Properties

Label 650.2.w.f.457.4
Level $650$
Weight $2$
Character 650.457
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(193,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,-8,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 457.4
Root \(-1.28827i\) of defining polynomial
Character \(\chi\) \(=\) 650.457
Dual form 650.2.w.f.293.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.24438 + 0.333429i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.333429 - 1.24438i) q^{6} +(-2.21606 - 1.27944i) q^{7} +1.00000 q^{8} +(-1.16078 - 0.670177i) q^{9} +(0.0237140 - 0.0885018i) q^{11} +(-0.910946 + 0.910946i) q^{12} +(0.871354 - 3.49868i) q^{13} +2.55889i q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.28353 - 4.79019i) q^{17} +1.34035i q^{18} +(-0.520214 + 0.139391i) q^{19} +(-2.33101 - 2.33101i) q^{21} +(-0.0885018 + 0.0237140i) q^{22} +(0.906863 - 3.38446i) q^{23} +(1.24438 + 0.333429i) q^{24} +(-3.46562 + 0.994724i) q^{26} +(-3.95383 - 3.95383i) q^{27} +(2.21606 - 1.27944i) q^{28} +(2.89539 - 1.67166i) q^{29} +(-4.23707 + 4.23707i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.0590182 - 0.102223i) q^{33} +(-3.50666 + 3.50666i) q^{34} +(1.16078 - 0.670177i) q^{36} +(5.43423 - 3.13745i) q^{37} +(0.380823 + 0.380823i) q^{38} +(2.25085 - 4.06313i) q^{39} +(-1.36687 - 0.366251i) q^{41} +(-0.853209 + 3.18422i) q^{42} +(9.47787 - 2.53959i) q^{43} +(0.0647878 + 0.0647878i) q^{44} +(-3.38446 + 0.906863i) q^{46} -4.62826i q^{47} +(-0.333429 - 1.24438i) q^{48} +(-0.226046 - 0.391523i) q^{49} -6.38876i q^{51} +(2.59427 + 2.50395i) q^{52} +(-3.73885 + 3.73885i) q^{53} +(-1.44720 + 5.40103i) q^{54} +(-2.21606 - 1.27944i) q^{56} -0.693818 q^{57} +(-2.89539 - 1.67166i) q^{58} +(1.50751 + 5.62609i) q^{59} +(-1.29095 + 2.23599i) q^{61} +(5.78794 + 1.55087i) q^{62} +(1.71491 + 2.97031i) q^{63} +1.00000 q^{64} -0.118036 q^{66} +(-2.90153 - 5.02560i) q^{67} +(4.79019 + 1.28353i) q^{68} +(2.25696 - 3.90916i) q^{69} +(2.52494 + 9.42322i) q^{71} +(-1.16078 - 0.670177i) q^{72} -16.8672 q^{73} +(-5.43423 - 3.13745i) q^{74} +(0.139391 - 0.520214i) q^{76} +(-0.165785 + 0.165785i) q^{77} +(-4.64420 + 0.0822710i) q^{78} -8.94406i q^{79} +(-1.59120 - 2.75603i) q^{81} +(0.366251 + 1.36687i) q^{82} +13.1459i q^{83} +(3.18422 - 0.853209i) q^{84} +(-6.93828 - 6.93828i) q^{86} +(4.16034 - 1.11476i) q^{87} +(0.0237140 - 0.0885018i) q^{88} +(7.50341 + 2.01053i) q^{89} +(-6.40734 + 6.63844i) q^{91} +(2.47760 + 2.47760i) q^{92} +(-6.68526 + 3.85974i) q^{93} +(-4.00819 + 2.31413i) q^{94} +(-0.910946 + 0.910946i) q^{96} +(-7.07053 + 12.2465i) q^{97} +(-0.226046 + 0.391523i) q^{98} +(-0.0868386 + 0.0868386i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 8 q^{4} - 12 q^{7} + 16 q^{8} - 24 q^{9} - 4 q^{11} - 8 q^{13} - 8 q^{16} + 8 q^{17} + 16 q^{19} - 4 q^{21} - 4 q^{22} + 4 q^{23} + 4 q^{26} - 36 q^{27} + 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.24438 + 0.333429i 0.718441 + 0.192506i 0.599476 0.800393i \(-0.295376\pi\)
0.118965 + 0.992898i \(0.462042\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) −0.333429 1.24438i −0.136122 0.508014i
\(7\) −2.21606 1.27944i −0.837593 0.483584i 0.0188525 0.999822i \(-0.493999\pi\)
−0.856445 + 0.516238i \(0.827332\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.16078 0.670177i −0.386927 0.223392i
\(10\) 0 0
\(11\) 0.0237140 0.0885018i 0.00715003 0.0266843i −0.962259 0.272136i \(-0.912270\pi\)
0.969409 + 0.245452i \(0.0789364\pi\)
\(12\) −0.910946 + 0.910946i −0.262968 + 0.262968i
\(13\) 0.871354 3.49868i 0.241670 0.970359i
\(14\) 2.55889i 0.683892i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.28353 4.79019i −0.311301 1.16179i −0.927384 0.374110i \(-0.877948\pi\)
0.616083 0.787681i \(-0.288719\pi\)
\(18\) 1.34035i 0.315924i
\(19\) −0.520214 + 0.139391i −0.119345 + 0.0319784i −0.317997 0.948092i \(-0.603010\pi\)
0.198652 + 0.980070i \(0.436344\pi\)
\(20\) 0 0
\(21\) −2.33101 2.33101i −0.508668 0.508668i
\(22\) −0.0885018 + 0.0237140i −0.0188686 + 0.00505584i
\(23\) 0.906863 3.38446i 0.189094 0.705709i −0.804623 0.593786i \(-0.797633\pi\)
0.993717 0.111922i \(-0.0357008\pi\)
\(24\) 1.24438 + 0.333429i 0.254007 + 0.0680610i
\(25\) 0 0
\(26\) −3.46562 + 0.994724i −0.679664 + 0.195082i
\(27\) −3.95383 3.95383i −0.760915 0.760915i
\(28\) 2.21606 1.27944i 0.418796 0.241792i
\(29\) 2.89539 1.67166i 0.537661 0.310419i −0.206470 0.978453i \(-0.566197\pi\)
0.744130 + 0.668034i \(0.232864\pi\)
\(30\) 0 0
\(31\) −4.23707 + 4.23707i −0.760999 + 0.760999i −0.976503 0.215504i \(-0.930861\pi\)
0.215504 + 0.976503i \(0.430861\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.0590182 0.102223i 0.0102737 0.0177947i
\(34\) −3.50666 + 3.50666i −0.601387 + 0.601387i
\(35\) 0 0
\(36\) 1.16078 0.670177i 0.193463 0.111696i
\(37\) 5.43423 3.13745i 0.893382 0.515794i 0.0183349 0.999832i \(-0.494164\pi\)
0.875047 + 0.484038i \(0.160830\pi\)
\(38\) 0.380823 + 0.380823i 0.0617776 + 0.0617776i
\(39\) 2.25085 4.06313i 0.360425 0.650622i
\(40\) 0 0
\(41\) −1.36687 0.366251i −0.213469 0.0571987i 0.150500 0.988610i \(-0.451912\pi\)
−0.363968 + 0.931411i \(0.618578\pi\)
\(42\) −0.853209 + 3.18422i −0.131653 + 0.491336i
\(43\) 9.47787 2.53959i 1.44536 0.387284i 0.550954 0.834536i \(-0.314264\pi\)
0.894408 + 0.447252i \(0.147597\pi\)
\(44\) 0.0647878 + 0.0647878i 0.00976713 + 0.00976713i
\(45\) 0 0
\(46\) −3.38446 + 0.906863i −0.499011 + 0.133710i
\(47\) 4.62826i 0.675101i −0.941307 0.337551i \(-0.890402\pi\)
0.941307 0.337551i \(-0.109598\pi\)
\(48\) −0.333429 1.24438i −0.0481264 0.179610i
\(49\) −0.226046 0.391523i −0.0322923 0.0559318i
\(50\) 0 0
\(51\) 6.38876i 0.894605i
\(52\) 2.59427 + 2.50395i 0.359760 + 0.347236i
\(53\) −3.73885 + 3.73885i −0.513570 + 0.513570i −0.915618 0.402049i \(-0.868298\pi\)
0.402049 + 0.915618i \(0.368298\pi\)
\(54\) −1.44720 + 5.40103i −0.196939 + 0.734987i
\(55\) 0 0
\(56\) −2.21606 1.27944i −0.296134 0.170973i
\(57\) −0.693818 −0.0918985
\(58\) −2.89539 1.67166i −0.380184 0.219499i
\(59\) 1.50751 + 5.62609i 0.196261 + 0.732455i 0.991937 + 0.126733i \(0.0404490\pi\)
−0.795676 + 0.605722i \(0.792884\pi\)
\(60\) 0 0
\(61\) −1.29095 + 2.23599i −0.165289 + 0.286289i −0.936758 0.349978i \(-0.886189\pi\)
0.771469 + 0.636267i \(0.219522\pi\)
\(62\) 5.78794 + 1.55087i 0.735069 + 0.196961i
\(63\) 1.71491 + 2.97031i 0.216058 + 0.374223i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.118036 −0.0145293
\(67\) −2.90153 5.02560i −0.354478 0.613974i 0.632550 0.774519i \(-0.282008\pi\)
−0.987029 + 0.160545i \(0.948675\pi\)
\(68\) 4.79019 + 1.28353i 0.580896 + 0.155651i
\(69\) 2.25696 3.90916i 0.271706 0.470608i
\(70\) 0 0
\(71\) 2.52494 + 9.42322i 0.299656 + 1.11833i 0.937449 + 0.348123i \(0.113181\pi\)
−0.637793 + 0.770208i \(0.720153\pi\)
\(72\) −1.16078 0.670177i −0.136799 0.0789811i
\(73\) −16.8672 −1.97416 −0.987078 0.160238i \(-0.948774\pi\)
−0.987078 + 0.160238i \(0.948774\pi\)
\(74\) −5.43423 3.13745i −0.631717 0.364722i
\(75\) 0 0
\(76\) 0.139391 0.520214i 0.0159892 0.0596726i
\(77\) −0.165785 + 0.165785i −0.0188929 + 0.0188929i
\(78\) −4.64420 + 0.0822710i −0.525853 + 0.00931535i
\(79\) 8.94406i 1.00629i −0.864203 0.503143i \(-0.832177\pi\)
0.864203 0.503143i \(-0.167823\pi\)
\(80\) 0 0
\(81\) −1.59120 2.75603i −0.176800 0.306226i
\(82\) 0.366251 + 1.36687i 0.0404456 + 0.150945i
\(83\) 13.1459i 1.44295i 0.692442 + 0.721473i \(0.256535\pi\)
−0.692442 + 0.721473i \(0.743465\pi\)
\(84\) 3.18422 0.853209i 0.347427 0.0930927i
\(85\) 0 0
\(86\) −6.93828 6.93828i −0.748174 0.748174i
\(87\) 4.16034 1.11476i 0.446035 0.119515i
\(88\) 0.0237140 0.0885018i 0.00252792 0.00943432i
\(89\) 7.50341 + 2.01053i 0.795360 + 0.213116i 0.633546 0.773705i \(-0.281599\pi\)
0.161814 + 0.986821i \(0.448265\pi\)
\(90\) 0 0
\(91\) −6.40734 + 6.63844i −0.671671 + 0.695897i
\(92\) 2.47760 + 2.47760i 0.258307 + 0.258307i
\(93\) −6.68526 + 3.85974i −0.693230 + 0.400236i
\(94\) −4.00819 + 2.31413i −0.413413 + 0.238684i
\(95\) 0 0
\(96\) −0.910946 + 0.910946i −0.0929731 + 0.0929731i
\(97\) −7.07053 + 12.2465i −0.717904 + 1.24345i 0.243925 + 0.969794i \(0.421565\pi\)
−0.961829 + 0.273652i \(0.911768\pi\)
\(98\) −0.226046 + 0.391523i −0.0228341 + 0.0395498i
\(99\) −0.0868386 + 0.0868386i −0.00872760 + 0.00872760i
\(100\) 0 0
\(101\) 12.9174 7.45784i 1.28532 0.742083i 0.307508 0.951545i \(-0.400505\pi\)
0.977817 + 0.209463i \(0.0671716\pi\)
\(102\) −5.53283 + 3.19438i −0.547832 + 0.316291i
\(103\) −1.13328 1.13328i −0.111666 0.111666i 0.649066 0.760732i \(-0.275160\pi\)
−0.760732 + 0.649066i \(0.775160\pi\)
\(104\) 0.871354 3.49868i 0.0854432 0.343074i
\(105\) 0 0
\(106\) 5.10736 + 1.36851i 0.496070 + 0.132922i
\(107\) −1.78582 + 6.66478i −0.172642 + 0.644309i 0.824299 + 0.566154i \(0.191569\pi\)
−0.996941 + 0.0781543i \(0.975097\pi\)
\(108\) 5.40103 1.44720i 0.519714 0.139257i
\(109\) −10.9863 10.9863i −1.05230 1.05230i −0.998555 0.0537443i \(-0.982884\pi\)
−0.0537443 0.998555i \(-0.517116\pi\)
\(110\) 0 0
\(111\) 7.80835 2.09224i 0.741135 0.198587i
\(112\) 2.55889i 0.241792i
\(113\) −0.423544 1.58069i −0.0398436 0.148698i 0.943138 0.332400i \(-0.107859\pi\)
−0.982982 + 0.183702i \(0.941192\pi\)
\(114\) 0.346909 + 0.600864i 0.0324910 + 0.0562761i
\(115\) 0 0
\(116\) 3.34331i 0.310419i
\(117\) −3.35618 + 3.47723i −0.310279 + 0.321470i
\(118\) 4.11859 4.11859i 0.379146 0.379146i
\(119\) −3.28440 + 12.2576i −0.301081 + 1.12365i
\(120\) 0 0
\(121\) 9.51901 + 5.49580i 0.865364 + 0.499618i
\(122\) 2.58190 0.233754
\(123\) −1.57878 0.911507i −0.142353 0.0821878i
\(124\) −1.55087 5.78794i −0.139273 0.519772i
\(125\) 0 0
\(126\) 1.71491 2.97031i 0.152776 0.264616i
\(127\) 3.06238 + 0.820562i 0.271742 + 0.0728131i 0.392117 0.919915i \(-0.371743\pi\)
−0.120375 + 0.992729i \(0.538410\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 12.6408 1.11296
\(130\) 0 0
\(131\) 16.7339 1.46204 0.731022 0.682353i \(-0.239043\pi\)
0.731022 + 0.682353i \(0.239043\pi\)
\(132\) 0.0590182 + 0.102223i 0.00513687 + 0.00889733i
\(133\) 1.33117 + 0.356685i 0.115427 + 0.0309285i
\(134\) −2.90153 + 5.02560i −0.250654 + 0.434145i
\(135\) 0 0
\(136\) −1.28353 4.79019i −0.110062 0.410755i
\(137\) 1.35907 + 0.784662i 0.116114 + 0.0670382i 0.556932 0.830558i \(-0.311978\pi\)
−0.440818 + 0.897596i \(0.645312\pi\)
\(138\) −4.51391 −0.384250
\(139\) −14.3956 8.31130i −1.22102 0.704955i −0.255884 0.966708i \(-0.582366\pi\)
−0.965135 + 0.261752i \(0.915700\pi\)
\(140\) 0 0
\(141\) 1.54320 5.75929i 0.129961 0.485020i
\(142\) 6.89827 6.89827i 0.578890 0.578890i
\(143\) −0.288976 0.160084i −0.0241654 0.0133869i
\(144\) 1.34035i 0.111696i
\(145\) 0 0
\(146\) 8.43360 + 14.6074i 0.697970 + 1.20892i
\(147\) −0.150741 0.562572i −0.0124329 0.0464002i
\(148\) 6.27491i 0.515794i
\(149\) 15.5103 4.15599i 1.27066 0.340472i 0.440375 0.897814i \(-0.354846\pi\)
0.830283 + 0.557342i \(0.188179\pi\)
\(150\) 0 0
\(151\) 7.93116 + 7.93116i 0.645428 + 0.645428i 0.951885 0.306456i \(-0.0991434\pi\)
−0.306456 + 0.951885i \(0.599143\pi\)
\(152\) −0.520214 + 0.139391i −0.0421949 + 0.0113061i
\(153\) −1.72038 + 6.42055i −0.139084 + 0.519070i
\(154\) 0.226466 + 0.0606814i 0.0182492 + 0.00488985i
\(155\) 0 0
\(156\) 2.39335 + 3.98086i 0.191621 + 0.318724i
\(157\) 11.2457 + 11.2457i 0.897507 + 0.897507i 0.995215 0.0977078i \(-0.0311511\pi\)
−0.0977078 + 0.995215i \(0.531151\pi\)
\(158\) −7.74578 + 4.47203i −0.616221 + 0.355776i
\(159\) −5.89917 + 3.40589i −0.467835 + 0.270104i
\(160\) 0 0
\(161\) −6.33989 + 6.33989i −0.499653 + 0.499653i
\(162\) −1.59120 + 2.75603i −0.125016 + 0.216534i
\(163\) 8.48209 14.6914i 0.664369 1.15072i −0.315088 0.949063i \(-0.602034\pi\)
0.979456 0.201657i \(-0.0646328\pi\)
\(164\) 1.00062 1.00062i 0.0781349 0.0781349i
\(165\) 0 0
\(166\) 11.3847 6.57293i 0.883621 0.510159i
\(167\) 14.8524 8.57502i 1.14931 0.663555i 0.200592 0.979675i \(-0.435714\pi\)
0.948719 + 0.316120i \(0.102380\pi\)
\(168\) −2.33101 2.33101i −0.179841 0.179841i
\(169\) −11.4815 6.09717i −0.883191 0.469013i
\(170\) 0 0
\(171\) 0.697270 + 0.186833i 0.0533216 + 0.0142875i
\(172\) −2.53959 + 9.47787i −0.193642 + 0.722681i
\(173\) 17.0027 4.55586i 1.29269 0.346375i 0.454009 0.890997i \(-0.349993\pi\)
0.838682 + 0.544622i \(0.183327\pi\)
\(174\) −3.04558 3.04558i −0.230885 0.230885i
\(175\) 0 0
\(176\) −0.0885018 + 0.0237140i −0.00667107 + 0.00178751i
\(177\) 7.50362i 0.564007i
\(178\) −2.01053 7.50341i −0.150696 0.562405i
\(179\) 10.5213 + 18.2234i 0.786398 + 1.36208i 0.928160 + 0.372181i \(0.121390\pi\)
−0.141762 + 0.989901i \(0.545277\pi\)
\(180\) 0 0
\(181\) 25.6164i 1.90406i −0.306012 0.952028i \(-0.598995\pi\)
0.306012 0.952028i \(-0.401005\pi\)
\(182\) 8.95272 + 2.22970i 0.663620 + 0.165276i
\(183\) −2.35197 + 2.35197i −0.173863 + 0.173863i
\(184\) 0.906863 3.38446i 0.0668548 0.249506i
\(185\) 0 0
\(186\) 6.68526 + 3.85974i 0.490187 + 0.283010i
\(187\) −0.454378 −0.0332274
\(188\) 4.00819 + 2.31413i 0.292327 + 0.168775i
\(189\) 3.70323 + 13.8206i 0.269370 + 1.00530i
\(190\) 0 0
\(191\) −8.21501 + 14.2288i −0.594417 + 1.02956i 0.399211 + 0.916859i \(0.369284\pi\)
−0.993629 + 0.112702i \(0.964049\pi\)
\(192\) 1.24438 + 0.333429i 0.0898051 + 0.0240632i
\(193\) −5.36350 9.28986i −0.386073 0.668699i 0.605844 0.795583i \(-0.292835\pi\)
−0.991917 + 0.126885i \(0.959502\pi\)
\(194\) 14.1411 1.01527
\(195\) 0 0
\(196\) 0.452092 0.0322923
\(197\) 5.94533 + 10.2976i 0.423587 + 0.733675i 0.996287 0.0860902i \(-0.0274373\pi\)
−0.572700 + 0.819765i \(0.694104\pi\)
\(198\) 0.118624 + 0.0317851i 0.00843022 + 0.00225887i
\(199\) −1.80229 + 3.12166i −0.127761 + 0.221288i −0.922809 0.385258i \(-0.874112\pi\)
0.795048 + 0.606547i \(0.207446\pi\)
\(200\) 0 0
\(201\) −1.93491 7.22119i −0.136478 0.509343i
\(202\) −12.9174 7.45784i −0.908862 0.524732i
\(203\) −8.55516 −0.600455
\(204\) 5.53283 + 3.19438i 0.387375 + 0.223651i
\(205\) 0 0
\(206\) −0.414810 + 1.54809i −0.0289012 + 0.107861i
\(207\) −3.32086 + 3.32086i −0.230815 + 0.230815i
\(208\) −3.46562 + 0.994724i −0.240298 + 0.0689717i
\(209\) 0.0493453i 0.00341329i
\(210\) 0 0
\(211\) 5.78313 + 10.0167i 0.398127 + 0.689576i 0.993495 0.113877i \(-0.0363270\pi\)
−0.595368 + 0.803453i \(0.702994\pi\)
\(212\) −1.36851 5.10736i −0.0939898 0.350775i
\(213\) 12.5679i 0.861139i
\(214\) 6.66478 1.78582i 0.455595 0.122076i
\(215\) 0 0
\(216\) −3.95383 3.95383i −0.269024 0.269024i
\(217\) 14.8107 3.96851i 1.00541 0.269400i
\(218\) −4.02127 + 15.0076i −0.272355 + 1.01644i
\(219\) −20.9891 5.62402i −1.41831 0.380036i
\(220\) 0 0
\(221\) −17.8777 + 0.316700i −1.20259 + 0.0213035i
\(222\) −5.71611 5.71611i −0.383640 0.383640i
\(223\) 4.28077 2.47150i 0.286662 0.165504i −0.349774 0.936834i \(-0.613742\pi\)
0.636435 + 0.771330i \(0.280408\pi\)
\(224\) 2.21606 1.27944i 0.148067 0.0854865i
\(225\) 0 0
\(226\) −1.15714 + 1.15714i −0.0769720 + 0.0769720i
\(227\) −8.36313 + 14.4854i −0.555081 + 0.961428i 0.442817 + 0.896612i \(0.353979\pi\)
−0.997897 + 0.0648158i \(0.979354\pi\)
\(228\) 0.346909 0.600864i 0.0229746 0.0397932i
\(229\) 11.9068 11.9068i 0.786822 0.786822i −0.194150 0.980972i \(-0.562195\pi\)
0.980972 + 0.194150i \(0.0621948\pi\)
\(230\) 0 0
\(231\) −0.261576 + 0.151021i −0.0172104 + 0.00993645i
\(232\) 2.89539 1.67166i 0.190092 0.109750i
\(233\) −18.4012 18.4012i −1.20550 1.20550i −0.972468 0.233034i \(-0.925135\pi\)
−0.233034 0.972468i \(-0.574865\pi\)
\(234\) 4.68946 + 1.16792i 0.306560 + 0.0763494i
\(235\) 0 0
\(236\) −5.62609 1.50751i −0.366227 0.0981303i
\(237\) 2.98221 11.1298i 0.193716 0.722956i
\(238\) 12.2576 3.28440i 0.794539 0.212896i
\(239\) 10.3185 + 10.3185i 0.667446 + 0.667446i 0.957124 0.289678i \(-0.0935483\pi\)
−0.289678 + 0.957124i \(0.593548\pi\)
\(240\) 0 0
\(241\) −2.20767 + 0.591542i −0.142208 + 0.0381046i −0.329221 0.944253i \(-0.606786\pi\)
0.187013 + 0.982357i \(0.440119\pi\)
\(242\) 10.9916i 0.706567i
\(243\) 3.28050 + 12.2430i 0.210444 + 0.785389i
\(244\) −1.29095 2.23599i −0.0826446 0.143145i
\(245\) 0 0
\(246\) 1.82301i 0.116231i
\(247\) 0.0343935 + 1.94152i 0.00218841 + 0.123536i
\(248\) −4.23707 + 4.23707i −0.269054 + 0.269054i
\(249\) −4.38322 + 16.3584i −0.277775 + 1.03667i
\(250\) 0 0
\(251\) 8.32501 + 4.80645i 0.525470 + 0.303380i 0.739170 0.673519i \(-0.235218\pi\)
−0.213700 + 0.976899i \(0.568551\pi\)
\(252\) −3.42982 −0.216058
\(253\) −0.278025 0.160518i −0.0174793 0.0100917i
\(254\) −0.820562 3.06238i −0.0514866 0.192151i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −26.9330 7.21668i −1.68003 0.450164i −0.712247 0.701929i \(-0.752322\pi\)
−0.967788 + 0.251765i \(0.918989\pi\)
\(258\) −6.32040 10.9473i −0.393491 0.681547i
\(259\) −16.0568 −0.997720
\(260\) 0 0
\(261\) −4.48122 −0.277381
\(262\) −8.36693 14.4920i −0.516911 0.895316i
\(263\) 26.4833 + 7.09618i 1.63303 + 0.437569i 0.954792 0.297274i \(-0.0960775\pi\)
0.678237 + 0.734843i \(0.262744\pi\)
\(264\) 0.0590182 0.102223i 0.00363232 0.00629136i
\(265\) 0 0
\(266\) −0.356685 1.33117i −0.0218698 0.0816192i
\(267\) 8.66669 + 5.00372i 0.530393 + 0.306223i
\(268\) 5.80306 0.354478
\(269\) −1.58851 0.917129i −0.0968534 0.0559183i 0.450791 0.892630i \(-0.351142\pi\)
−0.547644 + 0.836711i \(0.684475\pi\)
\(270\) 0 0
\(271\) −1.52198 + 5.68011i −0.0924537 + 0.345042i −0.996621 0.0821364i \(-0.973826\pi\)
0.904167 + 0.427178i \(0.140492\pi\)
\(272\) −3.50666 + 3.50666i −0.212623 + 0.212623i
\(273\) −10.1866 + 6.12432i −0.616520 + 0.370661i
\(274\) 1.56932i 0.0948063i
\(275\) 0 0
\(276\) 2.25696 + 3.90916i 0.135853 + 0.235304i
\(277\) −1.48750 5.55142i −0.0893750 0.333552i 0.906732 0.421708i \(-0.138569\pi\)
−0.996107 + 0.0881559i \(0.971903\pi\)
\(278\) 16.6226i 0.996958i
\(279\) 7.75788 2.07872i 0.464452 0.124450i
\(280\) 0 0
\(281\) −16.7234 16.7234i −0.997631 0.997631i 0.00236572 0.999997i \(-0.499247\pi\)
−0.999997 + 0.00236572i \(0.999247\pi\)
\(282\) −5.75929 + 1.54320i −0.342961 + 0.0918961i
\(283\) 3.02196 11.2781i 0.179637 0.670413i −0.816079 0.577941i \(-0.803856\pi\)
0.995715 0.0924722i \(-0.0294769\pi\)
\(284\) −9.42322 2.52494i −0.559165 0.149828i
\(285\) 0 0
\(286\) 0.00585123 + 0.330302i 0.000345990 + 0.0195312i
\(287\) 2.56046 + 2.56046i 0.151139 + 0.151139i
\(288\) 1.16078 0.670177i 0.0683996 0.0394905i
\(289\) −6.57603 + 3.79667i −0.386825 + 0.223334i
\(290\) 0 0
\(291\) −12.8817 + 12.8817i −0.755142 + 0.755142i
\(292\) 8.43360 14.6074i 0.493539 0.854835i
\(293\) 6.50872 11.2734i 0.380243 0.658601i −0.610854 0.791744i \(-0.709174\pi\)
0.991097 + 0.133143i \(0.0425069\pi\)
\(294\) −0.411831 + 0.411831i −0.0240185 + 0.0240185i
\(295\) 0 0
\(296\) 5.43423 3.13745i 0.315858 0.182361i
\(297\) −0.443682 + 0.256160i −0.0257450 + 0.0148639i
\(298\) −11.3544 11.3544i −0.657741 0.657741i
\(299\) −11.0509 6.12188i −0.639092 0.354038i
\(300\) 0 0
\(301\) −24.2528 6.49852i −1.39791 0.374569i
\(302\) 2.90300 10.8342i 0.167049 0.623436i
\(303\) 18.5607 4.97333i 1.06628 0.285710i
\(304\) 0.380823 + 0.380823i 0.0218417 + 0.0218417i
\(305\) 0 0
\(306\) 6.42055 1.72038i 0.367038 0.0983476i
\(307\) 16.2090i 0.925099i 0.886593 + 0.462549i \(0.153065\pi\)
−0.886593 + 0.462549i \(0.846935\pi\)
\(308\) −0.0606814 0.226466i −0.00345764 0.0129041i
\(309\) −1.03236 1.78810i −0.0587289 0.101721i
\(310\) 0 0
\(311\) 29.1452i 1.65267i −0.563178 0.826335i \(-0.690422\pi\)
0.563178 0.826335i \(-0.309578\pi\)
\(312\) 2.25085 4.06313i 0.127429 0.230030i
\(313\) −5.10788 + 5.10788i −0.288714 + 0.288714i −0.836572 0.547857i \(-0.815444\pi\)
0.547857 + 0.836572i \(0.315444\pi\)
\(314\) 4.11622 15.3620i 0.232292 0.866926i
\(315\) 0 0
\(316\) 7.74578 + 4.47203i 0.435734 + 0.251571i
\(317\) −14.4669 −0.812541 −0.406271 0.913753i \(-0.633171\pi\)
−0.406271 + 0.913753i \(0.633171\pi\)
\(318\) 5.89917 + 3.40589i 0.330809 + 0.190993i
\(319\) −0.0792832 0.295889i −0.00443901 0.0165666i
\(320\) 0 0
\(321\) −4.44447 + 7.69805i −0.248066 + 0.429663i
\(322\) 8.66045 + 2.32056i 0.482628 + 0.129320i
\(323\) 1.33542 + 2.31301i 0.0743046 + 0.128699i
\(324\) 3.18239 0.176800
\(325\) 0 0
\(326\) −16.9642 −0.939559
\(327\) −10.0080 17.3343i −0.553441 0.958588i
\(328\) −1.36687 0.366251i −0.0754725 0.0202228i
\(329\) −5.92160 + 10.2565i −0.326468 + 0.565460i
\(330\) 0 0
\(331\) −7.64722 28.5398i −0.420329 1.56869i −0.773916 0.633289i \(-0.781705\pi\)
0.353586 0.935402i \(-0.384962\pi\)
\(332\) −11.3847 6.57293i −0.624814 0.360737i
\(333\) −8.41060 −0.460898
\(334\) −14.8524 8.57502i −0.812685 0.469204i
\(335\) 0 0
\(336\) −0.853209 + 3.18422i −0.0465464 + 0.173713i
\(337\) 7.42010 7.42010i 0.404198 0.404198i −0.475511 0.879710i \(-0.657737\pi\)
0.879710 + 0.475511i \(0.157737\pi\)
\(338\) 0.460439 + 12.9918i 0.0250446 + 0.706663i
\(339\) 2.10819i 0.114501i
\(340\) 0 0
\(341\) 0.274510 + 0.475465i 0.0148656 + 0.0257479i
\(342\) −0.186833 0.697270i −0.0101028 0.0377040i
\(343\) 19.0691i 1.02963i
\(344\) 9.47787 2.53959i 0.511013 0.136925i
\(345\) 0 0
\(346\) −12.4468 12.4468i −0.669146 0.669146i
\(347\) 3.44872 0.924081i 0.185137 0.0496073i −0.165059 0.986284i \(-0.552782\pi\)
0.350196 + 0.936676i \(0.386115\pi\)
\(348\) −1.11476 + 4.16034i −0.0597573 + 0.223017i
\(349\) −2.89921 0.776840i −0.155191 0.0415833i 0.180387 0.983596i \(-0.442265\pi\)
−0.335578 + 0.942012i \(0.608932\pi\)
\(350\) 0 0
\(351\) −17.2784 + 10.3880i −0.922250 + 0.554470i
\(352\) 0.0647878 + 0.0647878i 0.00345320 + 0.00345320i
\(353\) −9.92204 + 5.72849i −0.528097 + 0.304897i −0.740241 0.672342i \(-0.765289\pi\)
0.212144 + 0.977238i \(0.431955\pi\)
\(354\) 6.49833 3.75181i 0.345382 0.199406i
\(355\) 0 0
\(356\) −5.49288 + 5.49288i −0.291122 + 0.291122i
\(357\) −8.17406 + 14.1579i −0.432617 + 0.749315i
\(358\) 10.5213 18.2234i 0.556068 0.963137i
\(359\) 5.20578 5.20578i 0.274751 0.274751i −0.556259 0.831009i \(-0.687764\pi\)
0.831009 + 0.556259i \(0.187764\pi\)
\(360\) 0 0
\(361\) −16.2033 + 9.35497i −0.852805 + 0.492367i
\(362\) −22.1845 + 12.8082i −1.16599 + 0.673185i
\(363\) 10.0128 + 10.0128i 0.525534 + 0.525534i
\(364\) −2.54539 8.86813i −0.133415 0.464817i
\(365\) 0 0
\(366\) 3.21286 + 0.860882i 0.167939 + 0.0449990i
\(367\) 4.62496 17.2606i 0.241421 0.900995i −0.733728 0.679443i \(-0.762221\pi\)
0.975149 0.221551i \(-0.0711120\pi\)
\(368\) −3.38446 + 0.906863i −0.176427 + 0.0472735i
\(369\) 1.34118 + 1.34118i 0.0698190 + 0.0698190i
\(370\) 0 0
\(371\) 13.0692 3.50187i 0.678517 0.181808i
\(372\) 7.71948i 0.400236i
\(373\) −8.24794 30.7817i −0.427062 1.59382i −0.759379 0.650649i \(-0.774497\pi\)
0.332317 0.943168i \(-0.392170\pi\)
\(374\) 0.227189 + 0.393503i 0.0117477 + 0.0203475i
\(375\) 0 0
\(376\) 4.62826i 0.238684i
\(377\) −3.32567 11.5866i −0.171281 0.596743i
\(378\) 10.1174 10.1174i 0.520383 0.520383i
\(379\) 1.40831 5.25589i 0.0723401 0.269977i −0.920277 0.391268i \(-0.872037\pi\)
0.992617 + 0.121291i \(0.0387034\pi\)
\(380\) 0 0
\(381\) 3.53715 + 2.04217i 0.181214 + 0.104624i
\(382\) 16.4300 0.840633
\(383\) −14.2766 8.24259i −0.729499 0.421177i 0.0887398 0.996055i \(-0.471716\pi\)
−0.818239 + 0.574878i \(0.805049\pi\)
\(384\) −0.333429 1.24438i −0.0170153 0.0635018i
\(385\) 0 0
\(386\) −5.36350 + 9.28986i −0.272995 + 0.472841i
\(387\) −12.7037 3.40395i −0.645765 0.173032i
\(388\) −7.07053 12.2465i −0.358952 0.621723i
\(389\) 3.84183 0.194789 0.0973943 0.995246i \(-0.468949\pi\)
0.0973943 + 0.995246i \(0.468949\pi\)
\(390\) 0 0
\(391\) −17.3762 −0.878751
\(392\) −0.226046 0.391523i −0.0114170 0.0197749i
\(393\) 20.8232 + 5.57956i 1.05039 + 0.281452i
\(394\) 5.94533 10.2976i 0.299522 0.518786i
\(395\) 0 0
\(396\) −0.0317851 0.118624i −0.00159726 0.00596106i
\(397\) −0.589034 0.340079i −0.0295627 0.0170681i 0.485146 0.874433i \(-0.338767\pi\)
−0.514709 + 0.857365i \(0.672100\pi\)
\(398\) 3.60458 0.180681
\(399\) 1.53754 + 0.887701i 0.0769735 + 0.0444407i
\(400\) 0 0
\(401\) 9.00357 33.6018i 0.449617 1.67799i −0.253834 0.967248i \(-0.581692\pi\)
0.703451 0.710744i \(-0.251642\pi\)
\(402\) −5.28628 + 5.28628i −0.263655 + 0.263655i
\(403\) 11.1321 + 18.5161i 0.554532 + 0.922353i
\(404\) 14.9157i 0.742083i
\(405\) 0 0
\(406\) 4.27758 + 7.40899i 0.212293 + 0.367702i
\(407\) −0.148803 0.555341i −0.00737589 0.0275272i
\(408\) 6.38876i 0.316291i
\(409\) −2.29556 + 0.615094i −0.113508 + 0.0304145i −0.315126 0.949050i \(-0.602047\pi\)
0.201618 + 0.979464i \(0.435380\pi\)
\(410\) 0 0
\(411\) 1.42957 + 1.42957i 0.0705155 + 0.0705155i
\(412\) 1.54809 0.414810i 0.0762691 0.0204362i
\(413\) 3.85754 14.3965i 0.189817 0.708407i
\(414\) 4.53637 + 1.21552i 0.222951 + 0.0597394i
\(415\) 0 0
\(416\) 2.59427 + 2.50395i 0.127194 + 0.122766i
\(417\) −15.1423 15.1423i −0.741522 0.741522i
\(418\) 0.0427343 0.0246727i 0.00209020 0.00120678i
\(419\) −17.8272 + 10.2925i −0.870916 + 0.502824i −0.867653 0.497171i \(-0.834372\pi\)
−0.00326359 + 0.999995i \(0.501039\pi\)
\(420\) 0 0
\(421\) −26.8726 + 26.8726i −1.30969 + 1.30969i −0.388056 + 0.921636i \(0.626853\pi\)
−0.921636 + 0.388056i \(0.873147\pi\)
\(422\) 5.78313 10.0167i 0.281518 0.487604i
\(423\) −3.10175 + 5.37239i −0.150812 + 0.261215i
\(424\) −3.73885 + 3.73885i −0.181574 + 0.181574i
\(425\) 0 0
\(426\) 10.8841 6.28396i 0.527338 0.304459i
\(427\) 5.72165 3.30340i 0.276890 0.159863i
\(428\) −4.87896 4.87896i −0.235833 0.235833i
\(429\) −0.306218 0.295558i −0.0147843 0.0142697i
\(430\) 0 0
\(431\) 37.0974 + 9.94023i 1.78692 + 0.478804i 0.991817 0.127670i \(-0.0407499\pi\)
0.795103 + 0.606474i \(0.207417\pi\)
\(432\) −1.44720 + 5.40103i −0.0696285 + 0.259857i
\(433\) 17.1108 4.58483i 0.822293 0.220333i 0.176944 0.984221i \(-0.443379\pi\)
0.645349 + 0.763888i \(0.276712\pi\)
\(434\) −10.8422 10.8422i −0.520441 0.520441i
\(435\) 0 0
\(436\) 15.0076 4.02127i 0.718734 0.192584i
\(437\) 1.88705i 0.0902698i
\(438\) 5.62402 + 20.9891i 0.268726 + 1.00290i
\(439\) 16.1431 + 27.9606i 0.770467 + 1.33449i 0.937307 + 0.348504i \(0.113310\pi\)
−0.166841 + 0.985984i \(0.553357\pi\)
\(440\) 0 0
\(441\) 0.605963i 0.0288554i
\(442\) 9.21313 + 15.3242i 0.438224 + 0.728899i
\(443\) 20.3365 20.3365i 0.966217 0.966217i −0.0332305 0.999448i \(-0.510580\pi\)
0.999448 + 0.0332305i \(0.0105795\pi\)
\(444\) −2.09224 + 7.80835i −0.0992933 + 0.370568i
\(445\) 0 0
\(446\) −4.28077 2.47150i −0.202700 0.117029i
\(447\) 20.6864 0.978435
\(448\) −2.21606 1.27944i −0.104699 0.0604480i
\(449\) 3.54277 + 13.2218i 0.167194 + 0.623976i 0.997750 + 0.0670412i \(0.0213559\pi\)
−0.830556 + 0.556934i \(0.811977\pi\)
\(450\) 0 0
\(451\) −0.0648277 + 0.112285i −0.00305262 + 0.00528728i
\(452\) 1.58069 + 0.423544i 0.0743492 + 0.0199218i
\(453\) 7.22486 + 12.5138i 0.339453 + 0.587951i
\(454\) 16.7263 0.785003
\(455\) 0 0
\(456\) −0.693818 −0.0324910
\(457\) 4.84323 + 8.38872i 0.226557 + 0.392408i 0.956785 0.290795i \(-0.0939198\pi\)
−0.730229 + 0.683203i \(0.760586\pi\)
\(458\) −16.2650 4.35818i −0.760012 0.203644i
\(459\) −13.8647 + 24.0144i −0.647151 + 1.12090i
\(460\) 0 0
\(461\) 1.45272 + 5.42163i 0.0676600 + 0.252511i 0.991469 0.130343i \(-0.0416079\pi\)
−0.923809 + 0.382854i \(0.874941\pi\)
\(462\) 0.261576 + 0.151021i 0.0121696 + 0.00702613i
\(463\) −24.9809 −1.16096 −0.580480 0.814274i \(-0.697135\pi\)
−0.580480 + 0.814274i \(0.697135\pi\)
\(464\) −2.89539 1.67166i −0.134415 0.0776047i
\(465\) 0 0
\(466\) −6.73531 + 25.1365i −0.312007 + 1.16443i
\(467\) −25.0346 + 25.0346i −1.15846 + 1.15846i −0.173657 + 0.984806i \(0.555558\pi\)
−0.984806 + 0.173657i \(0.944442\pi\)
\(468\) −1.33328 4.64516i −0.0616310 0.214722i
\(469\) 14.8494i 0.685681i
\(470\) 0 0
\(471\) 10.2443 + 17.7436i 0.472031 + 0.817581i
\(472\) 1.50751 + 5.62609i 0.0693886 + 0.258962i
\(473\) 0.899032i 0.0413375i
\(474\) −11.1298 + 2.98221i −0.511207 + 0.136978i
\(475\) 0 0
\(476\) −8.97315 8.97315i −0.411284 0.411284i
\(477\) 6.84567 1.83429i 0.313441 0.0839864i
\(478\) 3.77682 14.0953i 0.172748 0.644703i
\(479\) 30.2380 + 8.10224i 1.38161 + 0.370201i 0.871705 0.490031i \(-0.163014\pi\)
0.509904 + 0.860232i \(0.329681\pi\)
\(480\) 0 0
\(481\) −6.24181 21.7465i −0.284602 0.991553i
\(482\) 1.61612 + 1.61612i 0.0736124 + 0.0736124i
\(483\) −10.0031 + 5.77530i −0.455158 + 0.262785i
\(484\) −9.51901 + 5.49580i −0.432682 + 0.249809i
\(485\) 0 0
\(486\) 8.96250 8.96250i 0.406547 0.406547i
\(487\) 8.94924 15.5005i 0.405529 0.702396i −0.588854 0.808239i \(-0.700421\pi\)
0.994383 + 0.105843i \(0.0337541\pi\)
\(488\) −1.29095 + 2.23599i −0.0584386 + 0.101219i
\(489\) 15.4535 15.4535i 0.698829 0.698829i
\(490\) 0 0
\(491\) −6.94640 + 4.01050i −0.313487 + 0.180992i −0.648486 0.761227i \(-0.724597\pi\)
0.334999 + 0.942218i \(0.391264\pi\)
\(492\) 1.57878 0.911507i 0.0711767 0.0410939i
\(493\) −11.7239 11.7239i −0.528016 0.528016i
\(494\) 1.66421 1.00054i 0.0748762 0.0450166i
\(495\) 0 0
\(496\) 5.78794 + 1.55087i 0.259886 + 0.0696363i
\(497\) 6.46105 24.1130i 0.289818 1.08161i
\(498\) 16.3584 4.38322i 0.733037 0.196417i
\(499\) −15.6970 15.6970i −0.702693 0.702693i 0.262295 0.964988i \(-0.415521\pi\)
−0.964988 + 0.262295i \(0.915521\pi\)
\(500\) 0 0
\(501\) 21.3411 5.71833i 0.953450 0.255476i
\(502\) 9.61289i 0.429044i
\(503\) 4.55322 + 16.9929i 0.203018 + 0.757674i 0.990045 + 0.140755i \(0.0449529\pi\)
−0.787026 + 0.616919i \(0.788380\pi\)
\(504\) 1.71491 + 2.97031i 0.0763881 + 0.132308i
\(505\) 0 0
\(506\) 0.321036i 0.0142718i
\(507\) −12.2543 11.4154i −0.544233 0.506977i
\(508\) −2.24182 + 2.24182i −0.0994645 + 0.0994645i
\(509\) 3.66823 13.6900i 0.162591 0.606799i −0.835744 0.549120i \(-0.814963\pi\)
0.998335 0.0576796i \(-0.0183702\pi\)
\(510\) 0 0
\(511\) 37.3788 + 21.5806i 1.65354 + 0.954671i
\(512\) 1.00000 0.0441942
\(513\) 2.60796 + 1.50571i 0.115144 + 0.0664786i
\(514\) 7.21668 + 26.9330i 0.318314 + 1.18796i
\(515\) 0 0
\(516\) −6.32040 + 10.9473i −0.278240 + 0.481926i
\(517\) −0.409609 0.109754i −0.0180146 0.00482699i
\(518\) 8.02840 + 13.9056i 0.352747 + 0.610977i
\(519\) 22.6768 0.995401
\(520\) 0 0
\(521\) 22.6688 0.993140 0.496570 0.867997i \(-0.334593\pi\)
0.496570 + 0.867997i \(0.334593\pi\)
\(522\) 2.24061 + 3.88085i 0.0980688 + 0.169860i
\(523\) 3.54564 + 0.950050i 0.155040 + 0.0415428i 0.335504 0.942039i \(-0.391093\pi\)
−0.180464 + 0.983582i \(0.557760\pi\)
\(524\) −8.36693 + 14.4920i −0.365511 + 0.633084i
\(525\) 0 0
\(526\) −7.09618 26.4833i −0.309408 1.15473i
\(527\) 25.7347 + 14.8580i 1.12102 + 0.647223i
\(528\) −0.118036 −0.00513687
\(529\) 9.28642 + 5.36152i 0.403757 + 0.233109i
\(530\) 0 0
\(531\) 2.02059 7.54095i 0.0876862 0.327249i
\(532\) −0.974483 + 0.974483i −0.0422492 + 0.0422492i
\(533\) −2.47242 + 4.46309i −0.107092 + 0.193318i
\(534\) 10.0074i 0.433064i
\(535\) 0 0
\(536\) −2.90153 5.02560i −0.125327 0.217073i
\(537\) 7.01622 + 26.1849i 0.302772 + 1.12996i
\(538\) 1.83426i 0.0790804i
\(539\) −0.0400109 + 0.0107209i −0.00172339 + 0.000461782i
\(540\) 0 0
\(541\) 20.8478 + 20.8478i 0.896315 + 0.896315i 0.995108 0.0987932i \(-0.0314982\pi\)
−0.0987932 + 0.995108i \(0.531498\pi\)
\(542\) 5.68011 1.52198i 0.243982 0.0653747i
\(543\) 8.54128 31.8765i 0.366541 1.36795i
\(544\) 4.79019 + 1.28353i 0.205378 + 0.0550308i
\(545\) 0 0
\(546\) 10.3971 + 5.75968i 0.444955 + 0.246492i
\(547\) 19.6566 + 19.6566i 0.840453 + 0.840453i 0.988918 0.148464i \(-0.0474330\pi\)
−0.148464 + 0.988918i \(0.547433\pi\)
\(548\) −1.35907 + 0.784662i −0.0580568 + 0.0335191i
\(549\) 2.99702 1.73033i 0.127910 0.0738487i
\(550\) 0 0
\(551\) −1.27321 + 1.27321i −0.0542405 + 0.0542405i
\(552\) 2.25696 3.90916i 0.0960625 0.166385i
\(553\) −11.4434 + 19.8206i −0.486624 + 0.842857i
\(554\) −4.06392 + 4.06392i −0.172659 + 0.172659i
\(555\) 0 0
\(556\) 14.3956 8.31130i 0.610509 0.352478i
\(557\) −16.1172 + 9.30526i −0.682907 + 0.394276i −0.800949 0.598732i \(-0.795671\pi\)
0.118043 + 0.993009i \(0.462338\pi\)
\(558\) −5.67917 5.67917i −0.240418 0.240418i
\(559\) −0.626622 35.3729i −0.0265033 1.49611i
\(560\) 0 0
\(561\) −0.565417 0.151503i −0.0238719 0.00639646i
\(562\) −6.12117 + 22.8445i −0.258206 + 0.963638i
\(563\) −15.0868 + 4.04249i −0.635832 + 0.170371i −0.562315 0.826923i \(-0.690089\pi\)
−0.0735174 + 0.997294i \(0.523422\pi\)
\(564\) 4.21610 + 4.21610i 0.177530 + 0.177530i
\(565\) 0 0
\(566\) −11.2781 + 3.02196i −0.474054 + 0.127022i
\(567\) 8.14338i 0.341990i
\(568\) 2.52494 + 9.42322i 0.105944 + 0.395389i
\(569\) −14.9708 25.9302i −0.627610 1.08705i −0.988030 0.154262i \(-0.950700\pi\)
0.360420 0.932790i \(-0.382633\pi\)
\(570\) 0 0
\(571\) 14.1166i 0.590760i −0.955380 0.295380i \(-0.904554\pi\)
0.955380 0.295380i \(-0.0954463\pi\)
\(572\) 0.283125 0.170219i 0.0118380 0.00711719i
\(573\) −14.9669 + 14.9669i −0.625250 + 0.625250i
\(574\) 0.937194 3.49766i 0.0391177 0.145989i
\(575\) 0 0
\(576\) −1.16078 0.670177i −0.0483658 0.0279240i
\(577\) 12.5961 0.524383 0.262191 0.965016i \(-0.415555\pi\)
0.262191 + 0.965016i \(0.415555\pi\)
\(578\) 6.57603 + 3.79667i 0.273527 + 0.157921i
\(579\) −3.57670 13.3484i −0.148643 0.554742i
\(580\) 0 0
\(581\) 16.8194 29.1321i 0.697786 1.20860i
\(582\) 17.5968 + 4.71505i 0.729411 + 0.195445i
\(583\) 0.242232 + 0.419557i 0.0100322 + 0.0173763i
\(584\) −16.8672 −0.697970
\(585\) 0 0
\(586\) −13.0174 −0.537745
\(587\) 4.62345 + 8.00804i 0.190830 + 0.330527i 0.945526 0.325548i \(-0.105549\pi\)
−0.754696 + 0.656075i \(0.772215\pi\)
\(588\) 0.562572 + 0.150741i 0.0232001 + 0.00621644i
\(589\) 1.61357 2.79479i 0.0664860 0.115157i
\(590\) 0 0
\(591\) 3.96470 + 14.7965i 0.163086 + 0.608645i
\(592\) −5.43423 3.13745i −0.223346 0.128949i
\(593\) −37.5185 −1.54070 −0.770351 0.637620i \(-0.779919\pi\)
−0.770351 + 0.637620i \(0.779919\pi\)
\(594\) 0.443682 + 0.256160i 0.0182045 + 0.0105104i
\(595\) 0 0
\(596\) −4.15599 + 15.5103i −0.170236 + 0.635329i
\(597\) −3.28358 + 3.28358i −0.134388 + 0.134388i
\(598\) 0.223761 + 12.6313i 0.00915027 + 0.516534i
\(599\) 15.1335i 0.618339i −0.951007 0.309169i \(-0.899949\pi\)
0.951007 0.309169i \(-0.100051\pi\)
\(600\) 0 0
\(601\) 5.22436 + 9.04885i 0.213106 + 0.369110i 0.952685 0.303959i \(-0.0983087\pi\)
−0.739579 + 0.673070i \(0.764975\pi\)
\(602\) 6.49852 + 24.2528i 0.264860 + 0.988471i
\(603\) 7.77815i 0.316751i
\(604\) −10.8342 + 2.90300i −0.440836 + 0.118122i
\(605\) 0 0
\(606\) −13.5874 13.5874i −0.551950 0.551950i
\(607\) −17.7255 + 4.74954i −0.719457 + 0.192778i −0.599929 0.800053i \(-0.704805\pi\)
−0.119527 + 0.992831i \(0.538138\pi\)
\(608\) 0.139391 0.520214i 0.00565304 0.0210974i
\(609\) −10.6458 2.85254i −0.431391 0.115591i
\(610\) 0 0
\(611\) −16.1928 4.03285i −0.655090 0.163152i
\(612\) −4.70017 4.70017i −0.189993 0.189993i
\(613\) 11.7455 6.78127i 0.474396 0.273893i −0.243682 0.969855i \(-0.578355\pi\)
0.718078 + 0.695962i \(0.245022\pi\)
\(614\) 14.0374 8.10452i 0.566505 0.327072i
\(615\) 0 0
\(616\) −0.165785 + 0.165785i −0.00667966 + 0.00667966i
\(617\) 8.39942 14.5482i 0.338148 0.585689i −0.645937 0.763391i \(-0.723533\pi\)
0.984084 + 0.177702i \(0.0568663\pi\)
\(618\) −1.03236 + 1.78810i −0.0415276 + 0.0719279i
\(619\) −6.17048 + 6.17048i −0.248012 + 0.248012i −0.820155 0.572142i \(-0.806113\pi\)
0.572142 + 0.820155i \(0.306113\pi\)
\(620\) 0 0
\(621\) −16.9672 + 9.79599i −0.680869 + 0.393100i
\(622\) −25.2405 + 14.5726i −1.01205 + 0.584307i
\(623\) −14.0557 14.0557i −0.563128 0.563128i
\(624\) −4.64420 + 0.0822710i −0.185917 + 0.00329347i
\(625\) 0 0
\(626\) 6.97749 + 1.86961i 0.278877 + 0.0747248i
\(627\) −0.0164532 + 0.0614041i −0.000657077 + 0.00245224i
\(628\) −15.3620 + 4.11622i −0.613009 + 0.164255i
\(629\) −22.0040 22.0040i −0.877356 0.877356i
\(630\) 0 0
\(631\) 6.07256 1.62714i 0.241745 0.0647753i −0.135912 0.990721i \(-0.543397\pi\)
0.377657 + 0.925946i \(0.376730\pi\)
\(632\) 8.94406i 0.355776i
\(633\) 3.85653 + 14.3928i 0.153283 + 0.572061i
\(634\) 7.23344 + 12.5287i 0.287277 + 0.497578i
\(635\) 0 0
\(636\) 6.81177i 0.270104i
\(637\) −1.56678 + 0.449707i −0.0620780 + 0.0178180i
\(638\) −0.216606 + 0.216606i −0.00857550 + 0.00857550i
\(639\) 3.38432 12.6304i 0.133882 0.499653i
\(640\) 0 0
\(641\) 38.2476 + 22.0822i 1.51069 + 0.872196i 0.999922 + 0.0124761i \(0.00397137\pi\)
0.510766 + 0.859720i \(0.329362\pi\)
\(642\) 8.88894 0.350818
\(643\) −27.2150 15.7126i −1.07325 0.619644i −0.144185 0.989551i \(-0.546056\pi\)
−0.929069 + 0.369907i \(0.879390\pi\)
\(644\) −2.32056 8.66045i −0.0914429 0.341270i
\(645\) 0 0
\(646\) 1.33542 2.31301i 0.0525413 0.0910041i
\(647\) −13.4595 3.60647i −0.529149 0.141785i −0.0156538 0.999877i \(-0.504983\pi\)
−0.513495 + 0.858092i \(0.671650\pi\)
\(648\) −1.59120 2.75603i −0.0625081 0.108267i
\(649\) 0.533668 0.0209483
\(650\) 0 0
\(651\) 19.7533 0.774192
\(652\) 8.48209 + 14.6914i 0.332184 + 0.575360i
\(653\) 32.2071 + 8.62986i 1.26036 + 0.337712i 0.826330 0.563186i \(-0.190425\pi\)
0.434030 + 0.900899i \(0.357091\pi\)
\(654\) −10.0080 + 17.3343i −0.391342 + 0.677824i
\(655\) 0 0
\(656\) 0.366251 + 1.36687i 0.0142997 + 0.0533672i
\(657\) 19.5791 + 11.3040i 0.763854 + 0.441011i
\(658\) 11.8432 0.461696
\(659\) −10.3567 5.97945i −0.403440 0.232926i 0.284527 0.958668i \(-0.408163\pi\)
−0.687967 + 0.725742i \(0.741497\pi\)
\(660\) 0 0
\(661\) 2.86356 10.6870i 0.111380 0.415675i −0.887611 0.460594i \(-0.847636\pi\)
0.998991 + 0.0449194i \(0.0143031\pi\)
\(662\) −20.8926 + 20.8926i −0.812014 + 0.812014i
\(663\) −22.3522 5.56687i −0.868088 0.216199i
\(664\) 13.1459i 0.510159i
\(665\) 0 0
\(666\) 4.20530 + 7.28379i 0.162952 + 0.282241i
\(667\) −3.03193 11.3153i −0.117397 0.438130i
\(668\) 17.1500i 0.663555i
\(669\) 6.15096 1.64814i 0.237810 0.0637209i
\(670\) 0 0
\(671\) 0.167276 + 0.167276i 0.00645761 + 0.00645761i
\(672\) 3.18422 0.853209i 0.122834 0.0329132i
\(673\) 7.50840 28.0217i 0.289428 1.08016i −0.656115 0.754661i \(-0.727801\pi\)
0.945543 0.325498i \(-0.105532\pi\)
\(674\) −10.1360 2.71594i −0.390426 0.104614i
\(675\) 0 0
\(676\) 11.0210 6.89467i 0.423886 0.265180i
\(677\) −8.60647 8.60647i −0.330774 0.330774i 0.522107 0.852880i \(-0.325146\pi\)
−0.852880 + 0.522107i \(0.825146\pi\)
\(678\) −1.82575 + 1.05409i −0.0701173 + 0.0404823i
\(679\) 31.3375 18.0927i 1.20262 0.694334i
\(680\) 0 0
\(681\) −15.2367 + 15.2367i −0.583873 + 0.583873i
\(682\) 0.274510 0.475465i 0.0105115 0.0182065i
\(683\) −6.63734 + 11.4962i −0.253971 + 0.439890i −0.964615 0.263661i \(-0.915070\pi\)
0.710645 + 0.703551i \(0.248403\pi\)
\(684\) −0.510437 + 0.510437i −0.0195171 + 0.0195171i
\(685\) 0 0
\(686\) 16.5143 9.53453i 0.630519 0.364030i
\(687\) 18.7866 10.8464i 0.716753 0.413817i
\(688\) −6.93828 6.93828i −0.264520 0.264520i
\(689\) 9.82316 + 16.3389i 0.374232 + 0.622461i
\(690\) 0 0
\(691\) 16.6558 + 4.46290i 0.633616 + 0.169777i 0.561310 0.827606i \(-0.310298\pi\)
0.0723059 + 0.997383i \(0.476964\pi\)
\(692\) −4.55586 + 17.0027i −0.173188 + 0.646345i
\(693\) 0.303545 0.0813346i 0.0115307 0.00308964i
\(694\) −2.52464 2.52464i −0.0958339 0.0958339i
\(695\) 0 0
\(696\) 4.16034 1.11476i 0.157697 0.0422548i
\(697\) 7.01764i 0.265812i
\(698\) 0.776840 + 2.89921i 0.0294038 + 0.109737i
\(699\) −16.7625 29.0335i −0.634016 1.09815i
\(700\) 0 0
\(701\) 25.4441i 0.961010i 0.876992 + 0.480505i \(0.159547\pi\)
−0.876992 + 0.480505i \(0.840453\pi\)
\(702\) 17.6354 + 9.76950i 0.665607 + 0.368726i
\(703\) −2.38963 + 2.38963i −0.0901265 + 0.0901265i
\(704\) 0.0237140 0.0885018i 0.000893754 0.00333554i
\(705\) 0 0
\(706\) 9.92204 + 5.72849i 0.373421 + 0.215595i
\(707\) −38.1675 −1.43544
\(708\) −6.49833 3.75181i −0.244222 0.141002i
\(709\) −9.53579 35.5881i −0.358124 1.33654i −0.876507 0.481389i \(-0.840132\pi\)
0.518383 0.855149i \(-0.326534\pi\)
\(710\) 0 0
\(711\) −5.99410 + 10.3821i −0.224796 + 0.389359i
\(712\) 7.50341 + 2.01053i 0.281202 + 0.0753479i
\(713\) 10.4977 + 18.1826i 0.393143 + 0.680944i
\(714\) 16.3481 0.611813
\(715\) 0 0
\(716\) −21.0426 −0.786398
\(717\) 9.39957 + 16.2805i 0.351033 + 0.608007i
\(718\) −7.11123 1.90545i −0.265389 0.0711107i
\(719\) −4.28637 + 7.42421i −0.159855 + 0.276876i −0.934816 0.355132i \(-0.884436\pi\)
0.774961 + 0.632008i \(0.217769\pi\)
\(720\) 0 0
\(721\) 1.06145 + 3.96140i 0.0395306 + 0.147530i
\(722\) 16.2033 + 9.35497i 0.603024 + 0.348156i
\(723\) −2.94440 −0.109504
\(724\) 22.1845 + 12.8082i 0.824480 + 0.476014i
\(725\) 0 0
\(726\) 3.66493 13.6777i 0.136018 0.507627i
\(727\) 18.8997 18.8997i 0.700952 0.700952i −0.263663 0.964615i \(-0.584931\pi\)
0.964615 + 0.263663i \(0.0849307\pi\)
\(728\) −6.40734 + 6.63844i −0.237472 + 0.246037i
\(729\) 25.8759i 0.958366i
\(730\) 0 0
\(731\) −24.3302 42.1412i −0.899885 1.55865i
\(732\) −0.860882 3.21286i −0.0318191 0.118751i
\(733\) 19.8330i 0.732549i 0.930507 + 0.366274i \(0.119367\pi\)
−0.930507 + 0.366274i \(0.880633\pi\)
\(734\) −17.2606 + 4.62496i −0.637099 + 0.170710i
\(735\) 0 0
\(736\) 2.47760 + 2.47760i 0.0913254 + 0.0913254i
\(737\) −0.513581 + 0.137614i −0.0189180 + 0.00506906i
\(738\) 0.490905 1.83208i 0.0180705 0.0674399i
\(739\) 10.5108 + 2.81635i 0.386645 + 0.103601i 0.446905 0.894582i \(-0.352526\pi\)
−0.0602599 + 0.998183i \(0.519193\pi\)
\(740\) 0 0
\(741\) −0.604561 + 2.42745i −0.0222091 + 0.0891744i
\(742\) −9.56729 9.56729i −0.351226 0.351226i
\(743\) 21.7084 12.5334i 0.796406 0.459805i −0.0458071 0.998950i \(-0.514586\pi\)
0.842213 + 0.539145i \(0.181253\pi\)
\(744\) −6.68526 + 3.85974i −0.245094 + 0.141505i
\(745\) 0 0
\(746\) −22.5338 + 22.5338i −0.825020 + 0.825020i
\(747\) 8.81006 15.2595i 0.322343 0.558315i
\(748\) 0.227189 0.393503i 0.00830685 0.0143879i
\(749\) 12.4847 12.4847i 0.456181 0.456181i
\(750\) 0 0
\(751\) −22.2080 + 12.8218i −0.810380 + 0.467873i −0.847088 0.531453i \(-0.821646\pi\)
0.0367077 + 0.999326i \(0.488313\pi\)
\(752\) −4.00819 + 2.31413i −0.146164 + 0.0843876i
\(753\) 8.75683 + 8.75683i 0.319117 + 0.319117i
\(754\) −8.37149 + 8.67344i −0.304872 + 0.315868i
\(755\) 0 0
\(756\) −13.8206 3.70323i −0.502652 0.134685i
\(757\) −0.963145 + 3.59451i −0.0350061 + 0.130645i −0.981218 0.192904i \(-0.938209\pi\)
0.946211 + 0.323549i \(0.104876\pi\)
\(758\) −5.25589 + 1.40831i −0.190902 + 0.0511522i
\(759\) −0.292447 0.292447i −0.0106151 0.0106151i
\(760\) 0 0
\(761\) 27.4934 7.36683i 0.996634 0.267047i 0.276600 0.960985i \(-0.410792\pi\)
0.720035 + 0.693938i \(0.244126\pi\)
\(762\) 4.08435i 0.147960i
\(763\) 10.2900 + 38.4028i 0.372523 + 1.39027i
\(764\) −8.21501 14.2288i −0.297209 0.514781i
\(765\) 0 0
\(766\) 16.4852i 0.595634i
\(767\) 20.9975 0.371965i 0.758174 0.0134309i
\(768\) −0.910946 + 0.910946i −0.0328709 + 0.0328709i
\(769\) 9.79895 36.5702i 0.353359 1.31875i −0.529178 0.848511i \(-0.677500\pi\)
0.882537 0.470243i \(-0.155834\pi\)
\(770\) 0 0
\(771\) −31.1085 17.9605i −1.12035 0.646832i
\(772\) 10.7270 0.386073
\(773\) −6.84714 3.95320i −0.246275 0.142187i 0.371783 0.928320i \(-0.378747\pi\)
−0.618057 + 0.786133i \(0.712080\pi\)
\(774\) 3.40395 + 12.7037i 0.122352 + 0.456625i
\(775\) 0 0
\(776\) −7.07053 + 12.2465i −0.253817 + 0.439624i
\(777\) −19.9807 5.35381i −0.716803 0.192067i
\(778\) −1.92092 3.32712i −0.0688682 0.119283i
\(779\) 0.762114 0.0273056
\(780\) 0 0
\(781\) 0.893848 0.0319844
\(782\) 8.68809 + 15.0482i 0.310686 + 0.538123i
\(783\) −18.0573 4.83845i −0.645316 0.172912i
\(784\) −0.226046 + 0.391523i −0.00807307 + 0.0139830i
\(785\) 0 0
\(786\) −5.57956 20.8232i −0.199016 0.742740i
\(787\) −8.20218 4.73553i −0.292376 0.168804i 0.346637 0.937999i \(-0.387324\pi\)
−0.639013 + 0.769196i \(0.720657\pi\)
\(788\) −11.8907 −0.423587
\(789\) 30.5891 + 17.6606i 1.08900 + 0.628735i
\(790\) 0 0
\(791\) −1.08380 + 4.04480i −0.0385355 + 0.143817i
\(792\) −0.0868386 + 0.0868386i −0.00308567 + 0.00308567i
\(793\) 6.69814 + 6.46496i 0.237858 + 0.229577i
\(794\) 0.680157i 0.0241379i
\(795\) 0 0
\(796\) −1.80229 3.12166i −0.0638805 0.110644i
\(797\) −4.70044 17.5423i −0.166498 0.621380i −0.997844 0.0656247i \(-0.979096\pi\)
0.831346 0.555755i \(-0.187571\pi\)
\(798\) 1.77540i 0.0628486i
\(799\) −22.1702 + 5.94050i −0.784326 + 0.210160i
\(800\) 0 0
\(801\) −7.36240 7.36240i −0.260138 0.260138i
\(802\) −33.6018 + 9.00357i −1.18652 + 0.317927i
\(803\) −0.399988 + 1.49278i −0.0141153 + 0.0526790i
\(804\) 7.22119 + 1.93491i 0.254672 + 0.0682391i
\(805\) 0 0
\(806\) 10.4693 18.8988i 0.368767 0.665681i
\(807\) −1.67091 1.67091i −0.0588188 0.0588188i
\(808\) 12.9174 7.45784i 0.454431 0.262366i
\(809\) −24.4351 + 14.1076i −0.859092 + 0.495997i −0.863708 0.503992i \(-0.831864\pi\)
0.00461626 + 0.999989i \(0.498531\pi\)
\(810\) 0 0
\(811\) 4.21141 4.21141i 0.147883 0.147883i −0.629289 0.777172i \(-0.716654\pi\)
0.777172 + 0.629289i \(0.216654\pi\)
\(812\) 4.27758 7.40899i 0.150114 0.260004i
\(813\) −3.78783 + 6.56072i −0.132845 + 0.230094i
\(814\) −0.406538 + 0.406538i −0.0142491 + 0.0142491i
\(815\) 0 0
\(816\) −5.53283 + 3.19438i −0.193688 + 0.111826i
\(817\) −4.57652 + 2.64226i −0.160112 + 0.0924408i
\(818\) 1.68047 + 1.68047i 0.0587562 + 0.0587562i
\(819\) 11.8864 3.41172i 0.415346 0.119215i
\(820\) 0 0
\(821\) 7.16102 + 1.91879i 0.249921 + 0.0669662i 0.381605 0.924326i \(-0.375372\pi\)
−0.131683 + 0.991292i \(0.542038\pi\)
\(822\) 0.523259 1.95283i 0.0182507 0.0681127i
\(823\) −38.8370 + 10.4063i −1.35377 + 0.362742i −0.861526 0.507713i \(-0.830491\pi\)
−0.492247 + 0.870456i \(0.663824\pi\)
\(824\) −1.13328 1.13328i −0.0394798 0.0394798i
\(825\) 0 0
\(826\) −14.3965 + 3.85754i −0.500920 + 0.134221i
\(827\) 37.4411i 1.30196i 0.759097 + 0.650978i \(0.225641\pi\)
−0.759097 + 0.650978i \(0.774359\pi\)
\(828\) −1.21552 4.53637i −0.0422422 0.157650i
\(829\) 24.2487 + 42.0000i 0.842192 + 1.45872i 0.888037 + 0.459771i \(0.152069\pi\)
−0.0458449 + 0.998949i \(0.514598\pi\)
\(830\) 0 0
\(831\) 7.40402i 0.256843i
\(832\) 0.871354 3.49868i 0.0302087 0.121295i
\(833\) −1.58533 + 1.58533i −0.0549285 + 0.0549285i
\(834\) −5.54247 + 20.6848i −0.191920 + 0.716255i
\(835\) 0 0
\(836\) −0.0427343 0.0246727i −0.00147800 0.000853322i
\(837\) 33.5053 1.15811
\(838\) 17.8272 + 10.2925i 0.615831 + 0.355550i
\(839\) 8.27108 + 30.8681i 0.285549 + 1.06568i 0.948437 + 0.316966i \(0.102664\pi\)
−0.662888 + 0.748719i \(0.730669\pi\)
\(840\) 0 0
\(841\) −8.91113 + 15.4345i −0.307280 + 0.532225i
\(842\) 36.7087 + 9.83606i 1.26507 + 0.338973i
\(843\) −15.2341 26.3862i −0.524689 0.908789i
\(844\) −11.5663 −0.398127
\(845\) 0 0
\(846\) 6.20350 0.213281
\(847\) −14.0631 24.3581i −0.483215 0.836954i
\(848\) 5.10736 + 1.36851i 0.175387 + 0.0469949i
\(849\) 7.52090 13.0266i 0.258117 0.447071i
\(850\) 0 0
\(851\) −5.69048 21.2372i −0.195067 0.728001i
\(852\) −10.8841 6.28396i −0.372884 0.215285i
\(853\) 3.51934 0.120500 0.0602500 0.998183i \(-0.480810\pi\)
0.0602500 + 0.998183i \(0.480810\pi\)
\(854\) −5.72165 3.30340i −0.195791 0.113040i
\(855\) 0 0
\(856\) −1.78582 + 6.66478i −0.0610382 + 0.227798i
\(857\) 26.3874 26.3874i 0.901378 0.901378i −0.0941777 0.995555i \(-0.530022\pi\)
0.995555 + 0.0941777i \(0.0300222\pi\)
\(858\) −0.102851 + 0.412971i −0.00351129 + 0.0140986i
\(859\) 6.12805i 0.209086i 0.994520 + 0.104543i \(0.0333380\pi\)
−0.994520 + 0.104543i \(0.966662\pi\)
\(860\) 0 0
\(861\) 2.33244 + 4.03991i 0.0794895 + 0.137680i
\(862\) −9.94023 37.0974i −0.338565 1.26354i
\(863\) 39.9799i 1.36093i −0.732780 0.680466i \(-0.761778\pi\)
0.732780 0.680466i \(-0.238222\pi\)
\(864\) 5.40103 1.44720i 0.183747 0.0492348i
\(865\) 0 0
\(866\) −12.5260 12.5260i −0.425650 0.425650i
\(867\) −9.44898 + 2.53185i −0.320904 + 0.0859860i
\(868\) −3.96851 + 14.8107i −0.134700 + 0.502707i
\(869\) −0.791565 0.212099i −0.0268520 0.00719497i
\(870\) 0 0
\(871\) −20.1112 + 5.77244i −0.681442 + 0.195592i
\(872\) −10.9863 10.9863i −0.372044 0.372044i
\(873\) 16.4147 9.47701i 0.555552 0.320748i
\(874\) 1.63423 0.943525i 0.0552788 0.0319152i
\(875\) 0 0
\(876\) 15.3651 15.3651i 0.519139 0.519139i
\(877\) −8.75805 + 15.1694i −0.295738 + 0.512234i −0.975156 0.221518i \(-0.928899\pi\)
0.679418 + 0.733751i \(0.262232\pi\)
\(878\) 16.1431 27.9606i 0.544802 0.943625i
\(879\) 11.8582 11.8582i 0.399967 0.399967i
\(880\) 0 0
\(881\) 11.8012 6.81345i 0.397594 0.229551i −0.287851 0.957675i \(-0.592941\pi\)
0.685445 + 0.728124i \(0.259608\pi\)
\(882\) 0.524779 0.302981i 0.0176702 0.0102019i
\(883\) 19.1486 + 19.1486i 0.644403 + 0.644403i 0.951635 0.307232i \(-0.0994027\pi\)
−0.307232 + 0.951635i \(0.599403\pi\)
\(884\) 8.66459 15.6409i 0.291422 0.526061i
\(885\) 0 0
\(886\) −27.7802 7.44368i −0.933294 0.250075i
\(887\) 14.8713 55.5005i 0.499330 1.86353i −0.00495394 0.999988i \(-0.501577\pi\)
0.504284 0.863538i \(-0.331756\pi\)
\(888\) 7.80835 2.09224i 0.262031 0.0702110i
\(889\) −5.73656 5.73656i −0.192398 0.192398i
\(890\) 0 0
\(891\) −0.281647 + 0.0754672i −0.00943554 + 0.00252824i
\(892\) 4.94301i 0.165504i
\(893\) 0.645137 + 2.40768i 0.0215887 + 0.0805700i
\(894\) −10.3432 17.9150i −0.345929 0.599166i
\(895\) 0 0
\(896\) 2.55889i 0.0854865i
\(897\) −11.7103 11.3026i −0.390995 0.377384i
\(898\) 9.67904 9.67904i 0.322994 0.322994i
\(899\) −5.18505 + 19.3509i −0.172931 + 0.645388i
\(900\) 0 0
\(901\) 22.7087 + 13.1109i 0.756536 + 0.436786i
\(902\) 0.129655 0.00431705
\(903\) −28.0128 16.1732i −0.932208 0.538211i
\(904\) −0.423544 1.58069i −0.0140869 0.0525728i
\(905\) 0 0
\(906\) 7.22486 12.5138i 0.240030 0.415744i
\(907\) −50.2248 13.4577i −1.66769 0.446855i −0.703201 0.710991i \(-0.748246\pi\)
−0.964485 + 0.264136i \(0.914913\pi\)
\(908\) −8.36313 14.4854i −0.277540 0.480714i
\(909\) −19.9923 −0.663102
\(910\) 0 0
\(911\) −17.0358 −0.564421 −0.282211 0.959352i \(-0.591068\pi\)
−0.282211 + 0.959352i \(0.591068\pi\)
\(912\) 0.346909 + 0.600864i 0.0114873 + 0.0198966i
\(913\) 1.16343 + 0.311741i 0.0385040 + 0.0103171i
\(914\) 4.84323 8.38872i 0.160200 0.277474i
\(915\) 0 0
\(916\) 4.35818 + 16.2650i 0.143998 + 0.537409i
\(917\) −37.0833 21.4100i −1.22460 0.707022i
\(918\) 27.7295 0.915209
\(919\) 26.2851 + 15.1757i 0.867066 + 0.500601i 0.866372 0.499399i \(-0.166446\pi\)
0.000693542 1.00000i \(0.499779\pi\)
\(920\) 0 0
\(921\) −5.40457 + 20.1701i −0.178087 + 0.664629i
\(922\) 3.96891 3.96891i 0.130709 0.130709i
\(923\) 35.1689 0.623009i 1.15760 0.0205066i
\(924\) 0.302042i 0.00993645i
\(925\) 0 0
\(926\) 12.4904 + 21.6341i 0.410462 + 0.710940i
\(927\) 0.555993 + 2.07499i 0.0182612 + 0.0681517i
\(928\) 3.34331i 0.109750i
\(929\) −0.286693 + 0.0768193i −0.00940611 + 0.00252036i −0.263519 0.964654i \(-0.584883\pi\)
0.254113 + 0.967175i \(0.418217\pi\)
\(930\) 0 0
\(931\) 0.172167 + 0.172167i 0.00564254 + 0.00564254i
\(932\) 25.1365 6.73531i 0.823374 0.220622i
\(933\) 9.71786 36.2675i 0.318148 1.18735i
\(934\) 34.1979 + 9.16330i 1.11899 + 0.299832i
\(935\) 0 0
\(936\) −3.35618 + 3.47723i −0.109700 + 0.113657i
\(937\) 12.8581 + 12.8581i 0.420056 + 0.420056i 0.885223 0.465167i \(-0.154006\pi\)
−0.465167 + 0.885223i \(0.654006\pi\)
\(938\) 12.8599 7.42469i 0.419892 0.242425i
\(939\) −8.05924 + 4.65300i −0.263003 + 0.151845i
\(940\) 0 0
\(941\) −13.5707 + 13.5707i −0.442393 + 0.442393i −0.892816 0.450423i \(-0.851273\pi\)
0.450423 + 0.892816i \(0.351273\pi\)
\(942\) 10.2443 17.7436i 0.333776 0.578117i
\(943\) −2.47912 + 4.29396i −0.0807313 + 0.139831i
\(944\) 4.11859 4.11859i 0.134049 0.134049i
\(945\) 0 0
\(946\) −0.778585 + 0.449516i −0.0253140 + 0.0146150i
\(947\) 1.17806 0.680154i 0.0382819 0.0221020i −0.480737 0.876865i \(-0.659631\pi\)
0.519019 + 0.854763i \(0.326297\pi\)
\(948\) 8.14756 + 8.14756i 0.264620 + 0.264620i
\(949\) −14.6973 + 59.0129i −0.477094 + 1.91564i
\(950\) 0 0
\(951\) −18.0022 4.82369i −0.583763 0.156419i
\(952\) −3.28440 + 12.2576i −0.106448 + 0.397270i
\(953\) 23.3689 6.26167i 0.756992 0.202835i 0.140375 0.990098i \(-0.455169\pi\)
0.616617 + 0.787263i \(0.288503\pi\)
\(954\) −5.01137 5.01137i −0.162249 0.162249i
\(955\) 0 0
\(956\) −14.0953 + 3.77682i −0.455874 + 0.122151i
\(957\) 0.394632i 0.0127567i
\(958\) −8.10224 30.2380i −0.261772 0.976945i
\(959\) −2.00786 3.47772i −0.0648372 0.112301i
\(960\) 0 0
\(961\) 4.90544i 0.158240i
\(962\) −15.7121 + 16.2788i −0.506578 + 0.524849i
\(963\) 6.53953 6.53953i 0.210733 0.210733i
\(964\) 0.591542 2.20767i 0.0190523 0.0711041i
\(965\) 0 0
\(966\) 10.0031 + 5.77530i 0.321845 + 0.185817i
\(967\) −17.5560 −0.564562 −0.282281 0.959332i \(-0.591091\pi\)
−0.282281 + 0.959332i \(0.591091\pi\)
\(968\) 9.51901 + 5.49580i 0.305953 + 0.176642i
\(969\) 0.890534 + 3.32352i 0.0286081 + 0.106767i
\(970\) 0 0
\(971\) 3.98217 6.89733i 0.127794 0.221346i −0.795028 0.606573i \(-0.792544\pi\)
0.922822 + 0.385228i \(0.125877\pi\)
\(972\) −12.2430 3.28050i −0.392694 0.105222i
\(973\) 21.2677 + 36.8367i 0.681811 + 1.18093i
\(974\) −17.8985 −0.573504
\(975\) 0 0
\(976\) 2.58190 0.0826446
\(977\) 12.3293 + 21.3550i 0.394450 + 0.683207i 0.993031 0.117855i \(-0.0376018\pi\)
−0.598581 + 0.801062i \(0.704268\pi\)
\(978\) −21.1098 5.65636i −0.675017 0.180870i
\(979\) 0.355872 0.616388i 0.0113737 0.0196998i
\(980\) 0 0
\(981\) 5.38993 + 20.1155i 0.172087 + 0.642238i
\(982\) 6.94640 + 4.01050i 0.221668 + 0.127980i
\(983\) 55.7916 1.77948 0.889738 0.456472i \(-0.150887\pi\)
0.889738 + 0.456472i \(0.150887\pi\)
\(984\) −1.57878 0.911507i −0.0503295 0.0290578i
\(985\) 0 0
\(986\) −4.29123 + 16.0151i −0.136661 + 0.510024i
\(987\) −10.7885 + 10.7885i −0.343402 + 0.343402i
\(988\) −1.69860 0.940973i −0.0540397 0.0299363i
\(989\) 34.3805i 1.09324i
\(990\) 0 0
\(991\) −21.9771 38.0654i −0.698125 1.20919i −0.969116 0.246606i \(-0.920685\pi\)
0.270991 0.962582i \(-0.412649\pi\)
\(992\) −1.55087 5.78794i −0.0492403 0.183767i
\(993\) 38.0641i 1.20793i
\(994\) −24.1130 + 6.46105i −0.764817 + 0.204932i
\(995\) 0 0
\(996\) −11.9752 11.9752i −0.379448 0.379448i
\(997\) −16.1247 + 4.32061i −0.510676 + 0.136835i −0.504950 0.863148i \(-0.668489\pi\)
−0.00572561 + 0.999984i \(0.501823\pi\)
\(998\) −5.74549 + 21.4425i −0.181870 + 0.678750i
\(999\) −33.8910 9.08106i −1.07226 0.287312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.f.457.4 yes 16
5.2 odd 4 650.2.t.f.93.4 yes 16
5.3 odd 4 650.2.t.h.93.1 yes 16
5.4 even 2 650.2.w.h.457.1 yes 16
13.7 odd 12 650.2.t.h.7.1 yes 16
65.7 even 12 650.2.w.h.293.1 yes 16
65.33 even 12 inner 650.2.w.f.293.4 yes 16
65.59 odd 12 650.2.t.f.7.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.7.4 16 65.59 odd 12
650.2.t.f.93.4 yes 16 5.2 odd 4
650.2.t.h.7.1 yes 16 13.7 odd 12
650.2.t.h.93.1 yes 16 5.3 odd 4
650.2.w.f.293.4 yes 16 65.33 even 12 inner
650.2.w.f.457.4 yes 16 1.1 even 1 trivial
650.2.w.h.293.1 yes 16 65.7 even 12
650.2.w.h.457.1 yes 16 5.4 even 2