Properties

Label 650.4.a.w
Level 650650
Weight 44
Character orbit 650.a
Self dual yes
Analytic conductor 38.35138.351
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(1,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,0,0,-56,-32,118] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4113x248x+1600 x^{4} - 113x^{2} - 48x + 1600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q2+β1q3+4q42β1q6+(β314)q78q8+(2β3+2β2+β1+29)q9+(2β3β2+12)q11+4β1q12++(57β3104β2+1664)q99+O(q100) q - 2 q^{2} + \beta_1 q^{3} + 4 q^{4} - 2 \beta_1 q^{6} + ( - \beta_{3} - 14) q^{7} - 8 q^{8} + (2 \beta_{3} + 2 \beta_{2} + \beta_1 + 29) q^{9} + ( - 2 \beta_{3} - \beta_{2} + \cdots - 12) q^{11} + 4 \beta_1 q^{12}+ \cdots + ( - 57 \beta_{3} - 104 \beta_{2} + \cdots - 1664) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q2+16q456q732q8+118q949q1152q13+112q14+64q1627q17236q18+51q19+62q21+98q22+9q23+104q26+144q27+6760q99+O(q100) 4 q - 8 q^{2} + 16 q^{4} - 56 q^{7} - 32 q^{8} + 118 q^{9} - 49 q^{11} - 52 q^{13} + 112 q^{14} + 64 q^{16} - 27 q^{17} - 236 q^{18} + 51 q^{19} + 62 q^{21} + 98 q^{22} + 9 q^{23} + 104 q^{26} + 144 q^{27}+ \cdots - 6760 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4113x248x+1600 x^{4} - 113x^{2} - 48x + 1600 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν285ν256)/24 ( \nu^{3} + 4\nu^{2} - 85\nu - 256 ) / 24 Copy content Toggle raw display
β3\beta_{3}== (ν3+8ν2+73ν416)/24 ( -\nu^{3} + 8\nu^{2} + 73\nu - 416 ) / 24 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β3+2β2+β1+56 2\beta_{3} + 2\beta_{2} + \beta _1 + 56 Copy content Toggle raw display
ν3\nu^{3}== 8β3+16β2+81β1+32 -8\beta_{3} + 16\beta_{2} + 81\beta _1 + 32 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−9.49788
−4.39724
3.79184
10.1033
−2.00000 −9.49788 4.00000 0 18.9958 −33.5473 −8.00000 63.2098 0
1.2 −2.00000 −4.39724 4.00000 0 8.79448 6.72037 −8.00000 −7.66426 0
1.3 −2.00000 3.79184 4.00000 0 −7.58368 −10.7212 −8.00000 −12.6219 0
1.4 −2.00000 10.1033 4.00000 0 −20.2066 −18.4518 −8.00000 75.0764 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.a.w 4
5.b even 2 1 650.4.a.x yes 4
5.c odd 4 2 650.4.b.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.w 4 1.a even 1 1 trivial
650.4.a.x yes 4 5.b even 2 1
650.4.b.p 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(650))S_{4}^{\mathrm{new}}(\Gamma_0(650)):

T34113T3248T3+1600 T_{3}^{4} - 113T_{3}^{2} - 48T_{3} + 1600 Copy content Toggle raw display
T74+56T73+755T721270T744600 T_{7}^{4} + 56T_{7}^{3} + 755T_{7}^{2} - 1270T_{7} - 44600 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
33 T4113T2++1600 T^{4} - 113 T^{2} + \cdots + 1600 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+56T3+44600 T^{4} + 56 T^{3} + \cdots - 44600 Copy content Toggle raw display
1111 T4+49T3++160150 T^{4} + 49 T^{3} + \cdots + 160150 Copy content Toggle raw display
1313 (T+13)4 (T + 13)^{4} Copy content Toggle raw display
1717 T4+27T3++61877954 T^{4} + 27 T^{3} + \cdots + 61877954 Copy content Toggle raw display
1919 T451T3++1114800 T^{4} - 51 T^{3} + \cdots + 1114800 Copy content Toggle raw display
2323 T49T3++41386464 T^{4} - 9 T^{3} + \cdots + 41386464 Copy content Toggle raw display
2929 T4+161T3++367958500 T^{4} + 161 T^{3} + \cdots + 367958500 Copy content Toggle raw display
3131 T438T3++264668460 T^{4} - 38 T^{3} + \cdots + 264668460 Copy content Toggle raw display
3737 T4+16T3++482879872 T^{4} + 16 T^{3} + \cdots + 482879872 Copy content Toggle raw display
4141 T4+4508108800 T^{4} + \cdots - 4508108800 Copy content Toggle raw display
4343 T4+17371531600 T^{4} + \cdots - 17371531600 Copy content Toggle raw display
4747 T4254T3++38847984 T^{4} - 254 T^{3} + \cdots + 38847984 Copy content Toggle raw display
5353 T4+961T3+113112526 T^{4} + 961 T^{3} + \cdots - 113112526 Copy content Toggle raw display
5959 T4+1950560560 T^{4} + \cdots - 1950560560 Copy content Toggle raw display
6161 T41393T3+307156824 T^{4} - 1393 T^{3} + \cdots - 307156824 Copy content Toggle raw display
6767 T4+33587822190 T^{4} + \cdots - 33587822190 Copy content Toggle raw display
7171 T4+1583878400 T^{4} + \cdots - 1583878400 Copy content Toggle raw display
7373 T4+7624343880 T^{4} + \cdots - 7624343880 Copy content Toggle raw display
7979 T4++278910008480 T^{4} + \cdots + 278910008480 Copy content Toggle raw display
8383 T4++166041258360 T^{4} + \cdots + 166041258360 Copy content Toggle raw display
8989 T4+108910247200 T^{4} + \cdots - 108910247200 Copy content Toggle raw display
9797 T4+316567796768 T^{4} + \cdots - 316567796768 Copy content Toggle raw display
show more
show less