Properties

Label 130.3.f.a.99.6
Level $130$
Weight $3$
Character 130.99
Analytic conductor $3.542$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,3,Mod(99,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 130.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54224343668\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2668x^{10} + 40556x^{8} + 303080x^{6} + 1000960x^{4} + 1045476x^{2} + 193600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.6
Root \(3.84840i\) of defining polynomial
Character \(\chi\) \(=\) 130.99
Dual form 130.3.f.a.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +3.84840i q^{3} -2.00000i q^{4} +(0.429852 + 4.98149i) q^{5} +(-3.84840 - 3.84840i) q^{6} +(2.44952 + 2.44952i) q^{7} +(2.00000 + 2.00000i) q^{8} -5.81016 q^{9} +(-5.41134 - 4.55164i) q^{10} +(-4.31164 + 4.31164i) q^{11} +7.69679 q^{12} +(-8.89425 - 9.48115i) q^{13} -4.89903 q^{14} +(-19.1707 + 1.65424i) q^{15} -4.00000 q^{16} +11.8592 q^{17} +(5.81016 - 5.81016i) q^{18} +(-9.71168 - 9.71168i) q^{19} +(9.96298 - 0.859704i) q^{20} +(-9.42671 + 9.42671i) q^{21} -8.62329i q^{22} -10.6797 q^{23} +(-7.69679 + 7.69679i) q^{24} +(-24.6305 + 4.28261i) q^{25} +(18.3754 + 0.586903i) q^{26} +12.2758i q^{27} +(4.89903 - 4.89903i) q^{28} +21.5195 q^{29} +(17.5165 - 20.8250i) q^{30} +(39.8823 + 39.8823i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-16.5929 - 16.5929i) q^{33} +(-11.8592 + 11.8592i) q^{34} +(-11.1493 + 13.2552i) q^{35} +11.6203i q^{36} +(-18.6605 - 18.6605i) q^{37} +19.4234 q^{38} +(36.4872 - 34.2286i) q^{39} +(-9.10327 + 10.8227i) q^{40} +(40.3015 + 40.3015i) q^{41} -18.8534i q^{42} +52.7965 q^{43} +(8.62329 + 8.62329i) q^{44} +(-2.49751 - 28.9432i) q^{45} +(10.6797 - 10.6797i) q^{46} +(40.6800 + 40.6800i) q^{47} -15.3936i q^{48} -36.9997i q^{49} +(20.3478 - 28.9131i) q^{50} +45.6388i q^{51} +(-18.9623 + 17.7885i) q^{52} -42.2147i q^{53} +(-12.2758 - 12.2758i) q^{54} +(-23.3318 - 19.6250i) q^{55} +9.79806i q^{56} +(37.3744 - 37.3744i) q^{57} +(-21.5195 + 21.5195i) q^{58} +(-5.34862 + 5.34862i) q^{59} +(3.30848 + 38.3415i) q^{60} -72.6777 q^{61} -79.7646 q^{62} +(-14.2321 - 14.2321i) q^{63} +8.00000i q^{64} +(43.4070 - 48.3821i) q^{65} +33.1858 q^{66} +(-48.5284 + 48.5284i) q^{67} -23.7183i q^{68} -41.0996i q^{69} +(-2.10586 - 24.4045i) q^{70} +(56.4982 + 56.4982i) q^{71} +(-11.6203 - 11.6203i) q^{72} +(54.1769 + 54.1769i) q^{73} +37.3210 q^{74} +(-16.4812 - 94.7878i) q^{75} +(-19.4234 + 19.4234i) q^{76} -21.1229 q^{77} +(-2.25863 + 70.7159i) q^{78} -38.8202 q^{79} +(-1.71941 - 19.9260i) q^{80} -99.5335 q^{81} -80.6030 q^{82} +(32.3864 - 32.3864i) q^{83} +(18.8534 + 18.8534i) q^{84} +(5.09769 + 59.0763i) q^{85} +(-52.7965 + 52.7965i) q^{86} +82.8156i q^{87} -17.2466 q^{88} +(-44.0147 + 44.0147i) q^{89} +(31.4407 + 26.4457i) q^{90} +(1.43763 - 45.0109i) q^{91} +21.3593i q^{92} +(-153.483 + 153.483i) q^{93} -81.3601 q^{94} +(44.2040 - 52.5532i) q^{95} +(15.3936 + 15.3936i) q^{96} +(49.9858 - 49.9858i) q^{97} +(36.9997 + 36.9997i) q^{98} +(25.0513 - 25.0513i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{2} - 4 q^{5} + 28 q^{8} - 42 q^{9} + 2 q^{10} + 8 q^{11} - 8 q^{13} + 4 q^{15} - 56 q^{16} - 96 q^{17} + 42 q^{18} + 44 q^{19} + 4 q^{20} + 4 q^{21} - 8 q^{23} + 46 q^{25} + 10 q^{26} + 72 q^{29}+ \cdots + 292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 3.84840i 1.28280i 0.767207 + 0.641399i \(0.221646\pi\)
−0.767207 + 0.641399i \(0.778354\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0.429852 + 4.98149i 0.0859704 + 0.996298i
\(6\) −3.84840 3.84840i −0.641399 0.641399i
\(7\) 2.44952 + 2.44952i 0.349931 + 0.349931i 0.860084 0.510153i \(-0.170411\pi\)
−0.510153 + 0.860084i \(0.670411\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −5.81016 −0.645573
\(10\) −5.41134 4.55164i −0.541134 0.455164i
\(11\) −4.31164 + 4.31164i −0.391968 + 0.391968i −0.875388 0.483421i \(-0.839394\pi\)
0.483421 + 0.875388i \(0.339394\pi\)
\(12\) 7.69679 0.641399
\(13\) −8.89425 9.48115i −0.684173 0.729320i
\(14\) −4.89903 −0.349931
\(15\) −19.1707 + 1.65424i −1.27805 + 0.110283i
\(16\) −4.00000 −0.250000
\(17\) 11.8592 0.697598 0.348799 0.937198i \(-0.386590\pi\)
0.348799 + 0.937198i \(0.386590\pi\)
\(18\) 5.81016 5.81016i 0.322787 0.322787i
\(19\) −9.71168 9.71168i −0.511141 0.511141i 0.403735 0.914876i \(-0.367712\pi\)
−0.914876 + 0.403735i \(0.867712\pi\)
\(20\) 9.96298 0.859704i 0.498149 0.0429852i
\(21\) −9.42671 + 9.42671i −0.448891 + 0.448891i
\(22\) 8.62329i 0.391968i
\(23\) −10.6797 −0.464333 −0.232167 0.972676i \(-0.574581\pi\)
−0.232167 + 0.972676i \(0.574581\pi\)
\(24\) −7.69679 + 7.69679i −0.320700 + 0.320700i
\(25\) −24.6305 + 4.28261i −0.985218 + 0.171304i
\(26\) 18.3754 + 0.586903i 0.706746 + 0.0225732i
\(27\) 12.2758i 0.454658i
\(28\) 4.89903 4.89903i 0.174965 0.174965i
\(29\) 21.5195 0.742052 0.371026 0.928622i \(-0.379006\pi\)
0.371026 + 0.928622i \(0.379006\pi\)
\(30\) 17.5165 20.8250i 0.583883 0.694166i
\(31\) 39.8823 + 39.8823i 1.28653 + 1.28653i 0.936883 + 0.349643i \(0.113697\pi\)
0.349643 + 0.936883i \(0.386303\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −16.5929 16.5929i −0.502816 0.502816i
\(34\) −11.8592 + 11.8592i −0.348799 + 0.348799i
\(35\) −11.1493 + 13.2552i −0.318552 + 0.378719i
\(36\) 11.6203i 0.322787i
\(37\) −18.6605 18.6605i −0.504338 0.504338i 0.408445 0.912783i \(-0.366071\pi\)
−0.912783 + 0.408445i \(0.866071\pi\)
\(38\) 19.4234 0.511141
\(39\) 36.4872 34.2286i 0.935570 0.877657i
\(40\) −9.10327 + 10.8227i −0.227582 + 0.270567i
\(41\) 40.3015 + 40.3015i 0.982963 + 0.982963i 0.999857 0.0168942i \(-0.00537784\pi\)
−0.0168942 + 0.999857i \(0.505378\pi\)
\(42\) 18.8534i 0.448891i
\(43\) 52.7965 1.22782 0.613912 0.789374i \(-0.289595\pi\)
0.613912 + 0.789374i \(0.289595\pi\)
\(44\) 8.62329 + 8.62329i 0.195984 + 0.195984i
\(45\) −2.49751 28.9432i −0.0555002 0.643183i
\(46\) 10.6797 10.6797i 0.232167 0.232167i
\(47\) 40.6800 + 40.6800i 0.865533 + 0.865533i 0.991974 0.126441i \(-0.0403555\pi\)
−0.126441 + 0.991974i \(0.540356\pi\)
\(48\) 15.3936i 0.320700i
\(49\) 36.9997i 0.755097i
\(50\) 20.3478 28.9131i 0.406957 0.578261i
\(51\) 45.6388i 0.894878i
\(52\) −18.9623 + 17.7885i −0.364660 + 0.342087i
\(53\) 42.2147i 0.796503i −0.917276 0.398252i \(-0.869617\pi\)
0.917276 0.398252i \(-0.130383\pi\)
\(54\) −12.2758 12.2758i −0.227329 0.227329i
\(55\) −23.3318 19.6250i −0.424214 0.356819i
\(56\) 9.79806i 0.174965i
\(57\) 37.3744 37.3744i 0.655691 0.655691i
\(58\) −21.5195 + 21.5195i −0.371026 + 0.371026i
\(59\) −5.34862 + 5.34862i −0.0906546 + 0.0906546i −0.750980 0.660325i \(-0.770418\pi\)
0.660325 + 0.750980i \(0.270418\pi\)
\(60\) 3.30848 + 38.3415i 0.0551414 + 0.639025i
\(61\) −72.6777 −1.19144 −0.595719 0.803193i \(-0.703133\pi\)
−0.595719 + 0.803193i \(0.703133\pi\)
\(62\) −79.7646 −1.28653
\(63\) −14.2321 14.2321i −0.225906 0.225906i
\(64\) 8.00000i 0.125000i
\(65\) 43.4070 48.3821i 0.667801 0.744340i
\(66\) 33.1858 0.502816
\(67\) −48.5284 + 48.5284i −0.724305 + 0.724305i −0.969479 0.245174i \(-0.921155\pi\)
0.245174 + 0.969479i \(0.421155\pi\)
\(68\) 23.7183i 0.348799i
\(69\) 41.0996i 0.595646i
\(70\) −2.10586 24.4045i −0.0300837 0.348635i
\(71\) 56.4982 + 56.4982i 0.795749 + 0.795749i 0.982422 0.186673i \(-0.0597705\pi\)
−0.186673 + 0.982422i \(0.559771\pi\)
\(72\) −11.6203 11.6203i −0.161393 0.161393i
\(73\) 54.1769 + 54.1769i 0.742149 + 0.742149i 0.972991 0.230842i \(-0.0741482\pi\)
−0.230842 + 0.972991i \(0.574148\pi\)
\(74\) 37.3210 0.504338
\(75\) −16.4812 94.7878i −0.219749 1.26384i
\(76\) −19.4234 + 19.4234i −0.255570 + 0.255570i
\(77\) −21.1229 −0.274323
\(78\) −2.25863 + 70.7159i −0.0289568 + 0.906613i
\(79\) −38.8202 −0.491395 −0.245698 0.969347i \(-0.579017\pi\)
−0.245698 + 0.969347i \(0.579017\pi\)
\(80\) −1.71941 19.9260i −0.0214926 0.249074i
\(81\) −99.5335 −1.22881
\(82\) −80.6030 −0.982963
\(83\) 32.3864 32.3864i 0.390198 0.390198i −0.484560 0.874758i \(-0.661020\pi\)
0.874758 + 0.484560i \(0.161020\pi\)
\(84\) 18.8534 + 18.8534i 0.224445 + 0.224445i
\(85\) 5.09769 + 59.0763i 0.0599728 + 0.695015i
\(86\) −52.7965 + 52.7965i −0.613912 + 0.613912i
\(87\) 82.8156i 0.951904i
\(88\) −17.2466 −0.195984
\(89\) −44.0147 + 44.0147i −0.494547 + 0.494547i −0.909735 0.415189i \(-0.863716\pi\)
0.415189 + 0.909735i \(0.363716\pi\)
\(90\) 31.4407 + 26.4457i 0.349342 + 0.293841i
\(91\) 1.43763 45.0109i 0.0157981 0.494625i
\(92\) 21.3593i 0.232167i
\(93\) −153.483 + 153.483i −1.65035 + 1.65035i
\(94\) −81.3601 −0.865533
\(95\) 44.2040 52.5532i 0.465305 0.553191i
\(96\) 15.3936 + 15.3936i 0.160350 + 0.160350i
\(97\) 49.9858 49.9858i 0.515317 0.515317i −0.400833 0.916151i \(-0.631279\pi\)
0.916151 + 0.400833i \(0.131279\pi\)
\(98\) 36.9997 + 36.9997i 0.377548 + 0.377548i
\(99\) 25.0513 25.0513i 0.253044 0.253044i
\(100\) 8.56522 + 49.2609i 0.0856522 + 0.492609i
\(101\) 85.1995i 0.843560i −0.906698 0.421780i \(-0.861406\pi\)
0.906698 0.421780i \(-0.138594\pi\)
\(102\) −45.6388 45.6388i −0.447439 0.447439i
\(103\) 11.4074 0.110752 0.0553758 0.998466i \(-0.482364\pi\)
0.0553758 + 0.998466i \(0.482364\pi\)
\(104\) 1.17381 36.7508i 0.0112866 0.353373i
\(105\) −51.0111 42.9070i −0.485820 0.408638i
\(106\) 42.2147 + 42.2147i 0.398252 + 0.398252i
\(107\) 62.1056i 0.580426i −0.956962 0.290213i \(-0.906274\pi\)
0.956962 0.290213i \(-0.0937262\pi\)
\(108\) 24.5516 0.227329
\(109\) −133.664 133.664i −1.22627 1.22627i −0.965363 0.260909i \(-0.915978\pi\)
−0.260909 0.965363i \(-0.584022\pi\)
\(110\) 42.9568 3.70674i 0.390516 0.0336976i
\(111\) 71.8130 71.8130i 0.646964 0.646964i
\(112\) −9.79806 9.79806i −0.0874827 0.0874827i
\(113\) 148.138i 1.31096i −0.755214 0.655478i \(-0.772467\pi\)
0.755214 0.655478i \(-0.227533\pi\)
\(114\) 74.7488i 0.655691i
\(115\) −4.59068 53.2006i −0.0399189 0.462614i
\(116\) 43.0390i 0.371026i
\(117\) 51.6770 + 55.0870i 0.441684 + 0.470829i
\(118\) 10.6972i 0.0906546i
\(119\) 29.0492 + 29.0492i 0.244111 + 0.244111i
\(120\) −41.6500 35.0330i −0.347083 0.291942i
\(121\) 83.8195i 0.692723i
\(122\) 72.6777 72.6777i 0.595719 0.595719i
\(123\) −155.096 + 155.096i −1.26094 + 1.26094i
\(124\) 79.7646 79.7646i 0.643263 0.643263i
\(125\) −31.9212 120.855i −0.255370 0.966843i
\(126\) 28.4641 0.225906
\(127\) 230.518 1.81511 0.907553 0.419938i \(-0.137948\pi\)
0.907553 + 0.419938i \(0.137948\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 203.182i 1.57505i
\(130\) 4.97506 + 91.7892i 0.0382697 + 0.706070i
\(131\) 214.401 1.63665 0.818326 0.574755i \(-0.194903\pi\)
0.818326 + 0.574755i \(0.194903\pi\)
\(132\) −33.1858 + 33.1858i −0.251408 + 0.251408i
\(133\) 47.5778i 0.357728i
\(134\) 97.0568i 0.724305i
\(135\) −61.1517 + 5.27677i −0.452975 + 0.0390872i
\(136\) 23.7183 + 23.7183i 0.174399 + 0.174399i
\(137\) 101.847 + 101.847i 0.743408 + 0.743408i 0.973232 0.229824i \(-0.0738152\pi\)
−0.229824 + 0.973232i \(0.573815\pi\)
\(138\) 41.0996 + 41.0996i 0.297823 + 0.297823i
\(139\) −75.7601 −0.545037 −0.272519 0.962151i \(-0.587857\pi\)
−0.272519 + 0.962151i \(0.587857\pi\)
\(140\) 26.5103 + 22.2986i 0.189360 + 0.159276i
\(141\) −156.553 + 156.553i −1.11030 + 1.11030i
\(142\) −112.996 −0.795749
\(143\) 79.2282 + 2.53052i 0.554043 + 0.0176959i
\(144\) 23.2406 0.161393
\(145\) 9.25021 + 107.199i 0.0637946 + 0.739305i
\(146\) −108.354 −0.742149
\(147\) 142.390 0.968637
\(148\) −37.3210 + 37.3210i −0.252169 + 0.252169i
\(149\) 111.435 + 111.435i 0.747883 + 0.747883i 0.974081 0.226198i \(-0.0726296\pi\)
−0.226198 + 0.974081i \(0.572630\pi\)
\(150\) 111.269 + 78.3066i 0.741793 + 0.522044i
\(151\) 135.707 135.707i 0.898722 0.898722i −0.0966013 0.995323i \(-0.530797\pi\)
0.995323 + 0.0966013i \(0.0307972\pi\)
\(152\) 38.8467i 0.255570i
\(153\) −68.9036 −0.450350
\(154\) 21.1229 21.1229i 0.137162 0.137162i
\(155\) −181.530 + 215.817i −1.17116 + 1.39237i
\(156\) −68.4572 72.9745i −0.438828 0.467785i
\(157\) 172.878i 1.10114i −0.834790 0.550568i \(-0.814411\pi\)
0.834790 0.550568i \(-0.185589\pi\)
\(158\) 38.8202 38.8202i 0.245698 0.245698i
\(159\) 162.459 1.02175
\(160\) 21.6454 + 18.2065i 0.135284 + 0.113791i
\(161\) −26.1600 26.1600i −0.162485 0.162485i
\(162\) 99.5335 99.5335i 0.614404 0.614404i
\(163\) −55.5819 55.5819i −0.340993 0.340993i 0.515747 0.856741i \(-0.327514\pi\)
−0.856741 + 0.515747i \(0.827514\pi\)
\(164\) 80.6030 80.6030i 0.491482 0.491482i
\(165\) 75.5249 89.7899i 0.457727 0.544181i
\(166\) 64.7728i 0.390198i
\(167\) −92.0373 92.0373i −0.551121 0.551121i 0.375643 0.926764i \(-0.377422\pi\)
−0.926764 + 0.375643i \(0.877422\pi\)
\(168\) −37.7068 −0.224445
\(169\) −10.7846 + 168.656i −0.0638140 + 0.997962i
\(170\) −64.1740 53.9786i −0.377494 0.317521i
\(171\) 56.4264 + 56.4264i 0.329979 + 0.329979i
\(172\) 105.593i 0.613912i
\(173\) 86.3308 0.499022 0.249511 0.968372i \(-0.419730\pi\)
0.249511 + 0.968372i \(0.419730\pi\)
\(174\) −82.8156 82.8156i −0.475952 0.475952i
\(175\) −70.8230 49.8424i −0.404703 0.284814i
\(176\) 17.2466 17.2466i 0.0979919 0.0979919i
\(177\) −20.5836 20.5836i −0.116292 0.116292i
\(178\) 88.0293i 0.494547i
\(179\) 223.879i 1.25072i 0.780336 + 0.625361i \(0.215048\pi\)
−0.780336 + 0.625361i \(0.784952\pi\)
\(180\) −57.8865 + 4.99502i −0.321591 + 0.0277501i
\(181\) 305.729i 1.68911i −0.535468 0.844555i \(-0.679865\pi\)
0.535468 0.844555i \(-0.320135\pi\)
\(182\) 43.5732 + 46.4485i 0.239413 + 0.255211i
\(183\) 279.693i 1.52838i
\(184\) −21.3593 21.3593i −0.116083 0.116083i
\(185\) 84.9358 100.978i 0.459113 0.545829i
\(186\) 306.966i 1.65035i
\(187\) −51.1325 + 51.1325i −0.273436 + 0.273436i
\(188\) 81.3601 81.3601i 0.432766 0.432766i
\(189\) −30.0697 + 30.0697i −0.159099 + 0.159099i
\(190\) 8.34917 + 96.7572i 0.0439430 + 0.509248i
\(191\) −288.933 −1.51274 −0.756368 0.654146i \(-0.773028\pi\)
−0.756368 + 0.654146i \(0.773028\pi\)
\(192\) −30.7872 −0.160350
\(193\) 116.591 + 116.591i 0.604098 + 0.604098i 0.941397 0.337299i \(-0.109513\pi\)
−0.337299 + 0.941397i \(0.609513\pi\)
\(194\) 99.9716i 0.515317i
\(195\) 186.194 + 167.048i 0.954839 + 0.856654i
\(196\) −73.9995 −0.377548
\(197\) −104.376 + 104.376i −0.529827 + 0.529827i −0.920521 0.390694i \(-0.872235\pi\)
0.390694 + 0.920521i \(0.372235\pi\)
\(198\) 50.1027i 0.253044i
\(199\) 194.443i 0.977101i −0.872536 0.488551i \(-0.837526\pi\)
0.872536 0.488551i \(-0.162474\pi\)
\(200\) −57.8261 40.6957i −0.289131 0.203478i
\(201\) −186.757 186.757i −0.929137 0.929137i
\(202\) 85.1995 + 85.1995i 0.421780 + 0.421780i
\(203\) 52.7124 + 52.7124i 0.259667 + 0.259667i
\(204\) 91.2775 0.447439
\(205\) −183.438 + 218.085i −0.894818 + 1.06383i
\(206\) −11.4074 + 11.4074i −0.0553758 + 0.0553758i
\(207\) 62.0506 0.299761
\(208\) 35.5770 + 37.9246i 0.171043 + 0.182330i
\(209\) 83.7466 0.400701
\(210\) 93.9181 8.10418i 0.447229 0.0385914i
\(211\) −103.472 −0.490389 −0.245195 0.969474i \(-0.578852\pi\)
−0.245195 + 0.969474i \(0.578852\pi\)
\(212\) −84.4293 −0.398252
\(213\) −217.427 + 217.427i −1.02079 + 1.02079i
\(214\) 62.1056 + 62.1056i 0.290213 + 0.290213i
\(215\) 22.6947 + 263.005i 0.105557 + 1.22328i
\(216\) −24.5516 + 24.5516i −0.113665 + 0.113665i
\(217\) 195.385i 0.900390i
\(218\) 267.327 1.22627
\(219\) −208.494 + 208.494i −0.952028 + 0.952028i
\(220\) −39.2501 + 46.6635i −0.178409 + 0.212107i
\(221\) −105.478 112.439i −0.477278 0.508772i
\(222\) 143.626i 0.646964i
\(223\) 14.2146 14.2146i 0.0637428 0.0637428i −0.674517 0.738260i \(-0.735648\pi\)
0.738260 + 0.674517i \(0.235648\pi\)
\(224\) 19.5961 0.0874827
\(225\) 143.107 24.8826i 0.636030 0.110589i
\(226\) 148.138 + 148.138i 0.655478 + 0.655478i
\(227\) −283.524 + 283.524i −1.24900 + 1.24900i −0.292842 + 0.956161i \(0.594601\pi\)
−0.956161 + 0.292842i \(0.905399\pi\)
\(228\) −74.7488 74.7488i −0.327845 0.327845i
\(229\) 303.668 303.668i 1.32606 1.32606i 0.417288 0.908774i \(-0.362981\pi\)
0.908774 0.417288i \(-0.137019\pi\)
\(230\) 57.7913 + 48.6100i 0.251267 + 0.211348i
\(231\) 81.2892i 0.351901i
\(232\) 43.0390 + 43.0390i 0.185513 + 0.185513i
\(233\) −134.811 −0.578588 −0.289294 0.957240i \(-0.593420\pi\)
−0.289294 + 0.957240i \(0.593420\pi\)
\(234\) −106.764 3.41000i −0.456256 0.0145726i
\(235\) −185.161 + 220.134i −0.787918 + 0.936739i
\(236\) 10.6972 + 10.6972i 0.0453273 + 0.0453273i
\(237\) 149.396i 0.630361i
\(238\) −58.0984 −0.244111
\(239\) −204.968 204.968i −0.857606 0.857606i 0.133449 0.991056i \(-0.457395\pi\)
−0.991056 + 0.133449i \(0.957395\pi\)
\(240\) 76.6830 6.61697i 0.319512 0.0275707i
\(241\) 264.576 264.576i 1.09782 1.09782i 0.103160 0.994665i \(-0.467105\pi\)
0.994665 0.103160i \(-0.0328953\pi\)
\(242\) −83.8195 83.8195i −0.346361 0.346361i
\(243\) 272.562i 1.12166i
\(244\) 145.355i 0.595719i
\(245\) 184.314 15.9044i 0.752301 0.0649160i
\(246\) 310.192i 1.26094i
\(247\) −5.69981 + 178.456i −0.0230761 + 0.722494i
\(248\) 159.529i 0.643263i
\(249\) 124.636 + 124.636i 0.500545 + 0.500545i
\(250\) 152.777 + 88.9342i 0.611107 + 0.355737i
\(251\) 89.6680i 0.357243i 0.983918 + 0.178621i \(0.0571638\pi\)
−0.983918 + 0.178621i \(0.942836\pi\)
\(252\) −28.4641 + 28.4641i −0.112953 + 0.112953i
\(253\) 46.0469 46.0469i 0.182004 0.182004i
\(254\) −230.518 + 230.518i −0.907553 + 0.907553i
\(255\) −227.349 + 19.6179i −0.891565 + 0.0769330i
\(256\) 16.0000 0.0625000
\(257\) −209.326 −0.814497 −0.407248 0.913317i \(-0.633512\pi\)
−0.407248 + 0.913317i \(0.633512\pi\)
\(258\) −203.182 203.182i −0.787526 0.787526i
\(259\) 91.4184i 0.352967i
\(260\) −96.7642 86.8141i −0.372170 0.333900i
\(261\) −125.032 −0.479049
\(262\) −214.401 + 214.401i −0.818326 + 0.818326i
\(263\) 135.381i 0.514756i −0.966311 0.257378i \(-0.917141\pi\)
0.966311 0.257378i \(-0.0828585\pi\)
\(264\) 66.3717i 0.251408i
\(265\) 210.292 18.1461i 0.793554 0.0684757i
\(266\) 47.5778 + 47.5778i 0.178864 + 0.178864i
\(267\) −169.386 169.386i −0.634404 0.634404i
\(268\) 97.0568 + 97.0568i 0.362152 + 0.362152i
\(269\) 65.9632 0.245217 0.122608 0.992455i \(-0.460874\pi\)
0.122608 + 0.992455i \(0.460874\pi\)
\(270\) 55.8749 66.4284i 0.206944 0.246031i
\(271\) −290.080 + 290.080i −1.07040 + 1.07040i −0.0730788 + 0.997326i \(0.523282\pi\)
−0.997326 + 0.0730788i \(0.976718\pi\)
\(272\) −47.4367 −0.174399
\(273\) 173.220 + 5.53256i 0.634504 + 0.0202658i
\(274\) −203.694 −0.743408
\(275\) 87.7327 124.663i 0.319028 0.453319i
\(276\) −82.1992 −0.297823
\(277\) 191.294 0.690593 0.345296 0.938494i \(-0.387778\pi\)
0.345296 + 0.938494i \(0.387778\pi\)
\(278\) 75.7601 75.7601i 0.272519 0.272519i
\(279\) −231.722 231.722i −0.830546 0.830546i
\(280\) −48.8089 + 4.21172i −0.174318 + 0.0150419i
\(281\) 131.638 131.638i 0.468464 0.468464i −0.432953 0.901417i \(-0.642528\pi\)
0.901417 + 0.432953i \(0.142528\pi\)
\(282\) 313.106i 1.11030i
\(283\) 380.847 1.34575 0.672875 0.739756i \(-0.265059\pi\)
0.672875 + 0.739756i \(0.265059\pi\)
\(284\) 112.996 112.996i 0.397874 0.397874i
\(285\) 202.246 + 170.115i 0.709633 + 0.596893i
\(286\) −81.7587 + 76.6977i −0.285870 + 0.268174i
\(287\) 197.438i 0.687938i
\(288\) −23.2406 + 23.2406i −0.0806966 + 0.0806966i
\(289\) −148.360 −0.513357
\(290\) −116.449 97.9490i −0.401550 0.337755i
\(291\) 192.365 + 192.365i 0.661049 + 0.661049i
\(292\) 108.354 108.354i 0.371074 0.371074i
\(293\) −33.0661 33.0661i −0.112854 0.112854i 0.648425 0.761279i \(-0.275428\pi\)
−0.761279 + 0.648425i \(0.775428\pi\)
\(294\) −142.390 + 142.390i −0.484319 + 0.484319i
\(295\) −28.9432 24.3450i −0.0981126 0.0825254i
\(296\) 74.6420i 0.252169i
\(297\) −52.9288 52.9288i −0.178211 0.178211i
\(298\) −222.869 −0.747883
\(299\) 94.9877 + 101.256i 0.317684 + 0.338647i
\(300\) −189.576 + 32.9623i −0.631918 + 0.109874i
\(301\) 129.326 + 129.326i 0.429654 + 0.429654i
\(302\) 271.414i 0.898722i
\(303\) 327.882 1.08212
\(304\) 38.8467 + 38.8467i 0.127785 + 0.127785i
\(305\) −31.2407 362.043i −0.102428 1.18703i
\(306\) 68.9036 68.9036i 0.225175 0.225175i
\(307\) −365.876 365.876i −1.19178 1.19178i −0.976568 0.215210i \(-0.930956\pi\)
−0.215210 0.976568i \(-0.569044\pi\)
\(308\) 42.2458i 0.137162i
\(309\) 43.9002i 0.142072i
\(310\) −34.2870 397.346i −0.110603 1.28176i
\(311\) 315.994i 1.01606i −0.861340 0.508028i \(-0.830374\pi\)
0.861340 0.508028i \(-0.169626\pi\)
\(312\) 141.432 + 4.51727i 0.453307 + 0.0144784i
\(313\) 65.8042i 0.210237i 0.994460 + 0.105118i \(0.0335222\pi\)
−0.994460 + 0.105118i \(0.966478\pi\)
\(314\) 172.878 + 172.878i 0.550568 + 0.550568i
\(315\) 64.7792 77.0146i 0.205648 0.244491i
\(316\) 77.6405i 0.245698i
\(317\) 169.512 169.512i 0.534739 0.534739i −0.387240 0.921979i \(-0.626571\pi\)
0.921979 + 0.387240i \(0.126571\pi\)
\(318\) −162.459 + 162.459i −0.510877 + 0.510877i
\(319\) −92.7845 + 92.7845i −0.290861 + 0.290861i
\(320\) −39.8519 + 3.43882i −0.124537 + 0.0107463i
\(321\) 239.007 0.744570
\(322\) 52.3200 0.162485
\(323\) −115.172 115.172i −0.356571 0.356571i
\(324\) 199.067i 0.614404i
\(325\) 259.674 + 195.435i 0.798995 + 0.601337i
\(326\) 111.164 0.340993
\(327\) 514.391 514.391i 1.57306 1.57306i
\(328\) 161.206i 0.491482i
\(329\) 199.293i 0.605753i
\(330\) 14.2650 + 165.315i 0.0432273 + 0.500954i
\(331\) 140.641 + 140.641i 0.424896 + 0.424896i 0.886886 0.461989i \(-0.152864\pi\)
−0.461989 + 0.886886i \(0.652864\pi\)
\(332\) −64.7728 64.7728i −0.195099 0.195099i
\(333\) 108.420 + 108.420i 0.325587 + 0.325587i
\(334\) 184.075 0.551121
\(335\) −262.604 220.884i −0.783892 0.659354i
\(336\) 37.7068 37.7068i 0.112223 0.112223i
\(337\) 275.256 0.816784 0.408392 0.912807i \(-0.366090\pi\)
0.408392 + 0.912807i \(0.366090\pi\)
\(338\) −157.871 179.440i −0.467074 0.530888i
\(339\) 570.094 1.68169
\(340\) 118.153 10.1954i 0.347508 0.0299864i
\(341\) −343.917 −1.00855
\(342\) −112.853 −0.329979
\(343\) 210.658 210.658i 0.614163 0.614163i
\(344\) 105.593 + 105.593i 0.306956 + 0.306956i
\(345\) 204.737 17.6668i 0.593441 0.0512080i
\(346\) −86.3308 + 86.3308i −0.249511 + 0.249511i
\(347\) 539.829i 1.55570i 0.628448 + 0.777851i \(0.283690\pi\)
−0.628448 + 0.777851i \(0.716310\pi\)
\(348\) 165.631 0.475952
\(349\) 387.267 387.267i 1.10965 1.10965i 0.116452 0.993196i \(-0.462848\pi\)
0.993196 0.116452i \(-0.0371522\pi\)
\(350\) 120.665 20.9806i 0.344758 0.0599447i
\(351\) 116.389 109.184i 0.331591 0.311065i
\(352\) 34.4932i 0.0979919i
\(353\) −440.861 + 440.861i −1.24890 + 1.24890i −0.292693 + 0.956207i \(0.594551\pi\)
−0.956207 + 0.292693i \(0.905449\pi\)
\(354\) 41.1673 0.116292
\(355\) −257.159 + 305.731i −0.724392 + 0.861214i
\(356\) 88.0293 + 88.0293i 0.247273 + 0.247273i
\(357\) −111.793 + 111.793i −0.313145 + 0.313145i
\(358\) −223.879 223.879i −0.625361 0.625361i
\(359\) −122.211 + 122.211i −0.340421 + 0.340421i −0.856525 0.516105i \(-0.827382\pi\)
0.516105 + 0.856525i \(0.327382\pi\)
\(360\) 52.8914 62.8815i 0.146921 0.174671i
\(361\) 172.367i 0.477470i
\(362\) 305.729 + 305.729i 0.844555 + 0.844555i
\(363\) −322.571 −0.888624
\(364\) −90.0217 2.87525i −0.247312 0.00789905i
\(365\) −246.593 + 293.169i −0.675598 + 0.803204i
\(366\) 279.693 + 279.693i 0.764188 + 0.764188i
\(367\) 460.229i 1.25403i −0.779007 0.627015i \(-0.784277\pi\)
0.779007 0.627015i \(-0.215723\pi\)
\(368\) 42.7187 0.116083
\(369\) −234.158 234.158i −0.634575 0.634575i
\(370\) 16.0425 + 185.914i 0.0433582 + 0.502471i
\(371\) 103.406 103.406i 0.278721 0.278721i
\(372\) 306.966 + 306.966i 0.825177 + 0.825177i
\(373\) 550.843i 1.47679i 0.674369 + 0.738395i \(0.264416\pi\)
−0.674369 + 0.738395i \(0.735584\pi\)
\(374\) 102.265i 0.273436i
\(375\) 465.100 122.846i 1.24027 0.327588i
\(376\) 162.720i 0.432766i
\(377\) −191.400 204.030i −0.507692 0.541193i
\(378\) 60.1394i 0.159099i
\(379\) −318.854 318.854i −0.841303 0.841303i 0.147726 0.989028i \(-0.452805\pi\)
−0.989028 + 0.147726i \(0.952805\pi\)
\(380\) −105.106 88.4080i −0.276596 0.232653i
\(381\) 887.126i 2.32842i
\(382\) 288.933 288.933i 0.756368 0.756368i
\(383\) 87.4053 87.4053i 0.228212 0.228212i −0.583733 0.811946i \(-0.698409\pi\)
0.811946 + 0.583733i \(0.198409\pi\)
\(384\) 30.7872 30.7872i 0.0801749 0.0801749i
\(385\) −9.07972 105.223i −0.0235837 0.273308i
\(386\) −233.182 −0.604098
\(387\) −306.756 −0.792651
\(388\) −99.9716 99.9716i −0.257659 0.257659i
\(389\) 221.342i 0.569004i −0.958675 0.284502i \(-0.908172\pi\)
0.958675 0.284502i \(-0.0918282\pi\)
\(390\) −353.241 + 19.1460i −0.905746 + 0.0490923i
\(391\) −126.652 −0.323918
\(392\) 73.9995 73.9995i 0.188774 0.188774i
\(393\) 825.101i 2.09949i
\(394\) 208.752i 0.529827i
\(395\) −16.6870 193.383i −0.0422455 0.489576i
\(396\) −50.1027 50.1027i −0.126522 0.126522i
\(397\) 2.99158 + 2.99158i 0.00753545 + 0.00753545i 0.710864 0.703329i \(-0.248304\pi\)
−0.703329 + 0.710864i \(0.748304\pi\)
\(398\) 194.443 + 194.443i 0.488551 + 0.488551i
\(399\) 183.098 0.458893
\(400\) 98.5218 17.1304i 0.246305 0.0428261i
\(401\) 27.4281 27.4281i 0.0683993 0.0683993i −0.672080 0.740479i \(-0.734599\pi\)
0.740479 + 0.672080i \(0.234599\pi\)
\(402\) 373.513 0.929137
\(403\) 23.4070 732.853i 0.0580820 1.81850i
\(404\) −170.399 −0.421780
\(405\) −42.7847 495.825i −0.105641 1.22426i
\(406\) −105.425 −0.259667
\(407\) 160.915 0.395368
\(408\) −91.2775 + 91.2775i −0.223719 + 0.223719i
\(409\) −226.925 226.925i −0.554828 0.554828i 0.373002 0.927830i \(-0.378328\pi\)
−0.927830 + 0.373002i \(0.878328\pi\)
\(410\) −34.6474 401.523i −0.0845058 0.979324i
\(411\) −391.947 + 391.947i −0.953643 + 0.953643i
\(412\) 22.8148i 0.0553758i
\(413\) −26.2031 −0.0634457
\(414\) −62.0506 + 62.0506i −0.149881 + 0.149881i
\(415\) 175.254 + 147.411i 0.422298 + 0.355207i
\(416\) −73.5016 2.34761i −0.176687 0.00564329i
\(417\) 291.555i 0.699173i
\(418\) −83.7466 + 83.7466i −0.200351 + 0.200351i
\(419\) 146.384 0.349364 0.174682 0.984625i \(-0.444110\pi\)
0.174682 + 0.984625i \(0.444110\pi\)
\(420\) −85.8139 + 102.022i −0.204319 + 0.242910i
\(421\) 465.756 + 465.756i 1.10631 + 1.10631i 0.993632 + 0.112676i \(0.0359423\pi\)
0.112676 + 0.993632i \(0.464058\pi\)
\(422\) 103.472 103.472i 0.245195 0.245195i
\(423\) −236.357 236.357i −0.558765 0.558765i
\(424\) 84.4293 84.4293i 0.199126 0.199126i
\(425\) −292.097 + 50.7881i −0.687286 + 0.119502i
\(426\) 434.855i 1.02079i
\(427\) −178.025 178.025i −0.416921 0.416921i
\(428\) −124.211 −0.290213
\(429\) −9.73843 + 304.902i −0.0227003 + 0.710726i
\(430\) −285.700 240.310i −0.664418 0.558861i
\(431\) −412.642 412.642i −0.957406 0.957406i 0.0417231 0.999129i \(-0.486715\pi\)
−0.999129 + 0.0417231i \(0.986715\pi\)
\(432\) 49.1031i 0.113665i
\(433\) −490.129 −1.13194 −0.565968 0.824427i \(-0.691498\pi\)
−0.565968 + 0.824427i \(0.691498\pi\)
\(434\) −195.385 195.385i −0.450195 0.450195i
\(435\) −412.545 + 35.5985i −0.948380 + 0.0818356i
\(436\) −267.327 + 267.327i −0.613136 + 0.613136i
\(437\) 103.717 + 103.717i 0.237340 + 0.237340i
\(438\) 416.988i 0.952028i
\(439\) 32.6479i 0.0743687i 0.999308 + 0.0371844i \(0.0118389\pi\)
−0.999308 + 0.0371844i \(0.988161\pi\)
\(440\) −7.41348 85.9136i −0.0168488 0.195258i
\(441\) 214.974i 0.487470i
\(442\) 217.917 + 6.96017i 0.493025 + 0.0157470i
\(443\) 458.868i 1.03582i 0.855436 + 0.517909i \(0.173289\pi\)
−0.855436 + 0.517909i \(0.826711\pi\)
\(444\) −143.626 143.626i −0.323482 0.323482i
\(445\) −238.178 200.339i −0.535232 0.450199i
\(446\) 28.4293i 0.0637428i
\(447\) −428.845 + 428.845i −0.959384 + 0.959384i
\(448\) −19.5961 + 19.5961i −0.0437414 + 0.0437414i
\(449\) −290.072 + 290.072i −0.646041 + 0.646041i −0.952034 0.305993i \(-0.901012\pi\)
0.305993 + 0.952034i \(0.401012\pi\)
\(450\) −118.224 + 167.989i −0.262720 + 0.373310i
\(451\) −347.531 −0.770579
\(452\) −296.276 −0.655478
\(453\) 522.254 + 522.254i 1.15288 + 1.15288i
\(454\) 567.047i 1.24900i
\(455\) 224.839 12.1865i 0.494152 0.0267835i
\(456\) 149.498 0.327845
\(457\) 338.468 338.468i 0.740631 0.740631i −0.232068 0.972699i \(-0.574549\pi\)
0.972699 + 0.232068i \(0.0745493\pi\)
\(458\) 607.337i 1.32606i
\(459\) 145.580i 0.317169i
\(460\) −106.401 + 9.18136i −0.231307 + 0.0199595i
\(461\) 351.781 + 351.781i 0.763082 + 0.763082i 0.976878 0.213796i \(-0.0685828\pi\)
−0.213796 + 0.976878i \(0.568583\pi\)
\(462\) 81.2892 + 81.2892i 0.175951 + 0.175951i
\(463\) −283.858 283.858i −0.613085 0.613085i 0.330664 0.943749i \(-0.392727\pi\)
−0.943749 + 0.330664i \(0.892727\pi\)
\(464\) −86.0781 −0.185513
\(465\) −830.548 698.598i −1.78613 1.50236i
\(466\) 134.811 134.811i 0.289294 0.289294i
\(467\) −267.631 −0.573085 −0.286543 0.958067i \(-0.592506\pi\)
−0.286543 + 0.958067i \(0.592506\pi\)
\(468\) 110.174 103.354i 0.235415 0.220842i
\(469\) −237.742 −0.506913
\(470\) −34.9728 405.294i −0.0744102 0.862328i
\(471\) 665.304 1.41254
\(472\) −21.3945 −0.0453273
\(473\) −227.640 + 227.640i −0.481268 + 0.481268i
\(474\) 149.396 + 149.396i 0.315181 + 0.315181i
\(475\) 280.794 + 197.612i 0.591146 + 0.416025i
\(476\) 58.0984 58.0984i 0.122056 0.122056i
\(477\) 245.274i 0.514201i
\(478\) 409.936 0.857606
\(479\) −226.465 + 226.465i −0.472788 + 0.472788i −0.902816 0.430028i \(-0.858504\pi\)
0.430028 + 0.902816i \(0.358504\pi\)
\(480\) −70.0660 + 83.2999i −0.145971 + 0.173542i
\(481\) −10.9519 + 342.894i −0.0227690 + 0.712878i
\(482\) 529.151i 1.09782i
\(483\) 100.674 100.674i 0.208435 0.208435i
\(484\) 167.639 0.346361
\(485\) 270.490 + 227.517i 0.557712 + 0.469108i
\(486\) 272.562 + 272.562i 0.560828 + 0.560828i
\(487\) −127.792 + 127.792i −0.262406 + 0.262406i −0.826031 0.563625i \(-0.809406\pi\)
0.563625 + 0.826031i \(0.309406\pi\)
\(488\) −145.355 145.355i −0.297860 0.297860i
\(489\) 213.901 213.901i 0.437426 0.437426i
\(490\) −168.409 + 200.218i −0.343693 + 0.408609i
\(491\) 430.146i 0.876060i 0.898960 + 0.438030i \(0.144324\pi\)
−0.898960 + 0.438030i \(0.855676\pi\)
\(492\) 310.192 + 310.192i 0.630472 + 0.630472i
\(493\) 255.204 0.517654
\(494\) −172.756 184.156i −0.349709 0.372785i
\(495\) 135.561 + 114.025i 0.273861 + 0.230353i
\(496\) −159.529 159.529i −0.321631 0.321631i
\(497\) 276.786i 0.556914i
\(498\) −249.271 −0.500545
\(499\) 270.521 + 270.521i 0.542127 + 0.542127i 0.924152 0.382025i \(-0.124773\pi\)
−0.382025 + 0.924152i \(0.624773\pi\)
\(500\) −241.711 + 63.8424i −0.483422 + 0.127685i
\(501\) 354.196 354.196i 0.706978 0.706978i
\(502\) −89.6680 89.6680i −0.178621 0.178621i
\(503\) 455.762i 0.906088i −0.891488 0.453044i \(-0.850338\pi\)
0.891488 0.453044i \(-0.149662\pi\)
\(504\) 56.9283i 0.112953i
\(505\) 424.420 36.6232i 0.840436 0.0725212i
\(506\) 92.0939i 0.182004i
\(507\) −649.053 41.5033i −1.28018 0.0818606i
\(508\) 461.037i 0.907553i
\(509\) −169.114 169.114i −0.332248 0.332248i 0.521192 0.853440i \(-0.325488\pi\)
−0.853440 + 0.521192i \(0.825488\pi\)
\(510\) 207.731 246.967i 0.407316 0.484249i
\(511\) 265.414i 0.519402i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 119.218 119.218i 0.232395 0.232395i
\(514\) 209.326 209.326i 0.407248 0.407248i
\(515\) 4.90350 + 56.8259i 0.00952136 + 0.110342i
\(516\) 406.363 0.787526
\(517\) −350.796 −0.678522
\(518\) 91.4184 + 91.4184i 0.176483 + 0.176483i
\(519\) 332.235i 0.640145i
\(520\) 183.578 9.95012i 0.353035 0.0191348i
\(521\) 388.553 0.745782 0.372891 0.927875i \(-0.378366\pi\)
0.372891 + 0.927875i \(0.378366\pi\)
\(522\) 125.032 125.032i 0.239525 0.239525i
\(523\) 508.158i 0.971622i 0.874064 + 0.485811i \(0.161476\pi\)
−0.874064 + 0.485811i \(0.838524\pi\)
\(524\) 428.803i 0.818326i
\(525\) 191.813 272.555i 0.365359 0.519152i
\(526\) 135.381 + 135.381i 0.257378 + 0.257378i
\(527\) 472.971 + 472.971i 0.897478 + 0.897478i
\(528\) 66.3717 + 66.3717i 0.125704 + 0.125704i
\(529\) −414.945 −0.784395
\(530\) −192.146 + 228.438i −0.362539 + 0.431015i
\(531\) 31.0763 31.0763i 0.0585242 0.0585242i
\(532\) −95.1556 −0.178864
\(533\) 23.6530 740.556i 0.0443772 1.38941i
\(534\) 338.772 0.634404
\(535\) 309.378 26.6962i 0.578278 0.0498995i
\(536\) −194.114 −0.362152
\(537\) −861.576 −1.60442
\(538\) −65.9632 + 65.9632i −0.122608 + 0.122608i
\(539\) 159.530 + 159.530i 0.295973 + 0.295973i
\(540\) 10.5535 + 122.303i 0.0195436 + 0.226488i
\(541\) −154.103 + 154.103i −0.284849 + 0.284849i −0.835039 0.550190i \(-0.814555\pi\)
0.550190 + 0.835039i \(0.314555\pi\)
\(542\) 580.159i 1.07040i
\(543\) 1176.57 2.16679
\(544\) 47.4367 47.4367i 0.0871997 0.0871997i
\(545\) 608.388 723.300i 1.11631 1.32716i
\(546\) −178.752 + 167.687i −0.327385 + 0.307119i
\(547\) 164.591i 0.300898i −0.988618 0.150449i \(-0.951928\pi\)
0.988618 0.150449i \(-0.0480720\pi\)
\(548\) 203.694 203.694i 0.371704 0.371704i
\(549\) 422.269 0.769160
\(550\) 36.9302 + 212.395i 0.0671457 + 0.386174i
\(551\) −208.991 208.991i −0.379293 0.379293i
\(552\) 82.1992 82.1992i 0.148912 0.148912i
\(553\) −95.0908 95.0908i −0.171954 0.171954i
\(554\) −191.294 + 191.294i −0.345296 + 0.345296i
\(555\) 388.605 + 326.867i 0.700189 + 0.588949i
\(556\) 151.520i 0.272519i
\(557\) −551.903 551.903i −0.990850 0.990850i 0.00910881 0.999959i \(-0.497101\pi\)
−0.999959 + 0.00910881i \(0.997101\pi\)
\(558\) 463.445 0.830546
\(559\) −469.585 500.571i −0.840045 0.895477i
\(560\) 44.5972 53.0207i 0.0796379 0.0946798i
\(561\) −196.778 196.778i −0.350763 0.350763i
\(562\) 263.277i 0.468464i
\(563\) 128.247 0.227792 0.113896 0.993493i \(-0.463667\pi\)
0.113896 + 0.993493i \(0.463667\pi\)
\(564\) 313.106 + 313.106i 0.555152 + 0.555152i
\(565\) 737.948 63.6775i 1.30610 0.112704i
\(566\) −380.847 + 380.847i −0.672875 + 0.672875i
\(567\) −243.809 243.809i −0.429998 0.429998i
\(568\) 225.993i 0.397874i
\(569\) 758.893i 1.33373i 0.745178 + 0.666865i \(0.232364\pi\)
−0.745178 + 0.666865i \(0.767636\pi\)
\(570\) −372.360 + 32.1309i −0.653263 + 0.0563700i
\(571\) 87.8635i 0.153877i 0.997036 + 0.0769383i \(0.0245144\pi\)
−0.997036 + 0.0769383i \(0.975486\pi\)
\(572\) 5.06103 158.456i 0.00884796 0.277022i
\(573\) 1111.93i 1.94054i
\(574\) −197.438 197.438i −0.343969 0.343969i
\(575\) 263.045 45.7368i 0.457470 0.0795423i
\(576\) 46.4813i 0.0806966i
\(577\) −297.465 + 297.465i −0.515537 + 0.515537i −0.916218 0.400681i \(-0.868774\pi\)
0.400681 + 0.916218i \(0.368774\pi\)
\(578\) 148.360 148.360i 0.256679 0.256679i
\(579\) −448.688 + 448.688i −0.774936 + 0.774936i
\(580\) 214.398 18.5004i 0.369653 0.0318973i
\(581\) 158.662 0.273084
\(582\) −384.730 −0.661049
\(583\) 182.015 + 182.015i 0.312203 + 0.312203i
\(584\) 216.707i 0.371074i
\(585\) −252.202 + 281.108i −0.431114 + 0.480526i
\(586\) 66.1323 0.112854
\(587\) 132.481 132.481i 0.225692 0.225692i −0.585198 0.810890i \(-0.698983\pi\)
0.810890 + 0.585198i \(0.198983\pi\)
\(588\) 284.779i 0.484319i
\(589\) 774.648i 1.31519i
\(590\) 53.2882 4.59824i 0.0903190 0.00779362i
\(591\) −401.680 401.680i −0.679662 0.679662i
\(592\) 74.6420 + 74.6420i 0.126085 + 0.126085i
\(593\) −94.7444 94.7444i −0.159771 0.159771i 0.622694 0.782465i \(-0.286038\pi\)
−0.782465 + 0.622694i \(0.786038\pi\)
\(594\) 105.858 0.178211
\(595\) −132.221 + 157.195i −0.222221 + 0.264194i
\(596\) 222.869 222.869i 0.373942 0.373942i
\(597\) 748.294 1.25342
\(598\) −196.243 6.26793i −0.328166 0.0104815i
\(599\) 1004.01 1.67615 0.838076 0.545554i \(-0.183681\pi\)
0.838076 + 0.545554i \(0.183681\pi\)
\(600\) 156.613 222.538i 0.261022 0.370896i
\(601\) 1002.31 1.66773 0.833867 0.551965i \(-0.186122\pi\)
0.833867 + 0.551965i \(0.186122\pi\)
\(602\) −258.652 −0.429654
\(603\) 281.958 281.958i 0.467592 0.467592i
\(604\) −271.414 271.414i −0.449361 0.449361i
\(605\) −417.546 + 36.0300i −0.690158 + 0.0595537i
\(606\) −327.882 + 327.882i −0.541059 + 0.541059i
\(607\) 238.427i 0.392796i 0.980524 + 0.196398i \(0.0629245\pi\)
−0.980524 + 0.196398i \(0.937076\pi\)
\(608\) −77.6934 −0.127785
\(609\) −202.858 + 202.858i −0.333101 + 0.333101i
\(610\) 393.284 + 330.803i 0.644728 + 0.542299i
\(611\) 23.8752 747.512i 0.0390757 1.22342i
\(612\) 137.807i 0.225175i
\(613\) −580.531 + 580.531i −0.947033 + 0.947033i −0.998666 0.0516332i \(-0.983557\pi\)
0.0516332 + 0.998666i \(0.483557\pi\)
\(614\) 731.752 1.19178
\(615\) −839.278 705.941i −1.36468 1.14787i
\(616\) −42.2458 42.2458i −0.0685808 0.0685808i
\(617\) 567.878 567.878i 0.920385 0.920385i −0.0766713 0.997056i \(-0.524429\pi\)
0.997056 + 0.0766713i \(0.0244292\pi\)
\(618\) −43.9002 43.9002i −0.0710360 0.0710360i
\(619\) −26.0583 + 26.0583i −0.0420973 + 0.0420973i −0.727842 0.685745i \(-0.759477\pi\)
0.685745 + 0.727842i \(0.259477\pi\)
\(620\) 431.633 + 363.059i 0.696183 + 0.585580i
\(621\) 131.101i 0.211113i
\(622\) 315.994 + 315.994i 0.508028 + 0.508028i
\(623\) −215.629 −0.346114
\(624\) −145.949 + 136.914i −0.233893 + 0.219414i
\(625\) 588.319 210.965i 0.941310 0.337544i
\(626\) −65.8042 65.8042i −0.105118 0.105118i
\(627\) 322.290i 0.514019i
\(628\) −345.757 −0.550568
\(629\) −221.298 221.298i −0.351825 0.351825i
\(630\) 12.2354 + 141.794i 0.0194212 + 0.225070i
\(631\) −407.417 + 407.417i −0.645668 + 0.645668i −0.951943 0.306275i \(-0.900917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(632\) −77.6405 77.6405i −0.122849 0.122849i
\(633\) 398.202i 0.629071i
\(634\) 339.025i 0.534739i
\(635\) 99.0888 + 1148.32i 0.156045 + 1.80839i
\(636\) 324.918i 0.510877i
\(637\) −350.800 + 329.085i −0.550707 + 0.516617i
\(638\) 185.569i 0.290861i
\(639\) −328.263 328.263i −0.513714 0.513714i
\(640\) 36.4131 43.2907i 0.0568955 0.0676418i
\(641\) 144.048i 0.224724i 0.993667 + 0.112362i \(0.0358416\pi\)
−0.993667 + 0.112362i \(0.964158\pi\)
\(642\) −239.007 + 239.007i −0.372285 + 0.372285i
\(643\) −82.2042 + 82.2042i −0.127845 + 0.127845i −0.768134 0.640289i \(-0.778815\pi\)
0.640289 + 0.768134i \(0.278815\pi\)
\(644\) −52.3200 + 52.3200i −0.0812423 + 0.0812423i
\(645\) −1012.15 + 87.3381i −1.56922 + 0.135408i
\(646\) 230.345 0.356571
\(647\) 657.369 1.01603 0.508013 0.861349i \(-0.330380\pi\)
0.508013 + 0.861349i \(0.330380\pi\)
\(648\) −199.067 199.067i −0.307202 0.307202i
\(649\) 46.1227i 0.0710674i
\(650\) −455.108 + 64.2390i −0.700166 + 0.0988292i
\(651\) −751.918 −1.15502
\(652\) −111.164 + 111.164i −0.170497 + 0.170497i
\(653\) 792.552i 1.21371i 0.794813 + 0.606854i \(0.207569\pi\)
−0.794813 + 0.606854i \(0.792431\pi\)
\(654\) 1028.78i 1.57306i
\(655\) 92.1609 + 1068.04i 0.140704 + 1.63059i
\(656\) −161.206 161.206i −0.245741 0.245741i
\(657\) −314.776 314.776i −0.479111 0.479111i
\(658\) −199.293 199.293i −0.302877 0.302877i
\(659\) 617.958 0.937722 0.468861 0.883272i \(-0.344665\pi\)
0.468861 + 0.883272i \(0.344665\pi\)
\(660\) −179.580 151.050i −0.272091 0.228863i
\(661\) 206.874 206.874i 0.312971 0.312971i −0.533089 0.846059i \(-0.678969\pi\)
0.846059 + 0.533089i \(0.178969\pi\)
\(662\) −281.281 −0.424896
\(663\) 432.708 405.923i 0.652652 0.612251i
\(664\) 129.546 0.195099
\(665\) 237.008 20.4514i 0.356404 0.0307540i
\(666\) −216.841 −0.325587
\(667\) −229.821 −0.344560
\(668\) −184.075 + 184.075i −0.275561 + 0.275561i
\(669\) 54.7036 + 54.7036i 0.0817691 + 0.0817691i
\(670\) 483.487 41.7201i 0.721623 0.0622688i
\(671\) 313.361 313.361i 0.467005 0.467005i
\(672\) 75.4137i 0.112223i
\(673\) 1124.43 1.67077 0.835386 0.549663i \(-0.185244\pi\)
0.835386 + 0.549663i \(0.185244\pi\)
\(674\) −275.256 + 275.256i −0.408392 + 0.408392i
\(675\) −52.5723 302.358i −0.0778850 0.447938i
\(676\) 337.311 + 21.5691i 0.498981 + 0.0319070i
\(677\) 446.105i 0.658943i −0.944165 0.329472i \(-0.893129\pi\)
0.944165 0.329472i \(-0.106871\pi\)
\(678\) −570.094 + 570.094i −0.840847 + 0.840847i
\(679\) 244.882 0.360651
\(680\) −107.957 + 128.348i −0.158761 + 0.188747i
\(681\) −1091.11 1091.11i −1.60222 1.60222i
\(682\) 343.917 343.917i 0.504276 0.504276i
\(683\) −897.278 897.278i −1.31373 1.31373i −0.918644 0.395086i \(-0.870715\pi\)
−0.395086 0.918644i \(-0.629285\pi\)
\(684\) 112.853 112.853i 0.164989 0.164989i
\(685\) −463.570 + 551.128i −0.676744 + 0.804567i
\(686\) 421.315i 0.614163i
\(687\) 1168.64 + 1168.64i 1.70107 + 1.70107i
\(688\) −211.186 −0.306956
\(689\) −400.244 + 375.468i −0.580905 + 0.544946i
\(690\) −187.070 + 222.404i −0.271117 + 0.322325i
\(691\) −447.025 447.025i −0.646924 0.646924i 0.305324 0.952249i \(-0.401235\pi\)
−0.952249 + 0.305324i \(0.901235\pi\)
\(692\) 172.662i 0.249511i
\(693\) 122.727 0.177096
\(694\) −539.829 539.829i −0.777851 0.777851i
\(695\) −32.5657 377.398i −0.0468571 0.543019i
\(696\) −165.631 + 165.631i −0.237976 + 0.237976i
\(697\) 477.942 + 477.942i 0.685713 + 0.685713i
\(698\) 774.535i 1.10965i
\(699\) 518.806i 0.742212i
\(700\) −99.6848 + 141.646i −0.142407 + 0.202351i
\(701\) 182.818i 0.260795i 0.991462 + 0.130398i \(0.0416254\pi\)
−0.991462 + 0.130398i \(0.958375\pi\)
\(702\) −7.20469 + 225.572i −0.0102631 + 0.321328i
\(703\) 362.450i 0.515576i
\(704\) −34.4932 34.4932i −0.0489960 0.0489960i
\(705\) −847.161 712.572i −1.20165 1.01074i
\(706\) 881.723i 1.24890i
\(707\) 208.698 208.698i 0.295188 0.295188i
\(708\) −41.1673 + 41.1673i −0.0581458 + 0.0581458i
\(709\) 16.2875 16.2875i 0.0229726 0.0229726i −0.695527 0.718500i \(-0.744829\pi\)
0.718500 + 0.695527i \(0.244829\pi\)
\(710\) −48.5717 562.890i −0.0684109 0.792803i
\(711\) 225.552 0.317232
\(712\) −176.059 −0.247273
\(713\) −425.930 425.930i −0.597377 0.597377i
\(714\) 223.586i 0.313145i
\(715\) 21.4507 + 395.762i 0.0300010 + 0.553513i
\(716\) 447.758 0.625361
\(717\) 788.798 788.798i 1.10014 1.10014i
\(718\) 244.422i 0.340421i
\(719\) 60.4508i 0.0840762i −0.999116 0.0420381i \(-0.986615\pi\)
0.999116 0.0420381i \(-0.0133851\pi\)
\(720\) 9.99004 + 115.773i 0.0138751 + 0.160796i
\(721\) 27.9426 + 27.9426i 0.0387554 + 0.0387554i
\(722\) 172.367 + 172.367i 0.238735 + 0.238735i
\(723\) 1018.19 + 1018.19i 1.40829 + 1.40829i
\(724\) −611.458 −0.844555
\(725\) −530.036 + 92.1597i −0.731084 + 0.127117i
\(726\) 322.571 322.571i 0.444312 0.444312i
\(727\) 149.229 0.205266 0.102633 0.994719i \(-0.467273\pi\)
0.102633 + 0.994719i \(0.467273\pi\)
\(728\) 92.8970 87.1464i 0.127606 0.119707i
\(729\) 153.127 0.210050
\(730\) −46.5761 539.763i −0.0638029 0.739401i
\(731\) 626.122 0.856528
\(732\) −559.386 −0.764188
\(733\) −894.559 + 894.559i −1.22041 + 1.22041i −0.252921 + 0.967487i \(0.581391\pi\)
−0.967487 + 0.252921i \(0.918609\pi\)
\(734\) 460.229 + 460.229i 0.627015 + 0.627015i
\(735\) 61.2065 + 709.313i 0.0832742 + 0.965051i
\(736\) −42.7187 + 42.7187i −0.0580417 + 0.0580417i
\(737\) 418.474i 0.567808i
\(738\) 468.316 0.634575
\(739\) 113.697 113.697i 0.153852 0.153852i −0.625984 0.779836i \(-0.715302\pi\)
0.779836 + 0.625984i \(0.215302\pi\)
\(740\) −201.957 169.872i −0.272914 0.229556i
\(741\) −686.770 21.9351i −0.926814 0.0296021i
\(742\) 206.811i 0.278721i
\(743\) −387.099 + 387.099i −0.520994 + 0.520994i −0.917872 0.396877i \(-0.870094\pi\)
0.396877 + 0.917872i \(0.370094\pi\)
\(744\) −613.932 −0.825177
\(745\) −507.210 + 603.011i −0.680819 + 0.809410i
\(746\) −550.843 550.843i −0.738395 0.738395i
\(747\) −188.170 + 188.170i −0.251901 + 0.251901i
\(748\) 102.265 + 102.265i 0.136718 + 0.136718i
\(749\) 152.129 152.129i 0.203109 0.203109i
\(750\) −342.254 + 587.945i −0.456339 + 0.783927i
\(751\) 342.334i 0.455837i −0.973680 0.227919i \(-0.926808\pi\)
0.973680 0.227919i \(-0.0731920\pi\)
\(752\) −162.720 162.720i −0.216383 0.216383i
\(753\) −345.078 −0.458271
\(754\) 395.430 + 12.6299i 0.524443 + 0.0167505i
\(755\) 734.357 + 617.689i 0.972658 + 0.818131i
\(756\) 60.1394 + 60.1394i 0.0795495 + 0.0795495i
\(757\) 243.161i 0.321217i 0.987018 + 0.160608i \(0.0513456\pi\)
−0.987018 + 0.160608i \(0.948654\pi\)
\(758\) 637.707 0.841303
\(759\) 177.207 + 177.207i 0.233474 + 0.233474i
\(760\) 193.514 16.6983i 0.254624 0.0219715i
\(761\) −419.621 + 419.621i −0.551407 + 0.551407i −0.926847 0.375440i \(-0.877492\pi\)
0.375440 + 0.926847i \(0.377492\pi\)
\(762\) −887.126 887.126i −1.16421 1.16421i
\(763\) 654.823i 0.858221i
\(764\) 577.866i 0.756368i
\(765\) −29.6184 343.243i −0.0387168 0.448683i
\(766\) 174.811i 0.228212i
\(767\) 98.2831 + 3.13912i 0.128140 + 0.00409273i
\(768\) 61.5743i 0.0801749i
\(769\) 80.4079 + 80.4079i 0.104562 + 0.104562i 0.757452 0.652891i \(-0.226444\pi\)
−0.652891 + 0.757452i \(0.726444\pi\)
\(770\) 114.303 + 96.1437i 0.148446 + 0.124862i
\(771\) 805.568i 1.04484i
\(772\) 233.182 233.182i 0.302049 0.302049i
\(773\) −714.523 + 714.523i −0.924351 + 0.924351i −0.997333 0.0729822i \(-0.976748\pi\)
0.0729822 + 0.997333i \(0.476748\pi\)
\(774\) 306.756 306.756i 0.396325 0.396325i
\(775\) −1153.12 811.519i −1.48790 1.04712i
\(776\) 199.943 0.257659
\(777\) 351.814 0.452786
\(778\) 221.342 + 221.342i 0.284502 + 0.284502i
\(779\) 782.790i 1.00487i
\(780\) 334.095 372.387i 0.428327 0.477419i
\(781\) −487.200 −0.623816
\(782\) 126.652 126.652i 0.161959 0.161959i
\(783\) 264.169i 0.337380i
\(784\) 147.999i 0.188774i
\(785\) 861.191 74.3121i 1.09706 0.0946651i
\(786\) −825.101 825.101i −1.04975 1.04975i
\(787\) −72.2015 72.2015i −0.0917428 0.0917428i 0.659746 0.751489i \(-0.270664\pi\)
−0.751489 + 0.659746i \(0.770664\pi\)
\(788\) 208.752 + 208.752i 0.264914 + 0.264914i
\(789\) 520.999 0.660328
\(790\) 210.070 + 176.696i 0.265911 + 0.223665i
\(791\) 362.867 362.867i 0.458744 0.458744i
\(792\) 100.205 0.126522
\(793\) 646.414 + 689.069i 0.815150 + 0.868939i
\(794\) −5.98315 −0.00753545
\(795\) 69.8333 + 809.287i 0.0878406 + 1.01797i
\(796\) −388.886 −0.488551
\(797\) 1012.42 1.27029 0.635146 0.772392i \(-0.280940\pi\)
0.635146 + 0.772392i \(0.280940\pi\)
\(798\) −183.098 + 183.098i −0.229447 + 0.229447i
\(799\) 482.431 + 482.431i 0.603794 + 0.603794i
\(800\) −81.3914 + 115.652i −0.101739 + 0.144565i
\(801\) 255.732 255.732i 0.319266 0.319266i
\(802\) 54.8562i 0.0683993i
\(803\) −467.183 −0.581797
\(804\) −373.513 + 373.513i −0.464569 + 0.464569i
\(805\) 119.071 141.561i 0.147914 0.175852i
\(806\) 709.446 + 756.261i 0.880207 + 0.938288i
\(807\) 253.853i 0.314563i
\(808\) 170.399 170.399i 0.210890 0.210890i
\(809\) −1107.04 −1.36840 −0.684202 0.729293i \(-0.739849\pi\)
−0.684202 + 0.729293i \(0.739849\pi\)
\(810\) 538.610 + 453.040i 0.664950 + 0.559309i
\(811\) 3.44353 + 3.44353i 0.00424603 + 0.00424603i 0.709227 0.704981i \(-0.249044\pi\)
−0.704981 + 0.709227i \(0.749044\pi\)
\(812\) 105.425 105.425i 0.129834 0.129834i
\(813\) −1116.34 1116.34i −1.37311 1.37311i
\(814\) −160.915 + 160.915i −0.197684 + 0.197684i
\(815\) 252.989 300.773i 0.310416 0.369046i
\(816\) 182.555i 0.223719i
\(817\) −512.742 512.742i −0.627591 0.627591i
\(818\) 453.849 0.554828
\(819\) −8.35284 + 261.520i −0.0101988 + 0.319316i
\(820\) 436.170 + 366.875i 0.531915 + 0.447409i
\(821\) 67.6867 + 67.6867i 0.0824442 + 0.0824442i 0.747126 0.664682i \(-0.231433\pi\)
−0.664682 + 0.747126i \(0.731433\pi\)
\(822\) 783.894i 0.953643i
\(823\) −975.932 −1.18582 −0.592911 0.805268i \(-0.702022\pi\)
−0.592911 + 0.805268i \(0.702022\pi\)
\(824\) 22.8148 + 22.8148i 0.0276879 + 0.0276879i
\(825\) 479.752 + 337.630i 0.581518 + 0.409249i
\(826\) 26.2031 26.2031i 0.0317229 0.0317229i
\(827\) 629.158 + 629.158i 0.760772 + 0.760772i 0.976462 0.215690i \(-0.0692001\pi\)
−0.215690 + 0.976462i \(0.569200\pi\)
\(828\) 124.101i 0.149881i
\(829\) 989.174i 1.19321i −0.802534 0.596607i \(-0.796515\pi\)
0.802534 0.596607i \(-0.203485\pi\)
\(830\) −322.665 + 27.8427i −0.388753 + 0.0335455i
\(831\) 736.176i 0.885892i
\(832\) 75.8492 71.1540i 0.0911649 0.0855217i
\(833\) 438.786i 0.526754i
\(834\) 291.555 + 291.555i 0.349586 + 0.349586i
\(835\) 418.920 498.045i 0.501701 0.596461i
\(836\) 167.493i 0.200351i
\(837\) −489.586 + 489.586i −0.584930 + 0.584930i
\(838\) −146.384 + 146.384i −0.174682 + 0.174682i
\(839\) 309.990 309.990i 0.369476 0.369476i −0.497810 0.867286i \(-0.665862\pi\)
0.867286 + 0.497810i \(0.165862\pi\)
\(840\) −16.2084 187.836i −0.0192957 0.223614i
\(841\) −377.910 −0.449358
\(842\) −931.511 −1.10631
\(843\) 506.597 + 506.597i 0.600945 + 0.600945i
\(844\) 206.944i 0.245195i
\(845\) −844.791 + 18.7737i −0.999753 + 0.0222174i
\(846\) 472.715 0.558765
\(847\) −205.317 + 205.317i −0.242405 + 0.242405i
\(848\) 168.859i 0.199126i
\(849\) 1465.65i 1.72633i
\(850\) 241.308 342.885i 0.283892 0.403394i
\(851\) 199.288 + 199.288i 0.234181 + 0.234181i
\(852\) 434.855 + 434.855i 0.510393 + 0.510393i
\(853\) 16.3492 + 16.3492i 0.0191667 + 0.0191667i 0.716625 0.697459i \(-0.245686\pi\)
−0.697459 + 0.716625i \(0.745686\pi\)
\(854\) 356.051 0.416921
\(855\) −256.832 + 305.342i −0.300389 + 0.357126i
\(856\) 124.211 124.211i 0.145107 0.145107i
\(857\) 173.877 0.202890 0.101445 0.994841i \(-0.467653\pi\)
0.101445 + 0.994841i \(0.467653\pi\)
\(858\) −295.163 314.640i −0.344013 0.366713i
\(859\) −516.287 −0.601033 −0.300516 0.953777i \(-0.597159\pi\)
−0.300516 + 0.953777i \(0.597159\pi\)
\(860\) 526.010 45.3894i 0.611639 0.0527783i
\(861\) −759.821 −0.882486
\(862\) 825.284 0.957406
\(863\) 490.757 490.757i 0.568664 0.568664i −0.363090 0.931754i \(-0.618278\pi\)
0.931754 + 0.363090i \(0.118278\pi\)
\(864\) 49.1031 + 49.1031i 0.0568323 + 0.0568323i
\(865\) 37.1095 + 430.056i 0.0429011 + 0.497174i
\(866\) 490.129 490.129i 0.565968 0.565968i
\(867\) 570.949i 0.658534i
\(868\) 390.769 0.450195
\(869\) 167.379 167.379i 0.192611 0.192611i
\(870\) 376.947 448.144i 0.433272 0.515108i
\(871\) 891.729 + 28.4815i 1.02380 + 0.0326997i
\(872\) 534.655i 0.613136i
\(873\) −290.425 + 290.425i −0.332675 + 0.332675i
\(874\) −207.435 −0.237340
\(875\) 217.846 374.229i 0.248967 0.427690i
\(876\) 416.988 + 416.988i 0.476014 + 0.476014i
\(877\) −36.7229 + 36.7229i −0.0418733 + 0.0418733i −0.727733 0.685860i \(-0.759426\pi\)
0.685860 + 0.727733i \(0.259426\pi\)
\(878\) −32.6479 32.6479i −0.0371844 0.0371844i
\(879\) 127.252 127.252i 0.144769 0.144769i
\(880\) 93.3271 + 78.5001i 0.106054 + 0.0892047i
\(881\) 144.572i 0.164100i 0.996628 + 0.0820501i \(0.0261468\pi\)
−0.996628 + 0.0820501i \(0.973853\pi\)
\(882\) −214.974 214.974i −0.243735 0.243735i
\(883\) −221.400 −0.250736 −0.125368 0.992110i \(-0.540011\pi\)
−0.125368 + 0.992110i \(0.540011\pi\)
\(884\) −224.877 + 210.957i −0.254386 + 0.238639i
\(885\) 93.6892 111.385i 0.105863 0.125859i
\(886\) −458.868 458.868i −0.517909 0.517909i
\(887\) 867.086i 0.977549i −0.872410 0.488774i \(-0.837444\pi\)
0.872410 0.488774i \(-0.162556\pi\)
\(888\) 287.252 0.323482
\(889\) 564.659 + 564.659i 0.635161 + 0.635161i
\(890\) 438.517 37.8396i 0.492716 0.0425164i
\(891\) 429.153 429.153i 0.481653 0.481653i
\(892\) −28.4293 28.4293i −0.0318714 0.0318714i
\(893\) 790.143i 0.884818i
\(894\) 857.689i 0.959384i
\(895\) −1115.25 + 96.2349i −1.24609 + 0.107525i
\(896\) 39.1923i 0.0437414i
\(897\) −389.672 + 365.550i −0.434417 + 0.407525i
\(898\) 580.145i 0.646041i
\(899\) 858.248 + 858.248i 0.954670 + 0.954670i
\(900\) −49.7653 286.214i −0.0552947 0.318015i
\(901\) 500.631i 0.555639i
\(902\) 347.531 347.531i 0.385290 0.385290i
\(903\) −497.697 + 497.697i −0.551159 + 0.551159i
\(904\) 296.276 296.276i 0.327739 0.327739i
\(905\) 1522.99 131.418i 1.68286 0.145214i
\(906\) −1044.51 −1.15288
\(907\) −214.025 −0.235970 −0.117985 0.993015i \(-0.537644\pi\)
−0.117985 + 0.993015i \(0.537644\pi\)
\(908\) 567.047 + 567.047i 0.624501 + 0.624501i
\(909\) 495.023i 0.544579i
\(910\) −212.653 + 237.025i −0.233684 + 0.260468i
\(911\) −1755.52 −1.92702 −0.963511 0.267669i \(-0.913747\pi\)
−0.963511 + 0.267669i \(0.913747\pi\)
\(912\) −149.498 + 149.498i −0.163923 + 0.163923i
\(913\) 279.277i 0.305890i
\(914\) 676.937i 0.740631i
\(915\) 1393.29 120.227i 1.52272 0.131395i
\(916\) −607.337 607.337i −0.663031 0.663031i
\(917\) 525.179 + 525.179i 0.572715 + 0.572715i
\(918\) −145.580 145.580i −0.158584 0.158584i
\(919\) −917.734 −0.998623 −0.499311 0.866423i \(-0.666414\pi\)
−0.499311 + 0.866423i \(0.666414\pi\)
\(920\) 97.2199 115.583i 0.105674 0.125633i
\(921\) 1408.04 1408.04i 1.52881 1.52881i
\(922\) −703.562 −0.763082
\(923\) 33.1589 1038.18i 0.0359252 1.12479i
\(924\) −162.578 −0.175951
\(925\) 539.532 + 379.701i 0.583278 + 0.410488i
\(926\) 567.716 0.613085
\(927\) −66.2789 −0.0714982
\(928\) 86.0781 86.0781i 0.0927566 0.0927566i
\(929\) 471.906 + 471.906i 0.507972 + 0.507972i 0.913903 0.405932i \(-0.133053\pi\)
−0.405932 + 0.913903i \(0.633053\pi\)
\(930\) 1529.15 131.950i 1.64424 0.141882i
\(931\) −359.330 + 359.330i −0.385961 + 0.385961i
\(932\) 269.622i 0.289294i
\(933\) 1216.07 1.30340
\(934\) 267.631 267.631i 0.286543 0.286543i
\(935\) −276.695 232.737i −0.295931 0.248916i
\(936\) −6.81999 + 213.528i −0.00728632 + 0.228128i
\(937\) 1133.03i 1.20921i 0.796524 + 0.604607i \(0.206670\pi\)
−0.796524 + 0.604607i \(0.793330\pi\)
\(938\) 237.742 237.742i 0.253457 0.253457i
\(939\) −253.241 −0.269692
\(940\) 440.267 + 370.322i 0.468369 + 0.393959i
\(941\) −965.320 965.320i −1.02584 1.02584i −0.999657 0.0261879i \(-0.991663\pi\)
−0.0261879 0.999657i \(-0.508337\pi\)
\(942\) −665.304 + 665.304i −0.706268 + 0.706268i
\(943\) −430.406 430.406i −0.456423 0.456423i
\(944\) 21.3945 21.3945i 0.0226637 0.0226637i
\(945\) −162.717 136.866i −0.172188 0.144832i
\(946\) 455.279i 0.481268i
\(947\) −766.185 766.185i −0.809065 0.809065i 0.175427 0.984492i \(-0.443869\pi\)
−0.984492 + 0.175427i \(0.943869\pi\)
\(948\) −298.791 −0.315181
\(949\) 31.7965 995.522i 0.0335053 1.04902i
\(950\) −478.406 + 83.1826i −0.503585 + 0.0875606i
\(951\) 652.351 + 652.351i 0.685963 + 0.685963i
\(952\) 116.197i 0.122056i
\(953\) 743.766 0.780447 0.390223 0.920720i \(-0.372398\pi\)
0.390223 + 0.920720i \(0.372398\pi\)
\(954\) −245.274 245.274i −0.257100 0.257100i
\(955\) −124.198 1439.32i −0.130051 1.50714i
\(956\) −409.936 + 409.936i −0.428803 + 0.428803i
\(957\) −357.072 357.072i −0.373116 0.373116i
\(958\) 452.931i 0.472788i
\(959\) 498.951i 0.520283i
\(960\) −13.2339 153.366i −0.0137853 0.159756i
\(961\) 2220.20i 2.31030i
\(962\) −331.942 353.846i −0.345055 0.367824i
\(963\) 360.844i 0.374708i
\(964\) −529.151 529.151i −0.548912 0.548912i
\(965\) −530.679 + 630.913i −0.549927 + 0.653796i
\(966\) 201.348i 0.208435i
\(967\) 228.660 228.660i 0.236463 0.236463i −0.578921 0.815384i \(-0.696526\pi\)
0.815384 + 0.578921i \(0.196526\pi\)
\(968\) −167.639 + 167.639i −0.173181 + 0.173181i
\(969\) 443.229 443.229i 0.457409 0.457409i
\(970\) −498.007 + 42.9730i −0.513410 + 0.0443021i
\(971\) 1063.56 1.09532 0.547662 0.836699i \(-0.315518\pi\)
0.547662 + 0.836699i \(0.315518\pi\)
\(972\) −545.125 −0.560828
\(973\) −185.576 185.576i −0.190725 0.190725i
\(974\) 255.583i 0.262406i
\(975\) −752.110 + 999.327i −0.771395 + 1.02495i
\(976\) 290.711 0.297860
\(977\) 347.768 347.768i 0.355955 0.355955i −0.506364 0.862320i \(-0.669011\pi\)
0.862320 + 0.506364i \(0.169011\pi\)
\(978\) 427.803i 0.437426i
\(979\) 379.551i 0.387693i
\(980\) −31.8088 368.628i −0.0324580 0.376151i
\(981\) 776.607 + 776.607i 0.791648 + 0.791648i
\(982\) −430.146 430.146i −0.438030 0.438030i
\(983\) 1187.00 + 1187.00i 1.20753 + 1.20753i 0.971825 + 0.235705i \(0.0757400\pi\)
0.235705 + 0.971825i \(0.424260\pi\)
\(984\) −620.384 −0.630472
\(985\) −564.814 475.081i −0.573415 0.482316i
\(986\) −255.204 + 255.204i −0.258827 + 0.258827i
\(987\) −766.958 −0.777060
\(988\) 356.912 + 11.3996i 0.361247 + 0.0115381i
\(989\) −563.849 −0.570120
\(990\) −249.586 + 21.5367i −0.252107 + 0.0217543i
\(991\) 566.323 0.571466 0.285733 0.958309i \(-0.407763\pi\)
0.285733 + 0.958309i \(0.407763\pi\)
\(992\) 319.058 0.321631
\(993\) −541.241 + 541.241i −0.545057 + 0.545057i
\(994\) −276.786 276.786i −0.278457 0.278457i
\(995\) 968.616 83.5818i 0.973484 0.0840018i
\(996\) 249.271 249.271i 0.250273 0.250273i
\(997\) 1051.32i 1.05448i 0.849715 + 0.527242i \(0.176774\pi\)
−0.849715 + 0.527242i \(0.823226\pi\)
\(998\) −541.043 −0.542127
\(999\) 229.072 229.072i 0.229302 0.229302i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.3.f.a.99.6 14
5.2 odd 4 650.3.k.l.151.6 14
5.3 odd 4 650.3.k.m.151.2 14
5.4 even 2 130.3.f.b.99.2 yes 14
13.5 odd 4 130.3.f.b.109.6 yes 14
65.18 even 4 650.3.k.m.551.2 14
65.44 odd 4 inner 130.3.f.a.109.2 yes 14
65.57 even 4 650.3.k.l.551.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.3.f.a.99.6 14 1.1 even 1 trivial
130.3.f.a.109.2 yes 14 65.44 odd 4 inner
130.3.f.b.99.2 yes 14 5.4 even 2
130.3.f.b.109.6 yes 14 13.5 odd 4
650.3.k.l.151.6 14 5.2 odd 4
650.3.k.l.551.6 14 65.57 even 4
650.3.k.m.151.2 14 5.3 odd 4
650.3.k.m.551.2 14 65.18 even 4