gp: [N,k,chi] = [650,4,Mod(599,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.599");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [4,0,0,-16,0,-12,0,0,-46,0,32]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 73 x 2 + 1296 x^{4} + 73x^{2} + 1296 x 4 + 7 3 x 2 + 1 2 9 6
x^4 + 73*x^2 + 1296
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 37 ν ) / 36 ( \nu^{3} + 37\nu ) / 36 ( ν 3 + 3 7 ν ) / 3 6
(v^3 + 37*v) / 36
β 3 \beta_{3} β 3 = = =
ν 2 + 37 \nu^{2} + 37 ν 2 + 3 7
v^2 + 37
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 37 \beta_{3} - 37 β 3 − 3 7
b3 - 37
ν 3 \nu^{3} ν 3 = = =
36 β 2 − 37 β 1 36\beta_{2} - 37\beta_1 3 6 β 2 − 3 7 β 1
36*b2 - 37*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 650 , [ χ ] ) S_{4}^{\mathrm{new}}(650, [\chi]) S 4 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 77 T 3 2 + 1156 T_{3}^{4} + 77T_{3}^{2} + 1156 T 3 4 + 7 7 T 3 2 + 1 1 5 6
T3^4 + 77*T3^2 + 1156
T 7 4 + 913 T 7 2 + 147456 T_{7}^{4} + 913T_{7}^{2} + 147456 T 7 4 + 9 1 3 T 7 2 + 1 4 7 4 5 6
T7^4 + 913*T7^2 + 147456
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
3 3 3
T 4 + 77 T 2 + 1156 T^{4} + 77T^{2} + 1156 T 4 + 7 7 T 2 + 1 1 5 6
T^4 + 77*T^2 + 1156
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 913 T 2 + 147456 T^{4} + 913 T^{2} + 147456 T 4 + 9 1 3 T 2 + 1 4 7 4 5 6
T^4 + 913*T^2 + 147456
11 11 1 1
( T 2 − 16 T − 3561 ) 2 (T^{2} - 16 T - 3561)^{2} ( T 2 − 1 6 T − 3 5 6 1 ) 2
(T^2 - 16*T - 3561)^2
13 13 1 3
( T 2 + 169 ) 2 (T^{2} + 169)^{2} ( T 2 + 1 6 9 ) 2
(T^2 + 169)^2
17 17 1 7
T 4 + 2682 T 2 + 1610361 T^{4} + 2682 T^{2} + 1610361 T 4 + 2 6 8 2 T 2 + 1 6 1 0 3 6 1
T^4 + 2682*T^2 + 1610361
19 19 1 9
( T 2 + 123 T + 2876 ) 2 (T^{2} + 123 T + 2876)^{2} ( T 2 + 1 2 3 T + 2 8 7 6 ) 2
(T^2 + 123*T + 2876)^2
23 23 2 3
T 4 + 3028 T 2 + 1498176 T^{4} + 3028 T^{2} + 1498176 T 4 + 3 0 2 8 T 2 + 1 4 9 8 1 7 6
T^4 + 3028*T^2 + 1498176
29 29 2 9
( T 2 − 399 T + 31644 ) 2 (T^{2} - 399 T + 31644)^{2} ( T 2 − 3 9 9 T + 3 1 6 4 4 ) 2
(T^2 - 399*T + 31644)^2
31 31 3 1
( T 2 + 357 T + 31826 ) 2 (T^{2} + 357 T + 31826)^{2} ( T 2 + 3 5 7 T + 3 1 8 2 6 ) 2
(T^2 + 357*T + 31826)^2
37 37 3 7
T 4 + 31892 T 2 + 177848896 T^{4} + 31892 T^{2} + 177848896 T 4 + 3 1 8 9 2 T 2 + 1 7 7 8 4 8 8 9 6
T^4 + 31892*T^2 + 177848896
41 41 4 1
( T 2 + 45 T − 15480 ) 2 (T^{2} + 45 T - 15480)^{2} ( T 2 + 4 5 T − 1 5 4 8 0 ) 2
(T^2 + 45*T - 15480)^2
43 43 4 3
T 4 + ⋯ + 8486094400 T^{4} + \cdots + 8486094400 T 4 + ⋯ + 8 4 8 6 0 9 4 4 0 0
T^4 + 212660*T^2 + 8486094400
47 47 4 7
T 4 + ⋯ + 37247456016 T^{4} + \cdots + 37247456016 T 4 + ⋯ + 3 7 2 4 7 4 5 6 0 1 6
T^4 + 418617*T^2 + 37247456016
53 53 5 3
T 4 + ⋯ + 2106259236 T^{4} + \cdots + 2106259236 T 4 + ⋯ + 2 1 0 6 2 5 9 2 3 6
T^4 + 315517*T^2 + 2106259236
59 59 5 9
( T 2 − 125 T − 211020 ) 2 (T^{2} - 125 T - 211020)^{2} ( T 2 − 1 2 5 T − 2 1 1 0 2 0 ) 2
(T^2 - 125*T - 211020)^2
61 61 6 1
( T 2 + 81 T − 85396 ) 2 (T^{2} + 81 T - 85396)^{2} ( T 2 + 8 1 T − 8 5 3 9 6 ) 2
(T^2 + 81*T - 85396)^2
67 67 6 7
T 4 + ⋯ + 6593602401 T^{4} + \cdots + 6593602401 T 4 + ⋯ + 6 5 9 3 6 0 2 4 0 1
T^4 + 171682*T^2 + 6593602401
71 71 7 1
( T 2 − 400 T − 108480 ) 2 (T^{2} - 400 T - 108480)^{2} ( T 2 − 4 0 0 T − 1 0 8 4 8 0 ) 2
(T^2 - 400*T - 108480)^2
73 73 7 3
T 4 + ⋯ + 128257096900 T^{4} + \cdots + 128257096900 T 4 + ⋯ + 1 2 8 2 5 7 0 9 6 9 0 0
T^4 + 1070285*T^2 + 128257096900
79 79 7 9
( T 2 + 388 T − 1136864 ) 2 (T^{2} + 388 T - 1136864)^{2} ( T 2 + 3 8 8 T − 1 1 3 6 8 6 4 ) 2
(T^2 + 388*T - 1136864)^2
83 83 8 3
T 4 + ⋯ + 266643140625 T^{4} + \cdots + 266643140625 T 4 + ⋯ + 2 6 6 6 4 3 1 4 0 6 2 5
T^4 + 1055250*T^2 + 266643140625
89 89 8 9
( T 2 + 343 T − 1464414 ) 2 (T^{2} + 343 T - 1464414)^{2} ( T 2 + 3 4 3 T − 1 4 6 4 4 1 4 ) 2
(T^2 + 343*T - 1464414)^2
97 97 9 7
T 4 + 77188 T 2 + 982446336 T^{4} + 77188 T^{2} + 982446336 T 4 + 7 7 1 8 8 T 2 + 9 8 2 4 4 6 3 3 6
T^4 + 77188*T^2 + 982446336
show more
show less