gp: [N,k,chi] = [650,4,Mod(1,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [4,8,0,16,0,0,56,32,118]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 113 x 2 − 48 x + 1600 x^{4} - 113x^{2} - 48x + 1600 x 4 − 1 1 3 x 2 − 4 8 x + 1 6 0 0
x^4 - 113*x^2 - 48*x + 1600
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 4 ν 2 − 85 ν − 256 ) / 24 ( \nu^{3} + 4\nu^{2} - 85\nu - 256 ) / 24 ( ν 3 + 4 ν 2 − 8 5 ν − 2 5 6 ) / 2 4
(v^3 + 4*v^2 - 85*v - 256) / 24
β 3 \beta_{3} β 3 = = =
( − ν 3 + 8 ν 2 + 73 ν − 416 ) / 24 ( -\nu^{3} + 8\nu^{2} + 73\nu - 416 ) / 24 ( − ν 3 + 8 ν 2 + 7 3 ν − 4 1 6 ) / 2 4
(-v^3 + 8*v^2 + 73*v - 416) / 24
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
2 β 3 + 2 β 2 + β 1 + 56 2\beta_{3} + 2\beta_{2} + \beta _1 + 56 2 β 3 + 2 β 2 + β 1 + 5 6
2*b3 + 2*b2 + b1 + 56
ν 3 \nu^{3} ν 3 = = =
− 8 β 3 + 16 β 2 + 81 β 1 + 32 -8\beta_{3} + 16\beta_{2} + 81\beta _1 + 32 − 8 β 3 + 1 6 β 2 + 8 1 β 1 + 3 2
-8*b3 + 16*b2 + 81*b1 + 32
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 650 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(650)) S 4 n e w ( Γ 0 ( 6 5 0 ) ) :
T 3 4 − 113 T 3 2 + 48 T 3 + 1600 T_{3}^{4} - 113T_{3}^{2} + 48T_{3} + 1600 T 3 4 − 1 1 3 T 3 2 + 4 8 T 3 + 1 6 0 0
T3^4 - 113*T3^2 + 48*T3 + 1600
T 7 4 − 56 T 7 3 + 755 T 7 2 + 1270 T 7 − 44600 T_{7}^{4} - 56T_{7}^{3} + 755T_{7}^{2} + 1270T_{7} - 44600 T 7 4 − 5 6 T 7 3 + 7 5 5 T 7 2 + 1 2 7 0 T 7 − 4 4 6 0 0
T7^4 - 56*T7^3 + 755*T7^2 + 1270*T7 - 44600
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
3 3 3
T 4 − 113 T 2 + ⋯ + 1600 T^{4} - 113 T^{2} + \cdots + 1600 T 4 − 1 1 3 T 2 + ⋯ + 1 6 0 0
T^4 - 113*T^2 + 48*T + 1600
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 − 56 T 3 + ⋯ − 44600 T^{4} - 56 T^{3} + \cdots - 44600 T 4 − 5 6 T 3 + ⋯ − 4 4 6 0 0
T^4 - 56*T^3 + 755*T^2 + 1270*T - 44600
11 11 1 1
T 4 + 49 T 3 + ⋯ + 160150 T^{4} + 49 T^{3} + \cdots + 160150 T 4 + 4 9 T 3 + ⋯ + 1 6 0 1 5 0
T^4 + 49*T^3 - 1933*T^2 - 56663*T + 160150
13 13 1 3
( T − 13 ) 4 (T - 13)^{4} ( T − 1 3 ) 4
(T - 13)^4
17 17 1 7
T 4 − 27 T 3 + ⋯ + 61877954 T^{4} - 27 T^{3} + \cdots + 61877954 T 4 − 2 7 T 3 + ⋯ + 6 1 8 7 7 9 5 4
T^4 - 27*T^3 - 17455*T^2 + 375727*T + 61877954
19 19 1 9
T 4 − 51 T 3 + ⋯ + 1114800 T^{4} - 51 T^{3} + \cdots + 1114800 T 4 − 5 1 T 3 + ⋯ + 1 1 1 4 8 0 0
T^4 - 51*T^3 - 7220*T^2 - 95148*T + 1114800
23 23 2 3
T 4 + 9 T 3 + ⋯ + 41386464 T^{4} + 9 T^{3} + \cdots + 41386464 T 4 + 9 T 3 + ⋯ + 4 1 3 8 6 4 6 4
T^4 + 9*T^3 - 29520*T^2 - 1378836*T + 41386464
29 29 2 9
T 4 + 161 T 3 + ⋯ + 367958500 T^{4} + 161 T^{3} + \cdots + 367958500 T 4 + 1 6 1 T 3 + ⋯ + 3 6 7 9 5 8 5 0 0
T^4 + 161*T^3 - 34705*T^2 - 3199477*T + 367958500
31 31 3 1
T 4 − 38 T 3 + ⋯ + 264668460 T^{4} - 38 T^{3} + \cdots + 264668460 T 4 − 3 8 T 3 + ⋯ + 2 6 4 6 6 8 4 6 0
T^4 - 38*T^3 - 36413*T^2 + 871860*T + 264668460
37 37 3 7
T 4 − 16 T 3 + ⋯ + 482879872 T^{4} - 16 T^{3} + \cdots + 482879872 T 4 − 1 6 T 3 + ⋯ + 4 8 2 8 7 9 8 7 2
T^4 - 16*T^3 - 110188*T^2 + 6322256*T + 482879872
41 41 4 1
T 4 + ⋯ − 4508108800 T^{4} + \cdots - 4508108800 T 4 + ⋯ − 4 5 0 8 1 0 8 8 0 0
T^4 - 547*T^3 + 6760*T^2 + 34997760*T - 4508108800
43 43 4 3
T 4 + ⋯ − 17371531600 T^{4} + \cdots - 17371531600 T 4 + ⋯ − 1 7 3 7 1 5 3 1 6 0 0
T^4 - 609*T^3 - 107620*T^2 + 118161508*T - 17371531600
47 47 4 7
T 4 + 254 T 3 + ⋯ + 38847984 T^{4} + 254 T^{3} + \cdots + 38847984 T 4 + 2 5 4 T 3 + ⋯ + 3 8 8 4 7 9 8 4
T^4 + 254*T^3 - 85337*T^2 - 580152*T + 38847984
53 53 5 3
T 4 − 961 T 3 + ⋯ − 113112526 T^{4} - 961 T^{3} + \cdots - 113112526 T 4 − 9 6 1 T 3 + ⋯ − 1 1 3 1 1 2 5 2 6
T^4 - 961*T^3 + 230965*T^2 - 10121031*T - 113112526
59 59 5 9
T 4 + ⋯ − 1950560560 T^{4} + \cdots - 1950560560 T 4 + ⋯ − 1 9 5 0 5 6 0 5 6 0
T^4 + 230*T^3 - 251273*T^2 + 42475728*T - 1950560560
61 61 6 1
T 4 − 1393 T 3 + ⋯ − 307156824 T^{4} - 1393 T^{3} + \cdots - 307156824 T 4 − 1 3 9 3 T 3 + ⋯ − 3 0 7 1 5 6 8 2 4
T^4 - 1393*T^3 + 379807*T^2 + 77362137*T - 307156824
67 67 6 7
T 4 + ⋯ − 33587822190 T^{4} + \cdots - 33587822190 T 4 + ⋯ − 3 3 5 8 7 8 2 2 1 9 0
T^4 - 579*T^3 - 724097*T^2 + 455468325*T - 33587822190
71 71 7 1
T 4 + ⋯ − 1583878400 T^{4} + \cdots - 1583878400 T 4 + ⋯ − 1 5 8 3 8 7 8 4 0 0
T^4 - 680*T^3 + 94676*T^2 + 11391280*T - 1583878400
73 73 7 3
T 4 + ⋯ − 7624343880 T^{4} + \cdots - 7624343880 T 4 + ⋯ − 7 6 2 4 3 4 3 8 8 0
T^4 - 1321*T^3 + 334102*T^2 + 24453012*T - 7624343880
79 79 7 9
T 4 + ⋯ + 278910008480 T^{4} + \cdots + 278910008480 T 4 + ⋯ + 2 7 8 9 1 0 0 0 8 4 8 0
T^4 + 55*T^3 - 1427528*T^2 - 90551148*T + 278910008480
83 83 8 3
T 4 + ⋯ + 166041258360 T^{4} + \cdots + 166041258360 T 4 + ⋯ + 1 6 6 0 4 1 2 5 8 3 6 0
T^4 - 2733*T^3 + 2692717*T^2 - 1124597205*T + 166041258360
89 89 8 9
T 4 + ⋯ − 108910247200 T^{4} + \cdots - 108910247200 T 4 + ⋯ − 1 0 8 9 1 0 2 4 7 2 0 0
T^4 + 1233*T^3 - 154774*T^2 - 476215040*T - 108910247200
97 97 9 7
T 4 + ⋯ − 316567796768 T^{4} + \cdots - 316567796768 T 4 + ⋯ − 3 1 6 5 6 7 7 9 6 7 6 8
T^4 - 1250*T^3 - 1154716*T^2 + 1577844808*T - 316567796768
show more
show less