} + 64 q^{16} - 246 q^{19} + 268 q^{21} + 48 q^{24} - 104 q^{26} + 798 q^{29} - 714 q^{31} + 48 q^{34} + 184 q^{36} - 78 q^{39} - 90 q^{41} - 128 q^{44}+ \cdots - 4718 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+73x2+1296 x^{4} + 73x^{2} + 1296 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+37ν)/36 ( \nu^{3} + 37\nu ) / 36 Copy content Toggle raw display
β3\beta_{3}== ν2+37 \nu^{2} + 37 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β337 \beta_{3} - 37 Copy content Toggle raw display
ν3\nu^{3}== 36β237β1 36\beta_{2} - 37\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
6.52080i
5.52080i
5.52080i
6.52080i
2.00000i 7.52080i −4.00000 0 −15.0416 26.5208i 8.00000i −29.5624 0
599.2 2.00000i 4.52080i −4.00000 0 9.04159 14.4792i 8.00000i 6.56239 0
599.3 2.00000i 4.52080i −4.00000 0 9.04159 14.4792i 8.00000i 6.56239 0
599.4 2.00000i 7.52080i −4.00000 0 −15.0416 26.5208i 8.00000i −29.5624 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.j 4
5.b even 2 1 inner 650.4.b.j 4
5.c odd 4 1 650.4.a.l 2
5.c odd 4 1 650.4.a.q yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.l 2 5.c odd 4 1
650.4.a.q yes 2 5.c odd 4 1
650.4.b.j 4 1.a even 1 1 trivial
650.4.b.j 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T34+77T32+1156 T_{3}^{4} + 77T_{3}^{2} + 1156 Copy content Toggle raw display
T74+913T72+147456 T_{7}^{4} + 913T_{7}^{2} + 147456 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
33 T4+77T2+1156 T^{4} + 77T^{2} + 1156 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+913T2+147456 T^{4} + 913 T^{2} + 147456 Copy content Toggle raw display
1111 (T216T3561)2 (T^{2} - 16 T - 3561)^{2} Copy content Toggle raw display
1313 (T2+169)2 (T^{2} + 169)^{2} Copy content Toggle raw display
1717 T4+2682T2+1610361 T^{4} + 2682 T^{2} + 1610361 Copy content Toggle raw display
1919 (T2+123T+2876)2 (T^{2} + 123 T + 2876)^{2} Copy content Toggle raw display
2323 T4+3028T2+1498176 T^{4} + 3028 T^{2} + 1498176 Copy content Toggle raw display
2929 (T2399T+31644)2 (T^{2} - 399 T + 31644)^{2} Copy content Toggle raw display
3131 (T2+357T+31826)2 (T^{2} + 357 T + 31826)^{2} Copy content Toggle raw display
3737 T4+31892T2+177848896 T^{4} + 31892 T^{2} + 177848896 Copy content Toggle raw display
4141 (T2+45T15480)2 (T^{2} + 45 T - 15480)^{2} Copy content Toggle raw display
4343 T4++8486094400 T^{4} + \cdots + 8486094400 Copy content Toggle raw display
4747 T4++37247456016 T^{4} + \cdots + 37247456016 Copy content Toggle raw display
5353 T4++2106259236 T^{4} + \cdots + 2106259236 Copy content Toggle raw display
5959 (T2125T211020)2 (T^{2} - 125 T - 211020)^{2} Copy content Toggle raw display
6161 (T2+81T85396)2 (T^{2} + 81 T - 85396)^{2} Copy content Toggle raw display
6767 T4++6593602401 T^{4} + \cdots + 6593602401 Copy content Toggle raw display
7171 (T2400T108480)2 (T^{2} - 400 T - 108480)^{2} Copy content Toggle raw display
7373 T4++128257096900 T^{4} + \cdots + 128257096900 Copy content Toggle raw display
7979 (T2+388T1136864)2 (T^{2} + 388 T - 1136864)^{2} Copy content Toggle raw display
8383 T4++266643140625 T^{4} + \cdots + 266643140625 Copy content Toggle raw display
8989 (T2+343T1464414)2 (T^{2} + 343 T - 1464414)^{2} Copy content Toggle raw display
9797 T4+77188T2+982446336 T^{4} + 77188 T^{2} + 982446336 Copy content Toggle raw display
show more
show less