Properties

Label 650.3.k.g.551.1
Level $650$
Weight $3$
Character 650.551
Analytic conductor $17.711$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,3,Mod(151,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 650.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.7112171834\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.1
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 650.551
Dual form 650.3.k.g.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -4.44949 q^{3} -2.00000i q^{4} +(-4.44949 + 4.44949i) q^{6} +(-0.674235 - 0.674235i) q^{7} +(-2.00000 - 2.00000i) q^{8} +10.7980 q^{9} +(12.0227 + 12.0227i) q^{11} +8.89898i q^{12} -13.0000i q^{13} -1.34847 q^{14} -4.00000 q^{16} +17.6969i q^{17} +(10.7980 - 10.7980i) q^{18} +(6.00000 - 6.00000i) q^{19} +(3.00000 + 3.00000i) q^{21} +24.0454 q^{22} -18.6515i q^{23} +(8.89898 + 8.89898i) q^{24} +(-13.0000 - 13.0000i) q^{26} -8.00000 q^{27} +(-1.34847 + 1.34847i) q^{28} -10.3939 q^{29} +(18.6742 - 18.6742i) q^{31} +(-4.00000 + 4.00000i) q^{32} +(-53.4949 - 53.4949i) q^{33} +(17.6969 + 17.6969i) q^{34} -21.5959i q^{36} +(-2.30306 - 2.30306i) q^{37} -12.0000i q^{38} +57.8434i q^{39} +(-13.3939 + 13.3939i) q^{41} +6.00000 q^{42} -60.0454i q^{43} +(24.0454 - 24.0454i) q^{44} +(-18.6515 - 18.6515i) q^{46} +(-65.4620 - 65.4620i) q^{47} +17.7980 q^{48} -48.0908i q^{49} -78.7423i q^{51} -26.0000 q^{52} -50.3031 q^{53} +(-8.00000 + 8.00000i) q^{54} +2.69694i q^{56} +(-26.6969 + 26.6969i) q^{57} +(-10.3939 + 10.3939i) q^{58} +(-27.4166 - 27.4166i) q^{59} +19.0908 q^{61} -37.3485i q^{62} +(-7.28036 - 7.28036i) q^{63} +8.00000i q^{64} -106.990 q^{66} +(36.7650 - 36.7650i) q^{67} +35.3939 q^{68} +82.9898i q^{69} +(72.7878 - 72.7878i) q^{71} +(-21.5959 - 21.5959i) q^{72} +(49.7878 + 49.7878i) q^{73} -4.60612 q^{74} +(-12.0000 - 12.0000i) q^{76} -16.2122i q^{77} +(57.8434 + 57.8434i) q^{78} +42.7878 q^{79} -61.5857 q^{81} +26.7878i q^{82} +(-75.4166 + 75.4166i) q^{83} +(6.00000 - 6.00000i) q^{84} +(-60.0454 - 60.0454i) q^{86} +46.2474 q^{87} -48.0908i q^{88} +(6.30306 + 6.30306i) q^{89} +(-8.76505 + 8.76505i) q^{91} -37.3031 q^{92} +(-83.0908 + 83.0908i) q^{93} -130.924 q^{94} +(17.7980 - 17.7980i) q^{96} +(2.60612 - 2.60612i) q^{97} +(-48.0908 - 48.0908i) q^{98} +(129.821 + 129.821i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{3} - 8 q^{6} + 12 q^{7} - 8 q^{8} + 4 q^{9} + 4 q^{11} + 24 q^{14} - 16 q^{16} + 4 q^{18} + 24 q^{19} + 12 q^{21} + 8 q^{22} + 16 q^{24} - 52 q^{26} - 32 q^{27} + 24 q^{28} + 76 q^{29}+ \cdots + 436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) −4.44949 −1.48316 −0.741582 0.670863i \(-0.765924\pi\)
−0.741582 + 0.670863i \(0.765924\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −4.44949 + 4.44949i −0.741582 + 0.741582i
\(7\) −0.674235 0.674235i −0.0963192 0.0963192i 0.657305 0.753624i \(-0.271696\pi\)
−0.753624 + 0.657305i \(0.771696\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 10.7980 1.19977
\(10\) 0 0
\(11\) 12.0227 + 12.0227i 1.09297 + 1.09297i 0.995210 + 0.0977634i \(0.0311688\pi\)
0.0977634 + 0.995210i \(0.468831\pi\)
\(12\) 8.89898i 0.741582i
\(13\) 13.0000i 1.00000i
\(14\) −1.34847 −0.0963192
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 17.6969i 1.04100i 0.853863 + 0.520498i \(0.174254\pi\)
−0.853863 + 0.520498i \(0.825746\pi\)
\(18\) 10.7980 10.7980i 0.599887 0.599887i
\(19\) 6.00000 6.00000i 0.315789 0.315789i −0.531358 0.847147i \(-0.678318\pi\)
0.847147 + 0.531358i \(0.178318\pi\)
\(20\) 0 0
\(21\) 3.00000 + 3.00000i 0.142857 + 0.142857i
\(22\) 24.0454 1.09297
\(23\) 18.6515i 0.810936i −0.914109 0.405468i \(-0.867109\pi\)
0.914109 0.405468i \(-0.132891\pi\)
\(24\) 8.89898 + 8.89898i 0.370791 + 0.370791i
\(25\) 0 0
\(26\) −13.0000 13.0000i −0.500000 0.500000i
\(27\) −8.00000 −0.296296
\(28\) −1.34847 + 1.34847i −0.0481596 + 0.0481596i
\(29\) −10.3939 −0.358410 −0.179205 0.983812i \(-0.557352\pi\)
−0.179205 + 0.983812i \(0.557352\pi\)
\(30\) 0 0
\(31\) 18.6742 18.6742i 0.602395 0.602395i −0.338553 0.940947i \(-0.609937\pi\)
0.940947 + 0.338553i \(0.109937\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) −53.4949 53.4949i −1.62106 1.62106i
\(34\) 17.6969 + 17.6969i 0.520498 + 0.520498i
\(35\) 0 0
\(36\) 21.5959i 0.599887i
\(37\) −2.30306 2.30306i −0.0622449 0.0622449i 0.675299 0.737544i \(-0.264015\pi\)
−0.737544 + 0.675299i \(0.764015\pi\)
\(38\) 12.0000i 0.315789i
\(39\) 57.8434i 1.48316i
\(40\) 0 0
\(41\) −13.3939 + 13.3939i −0.326680 + 0.326680i −0.851323 0.524643i \(-0.824199\pi\)
0.524643 + 0.851323i \(0.324199\pi\)
\(42\) 6.00000 0.142857
\(43\) 60.0454i 1.39640i −0.715900 0.698202i \(-0.753984\pi\)
0.715900 0.698202i \(-0.246016\pi\)
\(44\) 24.0454 24.0454i 0.546487 0.546487i
\(45\) 0 0
\(46\) −18.6515 18.6515i −0.405468 0.405468i
\(47\) −65.4620 65.4620i −1.39281 1.39281i −0.818965 0.573843i \(-0.805452\pi\)
−0.573843 0.818965i \(-0.694548\pi\)
\(48\) 17.7980 0.370791
\(49\) 48.0908i 0.981445i
\(50\) 0 0
\(51\) 78.7423i 1.54397i
\(52\) −26.0000 −0.500000
\(53\) −50.3031 −0.949114 −0.474557 0.880225i \(-0.657392\pi\)
−0.474557 + 0.880225i \(0.657392\pi\)
\(54\) −8.00000 + 8.00000i −0.148148 + 0.148148i
\(55\) 0 0
\(56\) 2.69694i 0.0481596i
\(57\) −26.6969 + 26.6969i −0.468367 + 0.468367i
\(58\) −10.3939 + 10.3939i −0.179205 + 0.179205i
\(59\) −27.4166 27.4166i −0.464688 0.464688i 0.435501 0.900188i \(-0.356571\pi\)
−0.900188 + 0.435501i \(0.856571\pi\)
\(60\) 0 0
\(61\) 19.0908 0.312964 0.156482 0.987681i \(-0.449985\pi\)
0.156482 + 0.987681i \(0.449985\pi\)
\(62\) 37.3485i 0.602395i
\(63\) −7.28036 7.28036i −0.115561 0.115561i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −106.990 −1.62106
\(67\) 36.7650 36.7650i 0.548732 0.548732i −0.377342 0.926074i \(-0.623162\pi\)
0.926074 + 0.377342i \(0.123162\pi\)
\(68\) 35.3939 0.520498
\(69\) 82.9898i 1.20275i
\(70\) 0 0
\(71\) 72.7878 72.7878i 1.02518 1.02518i 0.0255049 0.999675i \(-0.491881\pi\)
0.999675 0.0255049i \(-0.00811935\pi\)
\(72\) −21.5959 21.5959i −0.299943 0.299943i
\(73\) 49.7878 + 49.7878i 0.682024 + 0.682024i 0.960456 0.278432i \(-0.0898147\pi\)
−0.278432 + 0.960456i \(0.589815\pi\)
\(74\) −4.60612 −0.0622449
\(75\) 0 0
\(76\) −12.0000 12.0000i −0.157895 0.157895i
\(77\) 16.2122i 0.210549i
\(78\) 57.8434 + 57.8434i 0.741582 + 0.741582i
\(79\) 42.7878 0.541617 0.270809 0.962633i \(-0.412709\pi\)
0.270809 + 0.962633i \(0.412709\pi\)
\(80\) 0 0
\(81\) −61.5857 −0.760317
\(82\) 26.7878i 0.326680i
\(83\) −75.4166 + 75.4166i −0.908634 + 0.908634i −0.996162 0.0875285i \(-0.972103\pi\)
0.0875285 + 0.996162i \(0.472103\pi\)
\(84\) 6.00000 6.00000i 0.0714286 0.0714286i
\(85\) 0 0
\(86\) −60.0454 60.0454i −0.698202 0.698202i
\(87\) 46.2474 0.531580
\(88\) 48.0908i 0.546487i
\(89\) 6.30306 + 6.30306i 0.0708209 + 0.0708209i 0.741630 0.670809i \(-0.234053\pi\)
−0.670809 + 0.741630i \(0.734053\pi\)
\(90\) 0 0
\(91\) −8.76505 + 8.76505i −0.0963192 + 0.0963192i
\(92\) −37.3031 −0.405468
\(93\) −83.0908 + 83.0908i −0.893450 + 0.893450i
\(94\) −130.924 −1.39281
\(95\) 0 0
\(96\) 17.7980 17.7980i 0.185395 0.185395i
\(97\) 2.60612 2.60612i 0.0268672 0.0268672i −0.693546 0.720413i \(-0.743952\pi\)
0.720413 + 0.693546i \(0.243952\pi\)
\(98\) −48.0908 48.0908i −0.490723 0.490723i
\(99\) 129.821 + 129.821i 1.31132 + 1.31132i
\(100\) 0 0
\(101\) 50.4847i 0.499848i −0.968265 0.249924i \(-0.919594\pi\)
0.968265 0.249924i \(-0.0804057\pi\)
\(102\) −78.7423 78.7423i −0.771984 0.771984i
\(103\) 185.576i 1.80170i −0.434126 0.900852i \(-0.642943\pi\)
0.434126 0.900852i \(-0.357057\pi\)
\(104\) −26.0000 + 26.0000i −0.250000 + 0.250000i
\(105\) 0 0
\(106\) −50.3031 + 50.3031i −0.474557 + 0.474557i
\(107\) 158.742 1.48357 0.741787 0.670636i \(-0.233979\pi\)
0.741787 + 0.670636i \(0.233979\pi\)
\(108\) 16.0000i 0.148148i
\(109\) 69.1816 69.1816i 0.634694 0.634694i −0.314548 0.949242i \(-0.601853\pi\)
0.949242 + 0.314548i \(0.101853\pi\)
\(110\) 0 0
\(111\) 10.2474 + 10.2474i 0.0923194 + 0.0923194i
\(112\) 2.69694 + 2.69694i 0.0240798 + 0.0240798i
\(113\) −13.3939 −0.118530 −0.0592649 0.998242i \(-0.518876\pi\)
−0.0592649 + 0.998242i \(0.518876\pi\)
\(114\) 53.3939i 0.468367i
\(115\) 0 0
\(116\) 20.7878i 0.179205i
\(117\) 140.373i 1.19977i
\(118\) −54.8332 −0.464688
\(119\) 11.9319 11.9319i 0.100268 0.100268i
\(120\) 0 0
\(121\) 168.091i 1.38918i
\(122\) 19.0908 19.0908i 0.156482 0.156482i
\(123\) 59.5959 59.5959i 0.484520 0.484520i
\(124\) −37.3485 37.3485i −0.301197 0.301197i
\(125\) 0 0
\(126\) −14.5607 −0.115561
\(127\) 53.2122i 0.418994i −0.977809 0.209497i \(-0.932817\pi\)
0.977809 0.209497i \(-0.0671827\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 267.171i 2.07110i
\(130\) 0 0
\(131\) −97.5301 −0.744505 −0.372252 0.928132i \(-0.621414\pi\)
−0.372252 + 0.928132i \(0.621414\pi\)
\(132\) −106.990 + 106.990i −0.810529 + 0.810529i
\(133\) −8.09082 −0.0608332
\(134\) 73.5301i 0.548732i
\(135\) 0 0
\(136\) 35.3939 35.3939i 0.260249 0.260249i
\(137\) 115.697 + 115.697i 0.844503 + 0.844503i 0.989441 0.144938i \(-0.0462981\pi\)
−0.144938 + 0.989441i \(0.546298\pi\)
\(138\) 82.9898 + 82.9898i 0.601375 + 0.601375i
\(139\) −257.621 −1.85339 −0.926694 0.375817i \(-0.877362\pi\)
−0.926694 + 0.375817i \(0.877362\pi\)
\(140\) 0 0
\(141\) 291.272 + 291.272i 2.06576 + 2.06576i
\(142\) 145.576i 1.02518i
\(143\) 156.295 156.295i 1.09297 1.09297i
\(144\) −43.1918 −0.299943
\(145\) 0 0
\(146\) 99.5755 0.682024
\(147\) 213.980i 1.45564i
\(148\) −4.60612 + 4.60612i −0.0311225 + 0.0311225i
\(149\) 144.091 144.091i 0.967052 0.967052i −0.0324218 0.999474i \(-0.510322\pi\)
0.999474 + 0.0324218i \(0.0103220\pi\)
\(150\) 0 0
\(151\) 80.6742 + 80.6742i 0.534266 + 0.534266i 0.921839 0.387573i \(-0.126686\pi\)
−0.387573 + 0.921839i \(0.626686\pi\)
\(152\) −24.0000 −0.157895
\(153\) 191.091i 1.24896i
\(154\) −16.2122 16.2122i −0.105274 0.105274i
\(155\) 0 0
\(156\) 115.687 0.741582
\(157\) 176.394 1.12353 0.561764 0.827298i \(-0.310123\pi\)
0.561764 + 0.827298i \(0.310123\pi\)
\(158\) 42.7878 42.7878i 0.270809 0.270809i
\(159\) 223.823 1.40769
\(160\) 0 0
\(161\) −12.5755 + 12.5755i −0.0781087 + 0.0781087i
\(162\) −61.5857 + 61.5857i −0.380159 + 0.380159i
\(163\) −196.742 196.742i −1.20701 1.20701i −0.971991 0.235017i \(-0.924485\pi\)
−0.235017 0.971991i \(-0.575515\pi\)
\(164\) 26.7878 + 26.7878i 0.163340 + 0.163340i
\(165\) 0 0
\(166\) 150.833i 0.908634i
\(167\) 191.576 + 191.576i 1.14716 + 1.14716i 0.987109 + 0.160050i \(0.0511655\pi\)
0.160050 + 0.987109i \(0.448835\pi\)
\(168\) 12.0000i 0.0714286i
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 64.7878 64.7878i 0.378876 0.378876i
\(172\) −120.091 −0.698202
\(173\) 317.272i 1.83394i 0.398951 + 0.916972i \(0.369374\pi\)
−0.398951 + 0.916972i \(0.630626\pi\)
\(174\) 46.2474 46.2474i 0.265790 0.265790i
\(175\) 0 0
\(176\) −48.0908 48.0908i −0.273243 0.273243i
\(177\) 121.990 + 121.990i 0.689208 + 0.689208i
\(178\) 12.6061 0.0708209
\(179\) 140.000i 0.782123i −0.920365 0.391061i \(-0.872108\pi\)
0.920365 0.391061i \(-0.127892\pi\)
\(180\) 0 0
\(181\) 107.363i 0.593167i −0.955007 0.296584i \(-0.904153\pi\)
0.955007 0.296584i \(-0.0958473\pi\)
\(182\) 17.5301i 0.0963192i
\(183\) −84.9444 −0.464177
\(184\) −37.3031 + 37.3031i −0.202734 + 0.202734i
\(185\) 0 0
\(186\) 166.182i 0.893450i
\(187\) −212.765 + 212.765i −1.13778 + 1.13778i
\(188\) −130.924 + 130.924i −0.696404 + 0.696404i
\(189\) 5.39388 + 5.39388i 0.0285390 + 0.0285390i
\(190\) 0 0
\(191\) −74.7878 −0.391559 −0.195779 0.980648i \(-0.562724\pi\)
−0.195779 + 0.980648i \(0.562724\pi\)
\(192\) 35.5959i 0.185395i
\(193\) 258.879 + 258.879i 1.34134 + 1.34134i 0.894728 + 0.446612i \(0.147370\pi\)
0.446612 + 0.894728i \(0.352630\pi\)
\(194\) 5.21225i 0.0268672i
\(195\) 0 0
\(196\) −96.1816 −0.490723
\(197\) −53.2122 + 53.2122i −0.270113 + 0.270113i −0.829146 0.559033i \(-0.811173\pi\)
0.559033 + 0.829146i \(0.311173\pi\)
\(198\) 259.641 1.31132
\(199\) 149.212i 0.749810i −0.927063 0.374905i \(-0.877675\pi\)
0.927063 0.374905i \(-0.122325\pi\)
\(200\) 0 0
\(201\) −163.586 + 163.586i −0.813859 + 0.813859i
\(202\) −50.4847 50.4847i −0.249924 0.249924i
\(203\) 7.00791 + 7.00791i 0.0345217 + 0.0345217i
\(204\) −157.485 −0.771984
\(205\) 0 0
\(206\) −185.576 185.576i −0.900852 0.900852i
\(207\) 201.398i 0.972939i
\(208\) 52.0000i 0.250000i
\(209\) 144.272 0.690299
\(210\) 0 0
\(211\) 257.530 1.22052 0.610261 0.792201i \(-0.291065\pi\)
0.610261 + 0.792201i \(0.291065\pi\)
\(212\) 100.606i 0.474557i
\(213\) −323.868 + 323.868i −1.52051 + 1.52051i
\(214\) 158.742 158.742i 0.741787 0.741787i
\(215\) 0 0
\(216\) 16.0000 + 16.0000i 0.0740741 + 0.0740741i
\(217\) −25.1816 −0.116044
\(218\) 138.363i 0.634694i
\(219\) −221.530 221.530i −1.01155 1.01155i
\(220\) 0 0
\(221\) 230.060 1.04100
\(222\) 20.4949 0.0923194
\(223\) 108.561 108.561i 0.486819 0.486819i −0.420482 0.907301i \(-0.638139\pi\)
0.907301 + 0.420482i \(0.138139\pi\)
\(224\) 5.39388 0.0240798
\(225\) 0 0
\(226\) −13.3939 + 13.3939i −0.0592649 + 0.0592649i
\(227\) −80.0227 + 80.0227i −0.352523 + 0.352523i −0.861047 0.508525i \(-0.830191\pi\)
0.508525 + 0.861047i \(0.330191\pi\)
\(228\) 53.3939 + 53.3939i 0.234184 + 0.234184i
\(229\) −211.151 211.151i −0.922057 0.922057i 0.0751178 0.997175i \(-0.476067\pi\)
−0.997175 + 0.0751178i \(0.976067\pi\)
\(230\) 0 0
\(231\) 72.1362i 0.312278i
\(232\) 20.7878 + 20.7878i 0.0896024 + 0.0896024i
\(233\) 94.0000i 0.403433i 0.979444 + 0.201717i \(0.0646520\pi\)
−0.979444 + 0.201717i \(0.935348\pi\)
\(234\) −140.373 140.373i −0.599887 0.599887i
\(235\) 0 0
\(236\) −54.8332 + 54.8332i −0.232344 + 0.232344i
\(237\) −190.384 −0.803307
\(238\) 23.8638i 0.100268i
\(239\) −21.6436 + 21.6436i −0.0905591 + 0.0905591i −0.750935 0.660376i \(-0.770397\pi\)
0.660376 + 0.750935i \(0.270397\pi\)
\(240\) 0 0
\(241\) −123.060 123.060i −0.510623 0.510623i 0.404094 0.914717i \(-0.367587\pi\)
−0.914717 + 0.404094i \(0.867587\pi\)
\(242\) 168.091 + 168.091i 0.694590 + 0.694590i
\(243\) 346.025 1.42397
\(244\) 38.1816i 0.156482i
\(245\) 0 0
\(246\) 119.192i 0.484520i
\(247\) −78.0000 78.0000i −0.315789 0.315789i
\(248\) −74.6969 −0.301197
\(249\) 335.565 335.565i 1.34765 1.34765i
\(250\) 0 0
\(251\) 403.151i 1.60618i −0.595858 0.803090i \(-0.703188\pi\)
0.595858 0.803090i \(-0.296812\pi\)
\(252\) −14.5607 + 14.5607i −0.0577806 + 0.0577806i
\(253\) 224.242 224.242i 0.886331 0.886331i
\(254\) −53.2122 53.2122i −0.209497 0.209497i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 435.788i 1.69567i −0.530258 0.847836i \(-0.677905\pi\)
0.530258 0.847836i \(-0.322095\pi\)
\(258\) 267.171 + 267.171i 1.03555 + 1.03555i
\(259\) 3.10561i 0.0119908i
\(260\) 0 0
\(261\) −112.233 −0.430010
\(262\) −97.5301 + 97.5301i −0.372252 + 0.372252i
\(263\) 404.499 1.53802 0.769010 0.639236i \(-0.220749\pi\)
0.769010 + 0.639236i \(0.220749\pi\)
\(264\) 213.980i 0.810529i
\(265\) 0 0
\(266\) −8.09082 + 8.09082i −0.0304166 + 0.0304166i
\(267\) −28.0454 28.0454i −0.105039 0.105039i
\(268\) −73.5301 73.5301i −0.274366 0.274366i
\(269\) −456.757 −1.69798 −0.848991 0.528407i \(-0.822789\pi\)
−0.848991 + 0.528407i \(0.822789\pi\)
\(270\) 0 0
\(271\) 240.674 + 240.674i 0.888097 + 0.888097i 0.994340 0.106243i \(-0.0338823\pi\)
−0.106243 + 0.994340i \(0.533882\pi\)
\(272\) 70.7878i 0.260249i
\(273\) 39.0000 39.0000i 0.142857 0.142857i
\(274\) 231.394 0.844503
\(275\) 0 0
\(276\) 165.980 0.601375
\(277\) 173.151i 0.625094i −0.949902 0.312547i \(-0.898818\pi\)
0.949902 0.312547i \(-0.101182\pi\)
\(278\) −257.621 + 257.621i −0.926694 + 0.926694i
\(279\) 201.644 201.644i 0.722737 0.722737i
\(280\) 0 0
\(281\) −31.8184 31.8184i −0.113233 0.113233i 0.648220 0.761453i \(-0.275514\pi\)
−0.761453 + 0.648220i \(0.775514\pi\)
\(282\) 582.545 2.06576
\(283\) 195.106i 0.689419i 0.938709 + 0.344710i \(0.112023\pi\)
−0.938709 + 0.344710i \(0.887977\pi\)
\(284\) −145.576 145.576i −0.512590 0.512590i
\(285\) 0 0
\(286\) 312.590i 1.09297i
\(287\) 18.0612 0.0629311
\(288\) −43.1918 + 43.1918i −0.149972 + 0.149972i
\(289\) −24.1816 −0.0836735
\(290\) 0 0
\(291\) −11.5959 + 11.5959i −0.0398485 + 0.0398485i
\(292\) 99.5755 99.5755i 0.341012 0.341012i
\(293\) −146.788 146.788i −0.500982 0.500982i 0.410761 0.911743i \(-0.365263\pi\)
−0.911743 + 0.410761i \(0.865263\pi\)
\(294\) 213.980 + 213.980i 0.727822 + 0.727822i
\(295\) 0 0
\(296\) 9.21225i 0.0311225i
\(297\) −96.1816 96.1816i −0.323844 0.323844i
\(298\) 288.182i 0.967052i
\(299\) −242.470 −0.810936
\(300\) 0 0
\(301\) −40.4847 + 40.4847i −0.134501 + 0.134501i
\(302\) 161.348 0.534266
\(303\) 224.631i 0.741357i
\(304\) −24.0000 + 24.0000i −0.0789474 + 0.0789474i
\(305\) 0 0
\(306\) 191.091 + 191.091i 0.624480 + 0.624480i
\(307\) −27.2122 27.2122i −0.0886392 0.0886392i 0.661397 0.750036i \(-0.269964\pi\)
−0.750036 + 0.661397i \(0.769964\pi\)
\(308\) −32.4245 −0.105274
\(309\) 825.716i 2.67222i
\(310\) 0 0
\(311\) 532.227i 1.71134i −0.517521 0.855670i \(-0.673145\pi\)
0.517521 0.855670i \(-0.326855\pi\)
\(312\) 115.687 115.687i 0.370791 0.370791i
\(313\) −580.605 −1.85497 −0.927484 0.373862i \(-0.878033\pi\)
−0.927484 + 0.373862i \(0.878033\pi\)
\(314\) 176.394 176.394i 0.561764 0.561764i
\(315\) 0 0
\(316\) 85.5755i 0.270809i
\(317\) −248.272 + 248.272i −0.783194 + 0.783194i −0.980368 0.197175i \(-0.936823\pi\)
0.197175 + 0.980368i \(0.436823\pi\)
\(318\) 223.823 223.823i 0.703846 0.703846i
\(319\) −124.963 124.963i −0.391732 0.391732i
\(320\) 0 0
\(321\) −706.322 −2.20038
\(322\) 25.1510i 0.0781087i
\(323\) 106.182 + 106.182i 0.328736 + 0.328736i
\(324\) 123.171i 0.380159i
\(325\) 0 0
\(326\) −393.485 −1.20701
\(327\) −307.823 + 307.823i −0.941355 + 0.941355i
\(328\) 53.5755 0.163340
\(329\) 88.2735i 0.268308i
\(330\) 0 0
\(331\) −445.151 + 445.151i −1.34487 + 1.34487i −0.453726 + 0.891141i \(0.649905\pi\)
−0.891141 + 0.453726i \(0.850095\pi\)
\(332\) 150.833 + 150.833i 0.454317 + 0.454317i
\(333\) −24.8684 24.8684i −0.0746798 0.0746798i
\(334\) 383.151 1.14716
\(335\) 0 0
\(336\) −12.0000 12.0000i −0.0357143 0.0357143i
\(337\) 95.4541i 0.283247i 0.989921 + 0.141623i \(0.0452322\pi\)
−0.989921 + 0.141623i \(0.954768\pi\)
\(338\) −169.000 + 169.000i −0.500000 + 0.500000i
\(339\) 59.5959 0.175799
\(340\) 0 0
\(341\) 449.030 1.31680
\(342\) 129.576i 0.378876i
\(343\) −65.4620 + 65.4620i −0.190851 + 0.190851i
\(344\) −120.091 + 120.091i −0.349101 + 0.349101i
\(345\) 0 0
\(346\) 317.272 + 317.272i 0.916972 + 0.916972i
\(347\) 41.6209 0.119945 0.0599725 0.998200i \(-0.480899\pi\)
0.0599725 + 0.998200i \(0.480899\pi\)
\(348\) 92.4949i 0.265790i
\(349\) −186.879 186.879i −0.535469 0.535469i 0.386726 0.922195i \(-0.373606\pi\)
−0.922195 + 0.386726i \(0.873606\pi\)
\(350\) 0 0
\(351\) 104.000i 0.296296i
\(352\) −96.1816 −0.273243
\(353\) 49.5153 49.5153i 0.140270 0.140270i −0.633485 0.773755i \(-0.718376\pi\)
0.773755 + 0.633485i \(0.218376\pi\)
\(354\) 243.980 0.689208
\(355\) 0 0
\(356\) 12.6061 12.6061i 0.0354105 0.0354105i
\(357\) −53.0908 + 53.0908i −0.148714 + 0.148714i
\(358\) −140.000 140.000i −0.391061 0.391061i
\(359\) 234.538 + 234.538i 0.653309 + 0.653309i 0.953788 0.300479i \(-0.0971466\pi\)
−0.300479 + 0.953788i \(0.597147\pi\)
\(360\) 0 0
\(361\) 289.000i 0.800554i
\(362\) −107.363 107.363i −0.296584 0.296584i
\(363\) 747.918i 2.06038i
\(364\) 17.5301 + 17.5301i 0.0481596 + 0.0481596i
\(365\) 0 0
\(366\) −84.9444 + 84.9444i −0.232088 + 0.232088i
\(367\) 111.287 0.303235 0.151617 0.988439i \(-0.451552\pi\)
0.151617 + 0.988439i \(0.451552\pi\)
\(368\) 74.6061i 0.202734i
\(369\) −144.627 + 144.627i −0.391942 + 0.391942i
\(370\) 0 0
\(371\) 33.9161 + 33.9161i 0.0914180 + 0.0914180i
\(372\) 166.182 + 166.182i 0.446725 + 0.446725i
\(373\) 58.9388 0.158013 0.0790064 0.996874i \(-0.474825\pi\)
0.0790064 + 0.996874i \(0.474825\pi\)
\(374\) 425.530i 1.13778i
\(375\) 0 0
\(376\) 261.848i 0.696404i
\(377\) 135.120i 0.358410i
\(378\) 10.7878 0.0285390
\(379\) 151.235 151.235i 0.399037 0.399037i −0.478856 0.877893i \(-0.658949\pi\)
0.877893 + 0.478856i \(0.158949\pi\)
\(380\) 0 0
\(381\) 236.767i 0.621437i
\(382\) −74.7878 + 74.7878i −0.195779 + 0.195779i
\(383\) −510.954 + 510.954i −1.33408 + 1.33408i −0.432401 + 0.901681i \(0.642333\pi\)
−0.901681 + 0.432401i \(0.857667\pi\)
\(384\) −35.5959 35.5959i −0.0926977 0.0926977i
\(385\) 0 0
\(386\) 517.757 1.34134
\(387\) 648.368i 1.67537i
\(388\) −5.21225 5.21225i −0.0134336 0.0134336i
\(389\) 10.0612i 0.0258643i 0.999916 + 0.0129322i \(0.00411655\pi\)
−0.999916 + 0.0129322i \(0.995883\pi\)
\(390\) 0 0
\(391\) 330.075 0.844182
\(392\) −96.1816 + 96.1816i −0.245361 + 0.245361i
\(393\) 433.959 1.10422
\(394\) 106.424i 0.270113i
\(395\) 0 0
\(396\) 259.641 259.641i 0.655660 0.655660i
\(397\) −485.091 485.091i −1.22189 1.22189i −0.966959 0.254932i \(-0.917947\pi\)
−0.254932 0.966959i \(-0.582053\pi\)
\(398\) −149.212 149.212i −0.374905 0.374905i
\(399\) 36.0000 0.0902256
\(400\) 0 0
\(401\) 224.363 + 224.363i 0.559509 + 0.559509i 0.929168 0.369658i \(-0.120525\pi\)
−0.369658 + 0.929168i \(0.620525\pi\)
\(402\) 327.171i 0.813859i
\(403\) −242.765 242.765i −0.602395 0.602395i
\(404\) −100.969 −0.249924
\(405\) 0 0
\(406\) 14.0158 0.0345217
\(407\) 55.3781i 0.136064i
\(408\) −157.485 + 157.485i −0.385992 + 0.385992i
\(409\) −463.727 + 463.727i −1.13381 + 1.13381i −0.144267 + 0.989539i \(0.546082\pi\)
−0.989539 + 0.144267i \(0.953918\pi\)
\(410\) 0 0
\(411\) −514.792 514.792i −1.25254 1.25254i
\(412\) −371.151 −0.900852
\(413\) 36.9704i 0.0895167i
\(414\) −201.398 201.398i −0.486470 0.486470i
\(415\) 0 0
\(416\) 52.0000 + 52.0000i 0.125000 + 0.125000i
\(417\) 1146.28 2.74888
\(418\) 144.272 144.272i 0.345149 0.345149i
\(419\) 517.167 1.23429 0.617144 0.786850i \(-0.288290\pi\)
0.617144 + 0.786850i \(0.288290\pi\)
\(420\) 0 0
\(421\) −45.3031 + 45.3031i −0.107608 + 0.107608i −0.758861 0.651253i \(-0.774244\pi\)
0.651253 + 0.758861i \(0.274244\pi\)
\(422\) 257.530 257.530i 0.610261 0.610261i
\(423\) −706.856 706.856i −1.67105 1.67105i
\(424\) 100.606 + 100.606i 0.237279 + 0.237279i
\(425\) 0 0
\(426\) 647.737i 1.52051i
\(427\) −12.8717 12.8717i −0.0301445 0.0301445i
\(428\) 317.485i 0.741787i
\(429\) −695.434 + 695.434i −1.62106 + 1.62106i
\(430\) 0 0
\(431\) 295.348 295.348i 0.685263 0.685263i −0.275918 0.961181i \(-0.588982\pi\)
0.961181 + 0.275918i \(0.0889818\pi\)
\(432\) 32.0000 0.0740741
\(433\) 74.6061i 0.172301i 0.996282 + 0.0861503i \(0.0274565\pi\)
−0.996282 + 0.0861503i \(0.972543\pi\)
\(434\) −25.1816 + 25.1816i −0.0580222 + 0.0580222i
\(435\) 0 0
\(436\) −138.363 138.363i −0.317347 0.317347i
\(437\) −111.909 111.909i −0.256085 0.256085i
\(438\) −443.060 −1.01155
\(439\) 158.302i 0.360597i −0.983612 0.180298i \(-0.942294\pi\)
0.983612 0.180298i \(-0.0577064\pi\)
\(440\) 0 0
\(441\) 519.283i 1.17751i
\(442\) 230.060 230.060i 0.520498 0.520498i
\(443\) 281.258 0.634893 0.317447 0.948276i \(-0.397175\pi\)
0.317447 + 0.948276i \(0.397175\pi\)
\(444\) 20.4949 20.4949i 0.0461597 0.0461597i
\(445\) 0 0
\(446\) 217.121i 0.486819i
\(447\) −641.131 + 641.131i −1.43430 + 1.43430i
\(448\) 5.39388 5.39388i 0.0120399 0.0120399i
\(449\) 404.333 + 404.333i 0.900518 + 0.900518i 0.995481 0.0949627i \(-0.0302732\pi\)
−0.0949627 + 0.995481i \(0.530273\pi\)
\(450\) 0 0
\(451\) −322.061 −0.714105
\(452\) 26.7878i 0.0592649i
\(453\) −358.959 358.959i −0.792404 0.792404i
\(454\) 160.045i 0.352523i
\(455\) 0 0
\(456\) 106.788 0.234184
\(457\) 318.576 318.576i 0.697102 0.697102i −0.266683 0.963784i \(-0.585928\pi\)
0.963784 + 0.266683i \(0.0859276\pi\)
\(458\) −422.302 −0.922057
\(459\) 141.576i 0.308443i
\(460\) 0 0
\(461\) −216.454 + 216.454i −0.469532 + 0.469532i −0.901763 0.432231i \(-0.857726\pi\)
0.432231 + 0.901763i \(0.357726\pi\)
\(462\) 72.1362 + 72.1362i 0.156139 + 0.156139i
\(463\) 187.401 + 187.401i 0.404753 + 0.404753i 0.879904 0.475151i \(-0.157607\pi\)
−0.475151 + 0.879904i \(0.657607\pi\)
\(464\) 41.5755 0.0896024
\(465\) 0 0
\(466\) 94.0000 + 94.0000i 0.201717 + 0.201717i
\(467\) 78.1066i 0.167252i 0.996497 + 0.0836260i \(0.0266501\pi\)
−0.996497 + 0.0836260i \(0.973350\pi\)
\(468\) −280.747 −0.599887
\(469\) −49.5765 −0.105707
\(470\) 0 0
\(471\) −784.863 −1.66638
\(472\) 109.666i 0.232344i
\(473\) 721.908 721.908i 1.52623 1.52623i
\(474\) −190.384 + 190.384i −0.401653 + 0.401653i
\(475\) 0 0
\(476\) −23.8638 23.8638i −0.0501340 0.0501340i
\(477\) −543.170 −1.13872
\(478\) 43.2872i 0.0905591i
\(479\) 296.007 + 296.007i 0.617968 + 0.617968i 0.945010 0.327042i \(-0.106052\pi\)
−0.327042 + 0.945010i \(0.606052\pi\)
\(480\) 0 0
\(481\) −29.9398 + 29.9398i −0.0622449 + 0.0622449i
\(482\) −246.120 −0.510623
\(483\) 55.9546 55.9546i 0.115848 0.115848i
\(484\) 336.182 0.694590
\(485\) 0 0
\(486\) 346.025 346.025i 0.711986 0.711986i
\(487\) −340.250 + 340.250i −0.698665 + 0.698665i −0.964122 0.265458i \(-0.914477\pi\)
0.265458 + 0.964122i \(0.414477\pi\)
\(488\) −38.1816 38.1816i −0.0782410 0.0782410i
\(489\) 875.403 + 875.403i 1.79019 + 1.79019i
\(490\) 0 0
\(491\) 551.923i 1.12408i −0.827110 0.562040i \(-0.810017\pi\)
0.827110 0.562040i \(-0.189983\pi\)
\(492\) −119.192 119.192i −0.242260 0.242260i
\(493\) 183.940i 0.373103i
\(494\) −156.000 −0.315789
\(495\) 0 0
\(496\) −74.6969 + 74.6969i −0.150599 + 0.150599i
\(497\) −98.1520 −0.197489
\(498\) 671.131i 1.34765i
\(499\) 116.023 116.023i 0.232510 0.232510i −0.581229 0.813740i \(-0.697428\pi\)
0.813740 + 0.581229i \(0.197428\pi\)
\(500\) 0 0
\(501\) −852.413 852.413i −1.70142 1.70142i
\(502\) −403.151 403.151i −0.803090 0.803090i
\(503\) 636.727 1.26586 0.632929 0.774210i \(-0.281853\pi\)
0.632929 + 0.774210i \(0.281853\pi\)
\(504\) 29.1214i 0.0577806i
\(505\) 0 0
\(506\) 448.484i 0.886331i
\(507\) 751.964 1.48316
\(508\) −106.424 −0.209497
\(509\) −40.5449 + 40.5449i −0.0796560 + 0.0796560i −0.745812 0.666156i \(-0.767938\pi\)
0.666156 + 0.745812i \(0.267938\pi\)
\(510\) 0 0
\(511\) 67.1373i 0.131384i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −48.0000 + 48.0000i −0.0935673 + 0.0935673i
\(514\) −435.788 435.788i −0.847836 0.847836i
\(515\) 0 0
\(516\) 534.343 1.03555
\(517\) 1574.06i 3.04460i
\(518\) 3.10561 + 3.10561i 0.00599538 + 0.00599538i
\(519\) 1411.70i 2.72004i
\(520\) 0 0
\(521\) −760.908 −1.46048 −0.730238 0.683193i \(-0.760591\pi\)
−0.730238 + 0.683193i \(0.760591\pi\)
\(522\) −112.233 + 112.233i −0.215005 + 0.215005i
\(523\) 160.000 0.305927 0.152964 0.988232i \(-0.451118\pi\)
0.152964 + 0.988232i \(0.451118\pi\)
\(524\) 195.060i 0.372252i
\(525\) 0 0
\(526\) 404.499 404.499i 0.769010 0.769010i
\(527\) 330.477 + 330.477i 0.627091 + 0.627091i
\(528\) 213.980 + 213.980i 0.405264 + 0.405264i
\(529\) 181.120 0.342383
\(530\) 0 0
\(531\) −296.043 296.043i −0.557520 0.557520i
\(532\) 16.1816i 0.0304166i
\(533\) 174.120 + 174.120i 0.326680 + 0.326680i
\(534\) −56.0908 −0.105039
\(535\) 0 0
\(536\) −147.060 −0.274366
\(537\) 622.929i 1.16002i
\(538\) −456.757 + 456.757i −0.848991 + 0.848991i
\(539\) 578.182 578.182i 1.07269 1.07269i
\(540\) 0 0
\(541\) −184.091 184.091i −0.340279 0.340279i 0.516193 0.856472i \(-0.327349\pi\)
−0.856472 + 0.516193i \(0.827349\pi\)
\(542\) 481.348 0.888097
\(543\) 477.712i 0.879764i
\(544\) −70.7878 70.7878i −0.130125 0.130125i
\(545\) 0 0
\(546\) 78.0000i 0.142857i
\(547\) −758.983 −1.38754 −0.693769 0.720198i \(-0.744051\pi\)
−0.693769 + 0.720198i \(0.744051\pi\)
\(548\) 231.394 231.394i 0.422252 0.422252i
\(549\) 206.142 0.375486
\(550\) 0 0
\(551\) −62.3633 + 62.3633i −0.113182 + 0.113182i
\(552\) 165.980 165.980i 0.300688 0.300688i
\(553\) −28.8490 28.8490i −0.0521681 0.0521681i
\(554\) −173.151 173.151i −0.312547 0.312547i
\(555\) 0 0
\(556\) 515.242i 0.926694i
\(557\) −165.666 165.666i −0.297426 0.297426i 0.542579 0.840005i \(-0.317448\pi\)
−0.840005 + 0.542579i \(0.817448\pi\)
\(558\) 403.287i 0.722737i
\(559\) −780.590 −1.39640
\(560\) 0 0
\(561\) 946.696 946.696i 1.68751 1.68751i
\(562\) −63.6367 −0.113233
\(563\) 923.514i 1.64035i 0.572116 + 0.820173i \(0.306123\pi\)
−0.572116 + 0.820173i \(0.693877\pi\)
\(564\) 582.545 582.545i 1.03288 1.03288i
\(565\) 0 0
\(566\) 195.106 + 195.106i 0.344710 + 0.344710i
\(567\) 41.5232 + 41.5232i 0.0732332 + 0.0732332i
\(568\) −291.151 −0.512590
\(569\) 809.788i 1.42318i 0.702596 + 0.711589i \(0.252024\pi\)
−0.702596 + 0.711589i \(0.747976\pi\)
\(570\) 0 0
\(571\) 596.363i 1.04442i 0.852817 + 0.522210i \(0.174892\pi\)
−0.852817 + 0.522210i \(0.825108\pi\)
\(572\) −312.590 312.590i −0.546487 0.546487i
\(573\) 332.767 0.580746
\(574\) 18.0612 18.0612i 0.0314656 0.0314656i
\(575\) 0 0
\(576\) 86.3837i 0.149972i
\(577\) 649.453 649.453i 1.12557 1.12557i 0.134679 0.990889i \(-0.457000\pi\)
0.990889 0.134679i \(-0.0430004\pi\)
\(578\) −24.1816 + 24.1816i −0.0418367 + 0.0418367i
\(579\) −1151.88 1151.88i −1.98943 1.98943i
\(580\) 0 0
\(581\) 101.697 0.175038
\(582\) 23.1918i 0.0398485i
\(583\) −604.779 604.779i −1.03736 1.03736i
\(584\) 199.151i 0.341012i
\(585\) 0 0
\(586\) −293.576 −0.500982
\(587\) −462.765 + 462.765i −0.788356 + 0.788356i −0.981225 0.192868i \(-0.938221\pi\)
0.192868 + 0.981225i \(0.438221\pi\)
\(588\) 427.959 0.727822
\(589\) 224.091i 0.380460i
\(590\) 0 0
\(591\) 236.767 236.767i 0.400622 0.400622i
\(592\) 9.21225 + 9.21225i 0.0155612 + 0.0155612i
\(593\) 662.666 + 662.666i 1.11748 + 1.11748i 0.992110 + 0.125371i \(0.0400122\pi\)
0.125371 + 0.992110i \(0.459988\pi\)
\(594\) −192.363 −0.323844
\(595\) 0 0
\(596\) −288.182 288.182i −0.483526 0.483526i
\(597\) 663.918i 1.11209i
\(598\) −242.470 + 242.470i −0.405468 + 0.405468i
\(599\) −111.741 −0.186546 −0.0932732 0.995641i \(-0.529733\pi\)
−0.0932732 + 0.995641i \(0.529733\pi\)
\(600\) 0 0
\(601\) −268.303 −0.446428 −0.223214 0.974769i \(-0.571655\pi\)
−0.223214 + 0.974769i \(0.571655\pi\)
\(602\) 80.9694i 0.134501i
\(603\) 396.988 396.988i 0.658354 0.658354i
\(604\) 161.348 161.348i 0.267133 0.267133i
\(605\) 0 0
\(606\) 224.631 + 224.631i 0.370678 + 0.370678i
\(607\) 735.650 1.21194 0.605972 0.795486i \(-0.292784\pi\)
0.605972 + 0.795486i \(0.292784\pi\)
\(608\) 48.0000i 0.0789474i
\(609\) −31.1816 31.1816i −0.0512014 0.0512014i
\(610\) 0 0
\(611\) −851.006 + 851.006i −1.39281 + 1.39281i
\(612\) 382.182 0.624480
\(613\) 39.6367 39.6367i 0.0646603 0.0646603i −0.674037 0.738697i \(-0.735441\pi\)
0.738697 + 0.674037i \(0.235441\pi\)
\(614\) −54.4245 −0.0886392
\(615\) 0 0
\(616\) −32.4245 + 32.4245i −0.0526372 + 0.0526372i
\(617\) 474.605 474.605i 0.769214 0.769214i −0.208754 0.977968i \(-0.566941\pi\)
0.977968 + 0.208754i \(0.0669408\pi\)
\(618\) 825.716 + 825.716i 1.33611 + 1.33611i
\(619\) 70.3633 + 70.3633i 0.113672 + 0.113672i 0.761655 0.647983i \(-0.224387\pi\)
−0.647983 + 0.761655i \(0.724387\pi\)
\(620\) 0 0
\(621\) 149.212i 0.240277i
\(622\) −532.227 532.227i −0.855670 0.855670i
\(623\) 8.49948i 0.0136428i
\(624\) 231.373i 0.370791i
\(625\) 0 0
\(626\) −580.605 + 580.605i −0.927484 + 0.927484i
\(627\) −641.939 −1.02383
\(628\) 352.788i 0.561764i
\(629\) 40.7571 40.7571i 0.0647967 0.0647967i
\(630\) 0 0
\(631\) 323.803 + 323.803i 0.513158 + 0.513158i 0.915493 0.402335i \(-0.131801\pi\)
−0.402335 + 0.915493i \(0.631801\pi\)
\(632\) −85.5755 85.5755i −0.135404 0.135404i
\(633\) −1145.88 −1.81023
\(634\) 496.545i 0.783194i
\(635\) 0 0
\(636\) 447.646i 0.703846i
\(637\) −625.181 −0.981445
\(638\) −249.925 −0.391732
\(639\) 785.959 785.959i 1.22998 1.22998i
\(640\) 0 0
\(641\) 645.938i 1.00770i −0.863790 0.503852i \(-0.831916\pi\)
0.863790 0.503852i \(-0.168084\pi\)
\(642\) −706.322 + 706.322i −1.10019 + 1.10019i
\(643\) 201.637 201.637i 0.313587 0.313587i −0.532710 0.846298i \(-0.678826\pi\)
0.846298 + 0.532710i \(0.178826\pi\)
\(644\) 25.1510 + 25.1510i 0.0390544 + 0.0390544i
\(645\) 0 0
\(646\) 212.363 0.328736
\(647\) 104.136i 0.160952i 0.996757 + 0.0804762i \(0.0256441\pi\)
−0.996757 + 0.0804762i \(0.974356\pi\)
\(648\) 123.171 + 123.171i 0.190079 + 0.190079i
\(649\) 659.243i 1.01578i
\(650\) 0 0
\(651\) 112.045 0.172113
\(652\) −393.485 + 393.485i −0.603504 + 0.603504i
\(653\) −155.908 −0.238757 −0.119378 0.992849i \(-0.538090\pi\)
−0.119378 + 0.992849i \(0.538090\pi\)
\(654\) 615.646i 0.941355i
\(655\) 0 0
\(656\) 53.5755 53.5755i 0.0816700 0.0816700i
\(657\) 537.606 + 537.606i 0.818274 + 0.818274i
\(658\) 88.2735 + 88.2735i 0.134154 + 0.134154i
\(659\) 525.816 0.797900 0.398950 0.916973i \(-0.369375\pi\)
0.398950 + 0.916973i \(0.369375\pi\)
\(660\) 0 0
\(661\) 767.879 + 767.879i 1.16169 + 1.16169i 0.984105 + 0.177587i \(0.0568292\pi\)
0.177587 + 0.984105i \(0.443171\pi\)
\(662\) 890.302i 1.34487i
\(663\) −1023.65 −1.54397
\(664\) 301.666 0.454317
\(665\) 0 0
\(666\) −49.7367 −0.0746798
\(667\) 193.862i 0.290647i
\(668\) 383.151 383.151i 0.573579 0.573579i
\(669\) −483.040 + 483.040i −0.722033 + 0.722033i
\(670\) 0 0
\(671\) 229.523 + 229.523i 0.342061 + 0.342061i
\(672\) −24.0000 −0.0357143
\(673\) 446.728i 0.663785i 0.943317 + 0.331893i \(0.107687\pi\)
−0.943317 + 0.331893i \(0.892313\pi\)
\(674\) 95.4541 + 95.4541i 0.141623 + 0.141623i
\(675\) 0 0
\(676\) 338.000i 0.500000i
\(677\) 45.1510 0.0666928 0.0333464 0.999444i \(-0.489384\pi\)
0.0333464 + 0.999444i \(0.489384\pi\)
\(678\) 59.5959 59.5959i 0.0878996 0.0878996i
\(679\) −3.51428 −0.00517567
\(680\) 0 0
\(681\) 356.060 356.060i 0.522849 0.522849i
\(682\) 449.030 449.030i 0.658401 0.658401i
\(683\) 92.0227 + 92.0227i 0.134733 + 0.134733i 0.771257 0.636524i \(-0.219628\pi\)
−0.636524 + 0.771257i \(0.719628\pi\)
\(684\) −129.576 129.576i −0.189438 0.189438i
\(685\) 0 0
\(686\) 130.924i 0.190851i
\(687\) 939.514 + 939.514i 1.36756 + 1.36756i
\(688\) 240.182i 0.349101i
\(689\) 653.940i 0.949114i
\(690\) 0 0
\(691\) 672.386 672.386i 0.973062 0.973062i −0.0265844 0.999647i \(-0.508463\pi\)
0.999647 + 0.0265844i \(0.00846307\pi\)
\(692\) 634.545 0.916972
\(693\) 175.059i 0.252611i
\(694\) 41.6209 41.6209i 0.0599725 0.0599725i
\(695\) 0 0
\(696\) −92.4949 92.4949i −0.132895 0.132895i
\(697\) −237.031 237.031i −0.340073 0.340073i
\(698\) −373.757 −0.535469
\(699\) 418.252i 0.598358i
\(700\) 0 0
\(701\) 1188.09i 1.69485i 0.530915 + 0.847425i \(0.321848\pi\)
−0.530915 + 0.847425i \(0.678152\pi\)
\(702\) 104.000 + 104.000i 0.148148 + 0.148148i
\(703\) −27.6367 −0.0393126
\(704\) −96.1816 + 96.1816i −0.136622 + 0.136622i
\(705\) 0 0
\(706\) 99.0306i 0.140270i
\(707\) −34.0385 + 34.0385i −0.0481450 + 0.0481450i
\(708\) 243.980 243.980i 0.344604 0.344604i
\(709\) −309.031 309.031i −0.435868 0.435868i 0.454751 0.890619i \(-0.349728\pi\)
−0.890619 + 0.454751i \(0.849728\pi\)
\(710\) 0 0
\(711\) 462.020 0.649818
\(712\) 25.2122i 0.0354105i
\(713\) −348.303 348.303i −0.488504 0.488504i
\(714\) 106.182i 0.148714i
\(715\) 0 0
\(716\) −280.000 −0.391061
\(717\) 96.3031 96.3031i 0.134314 0.134314i
\(718\) 469.076 0.653309
\(719\) 793.589i 1.10374i 0.833930 + 0.551870i \(0.186086\pi\)
−0.833930 + 0.551870i \(0.813914\pi\)
\(720\) 0 0
\(721\) −125.121 + 125.121i −0.173539 + 0.173539i
\(722\) 289.000 + 289.000i 0.400277 + 0.400277i
\(723\) 547.555 + 547.555i 0.757338 + 0.757338i
\(724\) −214.727 −0.296584
\(725\) 0 0
\(726\) −747.918 747.918i −1.03019 1.03019i
\(727\) 173.090i 0.238088i −0.992889 0.119044i \(-0.962017\pi\)
0.992889 0.119044i \(-0.0379829\pi\)
\(728\) 35.0602 0.0481596
\(729\) −985.363 −1.35166
\(730\) 0 0
\(731\) 1062.62 1.45365
\(732\) 169.889i 0.232088i
\(733\) 451.727 451.727i 0.616271 0.616271i −0.328302 0.944573i \(-0.606476\pi\)
0.944573 + 0.328302i \(0.106476\pi\)
\(734\) 111.287 111.287i 0.151617 0.151617i
\(735\) 0 0
\(736\) 74.6061 + 74.6061i 0.101367 + 0.101367i
\(737\) 884.031 1.19950
\(738\) 289.253i 0.391942i
\(739\) 452.643 + 452.643i 0.612507 + 0.612507i 0.943599 0.331092i \(-0.107417\pi\)
−0.331092 + 0.943599i \(0.607417\pi\)
\(740\) 0 0
\(741\) 347.060 + 347.060i 0.468367 + 0.468367i
\(742\) 67.8321 0.0914180
\(743\) 510.295 510.295i 0.686804 0.686804i −0.274720 0.961524i \(-0.588585\pi\)
0.961524 + 0.274720i \(0.0885853\pi\)
\(744\) 332.363 0.446725
\(745\) 0 0
\(746\) 58.9388 58.9388i 0.0790064 0.0790064i
\(747\) −814.345 + 814.345i −1.09015 + 1.09015i
\(748\) 425.530 + 425.530i 0.568891 + 0.568891i
\(749\) −107.030 107.030i −0.142897 0.142897i
\(750\) 0 0
\(751\) 1224.50i 1.63049i 0.579115 + 0.815246i \(0.303398\pi\)
−0.579115 + 0.815246i \(0.696602\pi\)
\(752\) 261.848 + 261.848i 0.348202 + 0.348202i
\(753\) 1793.82i 2.38223i
\(754\) 135.120 + 135.120i 0.179205 + 0.179205i
\(755\) 0 0
\(756\) 10.7878 10.7878i 0.0142695 0.0142695i
\(757\) −1440.06 −1.90232 −0.951161 0.308694i \(-0.900108\pi\)
−0.951161 + 0.308694i \(0.900108\pi\)
\(758\) 302.470i 0.399037i
\(759\) −997.762 + 997.762i −1.31457 + 1.31457i
\(760\) 0 0
\(761\) 390.393 + 390.393i 0.513000 + 0.513000i 0.915444 0.402445i \(-0.131839\pi\)
−0.402445 + 0.915444i \(0.631839\pi\)
\(762\) 236.767 + 236.767i 0.310718 + 0.310718i
\(763\) −93.2893 −0.122266
\(764\) 149.576i 0.195779i
\(765\) 0 0
\(766\) 1021.91i 1.33408i
\(767\) −356.416 + 356.416i −0.464688 + 0.464688i
\(768\) −71.1918 −0.0926977
\(769\) 409.090 409.090i 0.531976 0.531976i −0.389184 0.921160i \(-0.627243\pi\)
0.921160 + 0.389184i \(0.127243\pi\)
\(770\) 0 0
\(771\) 1939.03i 2.51496i
\(772\) 517.757 517.757i 0.670670 0.670670i
\(773\) −18.0612 + 18.0612i −0.0233651 + 0.0233651i −0.718693 0.695328i \(-0.755259\pi\)
0.695328 + 0.718693i \(0.255259\pi\)
\(774\) −648.368 648.368i −0.837685 0.837685i
\(775\) 0 0
\(776\) −10.4245 −0.0134336
\(777\) 13.8184i 0.0177843i
\(778\) 10.0612 + 10.0612i 0.0129322 + 0.0129322i
\(779\) 160.727i 0.206324i
\(780\) 0 0
\(781\) 1750.21 2.24099
\(782\) 330.075 330.075i 0.422091 0.422091i
\(783\) 83.1510 0.106195
\(784\) 192.363i 0.245361i
\(785\) 0 0
\(786\) 433.959 433.959i 0.552111 0.552111i
\(787\) −148.461 148.461i −0.188642 0.188642i 0.606467 0.795109i \(-0.292586\pi\)
−0.795109 + 0.606467i \(0.792586\pi\)
\(788\) 106.424 + 106.424i 0.135056 + 0.135056i
\(789\) −1799.82 −2.28114
\(790\) 0 0
\(791\) 9.03062 + 9.03062i 0.0114167 + 0.0114167i
\(792\) 519.283i 0.655660i
\(793\) 248.181i 0.312964i
\(794\) −970.182 −1.22189
\(795\) 0 0
\(796\) −298.424 −0.374905
\(797\) 342.878i 0.430210i −0.976591 0.215105i \(-0.930991\pi\)
0.976591 0.215105i \(-0.0690094\pi\)
\(798\) 36.0000 36.0000i 0.0451128 0.0451128i
\(799\) 1158.48 1158.48i 1.44991 1.44991i
\(800\) 0 0
\(801\) 68.0602 + 68.0602i 0.0849690 + 0.0849690i
\(802\) 448.727 0.559509
\(803\) 1197.17i 1.49087i
\(804\) 327.171 + 327.171i 0.406930 + 0.406930i
\(805\) 0 0
\(806\) −485.530 −0.602395
\(807\) 2032.34 2.51838
\(808\) −100.969 + 100.969i −0.124962 + 0.124962i
\(809\) 1194.00 1.47590 0.737948 0.674857i \(-0.235795\pi\)
0.737948 + 0.674857i \(0.235795\pi\)
\(810\) 0 0
\(811\) 441.734 441.734i 0.544679 0.544679i −0.380218 0.924897i \(-0.624151\pi\)
0.924897 + 0.380218i \(0.124151\pi\)
\(812\) 14.0158 14.0158i 0.0172609 0.0172609i
\(813\) −1070.88 1070.88i −1.31719 1.31719i
\(814\) −55.3781 55.3781i −0.0680320 0.0680320i
\(815\) 0 0
\(816\) 314.969i 0.385992i
\(817\) −360.272 360.272i −0.440970 0.440970i
\(818\) 927.453i 1.13381i
\(819\) −94.6447 + 94.6447i −0.115561 + 0.115561i
\(820\) 0 0
\(821\) −397.485 + 397.485i −0.484147 + 0.484147i −0.906453 0.422306i \(-0.861221\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(822\) −1029.58 −1.25254
\(823\) 478.061i 0.580876i 0.956894 + 0.290438i \(0.0938011\pi\)
−0.956894 + 0.290438i \(0.906199\pi\)
\(824\) −371.151 + 371.151i −0.450426 + 0.450426i
\(825\) 0 0
\(826\) 36.9704 + 36.9704i 0.0447584 + 0.0447584i
\(827\) −743.310 743.310i −0.898803 0.898803i 0.0965275 0.995330i \(-0.469226\pi\)
−0.995330 + 0.0965275i \(0.969226\pi\)
\(828\) −402.797 −0.486470
\(829\) 1039.94i 1.25445i 0.778838 + 0.627225i \(0.215810\pi\)
−0.778838 + 0.627225i \(0.784190\pi\)
\(830\) 0 0
\(831\) 770.434i 0.927116i
\(832\) 104.000 0.125000
\(833\) 851.060 1.02168
\(834\) 1146.28 1146.28i 1.37444 1.37444i
\(835\) 0 0
\(836\) 288.545i 0.345149i
\(837\) −149.394 + 149.394i −0.178487 + 0.178487i
\(838\) 517.167 517.167i 0.617144 0.617144i
\(839\) −579.939 579.939i −0.691226 0.691226i 0.271276 0.962502i \(-0.412555\pi\)
−0.962502 + 0.271276i \(0.912555\pi\)
\(840\) 0 0
\(841\) −732.967 −0.871543
\(842\) 90.6061i 0.107608i
\(843\) 141.576 + 141.576i 0.167942 + 0.167942i
\(844\) 515.060i 0.610261i
\(845\) 0 0
\(846\) −1413.71 −1.67105
\(847\) 113.333 113.333i 0.133805 0.133805i
\(848\) 201.212 0.237279
\(849\) 868.120i 1.02252i
\(850\) 0 0
\(851\) −42.9556 + 42.9556i −0.0504766 + 0.0504766i
\(852\) 647.737 + 647.737i 0.760254 + 0.760254i
\(853\) 256.212 + 256.212i 0.300366 + 0.300366i 0.841157 0.540791i \(-0.181875\pi\)
−0.540791 + 0.841157i \(0.681875\pi\)
\(854\) −25.7434 −0.0301445
\(855\) 0 0
\(856\) −317.485 317.485i −0.370893 0.370893i
\(857\) 474.969i 0.554223i 0.960838 + 0.277112i \(0.0893772\pi\)
−0.960838 + 0.277112i \(0.910623\pi\)
\(858\) 1390.87i 1.62106i
\(859\) −1241.53 −1.44532 −0.722660 0.691204i \(-0.757081\pi\)
−0.722660 + 0.691204i \(0.757081\pi\)
\(860\) 0 0
\(861\) −80.3633 −0.0933371
\(862\) 590.697i 0.685263i
\(863\) −146.976 + 146.976i −0.170309 + 0.170309i −0.787115 0.616806i \(-0.788426\pi\)
0.616806 + 0.787115i \(0.288426\pi\)
\(864\) 32.0000 32.0000i 0.0370370 0.0370370i
\(865\) 0 0
\(866\) 74.6061 + 74.6061i 0.0861503 + 0.0861503i
\(867\) 107.596 0.124101
\(868\) 50.3633i 0.0580222i
\(869\) 514.424 + 514.424i 0.591973 + 0.591973i
\(870\) 0 0
\(871\) −477.946 477.946i −0.548732 0.548732i
\(872\) −276.727 −0.317347
\(873\) 28.1408 28.1408i 0.0322346 0.0322346i
\(874\) −223.818 −0.256085
\(875\) 0 0
\(876\) −443.060 + 443.060i −0.505776 + 0.505776i
\(877\) −99.8173 + 99.8173i −0.113817 + 0.113817i −0.761721 0.647905i \(-0.775646\pi\)
0.647905 + 0.761721i \(0.275646\pi\)
\(878\) −158.302 158.302i −0.180298 0.180298i
\(879\) 653.131 + 653.131i 0.743038 + 0.743038i
\(880\) 0 0
\(881\) 318.273i 0.361264i 0.983551 + 0.180632i \(0.0578143\pi\)
−0.983551 + 0.180632i \(0.942186\pi\)
\(882\) −519.283 519.283i −0.588756 0.588756i
\(883\) 1458.54i 1.65180i 0.563814 + 0.825902i \(0.309334\pi\)
−0.563814 + 0.825902i \(0.690666\pi\)
\(884\) 460.120i 0.520498i
\(885\) 0 0
\(886\) 281.258 281.258i 0.317447 0.317447i
\(887\) −573.576 −0.646647 −0.323323 0.946289i \(-0.604800\pi\)
−0.323323 + 0.946289i \(0.604800\pi\)
\(888\) 40.9898i 0.0461597i
\(889\) −35.8775 + 35.8775i −0.0403572 + 0.0403572i
\(890\) 0 0
\(891\) −740.427 740.427i −0.831006 0.831006i
\(892\) −217.121 217.121i −0.243410 0.243410i
\(893\) −785.544 −0.879668
\(894\) 1282.26i 1.43430i
\(895\) 0 0
\(896\) 10.7878i 0.0120399i
\(897\) 1078.87 1.20275
\(898\) 808.665 0.900518
\(899\) −194.098 + 194.098i −0.215904 + 0.215904i
\(900\) 0 0
\(901\) 890.210i 0.988025i
\(902\) −322.061 + 322.061i −0.357052 + 0.357052i
\(903\) 180.136 180.136i 0.199486 0.199486i
\(904\) 26.7878 + 26.7878i 0.0296325 + 0.0296325i
\(905\) 0 0
\(906\) −717.918 −0.792404
\(907\) 743.392i 0.819616i 0.912172 + 0.409808i \(0.134404\pi\)
−0.912172 + 0.409808i \(0.865596\pi\)
\(908\) 160.045 + 160.045i 0.176261 + 0.176261i
\(909\) 545.132i 0.599705i
\(910\) 0 0
\(911\) 1593.21 1.74886 0.874430 0.485151i \(-0.161235\pi\)
0.874430 + 0.485151i \(0.161235\pi\)
\(912\) 106.788 106.788i 0.117092 0.117092i
\(913\) −1813.42 −1.98622
\(914\) 637.151i 0.697102i
\(915\) 0 0
\(916\) −422.302 + 422.302i −0.461028 + 0.461028i
\(917\) 65.7582 + 65.7582i 0.0717101 + 0.0717101i
\(918\) −141.576 141.576i −0.154222 0.154222i
\(919\) −1111.03 −1.20895 −0.604477 0.796623i \(-0.706618\pi\)
−0.604477 + 0.796623i \(0.706618\pi\)
\(920\) 0 0
\(921\) 121.081 + 121.081i 0.131466 + 0.131466i
\(922\) 432.908i 0.469532i
\(923\) −946.241 946.241i −1.02518 1.02518i
\(924\) 144.272 0.156139
\(925\) 0 0
\(926\) 374.802 0.404753
\(927\) 2003.84i 2.16164i
\(928\) 41.5755 41.5755i 0.0448012 0.0448012i
\(929\) 670.757 670.757i 0.722021 0.722021i −0.246996 0.969017i \(-0.579443\pi\)
0.969017 + 0.246996i \(0.0794434\pi\)
\(930\) 0 0
\(931\) −288.545 288.545i −0.309930 0.309930i
\(932\) 188.000 0.201717
\(933\) 2368.14i 2.53820i
\(934\) 78.1066 + 78.1066i 0.0836260 + 0.0836260i
\(935\) 0 0
\(936\) −280.747 + 280.747i −0.299943 + 0.299943i
\(937\) 1367.67 1.45962 0.729811 0.683649i \(-0.239608\pi\)
0.729811 + 0.683649i \(0.239608\pi\)
\(938\) −49.5765 + 49.5765i −0.0528535 + 0.0528535i
\(939\) 2583.40 2.75122
\(940\) 0 0
\(941\) −171.574 + 171.574i −0.182332 + 0.182332i −0.792371 0.610039i \(-0.791154\pi\)
0.610039 + 0.792371i \(0.291154\pi\)
\(942\) −784.863 + 784.863i −0.833188 + 0.833188i
\(943\) 249.816 + 249.816i 0.264917 + 0.264917i
\(944\) 109.666 + 109.666i 0.116172 + 0.116172i
\(945\) 0 0
\(946\) 1443.82i 1.52623i
\(947\) −77.5528 77.5528i −0.0818931 0.0818931i 0.664974 0.746867i \(-0.268443\pi\)
−0.746867 + 0.664974i \(0.768443\pi\)
\(948\) 380.767i 0.401653i
\(949\) 647.241 647.241i 0.682024 0.682024i
\(950\) 0 0
\(951\) 1104.69 1104.69i 1.16160 1.16160i
\(952\) −47.7276 −0.0501340
\(953\) 94.7571i 0.0994304i 0.998763 + 0.0497152i \(0.0158314\pi\)
−0.998763 + 0.0497152i \(0.984169\pi\)
\(954\) −543.170 + 543.170i −0.569361 + 0.569361i
\(955\) 0 0
\(956\) 43.2872 + 43.2872i 0.0452795 + 0.0452795i
\(957\) 556.019 + 556.019i 0.581002 + 0.581002i
\(958\) 592.014 0.617968
\(959\) 156.014i 0.162684i
\(960\) 0 0
\(961\) 263.546i 0.274241i
\(962\) 59.8796i 0.0622449i
\(963\) 1714.09 1.77995
\(964\) −246.120 + 246.120i −0.255312 + 0.255312i
\(965\) 0 0
\(966\) 111.909i 0.115848i
\(967\) 936.917 936.917i 0.968890 0.968890i −0.0306400 0.999530i \(-0.509755\pi\)
0.999530 + 0.0306400i \(0.00975454\pi\)
\(968\) 336.182 336.182i 0.347295 0.347295i
\(969\) −472.454 472.454i −0.487569 0.487569i
\(970\) 0 0
\(971\) −1135.95 −1.16988 −0.584941 0.811076i \(-0.698882\pi\)
−0.584941 + 0.811076i \(0.698882\pi\)
\(972\) 692.050i 0.711986i
\(973\) 173.697 + 173.697i 0.178517 + 0.178517i
\(974\) 680.499i 0.698665i
\(975\) 0 0
\(976\) −76.3633 −0.0782410
\(977\) −481.817 + 481.817i −0.493160 + 0.493160i −0.909300 0.416140i \(-0.863382\pi\)
0.416140 + 0.909300i \(0.363382\pi\)
\(978\) 1750.81 1.79019
\(979\) 151.560i 0.154811i
\(980\) 0 0
\(981\) 747.020 747.020i 0.761489 0.761489i
\(982\) −551.923 551.923i −0.562040 0.562040i
\(983\) −948.234 948.234i −0.964633 0.964633i 0.0347629 0.999396i \(-0.488932\pi\)
−0.999396 + 0.0347629i \(0.988932\pi\)
\(984\) −238.384 −0.242260
\(985\) 0 0
\(986\) −183.940 183.940i −0.186552 0.186552i
\(987\) 392.772i 0.397945i
\(988\) −156.000 + 156.000i −0.157895 + 0.157895i
\(989\) −1119.94 −1.13240
\(990\) 0 0
\(991\) 120.350 0.121442 0.0607212 0.998155i \(-0.480660\pi\)
0.0607212 + 0.998155i \(0.480660\pi\)
\(992\) 149.394i 0.150599i
\(993\) 1980.69 1980.69i 1.99466 1.99466i
\(994\) −98.1520 + 98.1520i −0.0987445 + 0.0987445i
\(995\) 0 0
\(996\) −671.131 671.131i −0.673826 0.673826i
\(997\) 660.362 0.662349 0.331175 0.943569i \(-0.392555\pi\)
0.331175 + 0.943569i \(0.392555\pi\)
\(998\) 232.045i 0.232510i
\(999\) 18.4245 + 18.4245i 0.0184429 + 0.0184429i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.3.k.g.551.1 yes 4
5.2 odd 4 650.3.f.h.499.2 4
5.3 odd 4 650.3.f.g.499.1 4
5.4 even 2 650.3.k.f.551.2 yes 4
13.8 odd 4 inner 650.3.k.g.151.1 yes 4
65.8 even 4 650.3.f.h.99.1 4
65.34 odd 4 650.3.k.f.151.2 4
65.47 even 4 650.3.f.g.99.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.3.f.g.99.2 4 65.47 even 4
650.3.f.g.499.1 4 5.3 odd 4
650.3.f.h.99.1 4 65.8 even 4
650.3.f.h.499.2 4 5.2 odd 4
650.3.k.f.151.2 4 65.34 odd 4
650.3.k.f.551.2 yes 4 5.4 even 2
650.3.k.g.151.1 yes 4 13.8 odd 4 inner
650.3.k.g.551.1 yes 4 1.1 even 1 trivial