Properties

Label 650.3.k.l.551.6
Level $650$
Weight $3$
Character 650.551
Analytic conductor $17.711$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(151,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2668x^{10} + 40556x^{8} + 303080x^{6} + 1000960x^{4} + 1045476x^{2} + 193600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.6
Root \(3.84840i\) of defining polynomial
Character \(\chi\) \(=\) 650.551
Dual form 650.3.k.l.151.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +3.84840 q^{3} -2.00000i q^{4} +(-3.84840 + 3.84840i) q^{6} +(-2.44952 - 2.44952i) q^{7} +(2.00000 + 2.00000i) q^{8} +5.81016 q^{9} +(-4.31164 - 4.31164i) q^{11} -7.69679i q^{12} +(-9.48115 - 8.89425i) q^{13} +4.89903 q^{14} -4.00000 q^{16} -11.8592i q^{17} +(-5.81016 + 5.81016i) q^{18} +(9.71168 - 9.71168i) q^{19} +(-9.42671 - 9.42671i) q^{21} +8.62329 q^{22} -10.6797i q^{23} +(7.69679 + 7.69679i) q^{24} +(18.3754 - 0.586903i) q^{26} -12.2758 q^{27} +(-4.89903 + 4.89903i) q^{28} -21.5195 q^{29} +(39.8823 - 39.8823i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-16.5929 - 16.5929i) q^{33} +(11.8592 + 11.8592i) q^{34} -11.6203i q^{36} +(18.6605 + 18.6605i) q^{37} +19.4234i q^{38} +(-36.4872 - 34.2286i) q^{39} +(40.3015 - 40.3015i) q^{41} +18.8534 q^{42} +52.7965i q^{43} +(-8.62329 + 8.62329i) q^{44} +(10.6797 + 10.6797i) q^{46} +(-40.6800 - 40.6800i) q^{47} -15.3936 q^{48} -36.9997i q^{49} -45.6388i q^{51} +(-17.7885 + 18.9623i) q^{52} -42.2147 q^{53} +(12.2758 - 12.2758i) q^{54} -9.79806i q^{56} +(37.3744 - 37.3744i) q^{57} +(21.5195 - 21.5195i) q^{58} +(5.34862 + 5.34862i) q^{59} -72.6777 q^{61} +79.7646i q^{62} +(-14.2321 - 14.2321i) q^{63} +8.00000i q^{64} +33.1858 q^{66} +(-48.5284 + 48.5284i) q^{67} -23.7183 q^{68} -41.0996i q^{69} +(56.4982 - 56.4982i) q^{71} +(11.6203 + 11.6203i) q^{72} +(54.1769 + 54.1769i) q^{73} -37.3210 q^{74} +(-19.4234 - 19.4234i) q^{76} +21.1229i q^{77} +(70.7159 - 2.25863i) q^{78} +38.8202 q^{79} -99.5335 q^{81} +80.6030i q^{82} +(-32.3864 + 32.3864i) q^{83} +(-18.8534 + 18.8534i) q^{84} +(-52.7965 - 52.7965i) q^{86} -82.8156 q^{87} -17.2466i q^{88} +(44.0147 + 44.0147i) q^{89} +(1.43763 + 45.0109i) q^{91} -21.3593 q^{92} +(153.483 - 153.483i) q^{93} +81.3601 q^{94} +(15.3936 - 15.3936i) q^{96} +(49.9858 - 49.9858i) q^{97} +(36.9997 + 36.9997i) q^{98} +(-25.0513 - 25.0513i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{2} + 28 q^{8} + 42 q^{9} + 8 q^{11} - 2 q^{13} - 56 q^{16} - 42 q^{18} - 44 q^{19} + 4 q^{21} - 16 q^{22} + 10 q^{26} - 120 q^{27} - 72 q^{29} - 64 q^{31} + 56 q^{32} - 56 q^{33} - 96 q^{34}+ \cdots - 292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 3.84840 1.28280 0.641399 0.767207i \(-0.278354\pi\)
0.641399 + 0.767207i \(0.278354\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −3.84840 + 3.84840i −0.641399 + 0.641399i
\(7\) −2.44952 2.44952i −0.349931 0.349931i 0.510153 0.860084i \(-0.329589\pi\)
−0.860084 + 0.510153i \(0.829589\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 5.81016 0.645573
\(10\) 0 0
\(11\) −4.31164 4.31164i −0.391968 0.391968i 0.483421 0.875388i \(-0.339394\pi\)
−0.875388 + 0.483421i \(0.839394\pi\)
\(12\) 7.69679i 0.641399i
\(13\) −9.48115 8.89425i −0.729320 0.684173i
\(14\) 4.89903 0.349931
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 11.8592i 0.697598i −0.937198 0.348799i \(-0.886590\pi\)
0.937198 0.348799i \(-0.113410\pi\)
\(18\) −5.81016 + 5.81016i −0.322787 + 0.322787i
\(19\) 9.71168 9.71168i 0.511141 0.511141i −0.403735 0.914876i \(-0.632288\pi\)
0.914876 + 0.403735i \(0.132288\pi\)
\(20\) 0 0
\(21\) −9.42671 9.42671i −0.448891 0.448891i
\(22\) 8.62329 0.391968
\(23\) 10.6797i 0.464333i −0.972676 0.232167i \(-0.925419\pi\)
0.972676 0.232167i \(-0.0745815\pi\)
\(24\) 7.69679 + 7.69679i 0.320700 + 0.320700i
\(25\) 0 0
\(26\) 18.3754 0.586903i 0.706746 0.0225732i
\(27\) −12.2758 −0.454658
\(28\) −4.89903 + 4.89903i −0.174965 + 0.174965i
\(29\) −21.5195 −0.742052 −0.371026 0.928622i \(-0.620994\pi\)
−0.371026 + 0.928622i \(0.620994\pi\)
\(30\) 0 0
\(31\) 39.8823 39.8823i 1.28653 1.28653i 0.349643 0.936883i \(-0.386303\pi\)
0.936883 0.349643i \(-0.113697\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −16.5929 16.5929i −0.502816 0.502816i
\(34\) 11.8592 + 11.8592i 0.348799 + 0.348799i
\(35\) 0 0
\(36\) 11.6203i 0.322787i
\(37\) 18.6605 + 18.6605i 0.504338 + 0.504338i 0.912783 0.408445i \(-0.133929\pi\)
−0.408445 + 0.912783i \(0.633929\pi\)
\(38\) 19.4234i 0.511141i
\(39\) −36.4872 34.2286i −0.935570 0.877657i
\(40\) 0 0
\(41\) 40.3015 40.3015i 0.982963 0.982963i −0.0168942 0.999857i \(-0.505378\pi\)
0.999857 + 0.0168942i \(0.00537784\pi\)
\(42\) 18.8534 0.448891
\(43\) 52.7965i 1.22782i 0.789374 + 0.613912i \(0.210405\pi\)
−0.789374 + 0.613912i \(0.789595\pi\)
\(44\) −8.62329 + 8.62329i −0.195984 + 0.195984i
\(45\) 0 0
\(46\) 10.6797 + 10.6797i 0.232167 + 0.232167i
\(47\) −40.6800 40.6800i −0.865533 0.865533i 0.126441 0.991974i \(-0.459644\pi\)
−0.991974 + 0.126441i \(0.959644\pi\)
\(48\) −15.3936 −0.320700
\(49\) 36.9997i 0.755097i
\(50\) 0 0
\(51\) 45.6388i 0.894878i
\(52\) −17.7885 + 18.9623i −0.342087 + 0.364660i
\(53\) −42.2147 −0.796503 −0.398252 0.917276i \(-0.630383\pi\)
−0.398252 + 0.917276i \(0.630383\pi\)
\(54\) 12.2758 12.2758i 0.227329 0.227329i
\(55\) 0 0
\(56\) 9.79806i 0.174965i
\(57\) 37.3744 37.3744i 0.655691 0.655691i
\(58\) 21.5195 21.5195i 0.371026 0.371026i
\(59\) 5.34862 + 5.34862i 0.0906546 + 0.0906546i 0.750980 0.660325i \(-0.229582\pi\)
−0.660325 + 0.750980i \(0.729582\pi\)
\(60\) 0 0
\(61\) −72.6777 −1.19144 −0.595719 0.803193i \(-0.703133\pi\)
−0.595719 + 0.803193i \(0.703133\pi\)
\(62\) 79.7646i 1.28653i
\(63\) −14.2321 14.2321i −0.225906 0.225906i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 33.1858 0.502816
\(67\) −48.5284 + 48.5284i −0.724305 + 0.724305i −0.969479 0.245174i \(-0.921155\pi\)
0.245174 + 0.969479i \(0.421155\pi\)
\(68\) −23.7183 −0.348799
\(69\) 41.0996i 0.595646i
\(70\) 0 0
\(71\) 56.4982 56.4982i 0.795749 0.795749i −0.186673 0.982422i \(-0.559771\pi\)
0.982422 + 0.186673i \(0.0597705\pi\)
\(72\) 11.6203 + 11.6203i 0.161393 + 0.161393i
\(73\) 54.1769 + 54.1769i 0.742149 + 0.742149i 0.972991 0.230842i \(-0.0741482\pi\)
−0.230842 + 0.972991i \(0.574148\pi\)
\(74\) −37.3210 −0.504338
\(75\) 0 0
\(76\) −19.4234 19.4234i −0.255570 0.255570i
\(77\) 21.1229i 0.274323i
\(78\) 70.7159 2.25863i 0.906613 0.0289568i
\(79\) 38.8202 0.491395 0.245698 0.969347i \(-0.420983\pi\)
0.245698 + 0.969347i \(0.420983\pi\)
\(80\) 0 0
\(81\) −99.5335 −1.22881
\(82\) 80.6030i 0.982963i
\(83\) −32.3864 + 32.3864i −0.390198 + 0.390198i −0.874758 0.484560i \(-0.838980\pi\)
0.484560 + 0.874758i \(0.338980\pi\)
\(84\) −18.8534 + 18.8534i −0.224445 + 0.224445i
\(85\) 0 0
\(86\) −52.7965 52.7965i −0.613912 0.613912i
\(87\) −82.8156 −0.951904
\(88\) 17.2466i 0.195984i
\(89\) 44.0147 + 44.0147i 0.494547 + 0.494547i 0.909735 0.415189i \(-0.136284\pi\)
−0.415189 + 0.909735i \(0.636284\pi\)
\(90\) 0 0
\(91\) 1.43763 + 45.0109i 0.0157981 + 0.494625i
\(92\) −21.3593 −0.232167
\(93\) 153.483 153.483i 1.65035 1.65035i
\(94\) 81.3601 0.865533
\(95\) 0 0
\(96\) 15.3936 15.3936i 0.160350 0.160350i
\(97\) 49.9858 49.9858i 0.515317 0.515317i −0.400833 0.916151i \(-0.631279\pi\)
0.916151 + 0.400833i \(0.131279\pi\)
\(98\) 36.9997 + 36.9997i 0.377548 + 0.377548i
\(99\) −25.0513 25.0513i −0.253044 0.253044i
\(100\) 0 0
\(101\) 85.1995i 0.843560i 0.906698 + 0.421780i \(0.138594\pi\)
−0.906698 + 0.421780i \(0.861406\pi\)
\(102\) 45.6388 + 45.6388i 0.447439 + 0.447439i
\(103\) 11.4074i 0.110752i 0.998466 + 0.0553758i \(0.0176357\pi\)
−0.998466 + 0.0553758i \(0.982364\pi\)
\(104\) −1.17381 36.7508i −0.0112866 0.353373i
\(105\) 0 0
\(106\) 42.2147 42.2147i 0.398252 0.398252i
\(107\) 62.1056 0.580426 0.290213 0.956962i \(-0.406274\pi\)
0.290213 + 0.956962i \(0.406274\pi\)
\(108\) 24.5516i 0.227329i
\(109\) 133.664 133.664i 1.22627 1.22627i 0.260909 0.965363i \(-0.415978\pi\)
0.965363 0.260909i \(-0.0840221\pi\)
\(110\) 0 0
\(111\) 71.8130 + 71.8130i 0.646964 + 0.646964i
\(112\) 9.79806 + 9.79806i 0.0874827 + 0.0874827i
\(113\) −148.138 −1.31096 −0.655478 0.755214i \(-0.727533\pi\)
−0.655478 + 0.755214i \(0.727533\pi\)
\(114\) 74.7488i 0.655691i
\(115\) 0 0
\(116\) 43.0390i 0.371026i
\(117\) −55.0870 51.6770i −0.470829 0.441684i
\(118\) −10.6972 −0.0906546
\(119\) −29.0492 + 29.0492i −0.244111 + 0.244111i
\(120\) 0 0
\(121\) 83.8195i 0.692723i
\(122\) 72.6777 72.6777i 0.595719 0.595719i
\(123\) 155.096 155.096i 1.26094 1.26094i
\(124\) −79.7646 79.7646i −0.643263 0.643263i
\(125\) 0 0
\(126\) 28.4641 0.225906
\(127\) 230.518i 1.81511i −0.419938 0.907553i \(-0.637948\pi\)
0.419938 0.907553i \(-0.362052\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 203.182i 1.57505i
\(130\) 0 0
\(131\) 214.401 1.63665 0.818326 0.574755i \(-0.194903\pi\)
0.818326 + 0.574755i \(0.194903\pi\)
\(132\) −33.1858 + 33.1858i −0.251408 + 0.251408i
\(133\) −47.5778 −0.357728
\(134\) 97.0568i 0.724305i
\(135\) 0 0
\(136\) 23.7183 23.7183i 0.174399 0.174399i
\(137\) −101.847 101.847i −0.743408 0.743408i 0.229824 0.973232i \(-0.426185\pi\)
−0.973232 + 0.229824i \(0.926185\pi\)
\(138\) 41.0996 + 41.0996i 0.297823 + 0.297823i
\(139\) 75.7601 0.545037 0.272519 0.962151i \(-0.412143\pi\)
0.272519 + 0.962151i \(0.412143\pi\)
\(140\) 0 0
\(141\) −156.553 156.553i −1.11030 1.11030i
\(142\) 112.996i 0.795749i
\(143\) 2.53052 + 79.2282i 0.0176959 + 0.554043i
\(144\) −23.2406 −0.161393
\(145\) 0 0
\(146\) −108.354 −0.742149
\(147\) 142.390i 0.968637i
\(148\) 37.3210 37.3210i 0.252169 0.252169i
\(149\) −111.435 + 111.435i −0.747883 + 0.747883i −0.974081 0.226198i \(-0.927370\pi\)
0.226198 + 0.974081i \(0.427370\pi\)
\(150\) 0 0
\(151\) 135.707 + 135.707i 0.898722 + 0.898722i 0.995323 0.0966013i \(-0.0307972\pi\)
−0.0966013 + 0.995323i \(0.530797\pi\)
\(152\) 38.8467 0.255570
\(153\) 68.9036i 0.450350i
\(154\) −21.1229 21.1229i −0.137162 0.137162i
\(155\) 0 0
\(156\) −68.4572 + 72.9745i −0.438828 + 0.467785i
\(157\) 172.878 1.10114 0.550568 0.834790i \(-0.314411\pi\)
0.550568 + 0.834790i \(0.314411\pi\)
\(158\) −38.8202 + 38.8202i −0.245698 + 0.245698i
\(159\) −162.459 −1.02175
\(160\) 0 0
\(161\) −26.1600 + 26.1600i −0.162485 + 0.162485i
\(162\) 99.5335 99.5335i 0.614404 0.614404i
\(163\) −55.5819 55.5819i −0.340993 0.340993i 0.515747 0.856741i \(-0.327514\pi\)
−0.856741 + 0.515747i \(0.827514\pi\)
\(164\) −80.6030 80.6030i −0.491482 0.491482i
\(165\) 0 0
\(166\) 64.7728i 0.390198i
\(167\) 92.0373 + 92.0373i 0.551121 + 0.551121i 0.926764 0.375643i \(-0.122578\pi\)
−0.375643 + 0.926764i \(0.622578\pi\)
\(168\) 37.7068i 0.224445i
\(169\) 10.7846 + 168.656i 0.0638140 + 0.997962i
\(170\) 0 0
\(171\) 56.4264 56.4264i 0.329979 0.329979i
\(172\) 105.593 0.613912
\(173\) 86.3308i 0.499022i 0.968372 + 0.249511i \(0.0802699\pi\)
−0.968372 + 0.249511i \(0.919730\pi\)
\(174\) 82.8156 82.8156i 0.475952 0.475952i
\(175\) 0 0
\(176\) 17.2466 + 17.2466i 0.0979919 + 0.0979919i
\(177\) 20.5836 + 20.5836i 0.116292 + 0.116292i
\(178\) −88.0293 −0.494547
\(179\) 223.879i 1.25072i 0.780336 + 0.625361i \(0.215048\pi\)
−0.780336 + 0.625361i \(0.784952\pi\)
\(180\) 0 0
\(181\) 305.729i 1.68911i 0.535468 + 0.844555i \(0.320135\pi\)
−0.535468 + 0.844555i \(0.679865\pi\)
\(182\) −46.4485 43.5732i −0.255211 0.239413i
\(183\) −279.693 −1.52838
\(184\) 21.3593 21.3593i 0.116083 0.116083i
\(185\) 0 0
\(186\) 306.966i 1.65035i
\(187\) −51.1325 + 51.1325i −0.273436 + 0.273436i
\(188\) −81.3601 + 81.3601i −0.432766 + 0.432766i
\(189\) 30.0697 + 30.0697i 0.159099 + 0.159099i
\(190\) 0 0
\(191\) −288.933 −1.51274 −0.756368 0.654146i \(-0.773028\pi\)
−0.756368 + 0.654146i \(0.773028\pi\)
\(192\) 30.7872i 0.160350i
\(193\) 116.591 + 116.591i 0.604098 + 0.604098i 0.941397 0.337299i \(-0.109513\pi\)
−0.337299 + 0.941397i \(0.609513\pi\)
\(194\) 99.9716i 0.515317i
\(195\) 0 0
\(196\) −73.9995 −0.377548
\(197\) −104.376 + 104.376i −0.529827 + 0.529827i −0.920521 0.390694i \(-0.872235\pi\)
0.390694 + 0.920521i \(0.372235\pi\)
\(198\) 50.1027 0.253044
\(199\) 194.443i 0.977101i −0.872536 0.488551i \(-0.837526\pi\)
0.872536 0.488551i \(-0.162474\pi\)
\(200\) 0 0
\(201\) −186.757 + 186.757i −0.929137 + 0.929137i
\(202\) −85.1995 85.1995i −0.421780 0.421780i
\(203\) 52.7124 + 52.7124i 0.259667 + 0.259667i
\(204\) −91.2775 −0.447439
\(205\) 0 0
\(206\) −11.4074 11.4074i −0.0553758 0.0553758i
\(207\) 62.0506i 0.299761i
\(208\) 37.9246 + 35.5770i 0.182330 + 0.171043i
\(209\) −83.7466 −0.400701
\(210\) 0 0
\(211\) −103.472 −0.490389 −0.245195 0.969474i \(-0.578852\pi\)
−0.245195 + 0.969474i \(0.578852\pi\)
\(212\) 84.4293i 0.398252i
\(213\) 217.427 217.427i 1.02079 1.02079i
\(214\) −62.1056 + 62.1056i −0.290213 + 0.290213i
\(215\) 0 0
\(216\) −24.5516 24.5516i −0.113665 0.113665i
\(217\) −195.385 −0.900390
\(218\) 267.327i 1.22627i
\(219\) 208.494 + 208.494i 0.952028 + 0.952028i
\(220\) 0 0
\(221\) −105.478 + 112.439i −0.477278 + 0.508772i
\(222\) −143.626 −0.646964
\(223\) −14.2146 + 14.2146i −0.0637428 + 0.0637428i −0.738260 0.674517i \(-0.764352\pi\)
0.674517 + 0.738260i \(0.264352\pi\)
\(224\) −19.5961 −0.0874827
\(225\) 0 0
\(226\) 148.138 148.138i 0.655478 0.655478i
\(227\) −283.524 + 283.524i −1.24900 + 1.24900i −0.292842 + 0.956161i \(0.594601\pi\)
−0.956161 + 0.292842i \(0.905399\pi\)
\(228\) −74.7488 74.7488i −0.327845 0.327845i
\(229\) −303.668 303.668i −1.32606 1.32606i −0.908774 0.417288i \(-0.862981\pi\)
−0.417288 0.908774i \(-0.637019\pi\)
\(230\) 0 0
\(231\) 81.2892i 0.351901i
\(232\) −43.0390 43.0390i −0.185513 0.185513i
\(233\) 134.811i 0.578588i −0.957240 0.289294i \(-0.906580\pi\)
0.957240 0.289294i \(-0.0934204\pi\)
\(234\) 106.764 3.41000i 0.456256 0.0145726i
\(235\) 0 0
\(236\) 10.6972 10.6972i 0.0453273 0.0453273i
\(237\) 149.396 0.630361
\(238\) 58.0984i 0.244111i
\(239\) 204.968 204.968i 0.857606 0.857606i −0.133449 0.991056i \(-0.542605\pi\)
0.991056 + 0.133449i \(0.0426054\pi\)
\(240\) 0 0
\(241\) 264.576 + 264.576i 1.09782 + 1.09782i 0.994665 + 0.103160i \(0.0328953\pi\)
0.103160 + 0.994665i \(0.467105\pi\)
\(242\) 83.8195 + 83.8195i 0.346361 + 0.346361i
\(243\) −272.562 −1.12166
\(244\) 145.355i 0.595719i
\(245\) 0 0
\(246\) 310.192i 1.26094i
\(247\) −178.456 + 5.69981i −0.722494 + 0.0230761i
\(248\) 159.529 0.643263
\(249\) −124.636 + 124.636i −0.500545 + 0.500545i
\(250\) 0 0
\(251\) 89.6680i 0.357243i −0.983918 0.178621i \(-0.942836\pi\)
0.983918 0.178621i \(-0.0571638\pi\)
\(252\) −28.4641 + 28.4641i −0.112953 + 0.112953i
\(253\) −46.0469 + 46.0469i −0.182004 + 0.182004i
\(254\) 230.518 + 230.518i 0.907553 + 0.907553i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 209.326i 0.814497i 0.913317 + 0.407248i \(0.133512\pi\)
−0.913317 + 0.407248i \(0.866488\pi\)
\(258\) −203.182 203.182i −0.787526 0.787526i
\(259\) 91.4184i 0.352967i
\(260\) 0 0
\(261\) −125.032 −0.479049
\(262\) −214.401 + 214.401i −0.818326 + 0.818326i
\(263\) −135.381 −0.514756 −0.257378 0.966311i \(-0.582859\pi\)
−0.257378 + 0.966311i \(0.582859\pi\)
\(264\) 66.3717i 0.251408i
\(265\) 0 0
\(266\) 47.5778 47.5778i 0.178864 0.178864i
\(267\) 169.386 + 169.386i 0.634404 + 0.634404i
\(268\) 97.0568 + 97.0568i 0.362152 + 0.362152i
\(269\) −65.9632 −0.245217 −0.122608 0.992455i \(-0.539126\pi\)
−0.122608 + 0.992455i \(0.539126\pi\)
\(270\) 0 0
\(271\) −290.080 290.080i −1.07040 1.07040i −0.997326 0.0730788i \(-0.976718\pi\)
−0.0730788 0.997326i \(-0.523282\pi\)
\(272\) 47.4367i 0.174399i
\(273\) 5.53256 + 173.220i 0.0202658 + 0.634504i
\(274\) 203.694 0.743408
\(275\) 0 0
\(276\) −82.1992 −0.297823
\(277\) 191.294i 0.690593i −0.938494 0.345296i \(-0.887778\pi\)
0.938494 0.345296i \(-0.112222\pi\)
\(278\) −75.7601 + 75.7601i −0.272519 + 0.272519i
\(279\) 231.722 231.722i 0.830546 0.830546i
\(280\) 0 0
\(281\) 131.638 + 131.638i 0.468464 + 0.468464i 0.901417 0.432953i \(-0.142528\pi\)
−0.432953 + 0.901417i \(0.642528\pi\)
\(282\) 313.106 1.11030
\(283\) 380.847i 1.34575i 0.739756 + 0.672875i \(0.234941\pi\)
−0.739756 + 0.672875i \(0.765059\pi\)
\(284\) −112.996 112.996i −0.397874 0.397874i
\(285\) 0 0
\(286\) −81.7587 76.6977i −0.285870 0.268174i
\(287\) −197.438 −0.687938
\(288\) 23.2406 23.2406i 0.0806966 0.0806966i
\(289\) 148.360 0.513357
\(290\) 0 0
\(291\) 192.365 192.365i 0.661049 0.661049i
\(292\) 108.354 108.354i 0.371074 0.371074i
\(293\) −33.0661 33.0661i −0.112854 0.112854i 0.648425 0.761279i \(-0.275428\pi\)
−0.761279 + 0.648425i \(0.775428\pi\)
\(294\) 142.390 + 142.390i 0.484319 + 0.484319i
\(295\) 0 0
\(296\) 74.6420i 0.252169i
\(297\) 52.9288 + 52.9288i 0.178211 + 0.178211i
\(298\) 222.869i 0.747883i
\(299\) −94.9877 + 101.256i −0.317684 + 0.338647i
\(300\) 0 0
\(301\) 129.326 129.326i 0.429654 0.429654i
\(302\) −271.414 −0.898722
\(303\) 327.882i 1.08212i
\(304\) −38.8467 + 38.8467i −0.127785 + 0.127785i
\(305\) 0 0
\(306\) 68.9036 + 68.9036i 0.225175 + 0.225175i
\(307\) 365.876 + 365.876i 1.19178 + 1.19178i 0.976568 + 0.215210i \(0.0690437\pi\)
0.215210 + 0.976568i \(0.430956\pi\)
\(308\) 42.2458 0.137162
\(309\) 43.9002i 0.142072i
\(310\) 0 0
\(311\) 315.994i 1.01606i 0.861340 + 0.508028i \(0.169626\pi\)
−0.861340 + 0.508028i \(0.830374\pi\)
\(312\) −4.51727 141.432i −0.0144784 0.453307i
\(313\) 65.8042 0.210237 0.105118 0.994460i \(-0.466478\pi\)
0.105118 + 0.994460i \(0.466478\pi\)
\(314\) −172.878 + 172.878i −0.550568 + 0.550568i
\(315\) 0 0
\(316\) 77.6405i 0.245698i
\(317\) 169.512 169.512i 0.534739 0.534739i −0.387240 0.921979i \(-0.626571\pi\)
0.921979 + 0.387240i \(0.126571\pi\)
\(318\) 162.459 162.459i 0.510877 0.510877i
\(319\) 92.7845 + 92.7845i 0.290861 + 0.290861i
\(320\) 0 0
\(321\) 239.007 0.744570
\(322\) 52.3200i 0.162485i
\(323\) −115.172 115.172i −0.356571 0.356571i
\(324\) 199.067i 0.614404i
\(325\) 0 0
\(326\) 111.164 0.340993
\(327\) 514.391 514.391i 1.57306 1.57306i
\(328\) 161.206 0.491482
\(329\) 199.293i 0.605753i
\(330\) 0 0
\(331\) 140.641 140.641i 0.424896 0.424896i −0.461989 0.886886i \(-0.652864\pi\)
0.886886 + 0.461989i \(0.152864\pi\)
\(332\) 64.7728 + 64.7728i 0.195099 + 0.195099i
\(333\) 108.420 + 108.420i 0.325587 + 0.325587i
\(334\) −184.075 −0.551121
\(335\) 0 0
\(336\) 37.7068 + 37.7068i 0.112223 + 0.112223i
\(337\) 275.256i 0.816784i −0.912807 0.408392i \(-0.866090\pi\)
0.912807 0.408392i \(-0.133910\pi\)
\(338\) −179.440 157.871i −0.530888 0.467074i
\(339\) −570.094 −1.68169
\(340\) 0 0
\(341\) −343.917 −1.00855
\(342\) 112.853i 0.329979i
\(343\) −210.658 + 210.658i −0.614163 + 0.614163i
\(344\) −105.593 + 105.593i −0.306956 + 0.306956i
\(345\) 0 0
\(346\) −86.3308 86.3308i −0.249511 0.249511i
\(347\) −539.829 −1.55570 −0.777851 0.628448i \(-0.783690\pi\)
−0.777851 + 0.628448i \(0.783690\pi\)
\(348\) 165.631i 0.475952i
\(349\) −387.267 387.267i −1.10965 1.10965i −0.993196 0.116452i \(-0.962848\pi\)
−0.116452 0.993196i \(-0.537152\pi\)
\(350\) 0 0
\(351\) 116.389 + 109.184i 0.331591 + 0.311065i
\(352\) −34.4932 −0.0979919
\(353\) 440.861 440.861i 1.24890 1.24890i 0.292693 0.956207i \(-0.405449\pi\)
0.956207 0.292693i \(-0.0945512\pi\)
\(354\) −41.1673 −0.116292
\(355\) 0 0
\(356\) 88.0293 88.0293i 0.247273 0.247273i
\(357\) −111.793 + 111.793i −0.313145 + 0.313145i
\(358\) −223.879 223.879i −0.625361 0.625361i
\(359\) 122.211 + 122.211i 0.340421 + 0.340421i 0.856525 0.516105i \(-0.172618\pi\)
−0.516105 + 0.856525i \(0.672618\pi\)
\(360\) 0 0
\(361\) 172.367i 0.477470i
\(362\) −305.729 305.729i −0.844555 0.844555i
\(363\) 322.571i 0.888624i
\(364\) 90.0217 2.87525i 0.247312 0.00789905i
\(365\) 0 0
\(366\) 279.693 279.693i 0.764188 0.764188i
\(367\) 460.229 1.25403 0.627015 0.779007i \(-0.284277\pi\)
0.627015 + 0.779007i \(0.284277\pi\)
\(368\) 42.7187i 0.116083i
\(369\) 234.158 234.158i 0.634575 0.634575i
\(370\) 0 0
\(371\) 103.406 + 103.406i 0.278721 + 0.278721i
\(372\) −306.966 306.966i −0.825177 0.825177i
\(373\) 550.843 1.47679 0.738395 0.674369i \(-0.235584\pi\)
0.738395 + 0.674369i \(0.235584\pi\)
\(374\) 102.265i 0.273436i
\(375\) 0 0
\(376\) 162.720i 0.432766i
\(377\) 204.030 + 191.400i 0.541193 + 0.507692i
\(378\) −60.1394 −0.159099
\(379\) 318.854 318.854i 0.841303 0.841303i −0.147726 0.989028i \(-0.547195\pi\)
0.989028 + 0.147726i \(0.0471953\pi\)
\(380\) 0 0
\(381\) 887.126i 2.32842i
\(382\) 288.933 288.933i 0.756368 0.756368i
\(383\) −87.4053 + 87.4053i −0.228212 + 0.228212i −0.811946 0.583733i \(-0.801591\pi\)
0.583733 + 0.811946i \(0.301591\pi\)
\(384\) −30.7872 30.7872i −0.0801749 0.0801749i
\(385\) 0 0
\(386\) −233.182 −0.604098
\(387\) 306.756i 0.792651i
\(388\) −99.9716 99.9716i −0.257659 0.257659i
\(389\) 221.342i 0.569004i −0.958675 0.284502i \(-0.908172\pi\)
0.958675 0.284502i \(-0.0918282\pi\)
\(390\) 0 0
\(391\) −126.652 −0.323918
\(392\) 73.9995 73.9995i 0.188774 0.188774i
\(393\) 825.101 2.09949
\(394\) 208.752i 0.529827i
\(395\) 0 0
\(396\) −50.1027 + 50.1027i −0.126522 + 0.126522i
\(397\) −2.99158 2.99158i −0.00753545 0.00753545i 0.703329 0.710864i \(-0.251696\pi\)
−0.710864 + 0.703329i \(0.751696\pi\)
\(398\) 194.443 + 194.443i 0.488551 + 0.488551i
\(399\) −183.098 −0.458893
\(400\) 0 0
\(401\) 27.4281 + 27.4281i 0.0683993 + 0.0683993i 0.740479 0.672080i \(-0.234599\pi\)
−0.672080 + 0.740479i \(0.734599\pi\)
\(402\) 373.513i 0.929137i
\(403\) −732.853 + 23.4070i −1.81850 + 0.0580820i
\(404\) 170.399 0.421780
\(405\) 0 0
\(406\) −105.425 −0.259667
\(407\) 160.915i 0.395368i
\(408\) 91.2775 91.2775i 0.223719 0.223719i
\(409\) 226.925 226.925i 0.554828 0.554828i −0.373002 0.927830i \(-0.621672\pi\)
0.927830 + 0.373002i \(0.121672\pi\)
\(410\) 0 0
\(411\) −391.947 391.947i −0.953643 0.953643i
\(412\) 22.8148 0.0553758
\(413\) 26.2031i 0.0634457i
\(414\) 62.0506 + 62.0506i 0.149881 + 0.149881i
\(415\) 0 0
\(416\) −73.5016 + 2.34761i −0.176687 + 0.00564329i
\(417\) 291.555 0.699173
\(418\) 83.7466 83.7466i 0.200351 0.200351i
\(419\) −146.384 −0.349364 −0.174682 0.984625i \(-0.555890\pi\)
−0.174682 + 0.984625i \(0.555890\pi\)
\(420\) 0 0
\(421\) 465.756 465.756i 1.10631 1.10631i 0.112676 0.993632i \(-0.464058\pi\)
0.993632 0.112676i \(-0.0359423\pi\)
\(422\) 103.472 103.472i 0.245195 0.245195i
\(423\) −236.357 236.357i −0.558765 0.558765i
\(424\) −84.4293 84.4293i −0.199126 0.199126i
\(425\) 0 0
\(426\) 434.855i 1.02079i
\(427\) 178.025 + 178.025i 0.416921 + 0.416921i
\(428\) 124.211i 0.290213i
\(429\) 9.73843 + 304.902i 0.0227003 + 0.710726i
\(430\) 0 0
\(431\) −412.642 + 412.642i −0.957406 + 0.957406i −0.999129 0.0417231i \(-0.986715\pi\)
0.0417231 + 0.999129i \(0.486715\pi\)
\(432\) 49.1031 0.113665
\(433\) 490.129i 1.13194i −0.824427 0.565968i \(-0.808502\pi\)
0.824427 0.565968i \(-0.191498\pi\)
\(434\) 195.385 195.385i 0.450195 0.450195i
\(435\) 0 0
\(436\) −267.327 267.327i −0.613136 0.613136i
\(437\) −103.717 103.717i −0.237340 0.237340i
\(438\) −416.988 −0.952028
\(439\) 32.6479i 0.0743687i 0.999308 + 0.0371844i \(0.0118389\pi\)
−0.999308 + 0.0371844i \(0.988161\pi\)
\(440\) 0 0
\(441\) 214.974i 0.487470i
\(442\) −6.96017 217.917i −0.0157470 0.493025i
\(443\) 458.868 1.03582 0.517909 0.855436i \(-0.326711\pi\)
0.517909 + 0.855436i \(0.326711\pi\)
\(444\) 143.626 143.626i 0.323482 0.323482i
\(445\) 0 0
\(446\) 28.4293i 0.0637428i
\(447\) −428.845 + 428.845i −0.959384 + 0.959384i
\(448\) 19.5961 19.5961i 0.0437414 0.0437414i
\(449\) 290.072 + 290.072i 0.646041 + 0.646041i 0.952034 0.305993i \(-0.0989883\pi\)
−0.305993 + 0.952034i \(0.598988\pi\)
\(450\) 0 0
\(451\) −347.531 −0.770579
\(452\) 296.276i 0.655478i
\(453\) 522.254 + 522.254i 1.15288 + 1.15288i
\(454\) 567.047i 1.24900i
\(455\) 0 0
\(456\) 149.498 0.327845
\(457\) 338.468 338.468i 0.740631 0.740631i −0.232068 0.972699i \(-0.574549\pi\)
0.972699 + 0.232068i \(0.0745493\pi\)
\(458\) 607.337 1.32606
\(459\) 145.580i 0.317169i
\(460\) 0 0
\(461\) 351.781 351.781i 0.763082 0.763082i −0.213796 0.976878i \(-0.568583\pi\)
0.976878 + 0.213796i \(0.0685828\pi\)
\(462\) −81.2892 81.2892i −0.175951 0.175951i
\(463\) −283.858 283.858i −0.613085 0.613085i 0.330664 0.943749i \(-0.392727\pi\)
−0.943749 + 0.330664i \(0.892727\pi\)
\(464\) 86.0781 0.185513
\(465\) 0 0
\(466\) 134.811 + 134.811i 0.289294 + 0.289294i
\(467\) 267.631i 0.573085i 0.958067 + 0.286543i \(0.0925060\pi\)
−0.958067 + 0.286543i \(0.907494\pi\)
\(468\) −103.354 + 110.174i −0.220842 + 0.235415i
\(469\) 237.742 0.506913
\(470\) 0 0
\(471\) 665.304 1.41254
\(472\) 21.3945i 0.0453273i
\(473\) 227.640 227.640i 0.481268 0.481268i
\(474\) −149.396 + 149.396i −0.315181 + 0.315181i
\(475\) 0 0
\(476\) 58.0984 + 58.0984i 0.122056 + 0.122056i
\(477\) −245.274 −0.514201
\(478\) 409.936i 0.857606i
\(479\) 226.465 + 226.465i 0.472788 + 0.472788i 0.902816 0.430028i \(-0.141496\pi\)
−0.430028 + 0.902816i \(0.641496\pi\)
\(480\) 0 0
\(481\) −10.9519 342.894i −0.0227690 0.712878i
\(482\) −529.151 −1.09782
\(483\) −100.674 + 100.674i −0.208435 + 0.208435i
\(484\) −167.639 −0.346361
\(485\) 0 0
\(486\) 272.562 272.562i 0.560828 0.560828i
\(487\) −127.792 + 127.792i −0.262406 + 0.262406i −0.826031 0.563625i \(-0.809406\pi\)
0.563625 + 0.826031i \(0.309406\pi\)
\(488\) −145.355 145.355i −0.297860 0.297860i
\(489\) −213.901 213.901i −0.437426 0.437426i
\(490\) 0 0
\(491\) 430.146i 0.876060i −0.898960 0.438030i \(-0.855676\pi\)
0.898960 0.438030i \(-0.144324\pi\)
\(492\) −310.192 310.192i −0.630472 0.630472i
\(493\) 255.204i 0.517654i
\(494\) 172.756 184.156i 0.349709 0.372785i
\(495\) 0 0
\(496\) −159.529 + 159.529i −0.321631 + 0.321631i
\(497\) −276.786 −0.556914
\(498\) 249.271i 0.500545i
\(499\) −270.521 + 270.521i −0.542127 + 0.542127i −0.924152 0.382025i \(-0.875227\pi\)
0.382025 + 0.924152i \(0.375227\pi\)
\(500\) 0 0
\(501\) 354.196 + 354.196i 0.706978 + 0.706978i
\(502\) 89.6680 + 89.6680i 0.178621 + 0.178621i
\(503\) −455.762 −0.906088 −0.453044 0.891488i \(-0.649662\pi\)
−0.453044 + 0.891488i \(0.649662\pi\)
\(504\) 56.9283i 0.112953i
\(505\) 0 0
\(506\) 92.0939i 0.182004i
\(507\) 41.5033 + 649.053i 0.0818606 + 1.28018i
\(508\) −461.037 −0.907553
\(509\) 169.114 169.114i 0.332248 0.332248i −0.521192 0.853440i \(-0.674512\pi\)
0.853440 + 0.521192i \(0.174512\pi\)
\(510\) 0 0
\(511\) 265.414i 0.519402i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −119.218 + 119.218i −0.232395 + 0.232395i
\(514\) −209.326 209.326i −0.407248 0.407248i
\(515\) 0 0
\(516\) 406.363 0.787526
\(517\) 350.796i 0.678522i
\(518\) 91.4184 + 91.4184i 0.176483 + 0.176483i
\(519\) 332.235i 0.640145i
\(520\) 0 0
\(521\) 388.553 0.745782 0.372891 0.927875i \(-0.378366\pi\)
0.372891 + 0.927875i \(0.378366\pi\)
\(522\) 125.032 125.032i 0.239525 0.239525i
\(523\) 508.158 0.971622 0.485811 0.874064i \(-0.338524\pi\)
0.485811 + 0.874064i \(0.338524\pi\)
\(524\) 428.803i 0.818326i
\(525\) 0 0
\(526\) 135.381 135.381i 0.257378 0.257378i
\(527\) −472.971 472.971i −0.897478 0.897478i
\(528\) 66.3717 + 66.3717i 0.125704 + 0.125704i
\(529\) 414.945 0.784395
\(530\) 0 0
\(531\) 31.0763 + 31.0763i 0.0585242 + 0.0585242i
\(532\) 95.1556i 0.178864i
\(533\) −740.556 + 23.6530i −1.38941 + 0.0443772i
\(534\) −338.772 −0.634404
\(535\) 0 0
\(536\) −194.114 −0.362152
\(537\) 861.576i 1.60442i
\(538\) 65.9632 65.9632i 0.122608 0.122608i
\(539\) −159.530 + 159.530i −0.295973 + 0.295973i
\(540\) 0 0
\(541\) −154.103 154.103i −0.284849 0.284849i 0.550190 0.835039i \(-0.314555\pi\)
−0.835039 + 0.550190i \(0.814555\pi\)
\(542\) 580.159 1.07040
\(543\) 1176.57i 2.16679i
\(544\) −47.4367 47.4367i −0.0871997 0.0871997i
\(545\) 0 0
\(546\) −178.752 167.687i −0.327385 0.307119i
\(547\) 164.591 0.300898 0.150449 0.988618i \(-0.451928\pi\)
0.150449 + 0.988618i \(0.451928\pi\)
\(548\) −203.694 + 203.694i −0.371704 + 0.371704i
\(549\) −422.269 −0.769160
\(550\) 0 0
\(551\) −208.991 + 208.991i −0.379293 + 0.379293i
\(552\) 82.1992 82.1992i 0.148912 0.148912i
\(553\) −95.0908 95.0908i −0.171954 0.171954i
\(554\) 191.294 + 191.294i 0.345296 + 0.345296i
\(555\) 0 0
\(556\) 151.520i 0.272519i
\(557\) 551.903 + 551.903i 0.990850 + 0.990850i 0.999959 0.00910881i \(-0.00289946\pi\)
−0.00910881 + 0.999959i \(0.502899\pi\)
\(558\) 463.445i 0.830546i
\(559\) 469.585 500.571i 0.840045 0.895477i
\(560\) 0 0
\(561\) −196.778 + 196.778i −0.350763 + 0.350763i
\(562\) −263.277 −0.468464
\(563\) 128.247i 0.227792i 0.993493 + 0.113896i \(0.0363331\pi\)
−0.993493 + 0.113896i \(0.963667\pi\)
\(564\) −313.106 + 313.106i −0.555152 + 0.555152i
\(565\) 0 0
\(566\) −380.847 380.847i −0.672875 0.672875i
\(567\) 243.809 + 243.809i 0.429998 + 0.429998i
\(568\) 225.993 0.397874
\(569\) 758.893i 1.33373i 0.745178 + 0.666865i \(0.232364\pi\)
−0.745178 + 0.666865i \(0.767636\pi\)
\(570\) 0 0
\(571\) 87.8635i 0.153877i −0.997036 0.0769383i \(-0.975486\pi\)
0.997036 0.0769383i \(-0.0245144\pi\)
\(572\) 158.456 5.06103i 0.277022 0.00884796i
\(573\) −1111.93 −1.94054
\(574\) 197.438 197.438i 0.343969 0.343969i
\(575\) 0 0
\(576\) 46.4813i 0.0806966i
\(577\) −297.465 + 297.465i −0.515537 + 0.515537i −0.916218 0.400681i \(-0.868774\pi\)
0.400681 + 0.916218i \(0.368774\pi\)
\(578\) −148.360 + 148.360i −0.256679 + 0.256679i
\(579\) 448.688 + 448.688i 0.774936 + 0.774936i
\(580\) 0 0
\(581\) 158.662 0.273084
\(582\) 384.730i 0.661049i
\(583\) 182.015 + 182.015i 0.312203 + 0.312203i
\(584\) 216.707i 0.371074i
\(585\) 0 0
\(586\) 66.1323 0.112854
\(587\) 132.481 132.481i 0.225692 0.225692i −0.585198 0.810890i \(-0.698983\pi\)
0.810890 + 0.585198i \(0.198983\pi\)
\(588\) −284.779 −0.484319
\(589\) 774.648i 1.31519i
\(590\) 0 0
\(591\) −401.680 + 401.680i −0.679662 + 0.679662i
\(592\) −74.6420 74.6420i −0.126085 0.126085i
\(593\) −94.7444 94.7444i −0.159771 0.159771i 0.622694 0.782465i \(-0.286038\pi\)
−0.782465 + 0.622694i \(0.786038\pi\)
\(594\) −105.858 −0.178211
\(595\) 0 0
\(596\) 222.869 + 222.869i 0.373942 + 0.373942i
\(597\) 748.294i 1.25342i
\(598\) −6.26793 196.243i −0.0104815 0.328166i
\(599\) −1004.01 −1.67615 −0.838076 0.545554i \(-0.816319\pi\)
−0.838076 + 0.545554i \(0.816319\pi\)
\(600\) 0 0
\(601\) 1002.31 1.66773 0.833867 0.551965i \(-0.186122\pi\)
0.833867 + 0.551965i \(0.186122\pi\)
\(602\) 258.652i 0.429654i
\(603\) −281.958 + 281.958i −0.467592 + 0.467592i
\(604\) 271.414 271.414i 0.449361 0.449361i
\(605\) 0 0
\(606\) −327.882 327.882i −0.541059 0.541059i
\(607\) −238.427 −0.392796 −0.196398 0.980524i \(-0.562924\pi\)
−0.196398 + 0.980524i \(0.562924\pi\)
\(608\) 77.6934i 0.127785i
\(609\) 202.858 + 202.858i 0.333101 + 0.333101i
\(610\) 0 0
\(611\) 23.8752 + 747.512i 0.0390757 + 1.22342i
\(612\) −137.807 −0.225175
\(613\) 580.531 580.531i 0.947033 0.947033i −0.0516332 0.998666i \(-0.516443\pi\)
0.998666 + 0.0516332i \(0.0164427\pi\)
\(614\) −731.752 −1.19178
\(615\) 0 0
\(616\) −42.2458 + 42.2458i −0.0685808 + 0.0685808i
\(617\) 567.878 567.878i 0.920385 0.920385i −0.0766713 0.997056i \(-0.524429\pi\)
0.997056 + 0.0766713i \(0.0244292\pi\)
\(618\) −43.9002 43.9002i −0.0710360 0.0710360i
\(619\) 26.0583 + 26.0583i 0.0420973 + 0.0420973i 0.727842 0.685745i \(-0.240523\pi\)
−0.685745 + 0.727842i \(0.740523\pi\)
\(620\) 0 0
\(621\) 131.101i 0.211113i
\(622\) −315.994 315.994i −0.508028 0.508028i
\(623\) 215.629i 0.346114i
\(624\) 145.949 + 136.914i 0.233893 + 0.219414i
\(625\) 0 0
\(626\) −65.8042 + 65.8042i −0.105118 + 0.105118i
\(627\) −322.290 −0.514019
\(628\) 345.757i 0.550568i
\(629\) 221.298 221.298i 0.351825 0.351825i
\(630\) 0 0
\(631\) −407.417 407.417i −0.645668 0.645668i 0.306275 0.951943i \(-0.400917\pi\)
−0.951943 + 0.306275i \(0.900917\pi\)
\(632\) 77.6405 + 77.6405i 0.122849 + 0.122849i
\(633\) −398.202 −0.629071
\(634\) 339.025i 0.534739i
\(635\) 0 0
\(636\) 324.918i 0.510877i
\(637\) −329.085 + 350.800i −0.516617 + 0.550707i
\(638\) −185.569 −0.290861
\(639\) 328.263 328.263i 0.513714 0.513714i
\(640\) 0 0
\(641\) 144.048i 0.224724i −0.993667 0.112362i \(-0.964158\pi\)
0.993667 0.112362i \(-0.0358416\pi\)
\(642\) −239.007 + 239.007i −0.372285 + 0.372285i
\(643\) 82.2042 82.2042i 0.127845 0.127845i −0.640289 0.768134i \(-0.721185\pi\)
0.768134 + 0.640289i \(0.221185\pi\)
\(644\) 52.3200 + 52.3200i 0.0812423 + 0.0812423i
\(645\) 0 0
\(646\) 230.345 0.356571
\(647\) 657.369i 1.01603i −0.861349 0.508013i \(-0.830380\pi\)
0.861349 0.508013i \(-0.169620\pi\)
\(648\) −199.067 199.067i −0.307202 0.307202i
\(649\) 46.1227i 0.0710674i
\(650\) 0 0
\(651\) −751.918 −1.15502
\(652\) −111.164 + 111.164i −0.170497 + 0.170497i
\(653\) 792.552 1.21371 0.606854 0.794813i \(-0.292431\pi\)
0.606854 + 0.794813i \(0.292431\pi\)
\(654\) 1028.78i 1.57306i
\(655\) 0 0
\(656\) −161.206 + 161.206i −0.245741 + 0.245741i
\(657\) 314.776 + 314.776i 0.479111 + 0.479111i
\(658\) −199.293 199.293i −0.302877 0.302877i
\(659\) −617.958 −0.937722 −0.468861 0.883272i \(-0.655335\pi\)
−0.468861 + 0.883272i \(0.655335\pi\)
\(660\) 0 0
\(661\) 206.874 + 206.874i 0.312971 + 0.312971i 0.846059 0.533089i \(-0.178969\pi\)
−0.533089 + 0.846059i \(0.678969\pi\)
\(662\) 281.281i 0.424896i
\(663\) −405.923 + 432.708i −0.612251 + 0.652652i
\(664\) −129.546 −0.195099
\(665\) 0 0
\(666\) −216.841 −0.325587
\(667\) 229.821i 0.344560i
\(668\) 184.075 184.075i 0.275561 0.275561i
\(669\) −54.7036 + 54.7036i −0.0817691 + 0.0817691i
\(670\) 0 0
\(671\) 313.361 + 313.361i 0.467005 + 0.467005i
\(672\) −75.4137 −0.112223
\(673\) 1124.43i 1.67077i 0.549663 + 0.835386i \(0.314756\pi\)
−0.549663 + 0.835386i \(0.685244\pi\)
\(674\) 275.256 + 275.256i 0.408392 + 0.408392i
\(675\) 0 0
\(676\) 337.311 21.5691i 0.498981 0.0319070i
\(677\) 446.105 0.658943 0.329472 0.944165i \(-0.393129\pi\)
0.329472 + 0.944165i \(0.393129\pi\)
\(678\) 570.094 570.094i 0.840847 0.840847i
\(679\) −244.882 −0.360651
\(680\) 0 0
\(681\) −1091.11 + 1091.11i −1.60222 + 1.60222i
\(682\) 343.917 343.917i 0.504276 0.504276i
\(683\) −897.278 897.278i −1.31373 1.31373i −0.918644 0.395086i \(-0.870715\pi\)
−0.395086 0.918644i \(-0.629285\pi\)
\(684\) −112.853 112.853i −0.164989 0.164989i
\(685\) 0 0
\(686\) 421.315i 0.614163i
\(687\) −1168.64 1168.64i −1.70107 1.70107i
\(688\) 211.186i 0.306956i
\(689\) 400.244 + 375.468i 0.580905 + 0.544946i
\(690\) 0 0
\(691\) −447.025 + 447.025i −0.646924 + 0.646924i −0.952249 0.305324i \(-0.901235\pi\)
0.305324 + 0.952249i \(0.401235\pi\)
\(692\) 172.662 0.249511
\(693\) 122.727i 0.177096i
\(694\) 539.829 539.829i 0.777851 0.777851i
\(695\) 0 0
\(696\) −165.631 165.631i −0.237976 0.237976i
\(697\) −477.942 477.942i −0.685713 0.685713i
\(698\) 774.535 1.10965
\(699\) 518.806i 0.742212i
\(700\) 0 0
\(701\) 182.818i 0.260795i −0.991462 0.130398i \(-0.958375\pi\)
0.991462 0.130398i \(-0.0416254\pi\)
\(702\) −225.572 + 7.20469i −0.321328 + 0.0102631i
\(703\) 362.450 0.515576
\(704\) 34.4932 34.4932i 0.0489960 0.0489960i
\(705\) 0 0
\(706\) 881.723i 1.24890i
\(707\) 208.698 208.698i 0.295188 0.295188i
\(708\) 41.1673 41.1673i 0.0581458 0.0581458i
\(709\) −16.2875 16.2875i −0.0229726 0.0229726i 0.695527 0.718500i \(-0.255171\pi\)
−0.718500 + 0.695527i \(0.755171\pi\)
\(710\) 0 0
\(711\) 225.552 0.317232
\(712\) 176.059i 0.247273i
\(713\) −425.930 425.930i −0.597377 0.597377i
\(714\) 223.586i 0.313145i
\(715\) 0 0
\(716\) 447.758 0.625361
\(717\) 788.798 788.798i 1.10014 1.10014i
\(718\) −244.422 −0.340421
\(719\) 60.4508i 0.0840762i −0.999116 0.0420381i \(-0.986615\pi\)
0.999116 0.0420381i \(-0.0133851\pi\)
\(720\) 0 0
\(721\) 27.9426 27.9426i 0.0387554 0.0387554i
\(722\) −172.367 172.367i −0.238735 0.238735i
\(723\) 1018.19 + 1018.19i 1.40829 + 1.40829i
\(724\) 611.458 0.844555
\(725\) 0 0
\(726\) 322.571 + 322.571i 0.444312 + 0.444312i
\(727\) 149.229i 0.205266i −0.994719 0.102633i \(-0.967273\pi\)
0.994719 0.102633i \(-0.0327268\pi\)
\(728\) −87.1464 + 92.8970i −0.119707 + 0.127606i
\(729\) −153.127 −0.210050
\(730\) 0 0
\(731\) 626.122 0.856528
\(732\) 559.386i 0.764188i
\(733\) 894.559 894.559i 1.22041 1.22041i 0.252921 0.967487i \(-0.418609\pi\)
0.967487 0.252921i \(-0.0813914\pi\)
\(734\) −460.229 + 460.229i −0.627015 + 0.627015i
\(735\) 0 0
\(736\) −42.7187 42.7187i −0.0580417 0.0580417i
\(737\) 418.474 0.567808
\(738\) 468.316i 0.634575i
\(739\) −113.697 113.697i −0.153852 0.153852i 0.625984 0.779836i \(-0.284698\pi\)
−0.779836 + 0.625984i \(0.784698\pi\)
\(740\) 0 0
\(741\) −686.770 + 21.9351i −0.926814 + 0.0296021i
\(742\) −206.811 −0.278721
\(743\) 387.099 387.099i 0.520994 0.520994i −0.396877 0.917872i \(-0.629906\pi\)
0.917872 + 0.396877i \(0.129906\pi\)
\(744\) 613.932 0.825177
\(745\) 0 0
\(746\) −550.843 + 550.843i −0.738395 + 0.738395i
\(747\) −188.170 + 188.170i −0.251901 + 0.251901i
\(748\) 102.265 + 102.265i 0.136718 + 0.136718i
\(749\) −152.129 152.129i −0.203109 0.203109i
\(750\) 0 0
\(751\) 342.334i 0.455837i 0.973680 + 0.227919i \(0.0731920\pi\)
−0.973680 + 0.227919i \(0.926808\pi\)
\(752\) 162.720 + 162.720i 0.216383 + 0.216383i
\(753\) 345.078i 0.458271i
\(754\) −395.430 + 12.6299i −0.524443 + 0.0167505i
\(755\) 0 0
\(756\) 60.1394 60.1394i 0.0795495 0.0795495i
\(757\) −243.161 −0.321217 −0.160608 0.987018i \(-0.551346\pi\)
−0.160608 + 0.987018i \(0.551346\pi\)
\(758\) 637.707i 0.841303i
\(759\) −177.207 + 177.207i −0.233474 + 0.233474i
\(760\) 0 0
\(761\) −419.621 419.621i −0.551407 0.551407i 0.375440 0.926847i \(-0.377492\pi\)
−0.926847 + 0.375440i \(0.877492\pi\)
\(762\) 887.126 + 887.126i 1.16421 + 1.16421i
\(763\) −654.823 −0.858221
\(764\) 577.866i 0.756368i
\(765\) 0 0
\(766\) 174.811i 0.228212i
\(767\) −3.13912 98.2831i −0.00409273 0.128140i
\(768\) 61.5743 0.0801749
\(769\) −80.4079 + 80.4079i −0.104562 + 0.104562i −0.757452 0.652891i \(-0.773556\pi\)
0.652891 + 0.757452i \(0.273556\pi\)
\(770\) 0 0
\(771\) 805.568i 1.04484i
\(772\) 233.182 233.182i 0.302049 0.302049i
\(773\) 714.523 714.523i 0.924351 0.924351i −0.0729822 0.997333i \(-0.523252\pi\)
0.997333 + 0.0729822i \(0.0232516\pi\)
\(774\) −306.756 306.756i −0.396325 0.396325i
\(775\) 0 0
\(776\) 199.943 0.257659
\(777\) 351.814i 0.452786i
\(778\) 221.342 + 221.342i 0.284502 + 0.284502i
\(779\) 782.790i 1.00487i
\(780\) 0 0
\(781\) −487.200 −0.623816
\(782\) 126.652 126.652i 0.161959 0.161959i
\(783\) 264.169 0.337380
\(784\) 147.999i 0.188774i
\(785\) 0 0
\(786\) −825.101 + 825.101i −1.04975 + 1.04975i
\(787\) 72.2015 + 72.2015i 0.0917428 + 0.0917428i 0.751489 0.659746i \(-0.229336\pi\)
−0.659746 + 0.751489i \(0.729336\pi\)
\(788\) 208.752 + 208.752i 0.264914 + 0.264914i
\(789\) −520.999 −0.660328
\(790\) 0 0
\(791\) 362.867 + 362.867i 0.458744 + 0.458744i
\(792\) 100.205i 0.126522i
\(793\) 689.069 + 646.414i 0.868939 + 0.815150i
\(794\) 5.98315 0.00753545
\(795\) 0 0
\(796\) −388.886 −0.488551
\(797\) 1012.42i 1.27029i −0.772392 0.635146i \(-0.780940\pi\)
0.772392 0.635146i \(-0.219060\pi\)
\(798\) 183.098 183.098i 0.229447 0.229447i
\(799\) −482.431 + 482.431i −0.603794 + 0.603794i
\(800\) 0 0
\(801\) 255.732 + 255.732i 0.319266 + 0.319266i
\(802\) −54.8562 −0.0683993
\(803\) 467.183i 0.581797i
\(804\) 373.513 + 373.513i 0.464569 + 0.464569i
\(805\) 0 0
\(806\) 709.446 756.261i 0.880207 0.938288i
\(807\) −253.853 −0.314563
\(808\) −170.399 + 170.399i −0.210890 + 0.210890i
\(809\) 1107.04 1.36840 0.684202 0.729293i \(-0.260151\pi\)
0.684202 + 0.729293i \(0.260151\pi\)
\(810\) 0 0
\(811\) 3.44353 3.44353i 0.00424603 0.00424603i −0.704981 0.709227i \(-0.749044\pi\)
0.709227 + 0.704981i \(0.249044\pi\)
\(812\) 105.425 105.425i 0.129834 0.129834i
\(813\) −1116.34 1116.34i −1.37311 1.37311i
\(814\) 160.915 + 160.915i 0.197684 + 0.197684i
\(815\) 0 0
\(816\) 182.555i 0.223719i
\(817\) 512.742 + 512.742i 0.627591 + 0.627591i
\(818\) 453.849i 0.554828i
\(819\) 8.35284 + 261.520i 0.0101988 + 0.319316i
\(820\) 0 0
\(821\) 67.6867 67.6867i 0.0824442 0.0824442i −0.664682 0.747126i \(-0.731433\pi\)
0.747126 + 0.664682i \(0.231433\pi\)
\(822\) 783.894 0.953643
\(823\) 975.932i 1.18582i −0.805268 0.592911i \(-0.797978\pi\)
0.805268 0.592911i \(-0.202022\pi\)
\(824\) −22.8148 + 22.8148i −0.0276879 + 0.0276879i
\(825\) 0 0
\(826\) 26.2031 + 26.2031i 0.0317229 + 0.0317229i
\(827\) −629.158 629.158i −0.760772 0.760772i 0.215690 0.976462i \(-0.430800\pi\)
−0.976462 + 0.215690i \(0.930800\pi\)
\(828\) −124.101 −0.149881
\(829\) 989.174i 1.19321i −0.802534 0.596607i \(-0.796515\pi\)
0.802534 0.596607i \(-0.203485\pi\)
\(830\) 0 0
\(831\) 736.176i 0.885892i
\(832\) 71.1540 75.8492i 0.0855217 0.0911649i
\(833\) −438.786 −0.526754
\(834\) −291.555 + 291.555i −0.349586 + 0.349586i
\(835\) 0 0
\(836\) 167.493i 0.200351i
\(837\) −489.586 + 489.586i −0.584930 + 0.584930i
\(838\) 146.384 146.384i 0.174682 0.174682i
\(839\) −309.990 309.990i −0.369476 0.369476i 0.497810 0.867286i \(-0.334138\pi\)
−0.867286 + 0.497810i \(0.834138\pi\)
\(840\) 0 0
\(841\) −377.910 −0.449358
\(842\) 931.511i 1.10631i
\(843\) 506.597 + 506.597i 0.600945 + 0.600945i
\(844\) 206.944i 0.245195i
\(845\) 0 0
\(846\) 472.715 0.558765
\(847\) −205.317 + 205.317i −0.242405 + 0.242405i
\(848\) 168.859 0.199126
\(849\) 1465.65i 1.72633i
\(850\) 0 0
\(851\) 199.288 199.288i 0.234181 0.234181i
\(852\) −434.855 434.855i −0.510393 0.510393i
\(853\) 16.3492 + 16.3492i 0.0191667 + 0.0191667i 0.716625 0.697459i \(-0.245686\pi\)
−0.697459 + 0.716625i \(0.745686\pi\)
\(854\) −356.051 −0.416921
\(855\) 0 0
\(856\) 124.211 + 124.211i 0.145107 + 0.145107i
\(857\) 173.877i 0.202890i −0.994841 0.101445i \(-0.967653\pi\)
0.994841 0.101445i \(-0.0323466\pi\)
\(858\) −314.640 295.163i −0.366713 0.344013i
\(859\) 516.287 0.601033 0.300516 0.953777i \(-0.402841\pi\)
0.300516 + 0.953777i \(0.402841\pi\)
\(860\) 0 0
\(861\) −759.821 −0.882486
\(862\) 825.284i 0.957406i
\(863\) −490.757 + 490.757i −0.568664 + 0.568664i −0.931754 0.363090i \(-0.881722\pi\)
0.363090 + 0.931754i \(0.381722\pi\)
\(864\) −49.1031 + 49.1031i −0.0568323 + 0.0568323i
\(865\) 0 0
\(866\) 490.129 + 490.129i 0.565968 + 0.565968i
\(867\) 570.949 0.658534
\(868\) 390.769i 0.450195i
\(869\) −167.379 167.379i −0.192611 0.192611i
\(870\) 0 0
\(871\) 891.729 28.4815i 1.02380 0.0326997i
\(872\) 534.655 0.613136
\(873\) 290.425 290.425i 0.332675 0.332675i
\(874\) 207.435 0.237340
\(875\) 0 0
\(876\) 416.988 416.988i 0.476014 0.476014i
\(877\) −36.7229 + 36.7229i −0.0418733 + 0.0418733i −0.727733 0.685860i \(-0.759426\pi\)
0.685860 + 0.727733i \(0.259426\pi\)
\(878\) −32.6479 32.6479i −0.0371844 0.0371844i
\(879\) −127.252 127.252i −0.144769 0.144769i
\(880\) 0 0
\(881\) 144.572i 0.164100i −0.996628 0.0820501i \(-0.973853\pi\)
0.996628 0.0820501i \(-0.0261468\pi\)
\(882\) 214.974 + 214.974i 0.243735 + 0.243735i
\(883\) 221.400i 0.250736i −0.992110 0.125368i \(-0.959989\pi\)
0.992110 0.125368i \(-0.0400112\pi\)
\(884\) 224.877 + 210.957i 0.254386 + 0.238639i
\(885\) 0 0
\(886\) −458.868 + 458.868i −0.517909 + 0.517909i
\(887\) 867.086 0.977549 0.488774 0.872410i \(-0.337444\pi\)
0.488774 + 0.872410i \(0.337444\pi\)
\(888\) 287.252i 0.323482i
\(889\) −564.659 + 564.659i −0.635161 + 0.635161i
\(890\) 0 0
\(891\) 429.153 + 429.153i 0.481653 + 0.481653i
\(892\) 28.4293 + 28.4293i 0.0318714 + 0.0318714i
\(893\) −790.143 −0.884818
\(894\) 857.689i 0.959384i
\(895\) 0 0
\(896\) 39.1923i 0.0437414i
\(897\) −365.550 + 389.672i −0.407525 + 0.434417i
\(898\) −580.145 −0.646041
\(899\) −858.248 + 858.248i −0.954670 + 0.954670i
\(900\) 0 0
\(901\) 500.631i 0.555639i
\(902\) 347.531 347.531i 0.385290 0.385290i
\(903\) 497.697 497.697i 0.551159 0.551159i
\(904\) −296.276 296.276i −0.327739 0.327739i
\(905\) 0 0
\(906\) −1044.51 −1.15288
\(907\) 214.025i 0.235970i 0.993015 + 0.117985i \(0.0376435\pi\)
−0.993015 + 0.117985i \(0.962356\pi\)
\(908\) 567.047 + 567.047i 0.624501 + 0.624501i
\(909\) 495.023i 0.544579i
\(910\) 0 0
\(911\) −1755.52 −1.92702 −0.963511 0.267669i \(-0.913747\pi\)
−0.963511 + 0.267669i \(0.913747\pi\)
\(912\) −149.498 + 149.498i −0.163923 + 0.163923i
\(913\) 279.277 0.305890
\(914\) 676.937i 0.740631i
\(915\) 0 0
\(916\) −607.337 + 607.337i −0.663031 + 0.663031i
\(917\) −525.179 525.179i −0.572715 0.572715i
\(918\) −145.580 145.580i −0.158584 0.158584i
\(919\) 917.734 0.998623 0.499311 0.866423i \(-0.333586\pi\)
0.499311 + 0.866423i \(0.333586\pi\)
\(920\) 0 0
\(921\) 1408.04 + 1408.04i 1.52881 + 1.52881i
\(922\) 703.562i 0.763082i
\(923\) −1038.18 + 33.1589i −1.12479 + 0.0359252i
\(924\) 162.578 0.175951
\(925\) 0 0
\(926\) 567.716 0.613085
\(927\) 66.2789i 0.0714982i
\(928\) −86.0781 + 86.0781i −0.0927566 + 0.0927566i
\(929\) −471.906 + 471.906i −0.507972 + 0.507972i −0.913903 0.405932i \(-0.866947\pi\)
0.405932 + 0.913903i \(0.366947\pi\)
\(930\) 0 0
\(931\) −359.330 359.330i −0.385961 0.385961i
\(932\) −269.622 −0.289294
\(933\) 1216.07i 1.30340i
\(934\) −267.631 267.631i −0.286543 0.286543i
\(935\) 0 0
\(936\) −6.81999 213.528i −0.00728632 0.228128i
\(937\) −1133.03 −1.20921 −0.604607 0.796524i \(-0.706670\pi\)
−0.604607 + 0.796524i \(0.706670\pi\)
\(938\) −237.742 + 237.742i −0.253457 + 0.253457i
\(939\) 253.241 0.269692
\(940\) 0 0
\(941\) −965.320 + 965.320i −1.02584 + 1.02584i −0.0261879 + 0.999657i \(0.508337\pi\)
−0.999657 + 0.0261879i \(0.991663\pi\)
\(942\) −665.304 + 665.304i −0.706268 + 0.706268i
\(943\) −430.406 430.406i −0.456423 0.456423i
\(944\) −21.3945 21.3945i −0.0226637 0.0226637i
\(945\) 0 0
\(946\) 455.279i 0.481268i
\(947\) 766.185 + 766.185i 0.809065 + 0.809065i 0.984492 0.175427i \(-0.0561307\pi\)
−0.175427 + 0.984492i \(0.556131\pi\)
\(948\) 298.791i 0.315181i
\(949\) −31.7965 995.522i −0.0335053 1.04902i
\(950\) 0 0
\(951\) 652.351 652.351i 0.685963 0.685963i
\(952\) −116.197 −0.122056
\(953\) 743.766i 0.780447i 0.920720 + 0.390223i \(0.127602\pi\)
−0.920720 + 0.390223i \(0.872398\pi\)
\(954\) 245.274 245.274i 0.257100 0.257100i
\(955\) 0 0
\(956\) −409.936 409.936i −0.428803 0.428803i
\(957\) 357.072 + 357.072i 0.373116 + 0.373116i
\(958\) −452.931 −0.472788
\(959\) 498.951i 0.520283i
\(960\) 0 0
\(961\) 2220.20i 2.31030i
\(962\) 353.846 + 331.942i 0.367824 + 0.345055i
\(963\) 360.844 0.374708
\(964\) 529.151 529.151i 0.548912 0.548912i
\(965\) 0 0
\(966\) 201.348i 0.208435i
\(967\) 228.660 228.660i 0.236463 0.236463i −0.578921 0.815384i \(-0.696526\pi\)
0.815384 + 0.578921i \(0.196526\pi\)
\(968\) 167.639 167.639i 0.173181 0.173181i
\(969\) −443.229 443.229i −0.457409 0.457409i
\(970\) 0 0
\(971\) 1063.56 1.09532 0.547662 0.836699i \(-0.315518\pi\)
0.547662 + 0.836699i \(0.315518\pi\)
\(972\) 545.125i 0.560828i
\(973\) −185.576 185.576i −0.190725 0.190725i
\(974\) 255.583i 0.262406i
\(975\) 0 0
\(976\) 290.711 0.297860
\(977\) 347.768 347.768i 0.355955 0.355955i −0.506364 0.862320i \(-0.669011\pi\)
0.862320 + 0.506364i \(0.169011\pi\)
\(978\) 427.803 0.437426
\(979\) 379.551i 0.387693i
\(980\) 0 0
\(981\) 776.607 776.607i 0.791648 0.791648i
\(982\) 430.146 + 430.146i 0.438030 + 0.438030i
\(983\) 1187.00 + 1187.00i 1.20753 + 1.20753i 0.971825 + 0.235705i \(0.0757400\pi\)
0.235705 + 0.971825i \(0.424260\pi\)
\(984\) 620.384 0.630472
\(985\) 0 0
\(986\) −255.204 255.204i −0.258827 0.258827i
\(987\) 766.958i 0.777060i
\(988\) 11.3996 + 356.912i 0.0115381 + 0.361247i
\(989\) 563.849 0.570120
\(990\) 0 0
\(991\) 566.323 0.571466 0.285733 0.958309i \(-0.407763\pi\)
0.285733 + 0.958309i \(0.407763\pi\)
\(992\) 319.058i 0.321631i
\(993\) 541.241 541.241i 0.545057 0.545057i
\(994\) 276.786 276.786i 0.278457 0.278457i
\(995\) 0 0
\(996\) 249.271 + 249.271i 0.250273 + 0.250273i
\(997\) −1051.32 −1.05448 −0.527242 0.849715i \(-0.676774\pi\)
−0.527242 + 0.849715i \(0.676774\pi\)
\(998\) 541.043i 0.542127i
\(999\) −229.072 229.072i −0.229302 0.229302i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.k.l.551.6 14
5.2 odd 4 130.3.f.a.109.2 yes 14
5.3 odd 4 130.3.f.b.109.6 yes 14
5.4 even 2 650.3.k.m.551.2 14
13.8 odd 4 inner 650.3.k.l.151.6 14
65.8 even 4 130.3.f.a.99.6 14
65.34 odd 4 650.3.k.m.151.2 14
65.47 even 4 130.3.f.b.99.2 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.3.f.a.99.6 14 65.8 even 4
130.3.f.a.109.2 yes 14 5.2 odd 4
130.3.f.b.99.2 yes 14 65.47 even 4
130.3.f.b.109.6 yes 14 5.3 odd 4
650.3.k.l.151.6 14 13.8 odd 4 inner
650.3.k.l.551.6 14 1.1 even 1 trivial
650.3.k.m.151.2 14 65.34 odd 4
650.3.k.m.551.2 14 5.4 even 2