Properties

Label 650.3.k.j.551.1
Level $650$
Weight $3$
Character 650.551
Analytic conductor $17.711$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(151,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 92x^{10} + 3284x^{8} + 58196x^{6} + 540184x^{4} + 2488032x^{2} + 4435236 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.1
Root \(4.70114i\) of defining polynomial
Character \(\chi\) \(=\) 650.551
Dual form 650.3.k.j.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -4.70114 q^{3} -2.00000i q^{4} +(4.70114 - 4.70114i) q^{6} +(-1.86993 - 1.86993i) q^{7} +(2.00000 + 2.00000i) q^{8} +13.1007 q^{9} +(-1.50121 - 1.50121i) q^{11} +9.40228i q^{12} +(8.08933 + 10.1766i) q^{13} +3.73986 q^{14} -4.00000 q^{16} -19.8411i q^{17} +(-13.1007 + 13.1007i) q^{18} +(-20.7120 + 20.7120i) q^{19} +(8.79080 + 8.79080i) q^{21} +3.00242 q^{22} +44.1807i q^{23} +(-9.40228 - 9.40228i) q^{24} +(-18.2659 - 2.08724i) q^{26} -19.2781 q^{27} +(-3.73986 + 3.73986i) q^{28} +24.1625 q^{29} +(-9.97901 + 9.97901i) q^{31} +(4.00000 - 4.00000i) q^{32} +(7.05740 + 7.05740i) q^{33} +(19.8411 + 19.8411i) q^{34} -26.2015i q^{36} +(-15.0444 - 15.0444i) q^{37} -41.4240i q^{38} +(-38.0291 - 47.8415i) q^{39} +(-17.5307 + 17.5307i) q^{41} -17.5816 q^{42} -49.6545i q^{43} +(-3.00242 + 3.00242i) q^{44} +(-44.1807 - 44.1807i) q^{46} +(-11.8184 - 11.8184i) q^{47} +18.8046 q^{48} -42.0067i q^{49} +93.2758i q^{51} +(20.3531 - 16.1787i) q^{52} +17.1636 q^{53} +(19.2781 - 19.2781i) q^{54} -7.47972i q^{56} +(97.3700 - 97.3700i) q^{57} +(-24.1625 + 24.1625i) q^{58} +(-18.4313 - 18.4313i) q^{59} +16.9508 q^{61} -19.9580i q^{62} +(-24.4974 - 24.4974i) q^{63} +8.00000i q^{64} -14.1148 q^{66} +(17.6595 - 17.6595i) q^{67} -39.6822 q^{68} -207.700i q^{69} +(74.4471 - 74.4471i) q^{71} +(26.2015 + 26.2015i) q^{72} +(-11.4832 - 11.4832i) q^{73} +30.0888 q^{74} +(41.4240 + 41.4240i) q^{76} +5.61431i q^{77} +(85.8706 + 9.81241i) q^{78} +144.652 q^{79} -27.2774 q^{81} -35.0613i q^{82} +(-85.5928 + 85.5928i) q^{83} +(17.5816 - 17.5816i) q^{84} +(49.6545 + 49.6545i) q^{86} -113.591 q^{87} -6.00484i q^{88} +(-103.371 - 103.371i) q^{89} +(3.90299 - 34.1560i) q^{91} +88.3615 q^{92} +(46.9127 - 46.9127i) q^{93} +23.6367 q^{94} +(-18.8046 + 18.8046i) q^{96} +(113.064 - 113.064i) q^{97} +(42.0067 + 42.0067i) q^{98} +(-19.6670 - 19.6670i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 8 q^{7} + 24 q^{8} + 76 q^{9} - 16 q^{11} + 20 q^{13} - 16 q^{14} - 48 q^{16} - 76 q^{18} - 68 q^{19} - 44 q^{21} + 32 q^{22} + 24 q^{26} + 96 q^{27} + 16 q^{28} + 216 q^{29} + 64 q^{31}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) −4.70114 −1.56705 −0.783524 0.621362i \(-0.786580\pi\)
−0.783524 + 0.621362i \(0.786580\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 4.70114 4.70114i 0.783524 0.783524i
\(7\) −1.86993 1.86993i −0.267133 0.267133i 0.560811 0.827944i \(-0.310489\pi\)
−0.827944 + 0.560811i \(0.810489\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 13.1007 1.45564
\(10\) 0 0
\(11\) −1.50121 1.50121i −0.136474 0.136474i 0.635570 0.772043i \(-0.280765\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(12\) 9.40228i 0.783524i
\(13\) 8.08933 + 10.1766i 0.622256 + 0.782813i
\(14\) 3.73986 0.267133
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 19.8411i 1.16712i −0.812069 0.583562i \(-0.801659\pi\)
0.812069 0.583562i \(-0.198341\pi\)
\(18\) −13.1007 + 13.1007i −0.727819 + 0.727819i
\(19\) −20.7120 + 20.7120i −1.09010 + 1.09010i −0.0945880 + 0.995517i \(0.530153\pi\)
−0.995517 + 0.0945880i \(0.969847\pi\)
\(20\) 0 0
\(21\) 8.79080 + 8.79080i 0.418610 + 0.418610i
\(22\) 3.00242 0.136474
\(23\) 44.1807i 1.92090i 0.278449 + 0.960451i \(0.410180\pi\)
−0.278449 + 0.960451i \(0.589820\pi\)
\(24\) −9.40228 9.40228i −0.391762 0.391762i
\(25\) 0 0
\(26\) −18.2659 2.08724i −0.702535 0.0802785i
\(27\) −19.2781 −0.714005
\(28\) −3.73986 + 3.73986i −0.133566 + 0.133566i
\(29\) 24.1625 0.833189 0.416595 0.909092i \(-0.363223\pi\)
0.416595 + 0.909092i \(0.363223\pi\)
\(30\) 0 0
\(31\) −9.97901 + 9.97901i −0.321903 + 0.321903i −0.849497 0.527594i \(-0.823094\pi\)
0.527594 + 0.849497i \(0.323094\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 7.05740 + 7.05740i 0.213861 + 0.213861i
\(34\) 19.8411 + 19.8411i 0.583562 + 0.583562i
\(35\) 0 0
\(36\) 26.2015i 0.727819i
\(37\) −15.0444 15.0444i −0.406606 0.406606i 0.473947 0.880553i \(-0.342829\pi\)
−0.880553 + 0.473947i \(0.842829\pi\)
\(38\) 41.4240i 1.09010i
\(39\) −38.0291 47.8415i −0.975105 1.22671i
\(40\) 0 0
\(41\) −17.5307 + 17.5307i −0.427577 + 0.427577i −0.887802 0.460225i \(-0.847769\pi\)
0.460225 + 0.887802i \(0.347769\pi\)
\(42\) −17.5816 −0.418610
\(43\) 49.6545i 1.15475i −0.816477 0.577377i \(-0.804076\pi\)
0.816477 0.577377i \(-0.195924\pi\)
\(44\) −3.00242 + 3.00242i −0.0682368 + 0.0682368i
\(45\) 0 0
\(46\) −44.1807 44.1807i −0.960451 0.960451i
\(47\) −11.8184 11.8184i −0.251455 0.251455i 0.570112 0.821567i \(-0.306900\pi\)
−0.821567 + 0.570112i \(0.806900\pi\)
\(48\) 18.8046 0.391762
\(49\) 42.0067i 0.857280i
\(50\) 0 0
\(51\) 93.2758i 1.82894i
\(52\) 20.3531 16.1787i 0.391407 0.311128i
\(53\) 17.1636 0.323842 0.161921 0.986804i \(-0.448231\pi\)
0.161921 + 0.986804i \(0.448231\pi\)
\(54\) 19.2781 19.2781i 0.357003 0.357003i
\(55\) 0 0
\(56\) 7.47972i 0.133566i
\(57\) 97.3700 97.3700i 1.70825 1.70825i
\(58\) −24.1625 + 24.1625i −0.416595 + 0.416595i
\(59\) −18.4313 18.4313i −0.312395 0.312395i 0.533442 0.845837i \(-0.320898\pi\)
−0.845837 + 0.533442i \(0.820898\pi\)
\(60\) 0 0
\(61\) 16.9508 0.277882 0.138941 0.990301i \(-0.455630\pi\)
0.138941 + 0.990301i \(0.455630\pi\)
\(62\) 19.9580i 0.321903i
\(63\) −24.4974 24.4974i −0.388848 0.388848i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −14.1148 −0.213861
\(67\) 17.6595 17.6595i 0.263574 0.263574i −0.562930 0.826504i \(-0.690326\pi\)
0.826504 + 0.562930i \(0.190326\pi\)
\(68\) −39.6822 −0.583562
\(69\) 207.700i 3.01014i
\(70\) 0 0
\(71\) 74.4471 74.4471i 1.04855 1.04855i 0.0497912 0.998760i \(-0.484144\pi\)
0.998760 0.0497912i \(-0.0158556\pi\)
\(72\) 26.2015 + 26.2015i 0.363909 + 0.363909i
\(73\) −11.4832 11.4832i −0.157304 0.157304i 0.624067 0.781371i \(-0.285479\pi\)
−0.781371 + 0.624067i \(0.785479\pi\)
\(74\) 30.0888 0.406606
\(75\) 0 0
\(76\) 41.4240 + 41.4240i 0.545052 + 0.545052i
\(77\) 5.61431i 0.0729132i
\(78\) 85.8706 + 9.81241i 1.10091 + 0.125800i
\(79\) 144.652 1.83103 0.915517 0.402280i \(-0.131782\pi\)
0.915517 + 0.402280i \(0.131782\pi\)
\(80\) 0 0
\(81\) −27.2774 −0.336758
\(82\) 35.0613i 0.427577i
\(83\) −85.5928 + 85.5928i −1.03124 + 1.03124i −0.0317424 + 0.999496i \(0.510106\pi\)
−0.999496 + 0.0317424i \(0.989894\pi\)
\(84\) 17.5816 17.5816i 0.209305 0.209305i
\(85\) 0 0
\(86\) 49.6545 + 49.6545i 0.577377 + 0.577377i
\(87\) −113.591 −1.30565
\(88\) 6.00484i 0.0682368i
\(89\) −103.371 103.371i −1.16147 1.16147i −0.984153 0.177321i \(-0.943257\pi\)
−0.177321 0.984153i \(-0.556743\pi\)
\(90\) 0 0
\(91\) 3.90299 34.1560i 0.0428900 0.375340i
\(92\) 88.3615 0.960451
\(93\) 46.9127 46.9127i 0.504438 0.504438i
\(94\) 23.6367 0.251455
\(95\) 0 0
\(96\) −18.8046 + 18.8046i −0.195881 + 0.195881i
\(97\) 113.064 113.064i 1.16560 1.16560i 0.182375 0.983229i \(-0.441621\pi\)
0.983229 0.182375i \(-0.0583785\pi\)
\(98\) 42.0067 + 42.0067i 0.428640 + 0.428640i
\(99\) −19.6670 19.6670i −0.198656 0.198656i
\(100\) 0 0
\(101\) 125.556i 1.24313i −0.783364 0.621564i \(-0.786498\pi\)
0.783364 0.621564i \(-0.213502\pi\)
\(102\) −93.2758 93.2758i −0.914469 0.914469i
\(103\) 24.9195i 0.241937i −0.992656 0.120969i \(-0.961400\pi\)
0.992656 0.120969i \(-0.0386000\pi\)
\(104\) −4.17448 + 36.5318i −0.0401392 + 0.351267i
\(105\) 0 0
\(106\) −17.1636 + 17.1636i −0.161921 + 0.161921i
\(107\) −158.069 −1.47728 −0.738642 0.674097i \(-0.764533\pi\)
−0.738642 + 0.674097i \(0.764533\pi\)
\(108\) 38.5563i 0.357003i
\(109\) 8.59537 8.59537i 0.0788566 0.0788566i −0.666578 0.745435i \(-0.732242\pi\)
0.745435 + 0.666578i \(0.232242\pi\)
\(110\) 0 0
\(111\) 70.7259 + 70.7259i 0.637170 + 0.637170i
\(112\) 7.47972 + 7.47972i 0.0667832 + 0.0667832i
\(113\) −168.579 −1.49185 −0.745927 0.666028i \(-0.767993\pi\)
−0.745927 + 0.666028i \(0.767993\pi\)
\(114\) 194.740i 1.70825i
\(115\) 0 0
\(116\) 48.3250i 0.416595i
\(117\) 105.976 + 133.321i 0.905780 + 1.13949i
\(118\) 36.8626 0.312395
\(119\) −37.1014 + 37.1014i −0.311777 + 0.311777i
\(120\) 0 0
\(121\) 116.493i 0.962750i
\(122\) −16.9508 + 16.9508i −0.138941 + 0.138941i
\(123\) 82.4141 82.4141i 0.670034 0.670034i
\(124\) 19.9580 + 19.9580i 0.160952 + 0.160952i
\(125\) 0 0
\(126\) 48.9949 0.388848
\(127\) 2.40010i 0.0188984i 0.999955 + 0.00944920i \(0.00300782\pi\)
−0.999955 + 0.00944920i \(0.996992\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 233.433i 1.80956i
\(130\) 0 0
\(131\) 54.9647 0.419578 0.209789 0.977747i \(-0.432722\pi\)
0.209789 + 0.977747i \(0.432722\pi\)
\(132\) 14.1148 14.1148i 0.106930 0.106930i
\(133\) 77.4599 0.582405
\(134\) 35.3189i 0.263574i
\(135\) 0 0
\(136\) 39.6822 39.6822i 0.291781 0.291781i
\(137\) 6.42401 + 6.42401i 0.0468906 + 0.0468906i 0.730163 0.683273i \(-0.239444\pi\)
−0.683273 + 0.730163i \(0.739444\pi\)
\(138\) 207.700 + 207.700i 1.50507 + 1.50507i
\(139\) −168.602 −1.21296 −0.606481 0.795098i \(-0.707419\pi\)
−0.606481 + 0.795098i \(0.707419\pi\)
\(140\) 0 0
\(141\) 55.5599 + 55.5599i 0.394041 + 0.394041i
\(142\) 148.894i 1.04855i
\(143\) 3.13339 27.4210i 0.0219118 0.191755i
\(144\) −52.4029 −0.363909
\(145\) 0 0
\(146\) 22.9664 0.157304
\(147\) 197.480i 1.34340i
\(148\) −30.0888 + 30.0888i −0.203303 + 0.203303i
\(149\) −56.6920 + 56.6920i −0.380483 + 0.380483i −0.871276 0.490793i \(-0.836707\pi\)
0.490793 + 0.871276i \(0.336707\pi\)
\(150\) 0 0
\(151\) −94.4664 94.4664i −0.625605 0.625605i 0.321354 0.946959i \(-0.395862\pi\)
−0.946959 + 0.321354i \(0.895862\pi\)
\(152\) −82.8479 −0.545052
\(153\) 259.933i 1.69891i
\(154\) −5.61431 5.61431i −0.0364566 0.0364566i
\(155\) 0 0
\(156\) −95.6830 + 76.0582i −0.613353 + 0.487553i
\(157\) 231.256 1.47297 0.736484 0.676455i \(-0.236485\pi\)
0.736484 + 0.676455i \(0.236485\pi\)
\(158\) −144.652 + 144.652i −0.915517 + 0.915517i
\(159\) −80.6885 −0.507475
\(160\) 0 0
\(161\) 82.6149 82.6149i 0.513136 0.513136i
\(162\) 27.2774 27.2774i 0.168379 0.168379i
\(163\) −150.313 150.313i −0.922167 0.922167i 0.0750153 0.997182i \(-0.476099\pi\)
−0.997182 + 0.0750153i \(0.976099\pi\)
\(164\) 35.0613 + 35.0613i 0.213789 + 0.213789i
\(165\) 0 0
\(166\) 171.186i 1.03124i
\(167\) −180.532 180.532i −1.08103 1.08103i −0.996413 0.0846176i \(-0.973033\pi\)
−0.0846176 0.996413i \(-0.526967\pi\)
\(168\) 35.1632i 0.209305i
\(169\) −38.1253 + 164.643i −0.225594 + 0.974221i
\(170\) 0 0
\(171\) −271.342 + 271.342i −1.58680 + 1.58680i
\(172\) −99.3089 −0.577377
\(173\) 232.945i 1.34650i 0.739414 + 0.673251i \(0.235103\pi\)
−0.739414 + 0.673251i \(0.764897\pi\)
\(174\) 113.591 113.591i 0.652823 0.652823i
\(175\) 0 0
\(176\) 6.00484 + 6.00484i 0.0341184 + 0.0341184i
\(177\) 86.6481 + 86.6481i 0.489537 + 0.489537i
\(178\) 206.742 1.16147
\(179\) 125.287i 0.699926i 0.936763 + 0.349963i \(0.113806\pi\)
−0.936763 + 0.349963i \(0.886194\pi\)
\(180\) 0 0
\(181\) 220.820i 1.22000i 0.792402 + 0.609999i \(0.208830\pi\)
−0.792402 + 0.609999i \(0.791170\pi\)
\(182\) 30.2530 + 38.0589i 0.166225 + 0.209115i
\(183\) −79.6882 −0.435455
\(184\) −88.3615 + 88.3615i −0.480226 + 0.480226i
\(185\) 0 0
\(186\) 93.8255i 0.504438i
\(187\) −29.7857 + 29.7857i −0.159282 + 0.159282i
\(188\) −23.6367 + 23.6367i −0.125727 + 0.125727i
\(189\) 36.0488 + 36.0488i 0.190734 + 0.190734i
\(190\) 0 0
\(191\) −292.765 −1.53280 −0.766400 0.642364i \(-0.777954\pi\)
−0.766400 + 0.642364i \(0.777954\pi\)
\(192\) 37.6091i 0.195881i
\(193\) −33.9482 33.9482i −0.175897 0.175897i 0.613667 0.789565i \(-0.289694\pi\)
−0.789565 + 0.613667i \(0.789694\pi\)
\(194\) 226.127i 1.16560i
\(195\) 0 0
\(196\) −84.0135 −0.428640
\(197\) 113.364 113.364i 0.575454 0.575454i −0.358194 0.933647i \(-0.616607\pi\)
0.933647 + 0.358194i \(0.116607\pi\)
\(198\) 39.3339 0.198656
\(199\) 98.5552i 0.495252i −0.968856 0.247626i \(-0.920350\pi\)
0.968856 0.247626i \(-0.0796505\pi\)
\(200\) 0 0
\(201\) −83.0197 + 83.0197i −0.413033 + 0.413033i
\(202\) 125.556 + 125.556i 0.621564 + 0.621564i
\(203\) −45.1821 45.1821i −0.222572 0.222572i
\(204\) 186.552 0.914469
\(205\) 0 0
\(206\) 24.9195 + 24.9195i 0.120969 + 0.120969i
\(207\) 578.800i 2.79614i
\(208\) −32.3573 40.7063i −0.155564 0.195703i
\(209\) 62.1861 0.297541
\(210\) 0 0
\(211\) 255.221 1.20958 0.604788 0.796387i \(-0.293258\pi\)
0.604788 + 0.796387i \(0.293258\pi\)
\(212\) 34.3272i 0.161921i
\(213\) −349.986 + 349.986i −1.64313 + 1.64313i
\(214\) 158.069 158.069i 0.738642 0.738642i
\(215\) 0 0
\(216\) −38.5563 38.5563i −0.178501 0.178501i
\(217\) 37.3201 0.171982
\(218\) 17.1907i 0.0788566i
\(219\) 53.9842 + 53.9842i 0.246503 + 0.246503i
\(220\) 0 0
\(221\) 201.914 160.501i 0.913640 0.726250i
\(222\) −141.452 −0.637170
\(223\) 301.837 301.837i 1.35353 1.35353i 0.471855 0.881676i \(-0.343585\pi\)
0.881676 0.471855i \(-0.156415\pi\)
\(224\) −14.9594 −0.0667832
\(225\) 0 0
\(226\) 168.579 168.579i 0.745927 0.745927i
\(227\) −155.443 + 155.443i −0.684770 + 0.684770i −0.961071 0.276301i \(-0.910891\pi\)
0.276301 + 0.961071i \(0.410891\pi\)
\(228\) −194.740 194.740i −0.854123 0.854123i
\(229\) −20.9147 20.9147i −0.0913307 0.0913307i 0.659965 0.751296i \(-0.270571\pi\)
−0.751296 + 0.659965i \(0.770571\pi\)
\(230\) 0 0
\(231\) 26.3937i 0.114258i
\(232\) 48.3250 + 48.3250i 0.208297 + 0.208297i
\(233\) 335.555i 1.44015i −0.693896 0.720075i \(-0.744107\pi\)
0.693896 0.720075i \(-0.255893\pi\)
\(234\) −239.297 27.3444i −1.02264 0.116856i
\(235\) 0 0
\(236\) −36.8626 + 36.8626i −0.156197 + 0.156197i
\(237\) −680.028 −2.86932
\(238\) 74.2029i 0.311777i
\(239\) 156.914 156.914i 0.656545 0.656545i −0.298016 0.954561i \(-0.596325\pi\)
0.954561 + 0.298016i \(0.0963247\pi\)
\(240\) 0 0
\(241\) −105.359 105.359i −0.437176 0.437176i 0.453885 0.891060i \(-0.350038\pi\)
−0.891060 + 0.453885i \(0.850038\pi\)
\(242\) 116.493 + 116.493i 0.481375 + 0.481375i
\(243\) 301.738 1.24172
\(244\) 33.9017i 0.138941i
\(245\) 0 0
\(246\) 164.828i 0.670034i
\(247\) −378.323 43.2309i −1.53167 0.175024i
\(248\) −39.9160 −0.160952
\(249\) 402.384 402.384i 1.61600 1.61600i
\(250\) 0 0
\(251\) 169.558i 0.675530i 0.941231 + 0.337765i \(0.109671\pi\)
−0.941231 + 0.337765i \(0.890329\pi\)
\(252\) −48.9949 + 48.9949i −0.194424 + 0.194424i
\(253\) 66.3246 66.3246i 0.262153 0.262153i
\(254\) −2.40010 2.40010i −0.00944920 0.00944920i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 83.4951i 0.324884i −0.986718 0.162442i \(-0.948063\pi\)
0.986718 0.162442i \(-0.0519370\pi\)
\(258\) −233.433 233.433i −0.904778 0.904778i
\(259\) 56.2640i 0.217235i
\(260\) 0 0
\(261\) 316.546 1.21282
\(262\) −54.9647 + 54.9647i −0.209789 + 0.209789i
\(263\) 83.7827 0.318565 0.159283 0.987233i \(-0.449082\pi\)
0.159283 + 0.987233i \(0.449082\pi\)
\(264\) 28.2296i 0.106930i
\(265\) 0 0
\(266\) −77.4599 + 77.4599i −0.291203 + 0.291203i
\(267\) 485.963 + 485.963i 1.82008 + 1.82008i
\(268\) −35.3189 35.3189i −0.131787 0.131787i
\(269\) −112.184 −0.417040 −0.208520 0.978018i \(-0.566865\pi\)
−0.208520 + 0.978018i \(0.566865\pi\)
\(270\) 0 0
\(271\) −268.430 268.430i −0.990517 0.990517i 0.00943804 0.999955i \(-0.496996\pi\)
−0.999955 + 0.00943804i \(0.996996\pi\)
\(272\) 79.3644i 0.291781i
\(273\) −18.3485 + 160.572i −0.0672107 + 0.588176i
\(274\) −12.8480 −0.0468906
\(275\) 0 0
\(276\) −415.400 −1.50507
\(277\) 278.287i 1.00465i −0.864680 0.502324i \(-0.832479\pi\)
0.864680 0.502324i \(-0.167521\pi\)
\(278\) 168.602 168.602i 0.606481 0.606481i
\(279\) −130.732 + 130.732i −0.468575 + 0.468575i
\(280\) 0 0
\(281\) 175.880 + 175.880i 0.625907 + 0.625907i 0.947036 0.321129i \(-0.104062\pi\)
−0.321129 + 0.947036i \(0.604062\pi\)
\(282\) −111.120 −0.394041
\(283\) 465.647i 1.64539i −0.568480 0.822697i \(-0.692468\pi\)
0.568480 0.822697i \(-0.307532\pi\)
\(284\) −148.894 148.894i −0.524275 0.524275i
\(285\) 0 0
\(286\) 24.2876 + 30.5544i 0.0849216 + 0.106833i
\(287\) 65.5622 0.228440
\(288\) 52.4029 52.4029i 0.181955 0.181955i
\(289\) −104.669 −0.362177
\(290\) 0 0
\(291\) −531.528 + 531.528i −1.82656 + 1.82656i
\(292\) −22.9664 + 22.9664i −0.0786522 + 0.0786522i
\(293\) 241.334 + 241.334i 0.823667 + 0.823667i 0.986632 0.162965i \(-0.0521057\pi\)
−0.162965 + 0.986632i \(0.552106\pi\)
\(294\) −197.480 197.480i −0.671699 0.671699i
\(295\) 0 0
\(296\) 60.1776i 0.203303i
\(297\) 28.9405 + 28.9405i 0.0974429 + 0.0974429i
\(298\) 113.384i 0.380483i
\(299\) −449.609 + 357.393i −1.50371 + 1.19529i
\(300\) 0 0
\(301\) −92.8503 + 92.8503i −0.308473 + 0.308473i
\(302\) 188.933 0.625605
\(303\) 590.256i 1.94804i
\(304\) 82.8479 82.8479i 0.272526 0.272526i
\(305\) 0 0
\(306\) 259.933 + 259.933i 0.849454 + 0.849454i
\(307\) −280.203 280.203i −0.912715 0.912715i 0.0837701 0.996485i \(-0.473304\pi\)
−0.996485 + 0.0837701i \(0.973304\pi\)
\(308\) 11.2286 0.0364566
\(309\) 117.150i 0.379127i
\(310\) 0 0
\(311\) 13.7375i 0.0441719i 0.999756 + 0.0220859i \(0.00703075\pi\)
−0.999756 + 0.0220859i \(0.992969\pi\)
\(312\) 19.6248 171.741i 0.0629001 0.550453i
\(313\) 84.5828 0.270233 0.135116 0.990830i \(-0.456859\pi\)
0.135116 + 0.990830i \(0.456859\pi\)
\(314\) −231.256 + 231.256i −0.736484 + 0.736484i
\(315\) 0 0
\(316\) 289.303i 0.915517i
\(317\) 438.576 438.576i 1.38352 1.38352i 0.545237 0.838282i \(-0.316440\pi\)
0.838282 0.545237i \(-0.183560\pi\)
\(318\) 80.6885 80.6885i 0.253737 0.253737i
\(319\) −36.2730 36.2730i −0.113708 0.113708i
\(320\) 0 0
\(321\) 743.107 2.31498
\(322\) 165.230i 0.513136i
\(323\) 410.948 + 410.948i 1.27229 + 1.27229i
\(324\) 54.5547i 0.168379i
\(325\) 0 0
\(326\) 300.626 0.922167
\(327\) −40.4081 + 40.4081i −0.123572 + 0.123572i
\(328\) −70.1226 −0.213789
\(329\) 44.1990i 0.134344i
\(330\) 0 0
\(331\) 21.7454 21.7454i 0.0656962 0.0656962i −0.673495 0.739191i \(-0.735208\pi\)
0.739191 + 0.673495i \(0.235208\pi\)
\(332\) 171.186 + 171.186i 0.515619 + 0.515619i
\(333\) −197.093 197.093i −0.591870 0.591870i
\(334\) 361.064 1.08103
\(335\) 0 0
\(336\) −35.1632 35.1632i −0.104652 0.104652i
\(337\) 364.125i 1.08049i 0.841508 + 0.540245i \(0.181669\pi\)
−0.841508 + 0.540245i \(0.818331\pi\)
\(338\) −126.518 202.769i −0.374314 0.599908i
\(339\) 792.516 2.33780
\(340\) 0 0
\(341\) 29.9612 0.0878627
\(342\) 542.684i 1.58680i
\(343\) −170.176 + 170.176i −0.496140 + 0.496140i
\(344\) 99.3089 99.3089i 0.288689 0.288689i
\(345\) 0 0
\(346\) −232.945 232.945i −0.673251 0.673251i
\(347\) 185.153 0.533582 0.266791 0.963754i \(-0.414037\pi\)
0.266791 + 0.963754i \(0.414037\pi\)
\(348\) 227.183i 0.652823i
\(349\) 139.886 + 139.886i 0.400820 + 0.400820i 0.878522 0.477702i \(-0.158530\pi\)
−0.477702 + 0.878522i \(0.658530\pi\)
\(350\) 0 0
\(351\) −155.947 196.185i −0.444294 0.558933i
\(352\) −12.0097 −0.0341184
\(353\) −193.983 + 193.983i −0.549528 + 0.549528i −0.926304 0.376776i \(-0.877033\pi\)
0.376776 + 0.926304i \(0.377033\pi\)
\(354\) −173.296 −0.489537
\(355\) 0 0
\(356\) −206.742 + 206.742i −0.580737 + 0.580737i
\(357\) 174.419 174.419i 0.488569 0.488569i
\(358\) −125.287 125.287i −0.349963 0.349963i
\(359\) −108.050 108.050i −0.300975 0.300975i 0.540420 0.841395i \(-0.318265\pi\)
−0.841395 + 0.540420i \(0.818265\pi\)
\(360\) 0 0
\(361\) 496.973i 1.37666i
\(362\) −220.820 220.820i −0.609999 0.609999i
\(363\) 547.649i 1.50867i
\(364\) −68.3119 7.80598i −0.187670 0.0214450i
\(365\) 0 0
\(366\) 79.6882 79.6882i 0.217727 0.217727i
\(367\) 35.1926 0.0958927 0.0479464 0.998850i \(-0.484732\pi\)
0.0479464 + 0.998850i \(0.484732\pi\)
\(368\) 176.723i 0.480226i
\(369\) −229.665 + 229.665i −0.622397 + 0.622397i
\(370\) 0 0
\(371\) −32.0947 32.0947i −0.0865087 0.0865087i
\(372\) −93.8255 93.8255i −0.252219 0.252219i
\(373\) 666.073 1.78572 0.892859 0.450337i \(-0.148696\pi\)
0.892859 + 0.450337i \(0.148696\pi\)
\(374\) 59.5713i 0.159282i
\(375\) 0 0
\(376\) 47.2735i 0.125727i
\(377\) 195.458 + 245.891i 0.518457 + 0.652232i
\(378\) −72.0975 −0.190734
\(379\) 263.815 263.815i 0.696081 0.696081i −0.267482 0.963563i \(-0.586192\pi\)
0.963563 + 0.267482i \(0.0861916\pi\)
\(380\) 0 0
\(381\) 11.2832i 0.0296147i
\(382\) 292.765 292.765i 0.766400 0.766400i
\(383\) −350.886 + 350.886i −0.916151 + 0.916151i −0.996747 0.0805958i \(-0.974318\pi\)
0.0805958 + 0.996747i \(0.474318\pi\)
\(384\) 37.6091 + 37.6091i 0.0979405 + 0.0979405i
\(385\) 0 0
\(386\) 67.8964 0.175897
\(387\) 650.510i 1.68090i
\(388\) −226.127 226.127i −0.582802 0.582802i
\(389\) 563.670i 1.44902i 0.689262 + 0.724512i \(0.257935\pi\)
−0.689262 + 0.724512i \(0.742065\pi\)
\(390\) 0 0
\(391\) 876.594 2.24193
\(392\) 84.0135 84.0135i 0.214320 0.214320i
\(393\) −258.397 −0.657499
\(394\) 226.729i 0.575454i
\(395\) 0 0
\(396\) −39.3339 + 39.3339i −0.0993281 + 0.0993281i
\(397\) 76.5969 + 76.5969i 0.192939 + 0.192939i 0.796965 0.604026i \(-0.206438\pi\)
−0.604026 + 0.796965i \(0.706438\pi\)
\(398\) 98.5552 + 98.5552i 0.247626 + 0.247626i
\(399\) −364.150 −0.912657
\(400\) 0 0
\(401\) −484.409 484.409i −1.20800 1.20800i −0.971673 0.236329i \(-0.924056\pi\)
−0.236329 0.971673i \(-0.575944\pi\)
\(402\) 166.039i 0.413033i
\(403\) −182.276 20.8286i −0.452297 0.0516838i
\(404\) −251.112 −0.621564
\(405\) 0 0
\(406\) 90.3643 0.222572
\(407\) 45.1696i 0.110982i
\(408\) −186.552 + 186.552i −0.457234 + 0.457234i
\(409\) 309.379 309.379i 0.756428 0.756428i −0.219242 0.975670i \(-0.570359\pi\)
0.975670 + 0.219242i \(0.0703586\pi\)
\(410\) 0 0
\(411\) −30.2002 30.2002i −0.0734798 0.0734798i
\(412\) −49.8391 −0.120969
\(413\) 68.9304i 0.166902i
\(414\) −578.800 578.800i −1.39807 1.39807i
\(415\) 0 0
\(416\) 73.0636 + 8.34896i 0.175634 + 0.0200696i
\(417\) 792.620 1.90077
\(418\) −62.1861 + 62.1861i −0.148771 + 0.148771i
\(419\) 147.503 0.352037 0.176018 0.984387i \(-0.443678\pi\)
0.176018 + 0.984387i \(0.443678\pi\)
\(420\) 0 0
\(421\) 157.123 157.123i 0.373215 0.373215i −0.495432 0.868647i \(-0.664990\pi\)
0.868647 + 0.495432i \(0.164990\pi\)
\(422\) −255.221 + 255.221i −0.604788 + 0.604788i
\(423\) −154.829 154.829i −0.366027 0.366027i
\(424\) 34.3272 + 34.3272i 0.0809604 + 0.0809604i
\(425\) 0 0
\(426\) 699.973i 1.64313i
\(427\) −31.6968 31.6968i −0.0742315 0.0742315i
\(428\) 316.139i 0.738642i
\(429\) −14.7305 + 128.910i −0.0343368 + 0.300489i
\(430\) 0 0
\(431\) −102.789 + 102.789i −0.238491 + 0.238491i −0.816225 0.577734i \(-0.803937\pi\)
0.577734 + 0.816225i \(0.303937\pi\)
\(432\) 77.1125 0.178501
\(433\) 423.761i 0.978663i −0.872098 0.489332i \(-0.837241\pi\)
0.872098 0.489332i \(-0.162759\pi\)
\(434\) −37.3201 + 37.3201i −0.0859910 + 0.0859910i
\(435\) 0 0
\(436\) −17.1907 17.1907i −0.0394283 0.0394283i
\(437\) −915.071 915.071i −2.09398 2.09398i
\(438\) −107.968 −0.246503
\(439\) 175.599i 0.399998i −0.979796 0.199999i \(-0.935906\pi\)
0.979796 0.199999i \(-0.0640939\pi\)
\(440\) 0 0
\(441\) 550.319i 1.24789i
\(442\) −41.4131 + 362.416i −0.0936949 + 0.819945i
\(443\) 97.0515 0.219078 0.109539 0.993983i \(-0.465063\pi\)
0.109539 + 0.993983i \(0.465063\pi\)
\(444\) 141.452 141.452i 0.318585 0.318585i
\(445\) 0 0
\(446\) 603.675i 1.35353i
\(447\) 266.517 266.517i 0.596235 0.596235i
\(448\) 14.9594 14.9594i 0.0333916 0.0333916i
\(449\) −284.200 284.200i −0.632962 0.632962i 0.315848 0.948810i \(-0.397711\pi\)
−0.948810 + 0.315848i \(0.897711\pi\)
\(450\) 0 0
\(451\) 52.6344 0.116706
\(452\) 337.159i 0.745927i
\(453\) 444.100 + 444.100i 0.980353 + 0.980353i
\(454\) 310.886i 0.684770i
\(455\) 0 0
\(456\) 389.480 0.854123
\(457\) −285.388 + 285.388i −0.624482 + 0.624482i −0.946674 0.322192i \(-0.895580\pi\)
0.322192 + 0.946674i \(0.395580\pi\)
\(458\) 41.8295 0.0913307
\(459\) 382.499i 0.833332i
\(460\) 0 0
\(461\) −197.058 + 197.058i −0.427458 + 0.427458i −0.887762 0.460303i \(-0.847741\pi\)
0.460303 + 0.887762i \(0.347741\pi\)
\(462\) 26.3937 + 26.3937i 0.0571292 + 0.0571292i
\(463\) 120.626 + 120.626i 0.260531 + 0.260531i 0.825270 0.564738i \(-0.191023\pi\)
−0.564738 + 0.825270i \(0.691023\pi\)
\(464\) −96.6499 −0.208297
\(465\) 0 0
\(466\) 335.555 + 335.555i 0.720075 + 0.720075i
\(467\) 537.485i 1.15093i −0.817826 0.575466i \(-0.804821\pi\)
0.817826 0.575466i \(-0.195179\pi\)
\(468\) 266.641 211.952i 0.569746 0.452890i
\(469\) −66.0439 −0.140819
\(470\) 0 0
\(471\) −1087.17 −2.30821
\(472\) 73.7251i 0.156197i
\(473\) −74.5418 + 74.5418i −0.157594 + 0.157594i
\(474\) 680.028 680.028i 1.43466 1.43466i
\(475\) 0 0
\(476\) 74.2029 + 74.2029i 0.155888 + 0.155888i
\(477\) 224.856 0.471396
\(478\) 313.829i 0.656545i
\(479\) 144.980 + 144.980i 0.302672 + 0.302672i 0.842058 0.539387i \(-0.181344\pi\)
−0.539387 + 0.842058i \(0.681344\pi\)
\(480\) 0 0
\(481\) 31.4013 274.800i 0.0652834 0.571309i
\(482\) 210.719 0.437176
\(483\) −388.384 + 388.384i −0.804108 + 0.804108i
\(484\) −232.985 −0.481375
\(485\) 0 0
\(486\) −301.738 + 301.738i −0.620860 + 0.620860i
\(487\) −661.857 + 661.857i −1.35905 + 1.35905i −0.483958 + 0.875091i \(0.660801\pi\)
−0.875091 + 0.483958i \(0.839199\pi\)
\(488\) 33.9017 + 33.9017i 0.0694706 + 0.0694706i
\(489\) 706.644 + 706.644i 1.44508 + 1.44508i
\(490\) 0 0
\(491\) 53.9981i 0.109976i −0.998487 0.0549879i \(-0.982488\pi\)
0.998487 0.0549879i \(-0.0175120\pi\)
\(492\) −164.828 164.828i −0.335017 0.335017i
\(493\) 479.410i 0.972434i
\(494\) 421.554 335.092i 0.853348 0.678325i
\(495\) 0 0
\(496\) 39.9160 39.9160i 0.0804759 0.0804759i
\(497\) −278.422 −0.560205
\(498\) 804.768i 1.61600i
\(499\) 403.192 403.192i 0.808001 0.808001i −0.176330 0.984331i \(-0.556423\pi\)
0.984331 + 0.176330i \(0.0564227\pi\)
\(500\) 0 0
\(501\) 848.707 + 848.707i 1.69403 + 1.69403i
\(502\) −169.558 169.558i −0.337765 0.337765i
\(503\) −624.707 −1.24196 −0.620981 0.783825i \(-0.713266\pi\)
−0.620981 + 0.783825i \(0.713266\pi\)
\(504\) 97.9898i 0.194424i
\(505\) 0 0
\(506\) 132.649i 0.262153i
\(507\) 179.233 774.012i 0.353516 1.52665i
\(508\) 4.80019 0.00944920
\(509\) 61.2684 61.2684i 0.120370 0.120370i −0.644356 0.764726i \(-0.722874\pi\)
0.764726 + 0.644356i \(0.222874\pi\)
\(510\) 0 0
\(511\) 42.9456i 0.0840423i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 399.288 399.288i 0.778340 0.778340i
\(514\) 83.4951 + 83.4951i 0.162442 + 0.162442i
\(515\) 0 0
\(516\) 466.865 0.904778
\(517\) 35.4837i 0.0686339i
\(518\) −56.2640 56.2640i −0.108618 0.108618i
\(519\) 1095.11i 2.11003i
\(520\) 0 0
\(521\) −481.059 −0.923337 −0.461669 0.887052i \(-0.652749\pi\)
−0.461669 + 0.887052i \(0.652749\pi\)
\(522\) −316.546 + 316.546i −0.606411 + 0.606411i
\(523\) 345.672 0.660942 0.330471 0.943816i \(-0.392792\pi\)
0.330471 + 0.943816i \(0.392792\pi\)
\(524\) 109.929i 0.209789i
\(525\) 0 0
\(526\) −83.7827 + 83.7827i −0.159283 + 0.159283i
\(527\) 197.994 + 197.994i 0.375701 + 0.375701i
\(528\) −28.2296 28.2296i −0.0534652 0.0534652i
\(529\) −1422.94 −2.68986
\(530\) 0 0
\(531\) −241.463 241.463i −0.454733 0.454733i
\(532\) 154.920i 0.291203i
\(533\) −320.213 36.5907i −0.600776 0.0686505i
\(534\) −971.925 −1.82008
\(535\) 0 0
\(536\) 70.6379 0.131787
\(537\) 588.991i 1.09682i
\(538\) 112.184 112.184i 0.208520 0.208520i
\(539\) −63.0609 + 63.0609i −0.116996 + 0.116996i
\(540\) 0 0
\(541\) 79.8003 + 79.8003i 0.147505 + 0.147505i 0.777003 0.629497i \(-0.216739\pi\)
−0.629497 + 0.777003i \(0.716739\pi\)
\(542\) 536.860 0.990517
\(543\) 1038.10i 1.91179i
\(544\) −79.3644 79.3644i −0.145890 0.145890i
\(545\) 0 0
\(546\) −142.223 178.921i −0.260483 0.327693i
\(547\) 411.476 0.752241 0.376120 0.926571i \(-0.377258\pi\)
0.376120 + 0.926571i \(0.377258\pi\)
\(548\) 12.8480 12.8480i 0.0234453 0.0234453i
\(549\) 222.068 0.404496
\(550\) 0 0
\(551\) −500.453 + 500.453i −0.908263 + 0.908263i
\(552\) 415.400 415.400i 0.752536 0.752536i
\(553\) −270.488 270.488i −0.489129 0.489129i
\(554\) 278.287 + 278.287i 0.502324 + 0.502324i
\(555\) 0 0
\(556\) 337.203i 0.606481i
\(557\) 446.024 + 446.024i 0.800761 + 0.800761i 0.983214 0.182454i \(-0.0584039\pi\)
−0.182454 + 0.983214i \(0.558404\pi\)
\(558\) 261.465i 0.468575i
\(559\) 505.312 401.672i 0.903958 0.718554i
\(560\) 0 0
\(561\) 140.027 140.027i 0.249602 0.249602i
\(562\) −351.760 −0.625907
\(563\) 628.339i 1.11606i −0.829822 0.558028i \(-0.811558\pi\)
0.829822 0.558028i \(-0.188442\pi\)
\(564\) 111.120 111.120i 0.197021 0.197021i
\(565\) 0 0
\(566\) 465.647 + 465.647i 0.822697 + 0.822697i
\(567\) 51.0067 + 51.0067i 0.0899590 + 0.0899590i
\(568\) 297.788 0.524275
\(569\) 808.201i 1.42039i −0.704006 0.710194i \(-0.748607\pi\)
0.704006 0.710194i \(-0.251393\pi\)
\(570\) 0 0
\(571\) 317.754i 0.556487i −0.960511 0.278244i \(-0.910248\pi\)
0.960511 0.278244i \(-0.0897523\pi\)
\(572\) −54.8419 6.26677i −0.0958775 0.0109559i
\(573\) 1376.33 2.40197
\(574\) −65.5622 + 65.5622i −0.114220 + 0.114220i
\(575\) 0 0
\(576\) 104.806i 0.181955i
\(577\) −610.160 + 610.160i −1.05747 + 1.05747i −0.0592249 + 0.998245i \(0.518863\pi\)
−0.998245 + 0.0592249i \(0.981137\pi\)
\(578\) 104.669 104.669i 0.181088 0.181088i
\(579\) 159.595 + 159.595i 0.275639 + 0.275639i
\(580\) 0 0
\(581\) 320.105 0.550955
\(582\) 1063.06i 1.82656i
\(583\) −25.7662 25.7662i −0.0441958 0.0441958i
\(584\) 45.9329i 0.0786522i
\(585\) 0 0
\(586\) −482.669 −0.823667
\(587\) −126.380 + 126.380i −0.215299 + 0.215299i −0.806514 0.591215i \(-0.798648\pi\)
0.591215 + 0.806514i \(0.298648\pi\)
\(588\) 394.959 0.671699
\(589\) 413.370i 0.701817i
\(590\) 0 0
\(591\) −532.942 + 532.942i −0.901763 + 0.901763i
\(592\) 60.1776 + 60.1776i 0.101651 + 0.101651i
\(593\) 357.867 + 357.867i 0.603486 + 0.603486i 0.941236 0.337750i \(-0.109666\pi\)
−0.337750 + 0.941236i \(0.609666\pi\)
\(594\) −57.8811 −0.0974429
\(595\) 0 0
\(596\) 113.384 + 113.384i 0.190241 + 0.190241i
\(597\) 463.322i 0.776084i
\(598\) 92.2158 807.002i 0.154207 1.34950i
\(599\) 388.454 0.648505 0.324252 0.945971i \(-0.394887\pi\)
0.324252 + 0.945971i \(0.394887\pi\)
\(600\) 0 0
\(601\) −761.564 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(602\) 185.701i 0.308473i
\(603\) 231.352 231.352i 0.383668 0.383668i
\(604\) −188.933 + 188.933i −0.312803 + 0.312803i
\(605\) 0 0
\(606\) −590.256 590.256i −0.974020 0.974020i
\(607\) 674.936 1.11192 0.555961 0.831209i \(-0.312351\pi\)
0.555961 + 0.831209i \(0.312351\pi\)
\(608\) 165.696i 0.272526i
\(609\) 212.408 + 212.408i 0.348781 + 0.348781i
\(610\) 0 0
\(611\) 24.6678 215.873i 0.0403728 0.353312i
\(612\) −519.866 −0.849454
\(613\) −498.707 + 498.707i −0.813552 + 0.813552i −0.985165 0.171613i \(-0.945102\pi\)
0.171613 + 0.985165i \(0.445102\pi\)
\(614\) 560.407 0.912715
\(615\) 0 0
\(616\) −11.2286 + 11.2286i −0.0182283 + 0.0182283i
\(617\) 52.0030 52.0030i 0.0842836 0.0842836i −0.663708 0.747992i \(-0.731018\pi\)
0.747992 + 0.663708i \(0.231018\pi\)
\(618\) −117.150 117.150i −0.189563 0.189563i
\(619\) 95.1831 + 95.1831i 0.153769 + 0.153769i 0.779799 0.626030i \(-0.215321\pi\)
−0.626030 + 0.779799i \(0.715321\pi\)
\(620\) 0 0
\(621\) 851.722i 1.37153i
\(622\) −13.7375 13.7375i −0.0220859 0.0220859i
\(623\) 386.594i 0.620535i
\(624\) 152.116 + 191.366i 0.243776 + 0.306676i
\(625\) 0 0
\(626\) −84.5828 + 84.5828i −0.135116 + 0.135116i
\(627\) −292.346 −0.466261
\(628\) 462.512i 0.736484i
\(629\) −298.498 + 298.498i −0.474559 + 0.474559i
\(630\) 0 0
\(631\) 477.880 + 477.880i 0.757337 + 0.757337i 0.975837 0.218500i \(-0.0701163\pi\)
−0.218500 + 0.975837i \(0.570116\pi\)
\(632\) 289.303 + 289.303i 0.457758 + 0.457758i
\(633\) −1199.83 −1.89546
\(634\) 877.151i 1.38352i
\(635\) 0 0
\(636\) 161.377i 0.253737i
\(637\) 427.485 339.806i 0.671090 0.533448i
\(638\) 72.5459 0.113708
\(639\) 975.312 975.312i 1.52631 1.52631i
\(640\) 0 0
\(641\) 104.344i 0.162783i 0.996682 + 0.0813916i \(0.0259364\pi\)
−0.996682 + 0.0813916i \(0.974064\pi\)
\(642\) −743.107 + 743.107i −1.15749 + 1.15749i
\(643\) −208.375 + 208.375i −0.324066 + 0.324066i −0.850325 0.526258i \(-0.823595\pi\)
0.526258 + 0.850325i \(0.323595\pi\)
\(644\) −165.230 165.230i −0.256568 0.256568i
\(645\) 0 0
\(646\) −821.897 −1.27229
\(647\) 31.5847i 0.0488171i −0.999702 0.0244085i \(-0.992230\pi\)
0.999702 0.0244085i \(-0.00777025\pi\)
\(648\) −54.5547 54.5547i −0.0841894 0.0841894i
\(649\) 55.3385i 0.0852673i
\(650\) 0 0
\(651\) −175.447 −0.269504
\(652\) −300.626 + 300.626i −0.461084 + 0.461084i
\(653\) 468.398 0.717302 0.358651 0.933472i \(-0.383237\pi\)
0.358651 + 0.933472i \(0.383237\pi\)
\(654\) 80.8161i 0.123572i
\(655\) 0 0
\(656\) 70.1226 70.1226i 0.106894 0.106894i
\(657\) −150.439 150.439i −0.228978 0.228978i
\(658\) −44.1990 44.1990i −0.0671718 0.0671718i
\(659\) 252.033 0.382447 0.191224 0.981546i \(-0.438754\pi\)
0.191224 + 0.981546i \(0.438754\pi\)
\(660\) 0 0
\(661\) 93.5969 + 93.5969i 0.141599 + 0.141599i 0.774353 0.632754i \(-0.218076\pi\)
−0.632754 + 0.774353i \(0.718076\pi\)
\(662\) 43.4909i 0.0656962i
\(663\) −949.228 + 754.539i −1.43172 + 1.13807i
\(664\) −342.371 −0.515619
\(665\) 0 0
\(666\) 394.186 0.591870
\(667\) 1067.52i 1.60047i
\(668\) −361.064 + 361.064i −0.540516 + 0.540516i
\(669\) −1418.98 + 1418.98i −2.12105 + 2.12105i
\(670\) 0 0
\(671\) −25.4468 25.4468i −0.0379236 0.0379236i
\(672\) 70.3264 0.104652
\(673\) 41.0765i 0.0610348i 0.999534 + 0.0305174i \(0.00971551\pi\)
−0.999534 + 0.0305174i \(0.990284\pi\)
\(674\) −364.125 364.125i −0.540245 0.540245i
\(675\) 0 0
\(676\) 329.287 + 76.2507i 0.487111 + 0.112797i
\(677\) −980.144 −1.44778 −0.723888 0.689918i \(-0.757647\pi\)
−0.723888 + 0.689918i \(0.757647\pi\)
\(678\) −792.516 + 792.516i −1.16890 + 1.16890i
\(679\) −422.842 −0.622742
\(680\) 0 0
\(681\) 730.759 730.759i 1.07307 1.07307i
\(682\) −29.9612 + 29.9612i −0.0439313 + 0.0439313i
\(683\) 351.524 + 351.524i 0.514676 + 0.514676i 0.915956 0.401279i \(-0.131434\pi\)
−0.401279 + 0.915956i \(0.631434\pi\)
\(684\) 542.684 + 542.684i 0.793398 + 0.793398i
\(685\) 0 0
\(686\) 340.352i 0.496140i
\(687\) 98.3231 + 98.3231i 0.143120 + 0.143120i
\(688\) 198.618i 0.288689i
\(689\) 138.842 + 174.667i 0.201512 + 0.253507i
\(690\) 0 0
\(691\) −612.276 + 612.276i −0.886072 + 0.886072i −0.994143 0.108071i \(-0.965533\pi\)
0.108071 + 0.994143i \(0.465533\pi\)
\(692\) 465.890 0.673251
\(693\) 73.5516i 0.106135i
\(694\) −185.153 + 185.153i −0.266791 + 0.266791i
\(695\) 0 0
\(696\) −227.183 227.183i −0.326412 0.326412i
\(697\) 347.828 + 347.828i 0.499035 + 0.499035i
\(698\) −279.772 −0.400820
\(699\) 1577.49i 2.25678i
\(700\) 0 0
\(701\) 1039.77i 1.48327i 0.670804 + 0.741635i \(0.265949\pi\)
−0.670804 + 0.741635i \(0.734051\pi\)
\(702\) 352.133 + 40.2381i 0.501614 + 0.0573192i
\(703\) 623.199 0.886485
\(704\) 12.0097 12.0097i 0.0170592 0.0170592i
\(705\) 0 0
\(706\) 387.967i 0.549528i
\(707\) −234.781 + 234.781i −0.332080 + 0.332080i
\(708\) 173.296 173.296i 0.244769 0.244769i
\(709\) −336.761 336.761i −0.474981 0.474981i 0.428542 0.903522i \(-0.359028\pi\)
−0.903522 + 0.428542i \(0.859028\pi\)
\(710\) 0 0
\(711\) 1895.04 2.66532
\(712\) 413.485i 0.580737i
\(713\) −440.880 440.880i −0.618345 0.618345i
\(714\) 348.838i 0.488569i
\(715\) 0 0
\(716\) 250.574 0.349963
\(717\) −737.677 + 737.677i −1.02884 + 1.02884i
\(718\) 216.100 0.300975
\(719\) 25.7066i 0.0357533i 0.999840 + 0.0178766i \(0.00569062\pi\)
−0.999840 + 0.0178766i \(0.994309\pi\)
\(720\) 0 0
\(721\) −46.5978 + 46.5978i −0.0646293 + 0.0646293i
\(722\) 496.973 + 496.973i 0.688328 + 0.688328i
\(723\) 495.309 + 495.309i 0.685075 + 0.685075i
\(724\) 441.639 0.609999
\(725\) 0 0
\(726\) −547.649 547.649i −0.754337 0.754337i
\(727\) 98.7160i 0.135785i 0.997693 + 0.0678927i \(0.0216276\pi\)
−0.997693 + 0.0678927i \(0.978372\pi\)
\(728\) 76.1179 60.5059i 0.104558 0.0831125i
\(729\) −1173.02 −1.60908
\(730\) 0 0
\(731\) −985.199 −1.34774
\(732\) 159.376i 0.217727i
\(733\) 70.0366 70.0366i 0.0955479 0.0955479i −0.657717 0.753265i \(-0.728478\pi\)
0.753265 + 0.657717i \(0.228478\pi\)
\(734\) −35.1926 + 35.1926i −0.0479464 + 0.0479464i
\(735\) 0 0
\(736\) 176.723 + 176.723i 0.240113 + 0.240113i
\(737\) −53.0212 −0.0719419
\(738\) 459.329i 0.622397i
\(739\) 884.117 + 884.117i 1.19637 + 1.19637i 0.975246 + 0.221124i \(0.0709724\pi\)
0.221124 + 0.975246i \(0.429028\pi\)
\(740\) 0 0
\(741\) 1778.55 + 203.235i 2.40020 + 0.274271i
\(742\) 64.1894 0.0865087
\(743\) 236.735 236.735i 0.318621 0.318621i −0.529617 0.848237i \(-0.677664\pi\)
0.848237 + 0.529617i \(0.177664\pi\)
\(744\) 187.651 0.252219
\(745\) 0 0
\(746\) −666.073 + 666.073i −0.892859 + 0.892859i
\(747\) −1121.33 + 1121.33i −1.50111 + 1.50111i
\(748\) 59.5713 + 59.5713i 0.0796408 + 0.0796408i
\(749\) 295.579 + 295.579i 0.394631 + 0.394631i
\(750\) 0 0
\(751\) 1099.03i 1.46343i −0.681612 0.731714i \(-0.738721\pi\)
0.681612 0.731714i \(-0.261279\pi\)
\(752\) 47.2735 + 47.2735i 0.0628637 + 0.0628637i
\(753\) 797.116i 1.05859i
\(754\) −441.350 50.4329i −0.585344 0.0668871i
\(755\) 0 0
\(756\) 72.0975 72.0975i 0.0953671 0.0953671i
\(757\) 718.877 0.949639 0.474819 0.880083i \(-0.342513\pi\)
0.474819 + 0.880083i \(0.342513\pi\)
\(758\) 527.629i 0.696081i
\(759\) −311.801 + 311.801i −0.410805 + 0.410805i
\(760\) 0 0
\(761\) −2.13237 2.13237i −0.00280207 0.00280207i 0.705704 0.708506i \(-0.250631\pi\)
−0.708506 + 0.705704i \(0.750631\pi\)
\(762\) 11.2832 + 11.2832i 0.0148073 + 0.0148073i
\(763\) −32.1455 −0.0421304
\(764\) 585.529i 0.766400i
\(765\) 0 0
\(766\) 701.772i 0.916151i
\(767\) 38.4705 336.664i 0.0501571 0.438936i
\(768\) −75.2183 −0.0979405
\(769\) −788.894 + 788.894i −1.02587 + 1.02587i −0.0262133 + 0.999656i \(0.508345\pi\)
−0.999656 + 0.0262133i \(0.991655\pi\)
\(770\) 0 0
\(771\) 392.522i 0.509108i
\(772\) −67.8964 + 67.8964i −0.0879487 + 0.0879487i
\(773\) −777.339 + 777.339i −1.00561 + 1.00561i −0.00562865 + 0.999984i \(0.501792\pi\)
−0.999984 + 0.00562865i \(0.998208\pi\)
\(774\) 650.510 + 650.510i 0.840452 + 0.840452i
\(775\) 0 0
\(776\) 452.254 0.582802
\(777\) 264.505i 0.340418i
\(778\) −563.670 563.670i −0.724512 0.724512i
\(779\) 726.190i 0.932207i
\(780\) 0 0
\(781\) −223.522 −0.286199
\(782\) −876.594 + 876.594i −1.12096 + 1.12096i
\(783\) −465.808 −0.594901
\(784\) 168.027i 0.214320i
\(785\) 0 0
\(786\) 258.397 258.397i 0.328749 0.328749i
\(787\) −924.344 924.344i −1.17452 1.17452i −0.981121 0.193395i \(-0.938050\pi\)
−0.193395 0.981121i \(-0.561950\pi\)
\(788\) −226.729 226.729i −0.287727 0.287727i
\(789\) −393.874 −0.499207
\(790\) 0 0
\(791\) 315.232 + 315.232i 0.398523 + 0.398523i
\(792\) 78.6678i 0.0993281i
\(793\) 137.121 + 172.501i 0.172914 + 0.217530i
\(794\) −153.194 −0.192939
\(795\) 0 0
\(796\) −197.110 −0.247626
\(797\) 619.505i 0.777297i 0.921386 + 0.388648i \(0.127058\pi\)
−0.921386 + 0.388648i \(0.872942\pi\)
\(798\) 364.150 364.150i 0.456328 0.456328i
\(799\) −234.489 + 234.489i −0.293479 + 0.293479i
\(800\) 0 0
\(801\) −1354.24 1354.24i −1.69068 1.69068i
\(802\) 968.818 1.20800
\(803\) 34.4775i 0.0429358i
\(804\) 166.039 + 166.039i 0.206517 + 0.206517i
\(805\) 0 0
\(806\) 203.104 161.447i 0.251990 0.200307i
\(807\) 527.392 0.653521
\(808\) 251.112 251.112i 0.310782 0.310782i
\(809\) 834.817 1.03191 0.515956 0.856615i \(-0.327437\pi\)
0.515956 + 0.856615i \(0.327437\pi\)
\(810\) 0 0
\(811\) 171.743 171.743i 0.211766 0.211766i −0.593251 0.805018i \(-0.702156\pi\)
0.805018 + 0.593251i \(0.202156\pi\)
\(812\) −90.3643 + 90.3643i −0.111286 + 0.111286i
\(813\) 1261.93 + 1261.93i 1.55219 + 1.55219i
\(814\) −45.1696 45.1696i −0.0554910 0.0554910i
\(815\) 0 0
\(816\) 373.103i 0.457234i
\(817\) 1028.44 + 1028.44i 1.25880 + 1.25880i
\(818\) 618.758i 0.756428i
\(819\) 51.1321 447.468i 0.0624323 0.546359i
\(820\) 0 0
\(821\) −196.299 + 196.299i −0.239097 + 0.239097i −0.816476 0.577379i \(-0.804075\pi\)
0.577379 + 0.816476i \(0.304075\pi\)
\(822\) 60.4004 0.0734798
\(823\) 782.315i 0.950565i −0.879833 0.475282i \(-0.842346\pi\)
0.879833 0.475282i \(-0.157654\pi\)
\(824\) 49.8391 49.8391i 0.0604843 0.0604843i
\(825\) 0 0
\(826\) −68.9304 68.9304i −0.0834508 0.0834508i
\(827\) −574.071 574.071i −0.694161 0.694161i 0.268984 0.963145i \(-0.413312\pi\)
−0.963145 + 0.268984i \(0.913312\pi\)
\(828\) 1157.60 1.39807
\(829\) 646.610i 0.779988i −0.920817 0.389994i \(-0.872477\pi\)
0.920817 0.389994i \(-0.127523\pi\)
\(830\) 0 0
\(831\) 1308.27i 1.57433i
\(832\) −81.4126 + 64.7147i −0.0978517 + 0.0777821i
\(833\) −833.459 −1.00055
\(834\) −792.620 + 792.620i −0.950384 + 0.950384i
\(835\) 0 0
\(836\) 124.372i 0.148771i
\(837\) 192.377 192.377i 0.229841 0.229841i
\(838\) −147.503 + 147.503i −0.176018 + 0.176018i
\(839\) −48.7532 48.7532i −0.0581087 0.0581087i 0.677455 0.735564i \(-0.263083\pi\)
−0.735564 + 0.677455i \(0.763083\pi\)
\(840\) 0 0
\(841\) −257.174 −0.305796
\(842\) 314.247i 0.373215i
\(843\) −826.836 826.836i −0.980825 0.980825i
\(844\) 510.441i 0.604788i
\(845\) 0 0
\(846\) 309.659 0.366027
\(847\) −217.833 + 217.833i −0.257182 + 0.257182i
\(848\) −68.6544 −0.0809604
\(849\) 2189.07i 2.57841i
\(850\) 0 0
\(851\) 664.673 664.673i 0.781050 0.781050i
\(852\) 699.973 + 699.973i 0.821564 + 0.821564i
\(853\) −189.455 189.455i −0.222104 0.222104i 0.587280 0.809384i \(-0.300199\pi\)
−0.809384 + 0.587280i \(0.800199\pi\)
\(854\) 63.3937 0.0742315
\(855\) 0 0
\(856\) −316.139 316.139i −0.369321 0.369321i
\(857\) 644.425i 0.751954i −0.926629 0.375977i \(-0.877307\pi\)
0.926629 0.375977i \(-0.122693\pi\)
\(858\) −114.179 143.640i −0.133076 0.167413i
\(859\) −78.4060 −0.0912759 −0.0456379 0.998958i \(-0.514532\pi\)
−0.0456379 + 0.998958i \(0.514532\pi\)
\(860\) 0 0
\(861\) −308.217 −0.357976
\(862\) 205.579i 0.238491i
\(863\) 255.051 255.051i 0.295540 0.295540i −0.543724 0.839264i \(-0.682986\pi\)
0.839264 + 0.543724i \(0.182986\pi\)
\(864\) −77.1125 + 77.1125i −0.0892506 + 0.0892506i
\(865\) 0 0
\(866\) 423.761 + 423.761i 0.489332 + 0.489332i
\(867\) 492.064 0.567548
\(868\) 74.6402i 0.0859910i
\(869\) −217.153 217.153i −0.249888 0.249888i
\(870\) 0 0
\(871\) 322.566 + 36.8595i 0.370340 + 0.0423187i
\(872\) 34.3815 0.0394283
\(873\) 1481.22 1481.22i 1.69670 1.69670i
\(874\) 1830.14 2.09398
\(875\) 0 0
\(876\) 107.968 107.968i 0.123252 0.123252i
\(877\) 473.757 473.757i 0.540202 0.540202i −0.383386 0.923588i \(-0.625242\pi\)
0.923588 + 0.383386i \(0.125242\pi\)
\(878\) 175.599 + 175.599i 0.199999 + 0.199999i
\(879\) −1134.55 1134.55i −1.29073 1.29073i
\(880\) 0 0
\(881\) 181.000i 0.205448i −0.994710 0.102724i \(-0.967244\pi\)
0.994710 0.102724i \(-0.0327559\pi\)
\(882\) 550.319 + 550.319i 0.623944 + 0.623944i
\(883\) 211.169i 0.239150i −0.992825 0.119575i \(-0.961847\pi\)
0.992825 0.119575i \(-0.0381532\pi\)
\(884\) −321.002 403.829i −0.363125 0.456820i
\(885\) 0 0
\(886\) −97.0515 + 97.0515i −0.109539 + 0.109539i
\(887\) −86.2904 −0.0972835 −0.0486417 0.998816i \(-0.515489\pi\)
−0.0486417 + 0.998816i \(0.515489\pi\)
\(888\) 282.904i 0.318585i
\(889\) 4.48801 4.48801i 0.00504838 0.00504838i
\(890\) 0 0
\(891\) 40.9491 + 40.9491i 0.0459585 + 0.0459585i
\(892\) −603.675 603.675i −0.676766 0.676766i
\(893\) 489.564 0.548224
\(894\) 533.034i 0.596235i
\(895\) 0 0
\(896\) 29.9189i 0.0333916i
\(897\) 2113.67 1680.15i 2.35638 1.87308i
\(898\) 568.400 0.632962
\(899\) −241.118 + 241.118i −0.268206 + 0.268206i
\(900\) 0 0
\(901\) 340.545i 0.377963i
\(902\) −52.6344 + 52.6344i −0.0583530 + 0.0583530i
\(903\) 436.503 436.503i 0.483392 0.483392i
\(904\) −337.159 337.159i −0.372963 0.372963i
\(905\) 0 0
\(906\) −888.200 −0.980353
\(907\) 737.549i 0.813175i −0.913612 0.406587i \(-0.866719\pi\)
0.913612 0.406587i \(-0.133281\pi\)
\(908\) 310.886 + 310.886i 0.342385 + 0.342385i
\(909\) 1644.87i 1.80954i
\(910\) 0 0
\(911\) 1267.14 1.39094 0.695469 0.718556i \(-0.255197\pi\)
0.695469 + 0.718556i \(0.255197\pi\)
\(912\) −389.480 + 389.480i −0.427061 + 0.427061i
\(913\) 256.986 0.281474
\(914\) 570.776i 0.624482i
\(915\) 0 0
\(916\) −41.8295 + 41.8295i −0.0456653 + 0.0456653i
\(917\) −102.780 102.780i −0.112083 0.112083i
\(918\) −382.499 382.499i −0.416666 0.416666i
\(919\) 275.951 0.300273 0.150137 0.988665i \(-0.452029\pi\)
0.150137 + 0.988665i \(0.452029\pi\)
\(920\) 0 0
\(921\) 1317.28 + 1317.28i 1.43027 + 1.43027i
\(922\) 394.116i 0.427458i
\(923\) 1359.84 + 155.389i 1.47329 + 0.168352i
\(924\) −52.7874 −0.0571292
\(925\) 0 0
\(926\) −241.252 −0.260531
\(927\) 326.464i 0.352173i
\(928\) 96.6499 96.6499i 0.104149 0.104149i
\(929\) 757.514 757.514i 0.815408 0.815408i −0.170031 0.985439i \(-0.554387\pi\)
0.985439 + 0.170031i \(0.0543867\pi\)
\(930\) 0 0
\(931\) 870.043 + 870.043i 0.934525 + 0.934525i
\(932\) −671.110 −0.720075
\(933\) 64.5817i 0.0692194i
\(934\) 537.485 + 537.485i 0.575466 + 0.575466i
\(935\) 0 0
\(936\) −54.6888 + 478.594i −0.0584282 + 0.511318i
\(937\) −57.6262 −0.0615007 −0.0307504 0.999527i \(-0.509790\pi\)
−0.0307504 + 0.999527i \(0.509790\pi\)
\(938\) 66.0439 66.0439i 0.0704093 0.0704093i
\(939\) −397.636 −0.423467
\(940\) 0 0
\(941\) −902.679 + 902.679i −0.959277 + 0.959277i −0.999203 0.0399261i \(-0.987288\pi\)
0.0399261 + 0.999203i \(0.487288\pi\)
\(942\) 1087.17 1087.17i 1.15411 1.15411i
\(943\) −774.518 774.518i −0.821334 0.821334i
\(944\) 73.7251 + 73.7251i 0.0780986 + 0.0780986i
\(945\) 0 0
\(946\) 149.084i 0.157594i
\(947\) 341.194 + 341.194i 0.360289 + 0.360289i 0.863919 0.503630i \(-0.168003\pi\)
−0.503630 + 0.863919i \(0.668003\pi\)
\(948\) 1360.06i 1.43466i
\(949\) 23.9682 209.751i 0.0252563 0.221024i
\(950\) 0 0
\(951\) −2061.81 + 2061.81i −2.16804 + 2.16804i
\(952\) −148.406 −0.155888
\(953\) 1754.80i 1.84134i −0.390337 0.920672i \(-0.627641\pi\)
0.390337 0.920672i \(-0.372359\pi\)
\(954\) −224.856 + 224.856i −0.235698 + 0.235698i
\(955\) 0 0
\(956\) −313.829 313.829i −0.328273 0.328273i
\(957\) 170.524 + 170.524i 0.178186 + 0.178186i
\(958\) −289.959 −0.302672
\(959\) 24.0249i 0.0250520i
\(960\) 0 0
\(961\) 761.839i 0.792756i
\(962\) 243.399 + 306.201i 0.253013 + 0.318296i
\(963\) −2070.83 −2.15039
\(964\) −210.719 + 210.719i −0.218588 + 0.218588i
\(965\) 0 0
\(966\) 776.768i 0.804108i
\(967\) −1265.44 + 1265.44i −1.30863 + 1.30863i −0.386217 + 0.922408i \(0.626219\pi\)
−0.922408 + 0.386217i \(0.873781\pi\)
\(968\) 232.985 232.985i 0.240687 0.240687i
\(969\) −1931.93 1931.93i −1.99373 1.99373i
\(970\) 0 0
\(971\) −23.0027 −0.0236897 −0.0118448 0.999930i \(-0.503770\pi\)
−0.0118448 + 0.999930i \(0.503770\pi\)
\(972\) 603.476i 0.620860i
\(973\) 315.273 + 315.273i 0.324022 + 0.324022i
\(974\) 1323.71i 1.35905i
\(975\) 0 0
\(976\) −67.8033 −0.0694706
\(977\) −79.6072 + 79.6072i −0.0814812 + 0.0814812i −0.746673 0.665192i \(-0.768350\pi\)
0.665192 + 0.746673i \(0.268350\pi\)
\(978\) −1413.29 −1.44508
\(979\) 310.364i 0.317021i
\(980\) 0 0
\(981\) 112.606 112.606i 0.114787 0.114787i
\(982\) 53.9981 + 53.9981i 0.0549879 + 0.0549879i
\(983\) −1001.39 1001.39i −1.01870 1.01870i −0.999822 0.0188828i \(-0.993989\pi\)
−0.0188828 0.999822i \(-0.506011\pi\)
\(984\) 329.657 0.335017
\(985\) 0 0
\(986\) 479.410 + 479.410i 0.486217 + 0.486217i
\(987\) 207.786i 0.210523i
\(988\) −86.4618 + 756.647i −0.0875119 + 0.765837i
\(989\) 2193.77 2.21817
\(990\) 0 0
\(991\) 997.813 1.00688 0.503438 0.864032i \(-0.332068\pi\)
0.503438 + 0.864032i \(0.332068\pi\)
\(992\) 79.8321i 0.0804759i
\(993\) −102.228 + 102.228i −0.102949 + 0.102949i
\(994\) 278.422 278.422i 0.280102 0.280102i
\(995\) 0 0
\(996\) −804.768 804.768i −0.808000 0.808000i
\(997\) −1138.16 −1.14158 −0.570792 0.821095i \(-0.693364\pi\)
−0.570792 + 0.821095i \(0.693364\pi\)
\(998\) 806.385i 0.808001i
\(999\) 290.028 + 290.028i 0.290318 + 0.290318i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.k.j.551.1 12
5.2 odd 4 650.3.f.k.499.6 12
5.3 odd 4 650.3.f.n.499.1 12
5.4 even 2 130.3.k.b.31.6 yes 12
13.8 odd 4 inner 650.3.k.j.151.1 12
15.14 odd 2 1170.3.r.a.811.5 12
65.8 even 4 650.3.f.k.99.1 12
65.34 odd 4 130.3.k.b.21.6 12
65.47 even 4 650.3.f.n.99.6 12
195.164 even 4 1170.3.r.a.541.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.3.k.b.21.6 12 65.34 odd 4
130.3.k.b.31.6 yes 12 5.4 even 2
650.3.f.k.99.1 12 65.8 even 4
650.3.f.k.499.6 12 5.2 odd 4
650.3.f.n.99.6 12 65.47 even 4
650.3.f.n.499.1 12 5.3 odd 4
650.3.k.j.151.1 12 13.8 odd 4 inner
650.3.k.j.551.1 12 1.1 even 1 trivial
1170.3.r.a.541.5 12 195.164 even 4
1170.3.r.a.811.5 12 15.14 odd 2