Properties

Label 650.3.f.k.499.6
Level $650$
Weight $3$
Character 650.499
Analytic conductor $17.711$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(99,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 92x^{10} + 3284x^{8} + 58196x^{6} + 540184x^{4} + 2488032x^{2} + 4435236 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 499.6
Root \(4.70114i\) of defining polynomial
Character \(\chi\) \(=\) 650.499
Dual form 650.3.f.k.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +4.70114i q^{3} +2.00000i q^{4} +(4.70114 - 4.70114i) q^{6} +(1.86993 - 1.86993i) q^{7} +(2.00000 - 2.00000i) q^{8} -13.1007 q^{9} +(-1.50121 - 1.50121i) q^{11} -9.40228 q^{12} +(10.1766 - 8.08933i) q^{13} -3.73986 q^{14} -4.00000 q^{16} +19.8411 q^{17} +(13.1007 + 13.1007i) q^{18} +(20.7120 - 20.7120i) q^{19} +(8.79080 + 8.79080i) q^{21} +3.00242i q^{22} +44.1807 q^{23} +(9.40228 + 9.40228i) q^{24} +(-18.2659 - 2.08724i) q^{26} -19.2781i q^{27} +(3.73986 + 3.73986i) q^{28} -24.1625 q^{29} +(-9.97901 + 9.97901i) q^{31} +(4.00000 + 4.00000i) q^{32} +(7.05740 - 7.05740i) q^{33} +(-19.8411 - 19.8411i) q^{34} -26.2015i q^{36} +(15.0444 - 15.0444i) q^{37} -41.4240 q^{38} +(38.0291 + 47.8415i) q^{39} +(-17.5307 + 17.5307i) q^{41} -17.5816i q^{42} -49.6545 q^{43} +(3.00242 - 3.00242i) q^{44} +(-44.1807 - 44.1807i) q^{46} +(11.8184 - 11.8184i) q^{47} -18.8046i q^{48} +42.0067i q^{49} +93.2758i q^{51} +(16.1787 + 20.3531i) q^{52} -17.1636i q^{53} +(-19.2781 + 19.2781i) q^{54} -7.47972i q^{56} +(97.3700 + 97.3700i) q^{57} +(24.1625 + 24.1625i) q^{58} +(18.4313 + 18.4313i) q^{59} +16.9508 q^{61} +19.9580 q^{62} +(-24.4974 + 24.4974i) q^{63} -8.00000i q^{64} -14.1148 q^{66} +(17.6595 + 17.6595i) q^{67} +39.6822i q^{68} +207.700i q^{69} +(74.4471 - 74.4471i) q^{71} +(-26.2015 + 26.2015i) q^{72} +(-11.4832 + 11.4832i) q^{73} -30.0888 q^{74} +(41.4240 + 41.4240i) q^{76} -5.61431 q^{77} +(9.81241 - 85.8706i) q^{78} -144.652 q^{79} -27.2774 q^{81} +35.0613 q^{82} +(85.5928 + 85.5928i) q^{83} +(-17.5816 + 17.5816i) q^{84} +(49.6545 + 49.6545i) q^{86} -113.591i q^{87} -6.00484 q^{88} +(103.371 + 103.371i) q^{89} +(3.90299 - 34.1560i) q^{91} +88.3615i q^{92} +(-46.9127 - 46.9127i) q^{93} -23.6367 q^{94} +(-18.8046 + 18.8046i) q^{96} +(113.064 + 113.064i) q^{97} +(42.0067 - 42.0067i) q^{98} +(19.6670 + 19.6670i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 8 q^{7} + 24 q^{8} - 76 q^{9} - 16 q^{11} - 44 q^{13} + 16 q^{14} - 48 q^{16} + 32 q^{17} + 76 q^{18} + 68 q^{19} - 44 q^{21} - 16 q^{23} + 24 q^{26} - 16 q^{28} - 216 q^{29} + 64 q^{31}+ \cdots - 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 4.70114i 1.56705i 0.621362 + 0.783524i \(0.286580\pi\)
−0.621362 + 0.783524i \(0.713420\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 4.70114 4.70114i 0.783524 0.783524i
\(7\) 1.86993 1.86993i 0.267133 0.267133i −0.560811 0.827944i \(-0.689511\pi\)
0.827944 + 0.560811i \(0.189511\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −13.1007 −1.45564
\(10\) 0 0
\(11\) −1.50121 1.50121i −0.136474 0.136474i 0.635570 0.772043i \(-0.280765\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(12\) −9.40228 −0.783524
\(13\) 10.1766 8.08933i 0.782813 0.622256i
\(14\) −3.73986 −0.267133
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 19.8411 1.16712 0.583562 0.812069i \(-0.301659\pi\)
0.583562 + 0.812069i \(0.301659\pi\)
\(18\) 13.1007 + 13.1007i 0.727819 + 0.727819i
\(19\) 20.7120 20.7120i 1.09010 1.09010i 0.0945880 0.995517i \(-0.469847\pi\)
0.995517 0.0945880i \(-0.0301534\pi\)
\(20\) 0 0
\(21\) 8.79080 + 8.79080i 0.418610 + 0.418610i
\(22\) 3.00242i 0.136474i
\(23\) 44.1807 1.92090 0.960451 0.278449i \(-0.0898203\pi\)
0.960451 + 0.278449i \(0.0898203\pi\)
\(24\) 9.40228 + 9.40228i 0.391762 + 0.391762i
\(25\) 0 0
\(26\) −18.2659 2.08724i −0.702535 0.0802785i
\(27\) 19.2781i 0.714005i
\(28\) 3.73986 + 3.73986i 0.133566 + 0.133566i
\(29\) −24.1625 −0.833189 −0.416595 0.909092i \(-0.636777\pi\)
−0.416595 + 0.909092i \(0.636777\pi\)
\(30\) 0 0
\(31\) −9.97901 + 9.97901i −0.321903 + 0.321903i −0.849497 0.527594i \(-0.823094\pi\)
0.527594 + 0.849497i \(0.323094\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 7.05740 7.05740i 0.213861 0.213861i
\(34\) −19.8411 19.8411i −0.583562 0.583562i
\(35\) 0 0
\(36\) 26.2015i 0.727819i
\(37\) 15.0444 15.0444i 0.406606 0.406606i −0.473947 0.880553i \(-0.657171\pi\)
0.880553 + 0.473947i \(0.157171\pi\)
\(38\) −41.4240 −1.09010
\(39\) 38.0291 + 47.8415i 0.975105 + 1.22671i
\(40\) 0 0
\(41\) −17.5307 + 17.5307i −0.427577 + 0.427577i −0.887802 0.460225i \(-0.847769\pi\)
0.460225 + 0.887802i \(0.347769\pi\)
\(42\) 17.5816i 0.418610i
\(43\) −49.6545 −1.15475 −0.577377 0.816477i \(-0.695924\pi\)
−0.577377 + 0.816477i \(0.695924\pi\)
\(44\) 3.00242 3.00242i 0.0682368 0.0682368i
\(45\) 0 0
\(46\) −44.1807 44.1807i −0.960451 0.960451i
\(47\) 11.8184 11.8184i 0.251455 0.251455i −0.570112 0.821567i \(-0.693100\pi\)
0.821567 + 0.570112i \(0.193100\pi\)
\(48\) 18.8046i 0.391762i
\(49\) 42.0067i 0.857280i
\(50\) 0 0
\(51\) 93.2758i 1.82894i
\(52\) 16.1787 + 20.3531i 0.311128 + 0.391407i
\(53\) 17.1636i 0.323842i −0.986804 0.161921i \(-0.948231\pi\)
0.986804 0.161921i \(-0.0517689\pi\)
\(54\) −19.2781 + 19.2781i −0.357003 + 0.357003i
\(55\) 0 0
\(56\) 7.47972i 0.133566i
\(57\) 97.3700 + 97.3700i 1.70825 + 1.70825i
\(58\) 24.1625 + 24.1625i 0.416595 + 0.416595i
\(59\) 18.4313 + 18.4313i 0.312395 + 0.312395i 0.845837 0.533442i \(-0.179102\pi\)
−0.533442 + 0.845837i \(0.679102\pi\)
\(60\) 0 0
\(61\) 16.9508 0.277882 0.138941 0.990301i \(-0.455630\pi\)
0.138941 + 0.990301i \(0.455630\pi\)
\(62\) 19.9580 0.321903
\(63\) −24.4974 + 24.4974i −0.388848 + 0.388848i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −14.1148 −0.213861
\(67\) 17.6595 + 17.6595i 0.263574 + 0.263574i 0.826504 0.562930i \(-0.190326\pi\)
−0.562930 + 0.826504i \(0.690326\pi\)
\(68\) 39.6822i 0.583562i
\(69\) 207.700i 3.01014i
\(70\) 0 0
\(71\) 74.4471 74.4471i 1.04855 1.04855i 0.0497912 0.998760i \(-0.484144\pi\)
0.998760 0.0497912i \(-0.0158556\pi\)
\(72\) −26.2015 + 26.2015i −0.363909 + 0.363909i
\(73\) −11.4832 + 11.4832i −0.157304 + 0.157304i −0.781371 0.624067i \(-0.785479\pi\)
0.624067 + 0.781371i \(0.285479\pi\)
\(74\) −30.0888 −0.406606
\(75\) 0 0
\(76\) 41.4240 + 41.4240i 0.545052 + 0.545052i
\(77\) −5.61431 −0.0729132
\(78\) 9.81241 85.8706i 0.125800 1.10091i
\(79\) −144.652 −1.83103 −0.915517 0.402280i \(-0.868218\pi\)
−0.915517 + 0.402280i \(0.868218\pi\)
\(80\) 0 0
\(81\) −27.2774 −0.336758
\(82\) 35.0613 0.427577
\(83\) 85.5928 + 85.5928i 1.03124 + 1.03124i 0.999496 + 0.0317424i \(0.0101056\pi\)
0.0317424 + 0.999496i \(0.489894\pi\)
\(84\) −17.5816 + 17.5816i −0.209305 + 0.209305i
\(85\) 0 0
\(86\) 49.6545 + 49.6545i 0.577377 + 0.577377i
\(87\) 113.591i 1.30565i
\(88\) −6.00484 −0.0682368
\(89\) 103.371 + 103.371i 1.16147 + 1.16147i 0.984153 + 0.177321i \(0.0567430\pi\)
0.177321 + 0.984153i \(0.443257\pi\)
\(90\) 0 0
\(91\) 3.90299 34.1560i 0.0428900 0.375340i
\(92\) 88.3615i 0.960451i
\(93\) −46.9127 46.9127i −0.504438 0.504438i
\(94\) −23.6367 −0.251455
\(95\) 0 0
\(96\) −18.8046 + 18.8046i −0.195881 + 0.195881i
\(97\) 113.064 + 113.064i 1.16560 + 1.16560i 0.983229 + 0.182375i \(0.0583785\pi\)
0.182375 + 0.983229i \(0.441621\pi\)
\(98\) 42.0067 42.0067i 0.428640 0.428640i
\(99\) 19.6670 + 19.6670i 0.198656 + 0.198656i
\(100\) 0 0
\(101\) 125.556i 1.24313i −0.783364 0.621564i \(-0.786498\pi\)
0.783364 0.621564i \(-0.213502\pi\)
\(102\) 93.2758 93.2758i 0.914469 0.914469i
\(103\) −24.9195 −0.241937 −0.120969 0.992656i \(-0.538600\pi\)
−0.120969 + 0.992656i \(0.538600\pi\)
\(104\) 4.17448 36.5318i 0.0401392 0.351267i
\(105\) 0 0
\(106\) −17.1636 + 17.1636i −0.161921 + 0.161921i
\(107\) 158.069i 1.47728i −0.674097 0.738642i \(-0.735467\pi\)
0.674097 0.738642i \(-0.264533\pi\)
\(108\) 38.5563 0.357003
\(109\) −8.59537 + 8.59537i −0.0788566 + 0.0788566i −0.745435 0.666578i \(-0.767758\pi\)
0.666578 + 0.745435i \(0.267758\pi\)
\(110\) 0 0
\(111\) 70.7259 + 70.7259i 0.637170 + 0.637170i
\(112\) −7.47972 + 7.47972i −0.0667832 + 0.0667832i
\(113\) 168.579i 1.49185i 0.666028 + 0.745927i \(0.267993\pi\)
−0.666028 + 0.745927i \(0.732007\pi\)
\(114\) 194.740i 1.70825i
\(115\) 0 0
\(116\) 48.3250i 0.416595i
\(117\) −133.321 + 105.976i −1.13949 + 0.905780i
\(118\) 36.8626i 0.312395i
\(119\) 37.1014 37.1014i 0.311777 0.311777i
\(120\) 0 0
\(121\) 116.493i 0.962750i
\(122\) −16.9508 16.9508i −0.138941 0.138941i
\(123\) −82.4141 82.4141i −0.670034 0.670034i
\(124\) −19.9580 19.9580i −0.160952 0.160952i
\(125\) 0 0
\(126\) 48.9949 0.388848
\(127\) −2.40010 −0.0188984 −0.00944920 0.999955i \(-0.503008\pi\)
−0.00944920 + 0.999955i \(0.503008\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 233.433i 1.80956i
\(130\) 0 0
\(131\) 54.9647 0.419578 0.209789 0.977747i \(-0.432722\pi\)
0.209789 + 0.977747i \(0.432722\pi\)
\(132\) 14.1148 + 14.1148i 0.106930 + 0.106930i
\(133\) 77.4599i 0.582405i
\(134\) 35.3189i 0.263574i
\(135\) 0 0
\(136\) 39.6822 39.6822i 0.291781 0.291781i
\(137\) −6.42401 + 6.42401i −0.0468906 + 0.0468906i −0.730163 0.683273i \(-0.760556\pi\)
0.683273 + 0.730163i \(0.260556\pi\)
\(138\) 207.700 207.700i 1.50507 1.50507i
\(139\) 168.602 1.21296 0.606481 0.795098i \(-0.292581\pi\)
0.606481 + 0.795098i \(0.292581\pi\)
\(140\) 0 0
\(141\) 55.5599 + 55.5599i 0.394041 + 0.394041i
\(142\) −148.894 −1.04855
\(143\) −27.4210 3.13339i −0.191755 0.0219118i
\(144\) 52.4029 0.363909
\(145\) 0 0
\(146\) 22.9664 0.157304
\(147\) −197.480 −1.34340
\(148\) 30.0888 + 30.0888i 0.203303 + 0.203303i
\(149\) 56.6920 56.6920i 0.380483 0.380483i −0.490793 0.871276i \(-0.663293\pi\)
0.871276 + 0.490793i \(0.163293\pi\)
\(150\) 0 0
\(151\) −94.4664 94.4664i −0.625605 0.625605i 0.321354 0.946959i \(-0.395862\pi\)
−0.946959 + 0.321354i \(0.895862\pi\)
\(152\) 82.8479i 0.545052i
\(153\) −259.933 −1.69891
\(154\) 5.61431 + 5.61431i 0.0364566 + 0.0364566i
\(155\) 0 0
\(156\) −95.6830 + 76.0582i −0.613353 + 0.487553i
\(157\) 231.256i 1.47297i 0.676455 + 0.736484i \(0.263515\pi\)
−0.676455 + 0.736484i \(0.736485\pi\)
\(158\) 144.652 + 144.652i 0.915517 + 0.915517i
\(159\) 80.6885 0.507475
\(160\) 0 0
\(161\) 82.6149 82.6149i 0.513136 0.513136i
\(162\) 27.2774 + 27.2774i 0.168379 + 0.168379i
\(163\) −150.313 + 150.313i −0.922167 + 0.922167i −0.997182 0.0750153i \(-0.976099\pi\)
0.0750153 + 0.997182i \(0.476099\pi\)
\(164\) −35.0613 35.0613i −0.213789 0.213789i
\(165\) 0 0
\(166\) 171.186i 1.03124i
\(167\) 180.532 180.532i 1.08103 1.08103i 0.0846176 0.996413i \(-0.473033\pi\)
0.996413 0.0846176i \(-0.0269669\pi\)
\(168\) 35.1632 0.209305
\(169\) 38.1253 164.643i 0.225594 0.974221i
\(170\) 0 0
\(171\) −271.342 + 271.342i −1.58680 + 1.58680i
\(172\) 99.3089i 0.577377i
\(173\) 232.945 1.34650 0.673251 0.739414i \(-0.264897\pi\)
0.673251 + 0.739414i \(0.264897\pi\)
\(174\) −113.591 + 113.591i −0.652823 + 0.652823i
\(175\) 0 0
\(176\) 6.00484 + 6.00484i 0.0341184 + 0.0341184i
\(177\) −86.6481 + 86.6481i −0.489537 + 0.489537i
\(178\) 206.742i 1.16147i
\(179\) 125.287i 0.699926i −0.936763 0.349963i \(-0.886194\pi\)
0.936763 0.349963i \(-0.113806\pi\)
\(180\) 0 0
\(181\) 220.820i 1.22000i 0.792402 + 0.609999i \(0.208830\pi\)
−0.792402 + 0.609999i \(0.791170\pi\)
\(182\) −38.0589 + 30.2530i −0.209115 + 0.166225i
\(183\) 79.6882i 0.435455i
\(184\) 88.3615 88.3615i 0.480226 0.480226i
\(185\) 0 0
\(186\) 93.8255i 0.504438i
\(187\) −29.7857 29.7857i −0.159282 0.159282i
\(188\) 23.6367 + 23.6367i 0.125727 + 0.125727i
\(189\) −36.0488 36.0488i −0.190734 0.190734i
\(190\) 0 0
\(191\) −292.765 −1.53280 −0.766400 0.642364i \(-0.777954\pi\)
−0.766400 + 0.642364i \(0.777954\pi\)
\(192\) 37.6091 0.195881
\(193\) −33.9482 + 33.9482i −0.175897 + 0.175897i −0.789565 0.613667i \(-0.789694\pi\)
0.613667 + 0.789565i \(0.289694\pi\)
\(194\) 226.127i 1.16560i
\(195\) 0 0
\(196\) −84.0135 −0.428640
\(197\) 113.364 + 113.364i 0.575454 + 0.575454i 0.933647 0.358194i \(-0.116607\pi\)
−0.358194 + 0.933647i \(0.616607\pi\)
\(198\) 39.3339i 0.198656i
\(199\) 98.5552i 0.495252i 0.968856 + 0.247626i \(0.0796505\pi\)
−0.968856 + 0.247626i \(0.920350\pi\)
\(200\) 0 0
\(201\) −83.0197 + 83.0197i −0.413033 + 0.413033i
\(202\) −125.556 + 125.556i −0.621564 + 0.621564i
\(203\) −45.1821 + 45.1821i −0.222572 + 0.222572i
\(204\) −186.552 −0.914469
\(205\) 0 0
\(206\) 24.9195 + 24.9195i 0.120969 + 0.120969i
\(207\) −578.800 −2.79614
\(208\) −40.7063 + 32.3573i −0.195703 + 0.155564i
\(209\) −62.1861 −0.297541
\(210\) 0 0
\(211\) 255.221 1.20958 0.604788 0.796387i \(-0.293258\pi\)
0.604788 + 0.796387i \(0.293258\pi\)
\(212\) 34.3272 0.161921
\(213\) 349.986 + 349.986i 1.64313 + 1.64313i
\(214\) −158.069 + 158.069i −0.738642 + 0.738642i
\(215\) 0 0
\(216\) −38.5563 38.5563i −0.178501 0.178501i
\(217\) 37.3201i 0.171982i
\(218\) 17.1907 0.0788566
\(219\) −53.9842 53.9842i −0.246503 0.246503i
\(220\) 0 0
\(221\) 201.914 160.501i 0.913640 0.726250i
\(222\) 141.452i 0.637170i
\(223\) −301.837 301.837i −1.35353 1.35353i −0.881676 0.471855i \(-0.843585\pi\)
−0.471855 0.881676i \(-0.656415\pi\)
\(224\) 14.9594 0.0667832
\(225\) 0 0
\(226\) 168.579 168.579i 0.745927 0.745927i
\(227\) −155.443 155.443i −0.684770 0.684770i 0.276301 0.961071i \(-0.410891\pi\)
−0.961071 + 0.276301i \(0.910891\pi\)
\(228\) −194.740 + 194.740i −0.854123 + 0.854123i
\(229\) 20.9147 + 20.9147i 0.0913307 + 0.0913307i 0.751296 0.659965i \(-0.229429\pi\)
−0.659965 + 0.751296i \(0.729429\pi\)
\(230\) 0 0
\(231\) 26.3937i 0.114258i
\(232\) −48.3250 + 48.3250i −0.208297 + 0.208297i
\(233\) −335.555 −1.44015 −0.720075 0.693896i \(-0.755893\pi\)
−0.720075 + 0.693896i \(0.755893\pi\)
\(234\) 239.297 + 27.3444i 1.02264 + 0.116856i
\(235\) 0 0
\(236\) −36.8626 + 36.8626i −0.156197 + 0.156197i
\(237\) 680.028i 2.86932i
\(238\) −74.2029 −0.311777
\(239\) −156.914 + 156.914i −0.656545 + 0.656545i −0.954561 0.298016i \(-0.903675\pi\)
0.298016 + 0.954561i \(0.403675\pi\)
\(240\) 0 0
\(241\) −105.359 105.359i −0.437176 0.437176i 0.453885 0.891060i \(-0.350038\pi\)
−0.891060 + 0.453885i \(0.850038\pi\)
\(242\) −116.493 + 116.493i −0.481375 + 0.481375i
\(243\) 301.738i 1.24172i
\(244\) 33.9017i 0.138941i
\(245\) 0 0
\(246\) 164.828i 0.670034i
\(247\) 43.2309 378.323i 0.175024 1.53167i
\(248\) 39.9160i 0.160952i
\(249\) −402.384 + 402.384i −1.61600 + 1.61600i
\(250\) 0 0
\(251\) 169.558i 0.675530i 0.941231 + 0.337765i \(0.109671\pi\)
−0.941231 + 0.337765i \(0.890329\pi\)
\(252\) −48.9949 48.9949i −0.194424 0.194424i
\(253\) −66.3246 66.3246i −0.262153 0.262153i
\(254\) 2.40010 + 2.40010i 0.00944920 + 0.00944920i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 83.4951 0.324884 0.162442 0.986718i \(-0.448063\pi\)
0.162442 + 0.986718i \(0.448063\pi\)
\(258\) −233.433 + 233.433i −0.904778 + 0.904778i
\(259\) 56.2640i 0.217235i
\(260\) 0 0
\(261\) 316.546 1.21282
\(262\) −54.9647 54.9647i −0.209789 0.209789i
\(263\) 83.7827i 0.318565i −0.987233 0.159283i \(-0.949082\pi\)
0.987233 0.159283i \(-0.0509181\pi\)
\(264\) 28.2296i 0.106930i
\(265\) 0 0
\(266\) −77.4599 + 77.4599i −0.291203 + 0.291203i
\(267\) −485.963 + 485.963i −1.82008 + 1.82008i
\(268\) −35.3189 + 35.3189i −0.131787 + 0.131787i
\(269\) 112.184 0.417040 0.208520 0.978018i \(-0.433135\pi\)
0.208520 + 0.978018i \(0.433135\pi\)
\(270\) 0 0
\(271\) −268.430 268.430i −0.990517 0.990517i 0.00943804 0.999955i \(-0.496996\pi\)
−0.999955 + 0.00943804i \(0.996996\pi\)
\(272\) −79.3644 −0.291781
\(273\) 160.572 + 18.3485i 0.588176 + 0.0672107i
\(274\) 12.8480 0.0468906
\(275\) 0 0
\(276\) −415.400 −1.50507
\(277\) 278.287 1.00465 0.502324 0.864680i \(-0.332479\pi\)
0.502324 + 0.864680i \(0.332479\pi\)
\(278\) −168.602 168.602i −0.606481 0.606481i
\(279\) 130.732 130.732i 0.468575 0.468575i
\(280\) 0 0
\(281\) 175.880 + 175.880i 0.625907 + 0.625907i 0.947036 0.321129i \(-0.104062\pi\)
−0.321129 + 0.947036i \(0.604062\pi\)
\(282\) 111.120i 0.394041i
\(283\) −465.647 −1.64539 −0.822697 0.568480i \(-0.807532\pi\)
−0.822697 + 0.568480i \(0.807532\pi\)
\(284\) 148.894 + 148.894i 0.524275 + 0.524275i
\(285\) 0 0
\(286\) 24.2876 + 30.5544i 0.0849216 + 0.106833i
\(287\) 65.5622i 0.228440i
\(288\) −52.4029 52.4029i −0.181955 0.181955i
\(289\) 104.669 0.362177
\(290\) 0 0
\(291\) −531.528 + 531.528i −1.82656 + 1.82656i
\(292\) −22.9664 22.9664i −0.0786522 0.0786522i
\(293\) 241.334 241.334i 0.823667 0.823667i −0.162965 0.986632i \(-0.552106\pi\)
0.986632 + 0.162965i \(0.0521057\pi\)
\(294\) 197.480 + 197.480i 0.671699 + 0.671699i
\(295\) 0 0
\(296\) 60.1776i 0.203303i
\(297\) −28.9405 + 28.9405i −0.0974429 + 0.0974429i
\(298\) −113.384 −0.380483
\(299\) 449.609 357.393i 1.50371 1.19529i
\(300\) 0 0
\(301\) −92.8503 + 92.8503i −0.308473 + 0.308473i
\(302\) 188.933i 0.625605i
\(303\) 590.256 1.94804
\(304\) −82.8479 + 82.8479i −0.272526 + 0.272526i
\(305\) 0 0
\(306\) 259.933 + 259.933i 0.849454 + 0.849454i
\(307\) 280.203 280.203i 0.912715 0.912715i −0.0837701 0.996485i \(-0.526696\pi\)
0.996485 + 0.0837701i \(0.0266961\pi\)
\(308\) 11.2286i 0.0364566i
\(309\) 117.150i 0.379127i
\(310\) 0 0
\(311\) 13.7375i 0.0441719i 0.999756 + 0.0220859i \(0.00703075\pi\)
−0.999756 + 0.0220859i \(0.992969\pi\)
\(312\) 171.741 + 19.6248i 0.550453 + 0.0629001i
\(313\) 84.5828i 0.270233i −0.990830 0.135116i \(-0.956859\pi\)
0.990830 0.135116i \(-0.0431408\pi\)
\(314\) 231.256 231.256i 0.736484 0.736484i
\(315\) 0 0
\(316\) 289.303i 0.915517i
\(317\) 438.576 + 438.576i 1.38352 + 1.38352i 0.838282 + 0.545237i \(0.183560\pi\)
0.545237 + 0.838282i \(0.316440\pi\)
\(318\) −80.6885 80.6885i −0.253737 0.253737i
\(319\) 36.2730 + 36.2730i 0.113708 + 0.113708i
\(320\) 0 0
\(321\) 743.107 2.31498
\(322\) −165.230 −0.513136
\(323\) 410.948 410.948i 1.27229 1.27229i
\(324\) 54.5547i 0.168379i
\(325\) 0 0
\(326\) 300.626 0.922167
\(327\) −40.4081 40.4081i −0.123572 0.123572i
\(328\) 70.1226i 0.213789i
\(329\) 44.1990i 0.134344i
\(330\) 0 0
\(331\) 21.7454 21.7454i 0.0656962 0.0656962i −0.673495 0.739191i \(-0.735208\pi\)
0.739191 + 0.673495i \(0.235208\pi\)
\(332\) −171.186 + 171.186i −0.515619 + 0.515619i
\(333\) −197.093 + 197.093i −0.591870 + 0.591870i
\(334\) −361.064 −1.08103
\(335\) 0 0
\(336\) −35.1632 35.1632i −0.104652 0.104652i
\(337\) −364.125 −1.08049 −0.540245 0.841508i \(-0.681669\pi\)
−0.540245 + 0.841508i \(0.681669\pi\)
\(338\) −202.769 + 126.518i −0.599908 + 0.374314i
\(339\) −792.516 −2.33780
\(340\) 0 0
\(341\) 29.9612 0.0878627
\(342\) 542.684 1.58680
\(343\) 170.176 + 170.176i 0.496140 + 0.496140i
\(344\) −99.3089 + 99.3089i −0.288689 + 0.288689i
\(345\) 0 0
\(346\) −232.945 232.945i −0.673251 0.673251i
\(347\) 185.153i 0.533582i 0.963754 + 0.266791i \(0.0859634\pi\)
−0.963754 + 0.266791i \(0.914037\pi\)
\(348\) 227.183 0.652823
\(349\) −139.886 139.886i −0.400820 0.400820i 0.477702 0.878522i \(-0.341470\pi\)
−0.878522 + 0.477702i \(0.841470\pi\)
\(350\) 0 0
\(351\) −155.947 196.185i −0.444294 0.558933i
\(352\) 12.0097i 0.0341184i
\(353\) 193.983 + 193.983i 0.549528 + 0.549528i 0.926304 0.376776i \(-0.122967\pi\)
−0.376776 + 0.926304i \(0.622967\pi\)
\(354\) 173.296 0.489537
\(355\) 0 0
\(356\) −206.742 + 206.742i −0.580737 + 0.580737i
\(357\) 174.419 + 174.419i 0.488569 + 0.488569i
\(358\) −125.287 + 125.287i −0.349963 + 0.349963i
\(359\) 108.050 + 108.050i 0.300975 + 0.300975i 0.841395 0.540420i \(-0.181735\pi\)
−0.540420 + 0.841395i \(0.681735\pi\)
\(360\) 0 0
\(361\) 496.973i 1.37666i
\(362\) 220.820 220.820i 0.609999 0.609999i
\(363\) 547.649 1.50867
\(364\) 68.3119 + 7.80598i 0.187670 + 0.0214450i
\(365\) 0 0
\(366\) 79.6882 79.6882i 0.217727 0.217727i
\(367\) 35.1926i 0.0958927i 0.998850 + 0.0479464i \(0.0152677\pi\)
−0.998850 + 0.0479464i \(0.984732\pi\)
\(368\) −176.723 −0.480226
\(369\) 229.665 229.665i 0.622397 0.622397i
\(370\) 0 0
\(371\) −32.0947 32.0947i −0.0865087 0.0865087i
\(372\) 93.8255 93.8255i 0.252219 0.252219i
\(373\) 666.073i 1.78572i −0.450337 0.892859i \(-0.648696\pi\)
0.450337 0.892859i \(-0.351304\pi\)
\(374\) 59.5713i 0.159282i
\(375\) 0 0
\(376\) 47.2735i 0.125727i
\(377\) −245.891 + 195.458i −0.652232 + 0.518457i
\(378\) 72.0975i 0.190734i
\(379\) −263.815 + 263.815i −0.696081 + 0.696081i −0.963563 0.267482i \(-0.913808\pi\)
0.267482 + 0.963563i \(0.413808\pi\)
\(380\) 0 0
\(381\) 11.2832i 0.0296147i
\(382\) 292.765 + 292.765i 0.766400 + 0.766400i
\(383\) 350.886 + 350.886i 0.916151 + 0.916151i 0.996747 0.0805958i \(-0.0256823\pi\)
−0.0805958 + 0.996747i \(0.525682\pi\)
\(384\) −37.6091 37.6091i −0.0979405 0.0979405i
\(385\) 0 0
\(386\) 67.8964 0.175897
\(387\) 650.510 1.68090
\(388\) −226.127 + 226.127i −0.582802 + 0.582802i
\(389\) 563.670i 1.44902i −0.689262 0.724512i \(-0.742065\pi\)
0.689262 0.724512i \(-0.257935\pi\)
\(390\) 0 0
\(391\) 876.594 2.24193
\(392\) 84.0135 + 84.0135i 0.214320 + 0.214320i
\(393\) 258.397i 0.657499i
\(394\) 226.729i 0.575454i
\(395\) 0 0
\(396\) −39.3339 + 39.3339i −0.0993281 + 0.0993281i
\(397\) −76.5969 + 76.5969i −0.192939 + 0.192939i −0.796965 0.604026i \(-0.793562\pi\)
0.604026 + 0.796965i \(0.293562\pi\)
\(398\) 98.5552 98.5552i 0.247626 0.247626i
\(399\) 364.150 0.912657
\(400\) 0 0
\(401\) −484.409 484.409i −1.20800 1.20800i −0.971673 0.236329i \(-0.924056\pi\)
−0.236329 0.971673i \(-0.575944\pi\)
\(402\) 166.039 0.413033
\(403\) −20.8286 + 182.276i −0.0516838 + 0.452297i
\(404\) 251.112 0.621564
\(405\) 0 0
\(406\) 90.3643 0.222572
\(407\) −45.1696 −0.110982
\(408\) 186.552 + 186.552i 0.457234 + 0.457234i
\(409\) −309.379 + 309.379i −0.756428 + 0.756428i −0.975670 0.219242i \(-0.929641\pi\)
0.219242 + 0.975670i \(0.429641\pi\)
\(410\) 0 0
\(411\) −30.2002 30.2002i −0.0734798 0.0734798i
\(412\) 49.8391i 0.120969i
\(413\) 68.9304 0.166902
\(414\) 578.800 + 578.800i 1.39807 + 1.39807i
\(415\) 0 0
\(416\) 73.0636 + 8.34896i 0.175634 + 0.0200696i
\(417\) 792.620i 1.90077i
\(418\) 62.1861 + 62.1861i 0.148771 + 0.148771i
\(419\) −147.503 −0.352037 −0.176018 0.984387i \(-0.556322\pi\)
−0.176018 + 0.984387i \(0.556322\pi\)
\(420\) 0 0
\(421\) 157.123 157.123i 0.373215 0.373215i −0.495432 0.868647i \(-0.664990\pi\)
0.868647 + 0.495432i \(0.164990\pi\)
\(422\) −255.221 255.221i −0.604788 0.604788i
\(423\) −154.829 + 154.829i −0.366027 + 0.366027i
\(424\) −34.3272 34.3272i −0.0809604 0.0809604i
\(425\) 0 0
\(426\) 699.973i 1.64313i
\(427\) 31.6968 31.6968i 0.0742315 0.0742315i
\(428\) 316.139 0.738642
\(429\) 14.7305 128.910i 0.0343368 0.300489i
\(430\) 0 0
\(431\) −102.789 + 102.789i −0.238491 + 0.238491i −0.816225 0.577734i \(-0.803937\pi\)
0.577734 + 0.816225i \(0.303937\pi\)
\(432\) 77.1125i 0.178501i
\(433\) −423.761 −0.978663 −0.489332 0.872098i \(-0.662759\pi\)
−0.489332 + 0.872098i \(0.662759\pi\)
\(434\) 37.3201 37.3201i 0.0859910 0.0859910i
\(435\) 0 0
\(436\) −17.1907 17.1907i −0.0394283 0.0394283i
\(437\) 915.071 915.071i 2.09398 2.09398i
\(438\) 107.968i 0.246503i
\(439\) 175.599i 0.399998i 0.979796 + 0.199999i \(0.0640939\pi\)
−0.979796 + 0.199999i \(0.935906\pi\)
\(440\) 0 0
\(441\) 550.319i 1.24789i
\(442\) −362.416 41.4131i −0.819945 0.0936949i
\(443\) 97.0515i 0.219078i −0.993983 0.109539i \(-0.965063\pi\)
0.993983 0.109539i \(-0.0349374\pi\)
\(444\) −141.452 + 141.452i −0.318585 + 0.318585i
\(445\) 0 0
\(446\) 603.675i 1.35353i
\(447\) 266.517 + 266.517i 0.596235 + 0.596235i
\(448\) −14.9594 14.9594i −0.0333916 0.0333916i
\(449\) 284.200 + 284.200i 0.632962 + 0.632962i 0.948810 0.315848i \(-0.102289\pi\)
−0.315848 + 0.948810i \(0.602289\pi\)
\(450\) 0 0
\(451\) 52.6344 0.116706
\(452\) −337.159 −0.745927
\(453\) 444.100 444.100i 0.980353 0.980353i
\(454\) 310.886i 0.684770i
\(455\) 0 0
\(456\) 389.480 0.854123
\(457\) −285.388 285.388i −0.624482 0.624482i 0.322192 0.946674i \(-0.395580\pi\)
−0.946674 + 0.322192i \(0.895580\pi\)
\(458\) 41.8295i 0.0913307i
\(459\) 382.499i 0.833332i
\(460\) 0 0
\(461\) −197.058 + 197.058i −0.427458 + 0.427458i −0.887762 0.460303i \(-0.847741\pi\)
0.460303 + 0.887762i \(0.347741\pi\)
\(462\) −26.3937 + 26.3937i −0.0571292 + 0.0571292i
\(463\) 120.626 120.626i 0.260531 0.260531i −0.564738 0.825270i \(-0.691023\pi\)
0.825270 + 0.564738i \(0.191023\pi\)
\(464\) 96.6499 0.208297
\(465\) 0 0
\(466\) 335.555 + 335.555i 0.720075 + 0.720075i
\(467\) 537.485 1.15093 0.575466 0.817826i \(-0.304821\pi\)
0.575466 + 0.817826i \(0.304821\pi\)
\(468\) −211.952 266.641i −0.452890 0.569746i
\(469\) 66.0439 0.140819
\(470\) 0 0
\(471\) −1087.17 −2.30821
\(472\) 73.7251 0.156197
\(473\) 74.5418 + 74.5418i 0.157594 + 0.157594i
\(474\) −680.028 + 680.028i −1.43466 + 1.43466i
\(475\) 0 0
\(476\) 74.2029 + 74.2029i 0.155888 + 0.155888i
\(477\) 224.856i 0.471396i
\(478\) 313.829 0.656545
\(479\) −144.980 144.980i −0.302672 0.302672i 0.539387 0.842058i \(-0.318656\pi\)
−0.842058 + 0.539387i \(0.818656\pi\)
\(480\) 0 0
\(481\) 31.4013 274.800i 0.0652834 0.571309i
\(482\) 210.719i 0.437176i
\(483\) 388.384 + 388.384i 0.804108 + 0.804108i
\(484\) 232.985 0.481375
\(485\) 0 0
\(486\) −301.738 + 301.738i −0.620860 + 0.620860i
\(487\) −661.857 661.857i −1.35905 1.35905i −0.875091 0.483958i \(-0.839199\pi\)
−0.483958 0.875091i \(-0.660801\pi\)
\(488\) 33.9017 33.9017i 0.0694706 0.0694706i
\(489\) −706.644 706.644i −1.44508 1.44508i
\(490\) 0 0
\(491\) 53.9981i 0.109976i −0.998487 0.0549879i \(-0.982488\pi\)
0.998487 0.0549879i \(-0.0175120\pi\)
\(492\) 164.828 164.828i 0.335017 0.335017i
\(493\) −479.410 −0.972434
\(494\) −421.554 + 335.092i −0.853348 + 0.678325i
\(495\) 0 0
\(496\) 39.9160 39.9160i 0.0804759 0.0804759i
\(497\) 278.422i 0.560205i
\(498\) 804.768 1.61600
\(499\) −403.192 + 403.192i −0.808001 + 0.808001i −0.984331 0.176330i \(-0.943577\pi\)
0.176330 + 0.984331i \(0.443577\pi\)
\(500\) 0 0
\(501\) 848.707 + 848.707i 1.69403 + 1.69403i
\(502\) 169.558 169.558i 0.337765 0.337765i
\(503\) 624.707i 1.24196i 0.783825 + 0.620981i \(0.213266\pi\)
−0.783825 + 0.620981i \(0.786734\pi\)
\(504\) 97.9898i 0.194424i
\(505\) 0 0
\(506\) 132.649i 0.262153i
\(507\) 774.012 + 179.233i 1.52665 + 0.353516i
\(508\) 4.80019i 0.00944920i
\(509\) −61.2684 + 61.2684i −0.120370 + 0.120370i −0.764726 0.644356i \(-0.777126\pi\)
0.644356 + 0.764726i \(0.277126\pi\)
\(510\) 0 0
\(511\) 42.9456i 0.0840423i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −399.288 399.288i −0.778340 0.778340i
\(514\) −83.4951 83.4951i −0.162442 0.162442i
\(515\) 0 0
\(516\) 466.865 0.904778
\(517\) −35.4837 −0.0686339
\(518\) −56.2640 + 56.2640i −0.108618 + 0.108618i
\(519\) 1095.11i 2.11003i
\(520\) 0 0
\(521\) −481.059 −0.923337 −0.461669 0.887052i \(-0.652749\pi\)
−0.461669 + 0.887052i \(0.652749\pi\)
\(522\) −316.546 316.546i −0.606411 0.606411i
\(523\) 345.672i 0.660942i −0.943816 0.330471i \(-0.892792\pi\)
0.943816 0.330471i \(-0.107208\pi\)
\(524\) 109.929i 0.209789i
\(525\) 0 0
\(526\) −83.7827 + 83.7827i −0.159283 + 0.159283i
\(527\) −197.994 + 197.994i −0.375701 + 0.375701i
\(528\) −28.2296 + 28.2296i −0.0534652 + 0.0534652i
\(529\) 1422.94 2.68986
\(530\) 0 0
\(531\) −241.463 241.463i −0.454733 0.454733i
\(532\) 154.920 0.291203
\(533\) −36.5907 + 320.213i −0.0686505 + 0.600776i
\(534\) 971.925 1.82008
\(535\) 0 0
\(536\) 70.6379 0.131787
\(537\) 588.991 1.09682
\(538\) −112.184 112.184i −0.208520 0.208520i
\(539\) 63.0609 63.0609i 0.116996 0.116996i
\(540\) 0 0
\(541\) 79.8003 + 79.8003i 0.147505 + 0.147505i 0.777003 0.629497i \(-0.216739\pi\)
−0.629497 + 0.777003i \(0.716739\pi\)
\(542\) 536.860i 0.990517i
\(543\) −1038.10 −1.91179
\(544\) 79.3644 + 79.3644i 0.145890 + 0.145890i
\(545\) 0 0
\(546\) −142.223 178.921i −0.260483 0.327693i
\(547\) 411.476i 0.752241i 0.926571 + 0.376120i \(0.122742\pi\)
−0.926571 + 0.376120i \(0.877258\pi\)
\(548\) −12.8480 12.8480i −0.0234453 0.0234453i
\(549\) −222.068 −0.404496
\(550\) 0 0
\(551\) −500.453 + 500.453i −0.908263 + 0.908263i
\(552\) 415.400 + 415.400i 0.752536 + 0.752536i
\(553\) −270.488 + 270.488i −0.489129 + 0.489129i
\(554\) −278.287 278.287i −0.502324 0.502324i
\(555\) 0 0
\(556\) 337.203i 0.606481i
\(557\) −446.024 + 446.024i −0.800761 + 0.800761i −0.983214 0.182454i \(-0.941596\pi\)
0.182454 + 0.983214i \(0.441596\pi\)
\(558\) −261.465 −0.468575
\(559\) −505.312 + 401.672i −0.903958 + 0.718554i
\(560\) 0 0
\(561\) 140.027 140.027i 0.249602 0.249602i
\(562\) 351.760i 0.625907i
\(563\) −628.339 −1.11606 −0.558028 0.829822i \(-0.688442\pi\)
−0.558028 + 0.829822i \(0.688442\pi\)
\(564\) −111.120 + 111.120i −0.197021 + 0.197021i
\(565\) 0 0
\(566\) 465.647 + 465.647i 0.822697 + 0.822697i
\(567\) −51.0067 + 51.0067i −0.0899590 + 0.0899590i
\(568\) 297.788i 0.524275i
\(569\) 808.201i 1.42039i 0.704006 + 0.710194i \(0.251393\pi\)
−0.704006 + 0.710194i \(0.748607\pi\)
\(570\) 0 0
\(571\) 317.754i 0.556487i −0.960511 0.278244i \(-0.910248\pi\)
0.960511 0.278244i \(-0.0897523\pi\)
\(572\) 6.26677 54.8419i 0.0109559 0.0958775i
\(573\) 1376.33i 2.40197i
\(574\) 65.5622 65.5622i 0.114220 0.114220i
\(575\) 0 0
\(576\) 104.806i 0.181955i
\(577\) −610.160 610.160i −1.05747 1.05747i −0.998245 0.0592249i \(-0.981137\pi\)
−0.0592249 0.998245i \(-0.518863\pi\)
\(578\) −104.669 104.669i −0.181088 0.181088i
\(579\) −159.595 159.595i −0.275639 0.275639i
\(580\) 0 0
\(581\) 320.105 0.550955
\(582\) 1063.06 1.82656
\(583\) −25.7662 + 25.7662i −0.0441958 + 0.0441958i
\(584\) 45.9329i 0.0786522i
\(585\) 0 0
\(586\) −482.669 −0.823667
\(587\) −126.380 126.380i −0.215299 0.215299i 0.591215 0.806514i \(-0.298648\pi\)
−0.806514 + 0.591215i \(0.798648\pi\)
\(588\) 394.959i 0.671699i
\(589\) 413.370i 0.701817i
\(590\) 0 0
\(591\) −532.942 + 532.942i −0.901763 + 0.901763i
\(592\) −60.1776 + 60.1776i −0.101651 + 0.101651i
\(593\) 357.867 357.867i 0.603486 0.603486i −0.337750 0.941236i \(-0.609666\pi\)
0.941236 + 0.337750i \(0.109666\pi\)
\(594\) 57.8811 0.0974429
\(595\) 0 0
\(596\) 113.384 + 113.384i 0.190241 + 0.190241i
\(597\) −463.322 −0.776084
\(598\) −807.002 92.2158i −1.34950 0.154207i
\(599\) −388.454 −0.648505 −0.324252 0.945971i \(-0.605113\pi\)
−0.324252 + 0.945971i \(0.605113\pi\)
\(600\) 0 0
\(601\) −761.564 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(602\) 185.701 0.308473
\(603\) −231.352 231.352i −0.383668 0.383668i
\(604\) 188.933 188.933i 0.312803 0.312803i
\(605\) 0 0
\(606\) −590.256 590.256i −0.974020 0.974020i
\(607\) 674.936i 1.11192i 0.831209 + 0.555961i \(0.187649\pi\)
−0.831209 + 0.555961i \(0.812351\pi\)
\(608\) 165.696 0.272526
\(609\) −212.408 212.408i −0.348781 0.348781i
\(610\) 0 0
\(611\) 24.6678 215.873i 0.0403728 0.353312i
\(612\) 519.866i 0.849454i
\(613\) 498.707 + 498.707i 0.813552 + 0.813552i 0.985165 0.171613i \(-0.0548977\pi\)
−0.171613 + 0.985165i \(0.554898\pi\)
\(614\) −560.407 −0.912715
\(615\) 0 0
\(616\) −11.2286 + 11.2286i −0.0182283 + 0.0182283i
\(617\) 52.0030 + 52.0030i 0.0842836 + 0.0842836i 0.747992 0.663708i \(-0.231018\pi\)
−0.663708 + 0.747992i \(0.731018\pi\)
\(618\) −117.150 + 117.150i −0.189563 + 0.189563i
\(619\) −95.1831 95.1831i −0.153769 0.153769i 0.626030 0.779799i \(-0.284679\pi\)
−0.779799 + 0.626030i \(0.784679\pi\)
\(620\) 0 0
\(621\) 851.722i 1.37153i
\(622\) 13.7375 13.7375i 0.0220859 0.0220859i
\(623\) 386.594 0.620535
\(624\) −152.116 191.366i −0.243776 0.306676i
\(625\) 0 0
\(626\) −84.5828 + 84.5828i −0.135116 + 0.135116i
\(627\) 292.346i 0.466261i
\(628\) −462.512 −0.736484
\(629\) 298.498 298.498i 0.474559 0.474559i
\(630\) 0 0
\(631\) 477.880 + 477.880i 0.757337 + 0.757337i 0.975837 0.218500i \(-0.0701163\pi\)
−0.218500 + 0.975837i \(0.570116\pi\)
\(632\) −289.303 + 289.303i −0.457758 + 0.457758i
\(633\) 1199.83i 1.89546i
\(634\) 877.151i 1.38352i
\(635\) 0 0
\(636\) 161.377i 0.253737i
\(637\) 339.806 + 427.485i 0.533448 + 0.671090i
\(638\) 72.5459i 0.113708i
\(639\) −975.312 + 975.312i −1.52631 + 1.52631i
\(640\) 0 0
\(641\) 104.344i 0.162783i 0.996682 + 0.0813916i \(0.0259364\pi\)
−0.996682 + 0.0813916i \(0.974064\pi\)
\(642\) −743.107 743.107i −1.15749 1.15749i
\(643\) 208.375 + 208.375i 0.324066 + 0.324066i 0.850325 0.526258i \(-0.176405\pi\)
−0.526258 + 0.850325i \(0.676405\pi\)
\(644\) 165.230 + 165.230i 0.256568 + 0.256568i
\(645\) 0 0
\(646\) −821.897 −1.27229
\(647\) 31.5847 0.0488171 0.0244085 0.999702i \(-0.492230\pi\)
0.0244085 + 0.999702i \(0.492230\pi\)
\(648\) −54.5547 + 54.5547i −0.0841894 + 0.0841894i
\(649\) 55.3385i 0.0852673i
\(650\) 0 0
\(651\) −175.447 −0.269504
\(652\) −300.626 300.626i −0.461084 0.461084i
\(653\) 468.398i 0.717302i −0.933472 0.358651i \(-0.883237\pi\)
0.933472 0.358651i \(-0.116763\pi\)
\(654\) 80.8161i 0.123572i
\(655\) 0 0
\(656\) 70.1226 70.1226i 0.106894 0.106894i
\(657\) 150.439 150.439i 0.228978 0.228978i
\(658\) −44.1990 + 44.1990i −0.0671718 + 0.0671718i
\(659\) −252.033 −0.382447 −0.191224 0.981546i \(-0.561246\pi\)
−0.191224 + 0.981546i \(0.561246\pi\)
\(660\) 0 0
\(661\) 93.5969 + 93.5969i 0.141599 + 0.141599i 0.774353 0.632754i \(-0.218076\pi\)
−0.632754 + 0.774353i \(0.718076\pi\)
\(662\) −43.4909 −0.0656962
\(663\) 754.539 + 949.228i 1.13807 + 1.43172i
\(664\) 342.371 0.515619
\(665\) 0 0
\(666\) 394.186 0.591870
\(667\) −1067.52 −1.60047
\(668\) 361.064 + 361.064i 0.540516 + 0.540516i
\(669\) 1418.98 1418.98i 2.12105 2.12105i
\(670\) 0 0
\(671\) −25.4468 25.4468i −0.0379236 0.0379236i
\(672\) 70.3264i 0.104652i
\(673\) 41.0765 0.0610348 0.0305174 0.999534i \(-0.490284\pi\)
0.0305174 + 0.999534i \(0.490284\pi\)
\(674\) 364.125 + 364.125i 0.540245 + 0.540245i
\(675\) 0 0
\(676\) 329.287 + 76.2507i 0.487111 + 0.112797i
\(677\) 980.144i 1.44778i −0.689918 0.723888i \(-0.742353\pi\)
0.689918 0.723888i \(-0.257647\pi\)
\(678\) 792.516 + 792.516i 1.16890 + 1.16890i
\(679\) 422.842 0.622742
\(680\) 0 0
\(681\) 730.759 730.759i 1.07307 1.07307i
\(682\) −29.9612 29.9612i −0.0439313 0.0439313i
\(683\) 351.524 351.524i 0.514676 0.514676i −0.401279 0.915956i \(-0.631434\pi\)
0.915956 + 0.401279i \(0.131434\pi\)
\(684\) −542.684 542.684i −0.793398 0.793398i
\(685\) 0 0
\(686\) 340.352i 0.496140i
\(687\) −98.3231 + 98.3231i −0.143120 + 0.143120i
\(688\) 198.618 0.288689
\(689\) −138.842 174.667i −0.201512 0.253507i
\(690\) 0 0
\(691\) −612.276 + 612.276i −0.886072 + 0.886072i −0.994143 0.108071i \(-0.965533\pi\)
0.108071 + 0.994143i \(0.465533\pi\)
\(692\) 465.890i 0.673251i
\(693\) 73.5516 0.106135
\(694\) 185.153 185.153i 0.266791 0.266791i
\(695\) 0 0
\(696\) −227.183 227.183i −0.326412 0.326412i
\(697\) −347.828 + 347.828i −0.499035 + 0.499035i
\(698\) 279.772i 0.400820i
\(699\) 1577.49i 2.25678i
\(700\) 0 0
\(701\) 1039.77i 1.48327i 0.670804 + 0.741635i \(0.265949\pi\)
−0.670804 + 0.741635i \(0.734051\pi\)
\(702\) −40.2381 + 352.133i −0.0573192 + 0.501614i
\(703\) 623.199i 0.886485i
\(704\) −12.0097 + 12.0097i −0.0170592 + 0.0170592i
\(705\) 0 0
\(706\) 387.967i 0.549528i
\(707\) −234.781 234.781i −0.332080 0.332080i
\(708\) −173.296 173.296i −0.244769 0.244769i
\(709\) 336.761 + 336.761i 0.474981 + 0.474981i 0.903522 0.428542i \(-0.140972\pi\)
−0.428542 + 0.903522i \(0.640972\pi\)
\(710\) 0 0
\(711\) 1895.04 2.66532
\(712\) 413.485 0.580737
\(713\) −440.880 + 440.880i −0.618345 + 0.618345i
\(714\) 348.838i 0.488569i
\(715\) 0 0
\(716\) 250.574 0.349963
\(717\) −737.677 737.677i −1.02884 1.02884i
\(718\) 216.100i 0.300975i
\(719\) 25.7066i 0.0357533i −0.999840 0.0178766i \(-0.994309\pi\)
0.999840 0.0178766i \(-0.00569062\pi\)
\(720\) 0 0
\(721\) −46.5978 + 46.5978i −0.0646293 + 0.0646293i
\(722\) −496.973 + 496.973i −0.688328 + 0.688328i
\(723\) 495.309 495.309i 0.685075 0.685075i
\(724\) −441.639 −0.609999
\(725\) 0 0
\(726\) −547.649 547.649i −0.754337 0.754337i
\(727\) −98.7160 −0.135785 −0.0678927 0.997693i \(-0.521628\pi\)
−0.0678927 + 0.997693i \(0.521628\pi\)
\(728\) −60.5059 76.1179i −0.0831125 0.104558i
\(729\) 1173.02 1.60908
\(730\) 0 0
\(731\) −985.199 −1.34774
\(732\) −159.376 −0.217727
\(733\) −70.0366 70.0366i −0.0955479 0.0955479i 0.657717 0.753265i \(-0.271522\pi\)
−0.753265 + 0.657717i \(0.771522\pi\)
\(734\) 35.1926 35.1926i 0.0479464 0.0479464i
\(735\) 0 0
\(736\) 176.723 + 176.723i 0.240113 + 0.240113i
\(737\) 53.0212i 0.0719419i
\(738\) −459.329 −0.622397
\(739\) −884.117 884.117i −1.19637 1.19637i −0.975246 0.221124i \(-0.929028\pi\)
−0.221124 0.975246i \(-0.570972\pi\)
\(740\) 0 0
\(741\) 1778.55 + 203.235i 2.40020 + 0.274271i
\(742\) 64.1894i 0.0865087i
\(743\) −236.735 236.735i −0.318621 0.318621i 0.529617 0.848237i \(-0.322336\pi\)
−0.848237 + 0.529617i \(0.822336\pi\)
\(744\) −187.651 −0.252219
\(745\) 0 0
\(746\) −666.073 + 666.073i −0.892859 + 0.892859i
\(747\) −1121.33 1121.33i −1.50111 1.50111i
\(748\) 59.5713 59.5713i 0.0796408 0.0796408i
\(749\) −295.579 295.579i −0.394631 0.394631i
\(750\) 0 0
\(751\) 1099.03i 1.46343i −0.681612 0.731714i \(-0.738721\pi\)
0.681612 0.731714i \(-0.261279\pi\)
\(752\) −47.2735 + 47.2735i −0.0628637 + 0.0628637i
\(753\) −797.116 −1.05859
\(754\) 441.350 + 50.4329i 0.585344 + 0.0668871i
\(755\) 0 0
\(756\) 72.0975 72.0975i 0.0953671 0.0953671i
\(757\) 718.877i 0.949639i 0.880083 + 0.474819i \(0.157487\pi\)
−0.880083 + 0.474819i \(0.842513\pi\)
\(758\) 527.629 0.696081
\(759\) 311.801 311.801i 0.410805 0.410805i
\(760\) 0 0
\(761\) −2.13237 2.13237i −0.00280207 0.00280207i 0.705704 0.708506i \(-0.250631\pi\)
−0.708506 + 0.705704i \(0.750631\pi\)
\(762\) −11.2832 + 11.2832i −0.0148073 + 0.0148073i
\(763\) 32.1455i 0.0421304i
\(764\) 585.529i 0.766400i
\(765\) 0 0
\(766\) 701.772i 0.916151i
\(767\) 336.664 + 38.4705i 0.438936 + 0.0501571i
\(768\) 75.2183i 0.0979405i
\(769\) 788.894 788.894i 1.02587 1.02587i 0.0262133 0.999656i \(-0.491655\pi\)
0.999656 0.0262133i \(-0.00834492\pi\)
\(770\) 0 0
\(771\) 392.522i 0.509108i
\(772\) −67.8964 67.8964i −0.0879487 0.0879487i
\(773\) 777.339 + 777.339i 1.00561 + 1.00561i 0.999984 + 0.00562865i \(0.00179166\pi\)
0.00562865 + 0.999984i \(0.498208\pi\)
\(774\) −650.510 650.510i −0.840452 0.840452i
\(775\) 0 0
\(776\) 452.254 0.582802
\(777\) 264.505 0.340418
\(778\) −563.670 + 563.670i −0.724512 + 0.724512i
\(779\) 726.190i 0.932207i
\(780\) 0 0
\(781\) −223.522 −0.286199
\(782\) −876.594 876.594i −1.12096 1.12096i
\(783\) 465.808i 0.594901i
\(784\) 168.027i 0.214320i
\(785\) 0 0
\(786\) 258.397 258.397i 0.328749 0.328749i
\(787\) 924.344 924.344i 1.17452 1.17452i 0.193395 0.981121i \(-0.438050\pi\)
0.981121 0.193395i \(-0.0619499\pi\)
\(788\) −226.729 + 226.729i −0.287727 + 0.287727i
\(789\) 393.874 0.499207
\(790\) 0 0
\(791\) 315.232 + 315.232i 0.398523 + 0.398523i
\(792\) 78.6678 0.0993281
\(793\) 172.501 137.121i 0.217530 0.172914i
\(794\) 153.194 0.192939
\(795\) 0 0
\(796\) −197.110 −0.247626
\(797\) −619.505 −0.777297 −0.388648 0.921386i \(-0.627058\pi\)
−0.388648 + 0.921386i \(0.627058\pi\)
\(798\) −364.150 364.150i −0.456328 0.456328i
\(799\) 234.489 234.489i 0.293479 0.293479i
\(800\) 0 0
\(801\) −1354.24 1354.24i −1.69068 1.69068i
\(802\) 968.818i 1.20800i
\(803\) 34.4775 0.0429358
\(804\) −166.039 166.039i −0.206517 0.206517i
\(805\) 0 0
\(806\) 203.104 161.447i 0.251990 0.200307i
\(807\) 527.392i 0.653521i
\(808\) −251.112 251.112i −0.310782 0.310782i
\(809\) −834.817 −1.03191 −0.515956 0.856615i \(-0.672563\pi\)
−0.515956 + 0.856615i \(0.672563\pi\)
\(810\) 0 0
\(811\) 171.743 171.743i 0.211766 0.211766i −0.593251 0.805018i \(-0.702156\pi\)
0.805018 + 0.593251i \(0.202156\pi\)
\(812\) −90.3643 90.3643i −0.111286 0.111286i
\(813\) 1261.93 1261.93i 1.55219 1.55219i
\(814\) 45.1696 + 45.1696i 0.0554910 + 0.0554910i
\(815\) 0 0
\(816\) 373.103i 0.457234i
\(817\) −1028.44 + 1028.44i −1.25880 + 1.25880i
\(818\) 618.758 0.756428
\(819\) −51.1321 + 447.468i −0.0624323 + 0.546359i
\(820\) 0 0
\(821\) −196.299 + 196.299i −0.239097 + 0.239097i −0.816476 0.577379i \(-0.804075\pi\)
0.577379 + 0.816476i \(0.304075\pi\)
\(822\) 60.4004i 0.0734798i
\(823\) −782.315 −0.950565 −0.475282 0.879833i \(-0.657654\pi\)
−0.475282 + 0.879833i \(0.657654\pi\)
\(824\) −49.8391 + 49.8391i −0.0604843 + 0.0604843i
\(825\) 0 0
\(826\) −68.9304 68.9304i −0.0834508 0.0834508i
\(827\) 574.071 574.071i 0.694161 0.694161i −0.268984 0.963145i \(-0.586688\pi\)
0.963145 + 0.268984i \(0.0866879\pi\)
\(828\) 1157.60i 1.39807i
\(829\) 646.610i 0.779988i 0.920817 + 0.389994i \(0.127523\pi\)
−0.920817 + 0.389994i \(0.872477\pi\)
\(830\) 0 0
\(831\) 1308.27i 1.57433i
\(832\) −64.7147 81.4126i −0.0777821 0.0978517i
\(833\) 833.459i 1.00055i
\(834\) 792.620 792.620i 0.950384 0.950384i
\(835\) 0 0
\(836\) 124.372i 0.148771i
\(837\) 192.377 + 192.377i 0.229841 + 0.229841i
\(838\) 147.503 + 147.503i 0.176018 + 0.176018i
\(839\) 48.7532 + 48.7532i 0.0581087 + 0.0581087i 0.735564 0.677455i \(-0.236917\pi\)
−0.677455 + 0.735564i \(0.736917\pi\)
\(840\) 0 0
\(841\) −257.174 −0.305796
\(842\) −314.247 −0.373215
\(843\) −826.836 + 826.836i −0.980825 + 0.980825i
\(844\) 510.441i 0.604788i
\(845\) 0 0
\(846\) 309.659 0.366027
\(847\) −217.833 217.833i −0.257182 0.257182i
\(848\) 68.6544i 0.0809604i
\(849\) 2189.07i 2.57841i
\(850\) 0 0
\(851\) 664.673 664.673i 0.781050 0.781050i
\(852\) −699.973 + 699.973i −0.821564 + 0.821564i
\(853\) −189.455 + 189.455i −0.222104 + 0.222104i −0.809384 0.587280i \(-0.800199\pi\)
0.587280 + 0.809384i \(0.300199\pi\)
\(854\) −63.3937 −0.0742315
\(855\) 0 0
\(856\) −316.139 316.139i −0.369321 0.369321i
\(857\) 644.425 0.751954 0.375977 0.926629i \(-0.377307\pi\)
0.375977 + 0.926629i \(0.377307\pi\)
\(858\) −143.640 + 114.179i −0.167413 + 0.133076i
\(859\) 78.4060 0.0912759 0.0456379 0.998958i \(-0.485468\pi\)
0.0456379 + 0.998958i \(0.485468\pi\)
\(860\) 0 0
\(861\) −308.217 −0.357976
\(862\) 205.579 0.238491
\(863\) −255.051 255.051i −0.295540 0.295540i 0.543724 0.839264i \(-0.317014\pi\)
−0.839264 + 0.543724i \(0.817014\pi\)
\(864\) 77.1125 77.1125i 0.0892506 0.0892506i
\(865\) 0 0
\(866\) 423.761 + 423.761i 0.489332 + 0.489332i
\(867\) 492.064i 0.567548i
\(868\) −74.6402 −0.0859910
\(869\) 217.153 + 217.153i 0.249888 + 0.249888i
\(870\) 0 0
\(871\) 322.566 + 36.8595i 0.370340 + 0.0423187i
\(872\) 34.3815i 0.0394283i
\(873\) −1481.22 1481.22i −1.69670 1.69670i
\(874\) −1830.14 −2.09398
\(875\) 0 0
\(876\) 107.968 107.968i 0.123252 0.123252i
\(877\) 473.757 + 473.757i 0.540202 + 0.540202i 0.923588 0.383386i \(-0.125242\pi\)
−0.383386 + 0.923588i \(0.625242\pi\)
\(878\) 175.599 175.599i 0.199999 0.199999i
\(879\) 1134.55 + 1134.55i 1.29073 + 1.29073i
\(880\) 0 0
\(881\) 181.000i 0.205448i −0.994710 0.102724i \(-0.967244\pi\)
0.994710 0.102724i \(-0.0327559\pi\)
\(882\) −550.319 + 550.319i −0.623944 + 0.623944i
\(883\) −211.169 −0.239150 −0.119575 0.992825i \(-0.538153\pi\)
−0.119575 + 0.992825i \(0.538153\pi\)
\(884\) 321.002 + 403.829i 0.363125 + 0.456820i
\(885\) 0 0
\(886\) −97.0515 + 97.0515i −0.109539 + 0.109539i
\(887\) 86.2904i 0.0972835i −0.998816 0.0486417i \(-0.984511\pi\)
0.998816 0.0486417i \(-0.0154893\pi\)
\(888\) 282.904 0.318585
\(889\) −4.48801 + 4.48801i −0.00504838 + 0.00504838i
\(890\) 0 0
\(891\) 40.9491 + 40.9491i 0.0459585 + 0.0459585i
\(892\) 603.675 603.675i 0.676766 0.676766i
\(893\) 489.564i 0.548224i
\(894\) 533.034i 0.596235i
\(895\) 0 0
\(896\) 29.9189i 0.0333916i
\(897\) 1680.15 + 2113.67i 1.87308 + 2.35638i
\(898\) 568.400i 0.632962i
\(899\) 241.118 241.118i 0.268206 0.268206i
\(900\) 0 0
\(901\) 340.545i 0.377963i
\(902\) −52.6344 52.6344i −0.0583530 0.0583530i
\(903\) −436.503 436.503i −0.483392 0.483392i
\(904\) 337.159 + 337.159i 0.372963 + 0.372963i
\(905\) 0 0
\(906\) −888.200 −0.980353
\(907\) 737.549 0.813175 0.406587 0.913612i \(-0.366719\pi\)
0.406587 + 0.913612i \(0.366719\pi\)
\(908\) 310.886 310.886i 0.342385 0.342385i
\(909\) 1644.87i 1.80954i
\(910\) 0 0
\(911\) 1267.14 1.39094 0.695469 0.718556i \(-0.255197\pi\)
0.695469 + 0.718556i \(0.255197\pi\)
\(912\) −389.480 389.480i −0.427061 0.427061i
\(913\) 256.986i 0.281474i
\(914\) 570.776i 0.624482i
\(915\) 0 0
\(916\) −41.8295 + 41.8295i −0.0456653 + 0.0456653i
\(917\) 102.780 102.780i 0.112083 0.112083i
\(918\) −382.499 + 382.499i −0.416666 + 0.416666i
\(919\) −275.951 −0.300273 −0.150137 0.988665i \(-0.547971\pi\)
−0.150137 + 0.988665i \(0.547971\pi\)
\(920\) 0 0
\(921\) 1317.28 + 1317.28i 1.43027 + 1.43027i
\(922\) 394.116 0.427458
\(923\) 155.389 1359.84i 0.168352 1.47329i
\(924\) 52.7874 0.0571292
\(925\) 0 0
\(926\) −241.252 −0.260531
\(927\) 326.464 0.352173
\(928\) −96.6499 96.6499i −0.104149 0.104149i
\(929\) −757.514 + 757.514i −0.815408 + 0.815408i −0.985439 0.170031i \(-0.945613\pi\)
0.170031 + 0.985439i \(0.445613\pi\)
\(930\) 0 0
\(931\) 870.043 + 870.043i 0.934525 + 0.934525i
\(932\) 671.110i 0.720075i
\(933\) −64.5817 −0.0692194
\(934\) −537.485 537.485i −0.575466 0.575466i
\(935\) 0 0
\(936\) −54.6888 + 478.594i −0.0584282 + 0.511318i
\(937\) 57.6262i 0.0615007i −0.999527 0.0307504i \(-0.990210\pi\)
0.999527 0.0307504i \(-0.00978969\pi\)
\(938\) −66.0439 66.0439i −0.0704093 0.0704093i
\(939\) 397.636 0.423467
\(940\) 0 0
\(941\) −902.679 + 902.679i −0.959277 + 0.959277i −0.999203 0.0399261i \(-0.987288\pi\)
0.0399261 + 0.999203i \(0.487288\pi\)
\(942\) 1087.17 + 1087.17i 1.15411 + 1.15411i
\(943\) −774.518 + 774.518i −0.821334 + 0.821334i
\(944\) −73.7251 73.7251i −0.0780986 0.0780986i
\(945\) 0 0
\(946\) 149.084i 0.157594i
\(947\) −341.194 + 341.194i −0.360289 + 0.360289i −0.863919 0.503630i \(-0.831997\pi\)
0.503630 + 0.863919i \(0.331997\pi\)
\(948\) 1360.06 1.43466
\(949\) −23.9682 + 209.751i −0.0252563 + 0.221024i
\(950\) 0 0
\(951\) −2061.81 + 2061.81i −2.16804 + 2.16804i
\(952\) 148.406i 0.155888i
\(953\) −1754.80 −1.84134 −0.920672 0.390337i \(-0.872359\pi\)
−0.920672 + 0.390337i \(0.872359\pi\)
\(954\) 224.856 224.856i 0.235698 0.235698i
\(955\) 0 0
\(956\) −313.829 313.829i −0.328273 0.328273i
\(957\) −170.524 + 170.524i −0.178186 + 0.178186i
\(958\) 289.959i 0.302672i
\(959\) 24.0249i 0.0250520i
\(960\) 0 0
\(961\) 761.839i 0.792756i
\(962\) −306.201 + 243.399i −0.318296 + 0.253013i
\(963\) 2070.83i 2.15039i
\(964\) 210.719 210.719i 0.218588 0.218588i
\(965\) 0 0
\(966\) 776.768i 0.804108i
\(967\) −1265.44 1265.44i −1.30863 1.30863i −0.922408 0.386217i \(-0.873781\pi\)
−0.386217 0.922408i \(-0.626219\pi\)
\(968\) −232.985 232.985i −0.240687 0.240687i
\(969\) 1931.93 + 1931.93i 1.99373 + 1.99373i
\(970\) 0 0
\(971\) −23.0027 −0.0236897 −0.0118448 0.999930i \(-0.503770\pi\)
−0.0118448 + 0.999930i \(0.503770\pi\)
\(972\) 603.476 0.620860
\(973\) 315.273 315.273i 0.324022 0.324022i
\(974\) 1323.71i 1.35905i
\(975\) 0 0
\(976\) −67.8033 −0.0694706
\(977\) −79.6072 79.6072i −0.0814812 0.0814812i 0.665192 0.746673i \(-0.268350\pi\)
−0.746673 + 0.665192i \(0.768350\pi\)
\(978\) 1413.29i 1.44508i
\(979\) 310.364i 0.317021i
\(980\) 0 0
\(981\) 112.606 112.606i 0.114787 0.114787i
\(982\) −53.9981 + 53.9981i −0.0549879 + 0.0549879i
\(983\) −1001.39 + 1001.39i −1.01870 + 1.01870i −0.0188828 + 0.999822i \(0.506011\pi\)
−0.999822 + 0.0188828i \(0.993989\pi\)
\(984\) −329.657 −0.335017
\(985\) 0 0
\(986\) 479.410 + 479.410i 0.486217 + 0.486217i
\(987\) 207.786 0.210523
\(988\) 756.647 + 86.4618i 0.765837 + 0.0875119i
\(989\) −2193.77 −2.21817
\(990\) 0 0
\(991\) 997.813 1.00688 0.503438 0.864032i \(-0.332068\pi\)
0.503438 + 0.864032i \(0.332068\pi\)
\(992\) −79.8321 −0.0804759
\(993\) 102.228 + 102.228i 0.102949 + 0.102949i
\(994\) −278.422 + 278.422i −0.280102 + 0.280102i
\(995\) 0 0
\(996\) −804.768 804.768i −0.808000 0.808000i
\(997\) 1138.16i 1.14158i −0.821095 0.570792i \(-0.806636\pi\)
0.821095 0.570792i \(-0.193364\pi\)
\(998\) 806.385 0.808001
\(999\) −290.028 290.028i −0.290318 0.290318i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.f.k.499.6 12
5.2 odd 4 130.3.k.b.31.6 yes 12
5.3 odd 4 650.3.k.j.551.1 12
5.4 even 2 650.3.f.n.499.1 12
13.8 odd 4 650.3.f.n.99.6 12
15.2 even 4 1170.3.r.a.811.5 12
65.8 even 4 650.3.k.j.151.1 12
65.34 odd 4 inner 650.3.f.k.99.1 12
65.47 even 4 130.3.k.b.21.6 12
195.47 odd 4 1170.3.r.a.541.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.3.k.b.21.6 12 65.47 even 4
130.3.k.b.31.6 yes 12 5.2 odd 4
650.3.f.k.99.1 12 65.34 odd 4 inner
650.3.f.k.499.6 12 1.1 even 1 trivial
650.3.f.n.99.6 12 13.8 odd 4
650.3.f.n.499.1 12 5.4 even 2
650.3.k.j.151.1 12 65.8 even 4
650.3.k.j.551.1 12 5.3 odd 4
1170.3.r.a.541.5 12 195.47 odd 4
1170.3.r.a.811.5 12 15.2 even 4