Properties

Label 650.2.w.a.357.1
Level $650$
Weight $2$
Character 650.357
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(193,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,6,-2,0,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 357.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 650.357
Dual form 650.2.w.a.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.633975 + 2.36603i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.36603 - 0.633975i) q^{6} +(3.23205 - 1.86603i) q^{7} +1.00000 q^{8} +(-2.59808 + 1.50000i) q^{9} +(1.86603 - 0.500000i) q^{11} +(1.73205 - 1.73205i) q^{12} +(3.50000 - 0.866025i) q^{13} +3.73205i q^{14} +(-0.500000 + 0.866025i) q^{16} +(5.09808 + 1.36603i) q^{17} -3.00000i q^{18} +(-1.33013 + 4.96410i) q^{19} +(6.46410 + 6.46410i) q^{21} +(-0.500000 + 1.86603i) q^{22} +(-3.36603 + 0.901924i) q^{23} +(0.633975 + 2.36603i) q^{24} +(-1.00000 + 3.46410i) q^{26} +(-3.23205 - 1.86603i) q^{28} +(-8.19615 - 4.73205i) q^{29} +(3.00000 - 3.00000i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.36603 + 4.09808i) q^{33} +(-3.73205 + 3.73205i) q^{34} +(2.59808 + 1.50000i) q^{36} +(-3.23205 - 1.86603i) q^{37} +(-3.63397 - 3.63397i) q^{38} +(4.26795 + 7.73205i) q^{39} +(-0.0980762 - 0.366025i) q^{41} +(-8.83013 + 2.36603i) q^{42} +(2.19615 - 8.19615i) q^{43} +(-1.36603 - 1.36603i) q^{44} +(0.901924 - 3.36603i) q^{46} +7.00000i q^{47} +(-2.36603 - 0.633975i) q^{48} +(3.46410 - 6.00000i) q^{49} +12.9282i q^{51} +(-2.50000 - 2.59808i) q^{52} +(-6.36603 + 6.36603i) q^{53} +(3.23205 - 1.86603i) q^{56} -12.5885 q^{57} +(8.19615 - 4.73205i) q^{58} +(0.633975 + 0.169873i) q^{59} +(-6.36603 - 11.0263i) q^{61} +(1.09808 + 4.09808i) q^{62} +(-5.59808 + 9.69615i) q^{63} +1.00000 q^{64} -4.73205 q^{66} +(0.464102 - 0.803848i) q^{67} +(-1.36603 - 5.09808i) q^{68} +(-4.26795 - 7.39230i) q^{69} +(-10.4641 - 2.80385i) q^{71} +(-2.59808 + 1.50000i) q^{72} +4.73205 q^{73} +(3.23205 - 1.86603i) q^{74} +(4.96410 - 1.33013i) q^{76} +(5.09808 - 5.09808i) q^{77} +(-8.83013 - 0.169873i) q^{78} +11.1244i q^{79} +(-4.50000 + 7.79423i) q^{81} +(0.366025 + 0.0980762i) q^{82} +2.73205i q^{83} +(2.36603 - 8.83013i) q^{84} +(6.00000 + 6.00000i) q^{86} +(6.00000 - 22.3923i) q^{87} +(1.86603 - 0.500000i) q^{88} +(3.89230 + 14.5263i) q^{89} +(9.69615 - 9.33013i) q^{91} +(2.46410 + 2.46410i) q^{92} +(9.00000 + 5.19615i) q^{93} +(-6.06218 - 3.50000i) q^{94} +(1.73205 - 1.73205i) q^{96} +(8.09808 + 14.0263i) q^{97} +(3.46410 + 6.00000i) q^{98} +(-4.09808 + 4.09808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{3} - 2 q^{4} - 6 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{11} + 14 q^{13} - 2 q^{16} + 10 q^{17} + 12 q^{19} + 12 q^{21} - 2 q^{22} - 10 q^{23} + 6 q^{24} - 4 q^{26} - 6 q^{28} - 12 q^{29}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.633975 + 2.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i \(0.166667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −2.36603 0.633975i −0.965926 0.258819i
\(7\) 3.23205 1.86603i 1.22160 0.705291i 0.256341 0.966586i \(-0.417483\pi\)
0.965259 + 0.261295i \(0.0841495\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.59808 + 1.50000i −0.866025 + 0.500000i
\(10\) 0 0
\(11\) 1.86603 0.500000i 0.562628 0.150756i 0.0337145 0.999432i \(-0.489266\pi\)
0.528913 + 0.848676i \(0.322600\pi\)
\(12\) 1.73205 1.73205i 0.500000 0.500000i
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 3.73205i 0.997433i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 5.09808 + 1.36603i 1.23647 + 0.331310i 0.817094 0.576505i \(-0.195584\pi\)
0.419371 + 0.907815i \(0.362251\pi\)
\(18\) 3.00000i 0.707107i
\(19\) −1.33013 + 4.96410i −0.305152 + 1.13884i 0.627662 + 0.778486i \(0.284012\pi\)
−0.932814 + 0.360357i \(0.882655\pi\)
\(20\) 0 0
\(21\) 6.46410 + 6.46410i 1.41058 + 1.41058i
\(22\) −0.500000 + 1.86603i −0.106600 + 0.397838i
\(23\) −3.36603 + 0.901924i −0.701865 + 0.188064i −0.592066 0.805890i \(-0.701687\pi\)
−0.109799 + 0.993954i \(0.535021\pi\)
\(24\) 0.633975 + 2.36603i 0.129410 + 0.482963i
\(25\) 0 0
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 0 0
\(28\) −3.23205 1.86603i −0.610800 0.352646i
\(29\) −8.19615 4.73205i −1.52199 0.878720i −0.999663 0.0259731i \(-0.991732\pi\)
−0.522325 0.852747i \(-0.674935\pi\)
\(30\) 0 0
\(31\) 3.00000 3.00000i 0.538816 0.538816i −0.384365 0.923181i \(-0.625580\pi\)
0.923181 + 0.384365i \(0.125580\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 2.36603 + 4.09808i 0.411872 + 0.713384i
\(34\) −3.73205 + 3.73205i −0.640041 + 0.640041i
\(35\) 0 0
\(36\) 2.59808 + 1.50000i 0.433013 + 0.250000i
\(37\) −3.23205 1.86603i −0.531346 0.306773i 0.210218 0.977654i \(-0.432582\pi\)
−0.741564 + 0.670882i \(0.765916\pi\)
\(38\) −3.63397 3.63397i −0.589509 0.589509i
\(39\) 4.26795 + 7.73205i 0.683419 + 1.23812i
\(40\) 0 0
\(41\) −0.0980762 0.366025i −0.0153169 0.0571636i 0.957844 0.287287i \(-0.0927535\pi\)
−0.973161 + 0.230124i \(0.926087\pi\)
\(42\) −8.83013 + 2.36603i −1.36252 + 0.365086i
\(43\) 2.19615 8.19615i 0.334910 1.24990i −0.569056 0.822298i \(-0.692691\pi\)
0.903967 0.427603i \(-0.140642\pi\)
\(44\) −1.36603 1.36603i −0.205936 0.205936i
\(45\) 0 0
\(46\) 0.901924 3.36603i 0.132981 0.496293i
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) −2.36603 0.633975i −0.341506 0.0915064i
\(49\) 3.46410 6.00000i 0.494872 0.857143i
\(50\) 0 0
\(51\) 12.9282i 1.81031i
\(52\) −2.50000 2.59808i −0.346688 0.360288i
\(53\) −6.36603 + 6.36603i −0.874441 + 0.874441i −0.992953 0.118512i \(-0.962188\pi\)
0.118512 + 0.992953i \(0.462188\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.23205 1.86603i 0.431901 0.249358i
\(57\) −12.5885 −1.66738
\(58\) 8.19615 4.73205i 1.07621 0.621349i
\(59\) 0.633975 + 0.169873i 0.0825365 + 0.0221156i 0.299851 0.953986i \(-0.403063\pi\)
−0.217314 + 0.976102i \(0.569730\pi\)
\(60\) 0 0
\(61\) −6.36603 11.0263i −0.815086 1.41177i −0.909266 0.416215i \(-0.863356\pi\)
0.0941801 0.995555i \(-0.469977\pi\)
\(62\) 1.09808 + 4.09808i 0.139456 + 0.520456i
\(63\) −5.59808 + 9.69615i −0.705291 + 1.22160i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.73205 −0.582475
\(67\) 0.464102 0.803848i 0.0566990 0.0982056i −0.836283 0.548298i \(-0.815276\pi\)
0.892982 + 0.450093i \(0.148609\pi\)
\(68\) −1.36603 5.09808i −0.165655 0.618233i
\(69\) −4.26795 7.39230i −0.513801 0.889929i
\(70\) 0 0
\(71\) −10.4641 2.80385i −1.24186 0.332755i −0.422673 0.906282i \(-0.638908\pi\)
−0.819187 + 0.573527i \(0.805575\pi\)
\(72\) −2.59808 + 1.50000i −0.306186 + 0.176777i
\(73\) 4.73205 0.553845 0.276922 0.960892i \(-0.410686\pi\)
0.276922 + 0.960892i \(0.410686\pi\)
\(74\) 3.23205 1.86603i 0.375718 0.216921i
\(75\) 0 0
\(76\) 4.96410 1.33013i 0.569422 0.152576i
\(77\) 5.09808 5.09808i 0.580980 0.580980i
\(78\) −8.83013 0.169873i −0.999815 0.0192343i
\(79\) 11.1244i 1.25159i 0.779988 + 0.625794i \(0.215225\pi\)
−0.779988 + 0.625794i \(0.784775\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0.366025 + 0.0980762i 0.0404207 + 0.0108307i
\(83\) 2.73205i 0.299882i 0.988695 + 0.149941i \(0.0479083\pi\)
−0.988695 + 0.149941i \(0.952092\pi\)
\(84\) 2.36603 8.83013i 0.258155 0.963446i
\(85\) 0 0
\(86\) 6.00000 + 6.00000i 0.646997 + 0.646997i
\(87\) 6.00000 22.3923i 0.643268 2.40071i
\(88\) 1.86603 0.500000i 0.198919 0.0533002i
\(89\) 3.89230 + 14.5263i 0.412583 + 1.53978i 0.789627 + 0.613587i \(0.210274\pi\)
−0.377044 + 0.926196i \(0.623059\pi\)
\(90\) 0 0
\(91\) 9.69615 9.33013i 1.01643 0.978063i
\(92\) 2.46410 + 2.46410i 0.256900 + 0.256900i
\(93\) 9.00000 + 5.19615i 0.933257 + 0.538816i
\(94\) −6.06218 3.50000i −0.625266 0.360997i
\(95\) 0 0
\(96\) 1.73205 1.73205i 0.176777 0.176777i
\(97\) 8.09808 + 14.0263i 0.822235 + 1.42415i 0.904014 + 0.427502i \(0.140606\pi\)
−0.0817791 + 0.996650i \(0.526060\pi\)
\(98\) 3.46410 + 6.00000i 0.349927 + 0.606092i
\(99\) −4.09808 + 4.09808i −0.411872 + 0.411872i
\(100\) 0 0
\(101\) −5.36603 3.09808i −0.533939 0.308270i 0.208680 0.977984i \(-0.433083\pi\)
−0.742619 + 0.669714i \(0.766417\pi\)
\(102\) −11.1962 6.46410i −1.10858 0.640041i
\(103\) 2.16987 + 2.16987i 0.213804 + 0.213804i 0.805881 0.592077i \(-0.201692\pi\)
−0.592077 + 0.805881i \(0.701692\pi\)
\(104\) 3.50000 0.866025i 0.343203 0.0849208i
\(105\) 0 0
\(106\) −2.33013 8.69615i −0.226322 0.844645i
\(107\) 12.5622 3.36603i 1.21443 0.325406i 0.405932 0.913903i \(-0.366947\pi\)
0.808499 + 0.588497i \(0.200280\pi\)
\(108\) 0 0
\(109\) −14.1962 14.1962i −1.35974 1.35974i −0.874227 0.485518i \(-0.838631\pi\)
−0.485518 0.874227i \(-0.661369\pi\)
\(110\) 0 0
\(111\) 2.36603 8.83013i 0.224573 0.838119i
\(112\) 3.73205i 0.352646i
\(113\) 2.73205 + 0.732051i 0.257010 + 0.0688655i 0.385023 0.922907i \(-0.374193\pi\)
−0.128014 + 0.991772i \(0.540860\pi\)
\(114\) 6.29423 10.9019i 0.589509 1.02106i
\(115\) 0 0
\(116\) 9.46410i 0.878720i
\(117\) −7.79423 + 7.50000i −0.720577 + 0.693375i
\(118\) −0.464102 + 0.464102i −0.0427240 + 0.0427240i
\(119\) 19.0263 5.09808i 1.74414 0.467340i
\(120\) 0 0
\(121\) −6.29423 + 3.63397i −0.572203 + 0.330361i
\(122\) 12.7321 1.15271
\(123\) 0.803848 0.464102i 0.0724805 0.0418466i
\(124\) −4.09808 1.09808i −0.368018 0.0986102i
\(125\) 0 0
\(126\) −5.59808 9.69615i −0.498716 0.863802i
\(127\) −2.57180 9.59808i −0.228210 0.851692i −0.981093 0.193537i \(-0.938004\pi\)
0.752883 0.658154i \(-0.228663\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 20.7846 1.82998
\(130\) 0 0
\(131\) 1.39230 0.121646 0.0608231 0.998149i \(-0.480627\pi\)
0.0608231 + 0.998149i \(0.480627\pi\)
\(132\) 2.36603 4.09808i 0.205936 0.356692i
\(133\) 4.96410 + 18.5263i 0.430442 + 1.60643i
\(134\) 0.464102 + 0.803848i 0.0400923 + 0.0694419i
\(135\) 0 0
\(136\) 5.09808 + 1.36603i 0.437156 + 0.117136i
\(137\) −17.8301 + 10.2942i −1.52333 + 0.879495i −0.523711 + 0.851896i \(0.675453\pi\)
−0.999619 + 0.0275996i \(0.991214\pi\)
\(138\) 8.53590 0.726624
\(139\) 12.0622 6.96410i 1.02310 0.590687i 0.108100 0.994140i \(-0.465523\pi\)
0.915001 + 0.403453i \(0.132190\pi\)
\(140\) 0 0
\(141\) −16.5622 + 4.43782i −1.39479 + 0.373732i
\(142\) 7.66025 7.66025i 0.642834 0.642834i
\(143\) 6.09808 3.36603i 0.509947 0.281481i
\(144\) 3.00000i 0.250000i
\(145\) 0 0
\(146\) −2.36603 + 4.09808i −0.195814 + 0.339159i
\(147\) 16.3923 + 4.39230i 1.35201 + 0.362271i
\(148\) 3.73205i 0.306773i
\(149\) 2.26795 8.46410i 0.185798 0.693406i −0.808661 0.588275i \(-0.799807\pi\)
0.994458 0.105131i \(-0.0335262\pi\)
\(150\) 0 0
\(151\) 1.53590 + 1.53590i 0.124990 + 0.124990i 0.766835 0.641845i \(-0.221831\pi\)
−0.641845 + 0.766835i \(0.721831\pi\)
\(152\) −1.33013 + 4.96410i −0.107888 + 0.402642i
\(153\) −15.2942 + 4.09808i −1.23647 + 0.331310i
\(154\) 1.86603 + 6.96410i 0.150369 + 0.561183i
\(155\) 0 0
\(156\) 4.56218 7.56218i 0.365267 0.605459i
\(157\) 11.3660 + 11.3660i 0.907108 + 0.907108i 0.996038 0.0889303i \(-0.0283448\pi\)
−0.0889303 + 0.996038i \(0.528345\pi\)
\(158\) −9.63397 5.56218i −0.766438 0.442503i
\(159\) −19.0981 11.0263i −1.51458 0.874441i
\(160\) 0 0
\(161\) −9.19615 + 9.19615i −0.724758 + 0.724758i
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) −9.56218 16.5622i −0.748968 1.29725i −0.948318 0.317322i \(-0.897217\pi\)
0.199350 0.979928i \(-0.436117\pi\)
\(164\) −0.267949 + 0.267949i −0.0209233 + 0.0209233i
\(165\) 0 0
\(166\) −2.36603 1.36603i −0.183639 0.106024i
\(167\) −15.8660 9.16025i −1.22775 0.708842i −0.261191 0.965287i \(-0.584115\pi\)
−0.966559 + 0.256445i \(0.917449\pi\)
\(168\) 6.46410 + 6.46410i 0.498716 + 0.498716i
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) −3.99038 14.8923i −0.305152 1.13884i
\(172\) −8.19615 + 2.19615i −0.624951 + 0.167455i
\(173\) 4.16025 15.5263i 0.316298 1.18044i −0.606477 0.795101i \(-0.707418\pi\)
0.922775 0.385340i \(-0.125916\pi\)
\(174\) 16.3923 + 16.3923i 1.24270 + 1.24270i
\(175\) 0 0
\(176\) −0.500000 + 1.86603i −0.0376889 + 0.140657i
\(177\) 1.60770i 0.120842i
\(178\) −14.5263 3.89230i −1.08879 0.291741i
\(179\) 11.3923 19.7321i 0.851501 1.47484i −0.0283528 0.999598i \(-0.509026\pi\)
0.879854 0.475245i \(-0.157640\pi\)
\(180\) 0 0
\(181\) 10.5885i 0.787034i −0.919317 0.393517i \(-0.871258\pi\)
0.919317 0.393517i \(-0.128742\pi\)
\(182\) 3.23205 + 13.0622i 0.239576 + 0.968233i
\(183\) 22.0526 22.0526i 1.63017 1.63017i
\(184\) −3.36603 + 0.901924i −0.248147 + 0.0664907i
\(185\) 0 0
\(186\) −9.00000 + 5.19615i −0.659912 + 0.381000i
\(187\) 10.1962 0.745617
\(188\) 6.06218 3.50000i 0.442130 0.255264i
\(189\) 0 0
\(190\) 0 0
\(191\) 5.56218 + 9.63397i 0.402465 + 0.697090i 0.994023 0.109173i \(-0.0348202\pi\)
−0.591558 + 0.806263i \(0.701487\pi\)
\(192\) 0.633975 + 2.36603i 0.0457532 + 0.170753i
\(193\) 1.19615 2.07180i 0.0861009 0.149131i −0.819759 0.572709i \(-0.805893\pi\)
0.905860 + 0.423578i \(0.139226\pi\)
\(194\) −16.1962 −1.16282
\(195\) 0 0
\(196\) −6.92820 −0.494872
\(197\) −4.06218 + 7.03590i −0.289418 + 0.501287i −0.973671 0.227958i \(-0.926795\pi\)
0.684253 + 0.729245i \(0.260128\pi\)
\(198\) −1.50000 5.59808i −0.106600 0.397838i
\(199\) −9.46410 16.3923i −0.670892 1.16202i −0.977651 0.210232i \(-0.932578\pi\)
0.306759 0.951787i \(-0.400755\pi\)
\(200\) 0 0
\(201\) 2.19615 + 0.588457i 0.154905 + 0.0415066i
\(202\) 5.36603 3.09808i 0.377552 0.217980i
\(203\) −35.3205 −2.47901
\(204\) 11.1962 6.46410i 0.783887 0.452578i
\(205\) 0 0
\(206\) −2.96410 + 0.794229i −0.206519 + 0.0553365i
\(207\) 7.39230 7.39230i 0.513801 0.513801i
\(208\) −1.00000 + 3.46410i −0.0693375 + 0.240192i
\(209\) 9.92820i 0.686748i
\(210\) 0 0
\(211\) 10.3301 17.8923i 0.711155 1.23176i −0.253269 0.967396i \(-0.581506\pi\)
0.964424 0.264361i \(-0.0851611\pi\)
\(212\) 8.69615 + 2.33013i 0.597254 + 0.160034i
\(213\) 26.5359i 1.81821i
\(214\) −3.36603 + 12.5622i −0.230097 + 0.858733i
\(215\) 0 0
\(216\) 0 0
\(217\) 4.09808 15.2942i 0.278196 1.03824i
\(218\) 19.3923 5.19615i 1.31341 0.351928i
\(219\) 3.00000 + 11.1962i 0.202721 + 0.756566i
\(220\) 0 0
\(221\) 19.0263 + 0.366025i 1.27985 + 0.0246215i
\(222\) 6.46410 + 6.46410i 0.433842 + 0.433842i
\(223\) −3.40192 1.96410i −0.227810 0.131526i 0.381752 0.924265i \(-0.375321\pi\)
−0.609561 + 0.792739i \(0.708654\pi\)
\(224\) −3.23205 1.86603i −0.215950 0.124679i
\(225\) 0 0
\(226\) −2.00000 + 2.00000i −0.133038 + 0.133038i
\(227\) 0.928203 + 1.60770i 0.0616070 + 0.106706i 0.895184 0.445697i \(-0.147044\pi\)
−0.833577 + 0.552403i \(0.813711\pi\)
\(228\) 6.29423 + 10.9019i 0.416845 + 0.721998i
\(229\) −13.5885 + 13.5885i −0.897951 + 0.897951i −0.995255 0.0973042i \(-0.968978\pi\)
0.0973042 + 0.995255i \(0.468978\pi\)
\(230\) 0 0
\(231\) 15.2942 + 8.83013i 1.00629 + 0.580980i
\(232\) −8.19615 4.73205i −0.538104 0.310674i
\(233\) −8.85641 8.85641i −0.580202 0.580202i 0.354756 0.934959i \(-0.384564\pi\)
−0.934959 + 0.354756i \(0.884564\pi\)
\(234\) −2.59808 10.5000i −0.169842 0.686406i
\(235\) 0 0
\(236\) −0.169873 0.633975i −0.0110578 0.0412682i
\(237\) −26.3205 + 7.05256i −1.70970 + 0.458113i
\(238\) −5.09808 + 19.0263i −0.330459 + 1.23329i
\(239\) 5.73205 + 5.73205i 0.370776 + 0.370776i 0.867760 0.496984i \(-0.165559\pi\)
−0.496984 + 0.867760i \(0.665559\pi\)
\(240\) 0 0
\(241\) 1.66987 6.23205i 0.107566 0.401442i −0.891058 0.453890i \(-0.850036\pi\)
0.998624 + 0.0524484i \(0.0167025\pi\)
\(242\) 7.26795i 0.467201i
\(243\) −21.2942 5.70577i −1.36603 0.366025i
\(244\) −6.36603 + 11.0263i −0.407543 + 0.705885i
\(245\) 0 0
\(246\) 0.928203i 0.0591801i
\(247\) −0.356406 + 18.5263i −0.0226776 + 1.17880i
\(248\) 3.00000 3.00000i 0.190500 0.190500i
\(249\) −6.46410 + 1.73205i −0.409646 + 0.109764i
\(250\) 0 0
\(251\) −9.23205 + 5.33013i −0.582722 + 0.336435i −0.762214 0.647325i \(-0.775888\pi\)
0.179492 + 0.983759i \(0.442554\pi\)
\(252\) 11.1962 0.705291
\(253\) −5.83013 + 3.36603i −0.366537 + 0.211620i
\(254\) 9.59808 + 2.57180i 0.602237 + 0.161369i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.19615 8.19615i −0.136992 0.511262i −0.999982 0.00604014i \(-0.998077\pi\)
0.862990 0.505222i \(-0.168589\pi\)
\(258\) −10.3923 + 18.0000i −0.646997 + 1.12063i
\(259\) −13.9282 −0.865456
\(260\) 0 0
\(261\) 28.3923 1.75744
\(262\) −0.696152 + 1.20577i −0.0430084 + 0.0744928i
\(263\) 3.52628 + 13.1603i 0.217440 + 0.811496i 0.985293 + 0.170871i \(0.0546581\pi\)
−0.767854 + 0.640625i \(0.778675\pi\)
\(264\) 2.36603 + 4.09808i 0.145619 + 0.252219i
\(265\) 0 0
\(266\) −18.5263 4.96410i −1.13592 0.304369i
\(267\) −31.9019 + 18.4186i −1.95237 + 1.12720i
\(268\) −0.928203 −0.0566990
\(269\) −9.75833 + 5.63397i −0.594976 + 0.343509i −0.767063 0.641572i \(-0.778282\pi\)
0.172087 + 0.985082i \(0.444949\pi\)
\(270\) 0 0
\(271\) −6.73205 + 1.80385i −0.408943 + 0.109576i −0.457425 0.889248i \(-0.651228\pi\)
0.0484822 + 0.998824i \(0.484562\pi\)
\(272\) −3.73205 + 3.73205i −0.226289 + 0.226289i
\(273\) 28.2224 + 17.0263i 1.70810 + 1.03048i
\(274\) 20.5885i 1.24379i
\(275\) 0 0
\(276\) −4.26795 + 7.39230i −0.256900 + 0.444964i
\(277\) −19.4282 5.20577i −1.16733 0.312784i −0.377439 0.926035i \(-0.623195\pi\)
−0.789889 + 0.613250i \(0.789862\pi\)
\(278\) 13.9282i 0.835358i
\(279\) −3.29423 + 12.2942i −0.197220 + 0.736036i
\(280\) 0 0
\(281\) 8.66025 + 8.66025i 0.516627 + 0.516627i 0.916549 0.399922i \(-0.130963\pi\)
−0.399922 + 0.916549i \(0.630963\pi\)
\(282\) 4.43782 16.5622i 0.264268 0.986263i
\(283\) 8.46410 2.26795i 0.503139 0.134816i 0.00168236 0.999999i \(-0.499464\pi\)
0.501456 + 0.865183i \(0.332798\pi\)
\(284\) 2.80385 + 10.4641i 0.166378 + 0.620930i
\(285\) 0 0
\(286\) −0.133975 + 6.96410i −0.00792208 + 0.411796i
\(287\) −1.00000 1.00000i −0.0590281 0.0590281i
\(288\) 2.59808 + 1.50000i 0.153093 + 0.0883883i
\(289\) 9.40192 + 5.42820i 0.553054 + 0.319306i
\(290\) 0 0
\(291\) −28.0526 + 28.0526i −1.64447 + 1.64447i
\(292\) −2.36603 4.09808i −0.138461 0.239822i
\(293\) 13.9641 + 24.1865i 0.815792 + 1.41299i 0.908758 + 0.417323i \(0.137032\pi\)
−0.0929666 + 0.995669i \(0.529635\pi\)
\(294\) −12.0000 + 12.0000i −0.699854 + 0.699854i
\(295\) 0 0
\(296\) −3.23205 1.86603i −0.187859 0.108461i
\(297\) 0 0
\(298\) 6.19615 + 6.19615i 0.358933 + 0.358933i
\(299\) −11.0000 + 6.07180i −0.636146 + 0.351141i
\(300\) 0 0
\(301\) −8.19615 30.5885i −0.472418 1.76309i
\(302\) −2.09808 + 0.562178i −0.120731 + 0.0323497i
\(303\) 3.92820 14.6603i 0.225669 0.842210i
\(304\) −3.63397 3.63397i −0.208423 0.208423i
\(305\) 0 0
\(306\) 4.09808 15.2942i 0.234271 0.874313i
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) −6.96410 1.86603i −0.396817 0.106327i
\(309\) −3.75833 + 6.50962i −0.213804 + 0.370319i
\(310\) 0 0
\(311\) 5.66025i 0.320964i 0.987039 + 0.160482i \(0.0513048\pi\)
−0.987039 + 0.160482i \(0.948695\pi\)
\(312\) 4.26795 + 7.73205i 0.241625 + 0.437741i
\(313\) 8.53590 8.53590i 0.482478 0.482478i −0.423445 0.905922i \(-0.639179\pi\)
0.905922 + 0.423445i \(0.139179\pi\)
\(314\) −15.5263 + 4.16025i −0.876199 + 0.234777i
\(315\) 0 0
\(316\) 9.63397 5.56218i 0.541953 0.312897i
\(317\) −1.39230 −0.0781996 −0.0390998 0.999235i \(-0.512449\pi\)
−0.0390998 + 0.999235i \(0.512449\pi\)
\(318\) 19.0981 11.0263i 1.07097 0.618323i
\(319\) −17.6603 4.73205i −0.988784 0.264944i
\(320\) 0 0
\(321\) 15.9282 + 27.5885i 0.889026 + 1.53984i
\(322\) −3.36603 12.5622i −0.187581 0.700063i
\(323\) −13.5622 + 23.4904i −0.754620 + 1.30704i
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) 19.1244 1.05920
\(327\) 24.5885 42.5885i 1.35974 2.35515i
\(328\) −0.0980762 0.366025i −0.00541535 0.0202104i
\(329\) 13.0622 + 22.6244i 0.720141 + 1.24732i
\(330\) 0 0
\(331\) 18.2942 + 4.90192i 1.00554 + 0.269434i 0.723765 0.690046i \(-0.242410\pi\)
0.281776 + 0.959480i \(0.409076\pi\)
\(332\) 2.36603 1.36603i 0.129853 0.0749704i
\(333\) 11.1962 0.613545
\(334\) 15.8660 9.16025i 0.868150 0.501227i
\(335\) 0 0
\(336\) −8.83013 + 2.36603i −0.481723 + 0.129077i
\(337\) −4.26795 + 4.26795i −0.232490 + 0.232490i −0.813731 0.581241i \(-0.802567\pi\)
0.581241 + 0.813731i \(0.302567\pi\)
\(338\) −0.500000 + 12.9904i −0.0271964 + 0.706584i
\(339\) 6.92820i 0.376288i
\(340\) 0 0
\(341\) 4.09808 7.09808i 0.221923 0.384382i
\(342\) 14.8923 + 3.99038i 0.805284 + 0.215775i
\(343\) 0.267949i 0.0144679i
\(344\) 2.19615 8.19615i 0.118409 0.441907i
\(345\) 0 0
\(346\) 11.3660 + 11.3660i 0.611041 + 0.611041i
\(347\) 7.63397 28.4904i 0.409813 1.52944i −0.385189 0.922838i \(-0.625864\pi\)
0.795002 0.606606i \(-0.207470\pi\)
\(348\) −22.3923 + 6.00000i −1.20035 + 0.321634i
\(349\) −3.09808 11.5622i −0.165836 0.618909i −0.997932 0.0642773i \(-0.979526\pi\)
0.832096 0.554632i \(-0.187141\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.36603 1.36603i −0.0728094 0.0728094i
\(353\) −4.22243 2.43782i −0.224737 0.129752i 0.383405 0.923581i \(-0.374752\pi\)
−0.608142 + 0.793828i \(0.708085\pi\)
\(354\) −1.39230 0.803848i −0.0740002 0.0427240i
\(355\) 0 0
\(356\) 10.6340 10.6340i 0.563600 0.563600i
\(357\) 24.1244 + 41.7846i 1.27680 + 2.21148i
\(358\) 11.3923 + 19.7321i 0.602102 + 1.04287i
\(359\) 23.6603 23.6603i 1.24874 1.24874i 0.292464 0.956277i \(-0.405525\pi\)
0.956277 0.292464i \(-0.0944751\pi\)
\(360\) 0 0
\(361\) −6.41858 3.70577i −0.337820 0.195041i
\(362\) 9.16987 + 5.29423i 0.481958 + 0.278258i
\(363\) −12.5885 12.5885i −0.660723 0.660723i
\(364\) −12.9282 3.73205i −0.677622 0.195613i
\(365\) 0 0
\(366\) 8.07180 + 30.1244i 0.421920 + 1.57463i
\(367\) 17.2942 4.63397i 0.902751 0.241892i 0.222554 0.974920i \(-0.428561\pi\)
0.680198 + 0.733029i \(0.261894\pi\)
\(368\) 0.901924 3.36603i 0.0470160 0.175466i
\(369\) 0.803848 + 0.803848i 0.0418466 + 0.0418466i
\(370\) 0 0
\(371\) −8.69615 + 32.4545i −0.451482 + 1.68495i
\(372\) 10.3923i 0.538816i
\(373\) −14.5622 3.90192i −0.754001 0.202034i −0.138709 0.990333i \(-0.544295\pi\)
−0.615292 + 0.788299i \(0.710962\pi\)
\(374\) −5.09808 + 8.83013i −0.263615 + 0.456595i
\(375\) 0 0
\(376\) 7.00000i 0.360997i
\(377\) −32.7846 9.46410i −1.68849 0.487426i
\(378\) 0 0
\(379\) −17.8923 + 4.79423i −0.919066 + 0.246263i −0.687186 0.726481i \(-0.741154\pi\)
−0.231880 + 0.972744i \(0.574488\pi\)
\(380\) 0 0
\(381\) 21.0788 12.1699i 1.07990 0.623481i
\(382\) −11.1244 −0.569172
\(383\) −6.92820 + 4.00000i −0.354015 + 0.204390i −0.666452 0.745548i \(-0.732188\pi\)
0.312437 + 0.949938i \(0.398855\pi\)
\(384\) −2.36603 0.633975i −0.120741 0.0323524i
\(385\) 0 0
\(386\) 1.19615 + 2.07180i 0.0608826 + 0.105452i
\(387\) 6.58846 + 24.5885i 0.334910 + 1.24990i
\(388\) 8.09808 14.0263i 0.411118 0.712076i
\(389\) 2.87564 0.145801 0.0729005 0.997339i \(-0.476774\pi\)
0.0729005 + 0.997339i \(0.476774\pi\)
\(390\) 0 0
\(391\) −18.3923 −0.930139
\(392\) 3.46410 6.00000i 0.174964 0.303046i
\(393\) 0.882686 + 3.29423i 0.0445256 + 0.166172i
\(394\) −4.06218 7.03590i −0.204650 0.354463i
\(395\) 0 0
\(396\) 5.59808 + 1.50000i 0.281314 + 0.0753778i
\(397\) −15.0622 + 8.69615i −0.755949 + 0.436447i −0.827839 0.560965i \(-0.810430\pi\)
0.0718904 + 0.997413i \(0.477097\pi\)
\(398\) 18.9282 0.948785
\(399\) −40.6865 + 23.4904i −2.03687 + 1.17599i
\(400\) 0 0
\(401\) −5.33013 + 1.42820i −0.266174 + 0.0713211i −0.389438 0.921053i \(-0.627331\pi\)
0.123264 + 0.992374i \(0.460664\pi\)
\(402\) −1.60770 + 1.60770i −0.0801845 + 0.0801845i
\(403\) 7.90192 13.0981i 0.393623 0.652462i
\(404\) 6.19615i 0.308270i
\(405\) 0 0
\(406\) 17.6603 30.5885i 0.876464 1.51808i
\(407\) −6.96410 1.86603i −0.345198 0.0924954i
\(408\) 12.9282i 0.640041i
\(409\) −7.66987 + 28.6244i −0.379251 + 1.41538i 0.467783 + 0.883844i \(0.345053\pi\)
−0.847033 + 0.531540i \(0.821614\pi\)
\(410\) 0 0
\(411\) −35.6603 35.6603i −1.75899 1.75899i
\(412\) 0.794229 2.96410i 0.0391288 0.146031i
\(413\) 2.36603 0.633975i 0.116424 0.0311959i
\(414\) 2.70577 + 10.0981i 0.132981 + 0.496293i
\(415\) 0 0
\(416\) −2.50000 2.59808i −0.122573 0.127381i
\(417\) 24.1244 + 24.1244i 1.18137 + 1.18137i
\(418\) −8.59808 4.96410i −0.420546 0.242802i
\(419\) 14.7846 + 8.53590i 0.722275 + 0.417006i 0.815590 0.578631i \(-0.196413\pi\)
−0.0933142 + 0.995637i \(0.529746\pi\)
\(420\) 0 0
\(421\) 2.46410 2.46410i 0.120093 0.120093i −0.644506 0.764599i \(-0.722937\pi\)
0.764599 + 0.644506i \(0.222937\pi\)
\(422\) 10.3301 + 17.8923i 0.502863 + 0.870984i
\(423\) −10.5000 18.1865i −0.510527 0.884260i
\(424\) −6.36603 + 6.36603i −0.309162 + 0.309162i
\(425\) 0 0
\(426\) 22.9808 + 13.2679i 1.11342 + 0.642834i
\(427\) −41.1506 23.7583i −1.99142 1.14975i
\(428\) −9.19615 9.19615i −0.444513 0.444513i
\(429\) 11.8301 + 12.2942i 0.571164 + 0.593571i
\(430\) 0 0
\(431\) 0.222432 + 0.830127i 0.0107142 + 0.0399858i 0.971076 0.238771i \(-0.0767444\pi\)
−0.960362 + 0.278757i \(0.910078\pi\)
\(432\) 0 0
\(433\) −1.41154 + 5.26795i −0.0678344 + 0.253161i −0.991513 0.130006i \(-0.958500\pi\)
0.923679 + 0.383168i \(0.125167\pi\)
\(434\) 11.1962 + 11.1962i 0.537433 + 0.537433i
\(435\) 0 0
\(436\) −5.19615 + 19.3923i −0.248851 + 0.928723i
\(437\) 17.9090i 0.856702i
\(438\) −11.1962 3.00000i −0.534973 0.143346i
\(439\) −6.02628 + 10.4378i −0.287619 + 0.498170i −0.973241 0.229787i \(-0.926197\pi\)
0.685622 + 0.727958i \(0.259530\pi\)
\(440\) 0 0
\(441\) 20.7846i 0.989743i
\(442\) −9.83013 + 16.2942i −0.467571 + 0.775037i
\(443\) 1.80385 1.80385i 0.0857034 0.0857034i −0.662955 0.748659i \(-0.730698\pi\)
0.748659 + 0.662955i \(0.230698\pi\)
\(444\) −8.83013 + 2.36603i −0.419059 + 0.112287i
\(445\) 0 0
\(446\) 3.40192 1.96410i 0.161086 0.0930029i
\(447\) 21.4641 1.01522
\(448\) 3.23205 1.86603i 0.152700 0.0881614i
\(449\) −4.76795 1.27757i −0.225013 0.0602922i 0.144551 0.989497i \(-0.453826\pi\)
−0.369564 + 0.929205i \(0.620493\pi\)
\(450\) 0 0
\(451\) −0.366025 0.633975i −0.0172355 0.0298527i
\(452\) −0.732051 2.73205i −0.0344328 0.128505i
\(453\) −2.66025 + 4.60770i −0.124990 + 0.216488i
\(454\) −1.85641 −0.0871255
\(455\) 0 0
\(456\) −12.5885 −0.589509
\(457\) −3.56218 + 6.16987i −0.166632 + 0.288614i −0.937234 0.348702i \(-0.886622\pi\)
0.770602 + 0.637317i \(0.219956\pi\)
\(458\) −4.97372 18.5622i −0.232407 0.867354i
\(459\) 0 0
\(460\) 0 0
\(461\) 9.09808 + 2.43782i 0.423740 + 0.113541i 0.464386 0.885633i \(-0.346275\pi\)
−0.0406464 + 0.999174i \(0.512942\pi\)
\(462\) −15.2942 + 8.83013i −0.711552 + 0.410815i
\(463\) 33.1769 1.54186 0.770931 0.636919i \(-0.219791\pi\)
0.770931 + 0.636919i \(0.219791\pi\)
\(464\) 8.19615 4.73205i 0.380497 0.219680i
\(465\) 0 0
\(466\) 12.0981 3.24167i 0.560433 0.150167i
\(467\) −6.53590 + 6.53590i −0.302445 + 0.302445i −0.841970 0.539525i \(-0.818604\pi\)
0.539525 + 0.841970i \(0.318604\pi\)
\(468\) 10.3923 + 3.00000i 0.480384 + 0.138675i
\(469\) 3.46410i 0.159957i
\(470\) 0 0
\(471\) −19.6865 + 34.0981i −0.907108 + 1.57116i
\(472\) 0.633975 + 0.169873i 0.0291810 + 0.00781904i
\(473\) 16.3923i 0.753719i
\(474\) 7.05256 26.3205i 0.323935 1.20894i
\(475\) 0 0
\(476\) −13.9282 13.9282i −0.638398 0.638398i
\(477\) 6.99038 26.0885i 0.320068 1.19451i
\(478\) −7.83013 + 2.09808i −0.358142 + 0.0959638i
\(479\) −6.90192 25.7583i −0.315357 1.17693i −0.923657 0.383221i \(-0.874815\pi\)
0.608300 0.793707i \(-0.291852\pi\)
\(480\) 0 0
\(481\) −12.9282 3.73205i −0.589475 0.170167i
\(482\) 4.56218 + 4.56218i 0.207802 + 0.207802i
\(483\) −27.5885 15.9282i −1.25532 0.724758i
\(484\) 6.29423 + 3.63397i 0.286101 + 0.165181i
\(485\) 0 0
\(486\) 15.5885 15.5885i 0.707107 0.707107i
\(487\) 6.16025 + 10.6699i 0.279148 + 0.483498i 0.971173 0.238375i \(-0.0766147\pi\)
−0.692025 + 0.721873i \(0.743281\pi\)
\(488\) −6.36603 11.0263i −0.288176 0.499136i
\(489\) 33.1244 33.1244i 1.49794 1.49794i
\(490\) 0 0
\(491\) 0.741670 + 0.428203i 0.0334711 + 0.0193245i 0.516642 0.856201i \(-0.327182\pi\)
−0.483171 + 0.875526i \(0.660515\pi\)
\(492\) −0.803848 0.464102i −0.0362402 0.0209233i
\(493\) −35.3205 35.3205i −1.59076 1.59076i
\(494\) −15.8660 9.57180i −0.713846 0.430655i
\(495\) 0 0
\(496\) 1.09808 + 4.09808i 0.0493051 + 0.184009i
\(497\) −39.0526 + 10.4641i −1.75175 + 0.469379i
\(498\) 1.73205 6.46410i 0.0776151 0.289663i
\(499\) −20.1244 20.1244i −0.900890 0.900890i 0.0946233 0.995513i \(-0.469835\pi\)
−0.995513 + 0.0946233i \(0.969835\pi\)
\(500\) 0 0
\(501\) 11.6147 43.3468i 0.518908 1.93659i
\(502\) 10.6603i 0.475790i
\(503\) 9.06218 + 2.42820i 0.404063 + 0.108268i 0.455126 0.890427i \(-0.349594\pi\)
−0.0510632 + 0.998695i \(0.516261\pi\)
\(504\) −5.59808 + 9.69615i −0.249358 + 0.431901i
\(505\) 0 0
\(506\) 6.73205i 0.299276i
\(507\) 21.6340 + 23.3660i 0.960799 + 1.03772i
\(508\) −7.02628 + 7.02628i −0.311741 + 0.311741i
\(509\) 0.732051 0.196152i 0.0324476 0.00869430i −0.242559 0.970137i \(-0.577987\pi\)
0.275006 + 0.961442i \(0.411320\pi\)
\(510\) 0 0
\(511\) 15.2942 8.83013i 0.676577 0.390622i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 8.19615 + 2.19615i 0.361517 + 0.0968681i
\(515\) 0 0
\(516\) −10.3923 18.0000i −0.457496 0.792406i
\(517\) 3.50000 + 13.0622i 0.153930 + 0.574474i
\(518\) 6.96410 12.0622i 0.305985 0.529982i
\(519\) 39.3731 1.72829
\(520\) 0 0
\(521\) −40.7128 −1.78366 −0.891830 0.452370i \(-0.850579\pi\)
−0.891830 + 0.452370i \(0.850579\pi\)
\(522\) −14.1962 + 24.5885i −0.621349 + 1.07621i
\(523\) 3.53590 + 13.1962i 0.154614 + 0.577027i 0.999138 + 0.0415098i \(0.0132168\pi\)
−0.844524 + 0.535518i \(0.820117\pi\)
\(524\) −0.696152 1.20577i −0.0304116 0.0526744i
\(525\) 0 0
\(526\) −13.1603 3.52628i −0.573814 0.153753i
\(527\) 19.3923 11.1962i 0.844742 0.487712i
\(528\) −4.73205 −0.205936
\(529\) −9.40192 + 5.42820i −0.408779 + 0.236009i
\(530\) 0 0
\(531\) −1.90192 + 0.509619i −0.0825365 + 0.0221156i
\(532\) 13.5622 13.5622i 0.587995 0.587995i
\(533\) −0.660254 1.19615i −0.0285988 0.0518111i
\(534\) 36.8372i 1.59410i
\(535\) 0 0
\(536\) 0.464102 0.803848i 0.0200461 0.0347209i
\(537\) 53.9090 + 14.4449i 2.32634 + 0.623342i
\(538\) 11.2679i 0.485796i
\(539\) 3.46410 12.9282i 0.149209 0.556857i
\(540\) 0 0
\(541\) 5.53590 + 5.53590i 0.238007 + 0.238007i 0.816024 0.578018i \(-0.196173\pi\)
−0.578018 + 0.816024i \(0.696173\pi\)
\(542\) 1.80385 6.73205i 0.0774819 0.289166i
\(543\) 25.0526 6.71281i 1.07511 0.288074i
\(544\) −1.36603 5.09808i −0.0585679 0.218578i
\(545\) 0 0
\(546\) −28.8564 + 15.9282i −1.23494 + 0.681664i
\(547\) −8.53590 8.53590i −0.364969 0.364969i 0.500670 0.865638i \(-0.333087\pi\)
−0.865638 + 0.500670i \(0.833087\pi\)
\(548\) 17.8301 + 10.2942i 0.761665 + 0.439748i
\(549\) 33.0788 + 19.0981i 1.41177 + 0.815086i
\(550\) 0 0
\(551\) 34.3923 34.3923i 1.46516 1.46516i
\(552\) −4.26795 7.39230i −0.181656 0.314637i
\(553\) 20.7583 + 35.9545i 0.882734 + 1.52894i
\(554\) 14.2224 14.2224i 0.604253 0.604253i
\(555\) 0 0
\(556\) −12.0622 6.96410i −0.511550 0.295344i
\(557\) −22.7942 13.1603i −0.965822 0.557618i −0.0678623 0.997695i \(-0.521618\pi\)
−0.897960 + 0.440077i \(0.854951\pi\)
\(558\) −9.00000 9.00000i −0.381000 0.381000i
\(559\) 0.588457 30.5885i 0.0248891 1.29375i
\(560\) 0 0
\(561\) 6.46410 + 24.1244i 0.272915 + 1.01853i
\(562\) −11.8301 + 3.16987i −0.499024 + 0.133713i
\(563\) 1.33975 5.00000i 0.0564636 0.210725i −0.931930 0.362637i \(-0.881876\pi\)
0.988394 + 0.151912i \(0.0485431\pi\)
\(564\) 12.1244 + 12.1244i 0.510527 + 0.510527i
\(565\) 0 0
\(566\) −2.26795 + 8.46410i −0.0953290 + 0.355773i
\(567\) 33.5885i 1.41058i
\(568\) −10.4641 2.80385i −0.439064 0.117647i
\(569\) −11.8923 + 20.5981i −0.498551 + 0.863516i −0.999999 0.00167195i \(-0.999468\pi\)
0.501447 + 0.865188i \(0.332801\pi\)
\(570\) 0 0
\(571\) 41.9808i 1.75684i −0.477889 0.878420i \(-0.658598\pi\)
0.477889 0.878420i \(-0.341402\pi\)
\(572\) −5.96410 3.59808i −0.249372 0.150443i
\(573\) −19.2679 + 19.2679i −0.804930 + 0.804930i
\(574\) 1.36603 0.366025i 0.0570168 0.0152776i
\(575\) 0 0
\(576\) −2.59808 + 1.50000i −0.108253 + 0.0625000i
\(577\) 28.3397 1.17980 0.589900 0.807477i \(-0.299167\pi\)
0.589900 + 0.807477i \(0.299167\pi\)
\(578\) −9.40192 + 5.42820i −0.391068 + 0.225783i
\(579\) 5.66025 + 1.51666i 0.235232 + 0.0630303i
\(580\) 0 0
\(581\) 5.09808 + 8.83013i 0.211504 + 0.366335i
\(582\) −10.2679 38.3205i −0.425620 1.58844i
\(583\) −8.69615 + 15.0622i −0.360158 + 0.623812i
\(584\) 4.73205 0.195814
\(585\) 0 0
\(586\) −27.9282 −1.15370
\(587\) 11.8564 20.5359i 0.489366 0.847607i −0.510559 0.859843i \(-0.670561\pi\)
0.999925 + 0.0122356i \(0.00389480\pi\)
\(588\) −4.39230 16.3923i −0.181136 0.676007i
\(589\) 10.9019 + 18.8827i 0.449206 + 0.778048i
\(590\) 0 0
\(591\) −19.2224 5.15064i −0.790705 0.211869i
\(592\) 3.23205 1.86603i 0.132836 0.0766932i
\(593\) −15.7128 −0.645248 −0.322624 0.946527i \(-0.604565\pi\)
−0.322624 + 0.946527i \(0.604565\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.46410 + 2.26795i −0.346703 + 0.0928988i
\(597\) 32.7846 32.7846i 1.34178 1.34178i
\(598\) 0.241670 12.5622i 0.00988261 0.513706i
\(599\) 15.0718i 0.615817i 0.951416 + 0.307908i \(0.0996291\pi\)
−0.951416 + 0.307908i \(0.900371\pi\)
\(600\) 0 0
\(601\) 13.8660 24.0167i 0.565607 0.979660i −0.431386 0.902167i \(-0.641975\pi\)
0.996993 0.0774925i \(-0.0246914\pi\)
\(602\) 30.5885 + 8.19615i 1.24669 + 0.334050i
\(603\) 2.78461i 0.113398i
\(604\) 0.562178 2.09808i 0.0228747 0.0853695i
\(605\) 0 0
\(606\) 10.7321 + 10.7321i 0.435960 + 0.435960i
\(607\) −1.45448 + 5.42820i −0.0590356 + 0.220324i −0.989141 0.146968i \(-0.953048\pi\)
0.930106 + 0.367292i \(0.119715\pi\)
\(608\) 4.96410 1.33013i 0.201321 0.0539438i
\(609\) −22.3923 83.5692i −0.907382 3.38640i
\(610\) 0 0
\(611\) 6.06218 + 24.5000i 0.245249 + 0.991164i
\(612\) 11.1962 + 11.1962i 0.452578 + 0.452578i
\(613\) 31.1147 + 17.9641i 1.25671 + 0.725563i 0.972434 0.233179i \(-0.0749127\pi\)
0.284278 + 0.958742i \(0.408246\pi\)
\(614\) −1.73205 1.00000i −0.0698999 0.0403567i
\(615\) 0 0
\(616\) 5.09808 5.09808i 0.205407 0.205407i
\(617\) −12.1244 21.0000i −0.488108 0.845428i 0.511798 0.859106i \(-0.328980\pi\)
−0.999906 + 0.0136775i \(0.995646\pi\)
\(618\) −3.75833 6.50962i −0.151182 0.261855i
\(619\) 31.7583 31.7583i 1.27648 1.27648i 0.333848 0.942627i \(-0.391653\pi\)
0.942627 0.333848i \(-0.108347\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −4.90192 2.83013i −0.196549 0.113478i
\(623\) 39.6865 + 39.6865i 1.59001 + 1.59001i
\(624\) −8.83013 0.169873i −0.353488 0.00680036i
\(625\) 0 0
\(626\) 3.12436 + 11.6603i 0.124874 + 0.466037i
\(627\) −23.4904 + 6.29423i −0.938115 + 0.251367i
\(628\) 4.16025 15.5263i 0.166012 0.619566i
\(629\) −13.9282 13.9282i −0.555354 0.555354i
\(630\) 0 0
\(631\) −5.87564 + 21.9282i −0.233906 + 0.872948i 0.744733 + 0.667362i \(0.232577\pi\)
−0.978639 + 0.205586i \(0.934090\pi\)
\(632\) 11.1244i 0.442503i
\(633\) 48.8827 + 13.0981i 1.94291 + 0.520602i
\(634\) 0.696152 1.20577i 0.0276477 0.0478873i
\(635\) 0 0
\(636\) 22.0526i 0.874441i
\(637\) 6.92820 24.0000i 0.274505 0.950915i
\(638\) 12.9282 12.9282i 0.511832 0.511832i
\(639\) 31.3923 8.41154i 1.24186 0.332755i
\(640\) 0 0
\(641\) −27.1865 + 15.6962i −1.07380 + 0.619961i −0.929218 0.369532i \(-0.879518\pi\)
−0.144585 + 0.989492i \(0.546185\pi\)
\(642\) −31.8564 −1.25727
\(643\) −25.3468 + 14.6340i −0.999580 + 0.577108i −0.908124 0.418702i \(-0.862485\pi\)
−0.0914558 + 0.995809i \(0.529152\pi\)
\(644\) 12.5622 + 3.36603i 0.495019 + 0.132640i
\(645\) 0 0
\(646\) −13.5622 23.4904i −0.533597 0.924217i
\(647\) −2.86603 10.6962i −0.112675 0.420509i 0.886427 0.462868i \(-0.153179\pi\)
−0.999102 + 0.0423585i \(0.986513\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) 1.26795 0.0497714
\(650\) 0 0
\(651\) 38.7846 1.52009
\(652\) −9.56218 + 16.5622i −0.374484 + 0.648625i
\(653\) −0.186533 0.696152i −0.00729962 0.0272425i 0.962180 0.272415i \(-0.0878222\pi\)
−0.969480 + 0.245172i \(0.921156\pi\)
\(654\) 24.5885 + 42.5885i 0.961485 + 1.66534i
\(655\) 0 0
\(656\) 0.366025 + 0.0980762i 0.0142909 + 0.00382923i
\(657\) −12.2942 + 7.09808i −0.479644 + 0.276922i
\(658\) −26.1244 −1.01843
\(659\) −34.3923 + 19.8564i −1.33973 + 0.773496i −0.986768 0.162140i \(-0.948160\pi\)
−0.352966 + 0.935636i \(0.614827\pi\)
\(660\) 0 0
\(661\) 4.63397 1.24167i 0.180241 0.0482954i −0.167570 0.985860i \(-0.553592\pi\)
0.347810 + 0.937565i \(0.386925\pi\)
\(662\) −13.3923 + 13.3923i −0.520507 + 0.520507i
\(663\) 11.1962 + 45.2487i 0.434823 + 1.75731i
\(664\) 2.73205i 0.106024i
\(665\) 0 0
\(666\) −5.59808 + 9.69615i −0.216921 + 0.375718i
\(667\) 31.8564 + 8.53590i 1.23348 + 0.330511i
\(668\) 18.3205i 0.708842i
\(669\) 2.49038 9.29423i 0.0962837 0.359336i
\(670\) 0 0
\(671\) −17.3923 17.3923i −0.671422 0.671422i
\(672\) 2.36603 8.83013i 0.0912714 0.340630i
\(673\) −27.8564 + 7.46410i −1.07379 + 0.287720i −0.752048 0.659109i \(-0.770934\pi\)
−0.321738 + 0.946829i \(0.604267\pi\)
\(674\) −1.56218 5.83013i −0.0601728 0.224568i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 18.6603 + 18.6603i 0.717172 + 0.717172i 0.968025 0.250853i \(-0.0807112\pi\)
−0.250853 + 0.968025i \(0.580711\pi\)
\(678\) −6.00000 3.46410i −0.230429 0.133038i
\(679\) 52.3468 + 30.2224i 2.00889 + 1.15983i
\(680\) 0 0
\(681\) −3.21539 + 3.21539i −0.123214 + 0.123214i
\(682\) 4.09808 + 7.09808i 0.156923 + 0.271799i
\(683\) 1.53590 + 2.66025i 0.0587695 + 0.101792i 0.893913 0.448240i \(-0.147949\pi\)
−0.835144 + 0.550032i \(0.814616\pi\)
\(684\) −10.9019 + 10.9019i −0.416845 + 0.416845i
\(685\) 0 0
\(686\) −0.232051 0.133975i −0.00885974 0.00511517i
\(687\) −40.7654 23.5359i −1.55530 0.897951i
\(688\) 6.00000 + 6.00000i 0.228748 + 0.228748i
\(689\) −16.7679 + 27.7942i −0.638808 + 1.05888i
\(690\) 0 0
\(691\) 10.8205 + 40.3827i 0.411632 + 1.53623i 0.791488 + 0.611184i \(0.209307\pi\)
−0.379857 + 0.925045i \(0.624027\pi\)
\(692\) −15.5263 + 4.16025i −0.590221 + 0.158149i
\(693\) −5.59808 + 20.8923i −0.212653 + 0.793633i
\(694\) 20.8564 + 20.8564i 0.791698 + 0.791698i
\(695\) 0 0
\(696\) 6.00000 22.3923i 0.227429 0.848778i
\(697\) 2.00000i 0.0757554i
\(698\) 11.5622 + 3.09808i 0.437635 + 0.117264i
\(699\) 15.3397 26.5692i 0.580202 1.00494i
\(700\) 0 0
\(701\) 23.9090i 0.903029i −0.892264 0.451515i \(-0.850884\pi\)
0.892264 0.451515i \(-0.149116\pi\)
\(702\) 0 0
\(703\) 13.5622 13.5622i 0.511507 0.511507i
\(704\) 1.86603 0.500000i 0.0703285 0.0188445i
\(705\) 0 0
\(706\) 4.22243 2.43782i 0.158913 0.0917486i
\(707\) −23.1244 −0.869681
\(708\) 1.39230 0.803848i 0.0523260 0.0302104i
\(709\) −1.90192 0.509619i −0.0714282 0.0191391i 0.222928 0.974835i \(-0.428439\pi\)
−0.294356 + 0.955696i \(0.595105\pi\)
\(710\) 0 0
\(711\) −16.6865 28.9019i −0.625794 1.08391i
\(712\) 3.89230 + 14.5263i 0.145870 + 0.544395i
\(713\) −7.39230 + 12.8038i −0.276844 + 0.479508i
\(714\) −48.2487 −1.80566
\(715\) 0 0
\(716\) −22.7846 −0.851501
\(717\) −9.92820 + 17.1962i −0.370776 + 0.642202i
\(718\) 8.66025 + 32.3205i 0.323198 + 1.20619i
\(719\) −22.2487 38.5359i −0.829737 1.43715i −0.898245 0.439496i \(-0.855157\pi\)
0.0685077 0.997651i \(-0.478176\pi\)
\(720\) 0 0
\(721\) 11.0622 + 2.96410i 0.411977 + 0.110389i
\(722\) 6.41858 3.70577i 0.238875 0.137915i
\(723\) 15.8038 0.587751
\(724\) −9.16987 + 5.29423i −0.340796 + 0.196758i
\(725\) 0 0
\(726\) 17.1962 4.60770i 0.638209 0.171008i
\(727\) 4.90192 4.90192i 0.181802 0.181802i −0.610338 0.792141i \(-0.708967\pi\)
0.792141 + 0.610338i \(0.208967\pi\)
\(728\) 9.69615 9.33013i 0.359363 0.345798i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 22.3923 38.7846i 0.828209 1.43450i
\(732\) −30.1244 8.07180i −1.11343 0.298342i
\(733\) 24.5167i 0.905544i 0.891626 + 0.452772i \(0.149565\pi\)
−0.891626 + 0.452772i \(0.850435\pi\)
\(734\) −4.63397 + 17.2942i −0.171043 + 0.638342i
\(735\) 0 0
\(736\) 2.46410 + 2.46410i 0.0908280 + 0.0908280i
\(737\) 0.464102 1.73205i 0.0170954 0.0638009i
\(738\) −1.09808 + 0.294229i −0.0404207 + 0.0108307i
\(739\) −1.83975 6.86603i −0.0676761 0.252571i 0.923797 0.382883i \(-0.125069\pi\)
−0.991473 + 0.130312i \(0.958402\pi\)
\(740\) 0 0
\(741\) −44.0596 + 10.9019i −1.61857 + 0.400492i
\(742\) −23.7583 23.7583i −0.872196 0.872196i
\(743\) 19.1769 + 11.0718i 0.703533 + 0.406185i 0.808662 0.588274i \(-0.200192\pi\)
−0.105129 + 0.994459i \(0.533526\pi\)
\(744\) 9.00000 + 5.19615i 0.329956 + 0.190500i
\(745\) 0 0
\(746\) 10.6603 10.6603i 0.390300 0.390300i
\(747\) −4.09808 7.09808i −0.149941 0.259705i
\(748\) −5.09808 8.83013i −0.186404 0.322861i
\(749\) 34.3205 34.3205i 1.25404 1.25404i
\(750\) 0 0
\(751\) 29.6603 + 17.1244i 1.08232 + 0.624877i 0.931521 0.363688i \(-0.118483\pi\)
0.150797 + 0.988565i \(0.451816\pi\)
\(752\) −6.06218 3.50000i −0.221065 0.127632i
\(753\) −18.4641 18.4641i −0.672869 0.672869i
\(754\) 24.5885 23.6603i 0.895459 0.861656i
\(755\) 0 0
\(756\) 0 0
\(757\) 13.0622 3.50000i 0.474753 0.127210i −0.0135054 0.999909i \(-0.504299\pi\)
0.488258 + 0.872699i \(0.337632\pi\)
\(758\) 4.79423 17.8923i 0.174134 0.649878i
\(759\) −11.6603 11.6603i −0.423240 0.423240i
\(760\) 0 0
\(761\) −1.62436 + 6.06218i −0.0588828 + 0.219754i −0.989097 0.147262i \(-0.952954\pi\)
0.930215 + 0.367016i \(0.119621\pi\)
\(762\) 24.3397i 0.881736i
\(763\) −72.3731 19.3923i −2.62008 0.702049i
\(764\) 5.56218 9.63397i 0.201233 0.348545i
\(765\) 0 0
\(766\) 8.00000i 0.289052i
\(767\) 2.36603 + 0.0455173i 0.0854322 + 0.00164354i
\(768\) 1.73205 1.73205i 0.0625000 0.0625000i
\(769\) 22.9545 6.15064i 0.827760 0.221798i 0.180024 0.983662i \(-0.442383\pi\)
0.647736 + 0.761865i \(0.275716\pi\)
\(770\) 0 0
\(771\) 18.0000 10.3923i 0.648254 0.374270i
\(772\) −2.39230 −0.0861009
\(773\) 32.5070 18.7679i 1.16920 0.675036i 0.215706 0.976458i \(-0.430795\pi\)
0.953491 + 0.301422i \(0.0974613\pi\)
\(774\) −24.5885 6.58846i −0.883814 0.236817i
\(775\) 0 0
\(776\) 8.09808 + 14.0263i 0.290704 + 0.503514i
\(777\) −8.83013 32.9545i −0.316779 1.18224i
\(778\) −1.43782 + 2.49038i −0.0515484 + 0.0892845i
\(779\) 1.94744 0.0697743
\(780\) 0 0
\(781\) −20.9282 −0.748870
\(782\) 9.19615 15.9282i 0.328854 0.569591i
\(783\) 0 0
\(784\) 3.46410 + 6.00000i 0.123718 + 0.214286i
\(785\) 0 0
\(786\) −3.29423 0.882686i −0.117501 0.0314844i
\(787\) −2.95448 + 1.70577i −0.105316 + 0.0608042i −0.551733 0.834021i \(-0.686033\pi\)
0.446417 + 0.894825i \(0.352700\pi\)
\(788\) 8.12436 0.289418
\(789\) −28.9019 + 16.6865i −1.02894 + 0.594056i
\(790\) 0 0
\(791\) 10.1962 2.73205i 0.362533 0.0971405i
\(792\) −4.09808 + 4.09808i −0.145619 + 0.145619i
\(793\) −31.8301 33.0788i −1.13032 1.17466i
\(794\) 17.3923i 0.617230i
\(795\) 0 0
\(796\) −9.46410 + 16.3923i −0.335446 + 0.581010i
\(797\) −23.5622 6.31347i −0.834615 0.223634i −0.183889 0.982947i \(-0.558869\pi\)
−0.650726 + 0.759313i \(0.725535\pi\)
\(798\) 46.9808i 1.66310i
\(799\) −9.56218 + 35.6865i −0.338286 + 1.26250i
\(800\) 0 0
\(801\) −31.9019 31.9019i −1.12720 1.12720i
\(802\) 1.42820 5.33013i 0.0504316 0.188213i
\(803\) 8.83013 2.36603i 0.311608 0.0834952i
\(804\) −0.588457 2.19615i −0.0207533 0.0774523i
\(805\) 0 0
\(806\) 7.39230 + 13.3923i 0.260383 + 0.471724i
\(807\) −19.5167 19.5167i −0.687019 0.687019i
\(808\) −5.36603 3.09808i −0.188776 0.108990i
\(809\) −30.8038 17.7846i −1.08301 0.625274i −0.151300 0.988488i \(-0.548346\pi\)
−0.931706 + 0.363214i \(0.881679\pi\)
\(810\) 0 0
\(811\) −24.4186 + 24.4186i −0.857452 + 0.857452i −0.991037 0.133585i \(-0.957351\pi\)
0.133585 + 0.991037i \(0.457351\pi\)
\(812\) 17.6603 + 30.5885i 0.619753 + 1.07344i
\(813\) −8.53590 14.7846i −0.299367 0.518519i
\(814\) 5.09808 5.09808i 0.178687 0.178687i
\(815\) 0 0
\(816\) −11.1962 6.46410i −0.391944 0.226289i
\(817\) 37.7654 + 21.8038i 1.32124 + 0.762820i
\(818\) −20.9545 20.9545i −0.732656 0.732656i
\(819\) −11.1962 + 38.7846i −0.391225 + 1.35524i
\(820\) 0 0
\(821\) 5.68653 + 21.2224i 0.198461 + 0.740668i 0.991344 + 0.131293i \(0.0419129\pi\)
−0.792882 + 0.609375i \(0.791420\pi\)
\(822\) 48.7128 13.0526i 1.69905 0.455260i
\(823\) 0.160254 0.598076i 0.00558610 0.0208476i −0.963077 0.269228i \(-0.913232\pi\)
0.968663 + 0.248380i \(0.0798982\pi\)
\(824\) 2.16987 + 2.16987i 0.0755911 + 0.0755911i
\(825\) 0 0
\(826\) −0.633975 + 2.36603i −0.0220588 + 0.0823246i
\(827\) 53.3731i 1.85596i 0.372626 + 0.927982i \(0.378458\pi\)
−0.372626 + 0.927982i \(0.621542\pi\)
\(828\) −10.0981 2.70577i −0.350932 0.0940321i
\(829\) −12.5885 + 21.8038i −0.437215 + 0.757279i −0.997474 0.0710390i \(-0.977369\pi\)
0.560258 + 0.828318i \(0.310702\pi\)
\(830\) 0 0
\(831\) 49.2679i 1.70909i
\(832\) 3.50000 0.866025i 0.121341 0.0300240i
\(833\) 25.8564 25.8564i 0.895871 0.895871i
\(834\) −32.9545 + 8.83013i −1.14112 + 0.305762i
\(835\) 0 0
\(836\) 8.59808 4.96410i 0.297371 0.171687i
\(837\) 0 0
\(838\) −14.7846 + 8.53590i −0.510726 + 0.294868i
\(839\) 39.2224 + 10.5096i 1.35411 + 0.362832i 0.861650 0.507503i \(-0.169432\pi\)
0.492459 + 0.870336i \(0.336098\pi\)
\(840\) 0 0
\(841\) 30.2846 + 52.4545i 1.04430 + 1.80878i
\(842\) 0.901924 + 3.36603i 0.0310823 + 0.116001i
\(843\) −15.0000 + 25.9808i −0.516627 + 0.894825i
\(844\) −20.6603 −0.711155
\(845\) 0 0
\(846\) 21.0000 0.721995
\(847\) −13.5622 + 23.4904i −0.466002 + 0.807139i
\(848\) −2.33013 8.69615i −0.0800169 0.298627i
\(849\) 10.7321 + 18.5885i 0.368323 + 0.637954i
\(850\) 0 0
\(851\) 12.5622 + 3.36603i 0.430626 + 0.115386i
\(852\) −22.9808 + 13.2679i −0.787308 + 0.454552i
\(853\) 29.8564 1.02226 0.511132 0.859502i \(-0.329226\pi\)
0.511132 + 0.859502i \(0.329226\pi\)
\(854\) 41.1506 23.7583i 1.40815 0.812993i
\(855\) 0 0
\(856\) 12.5622 3.36603i 0.429366 0.115048i
\(857\) 35.5885 35.5885i 1.21568 1.21568i 0.246548 0.969131i \(-0.420704\pi\)
0.969131 0.246548i \(-0.0792963\pi\)
\(858\) −16.5622 + 4.09808i −0.565423 + 0.139906i
\(859\) 19.8756i 0.678148i 0.940760 + 0.339074i \(0.110114\pi\)
−0.940760 + 0.339074i \(0.889886\pi\)
\(860\) 0 0
\(861\) 1.73205 3.00000i 0.0590281 0.102240i
\(862\) −0.830127 0.222432i −0.0282742 0.00757606i
\(863\) 11.0718i 0.376888i 0.982084 + 0.188444i \(0.0603445\pi\)
−0.982084 + 0.188444i \(0.939656\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −3.85641 3.85641i −0.131046 0.131046i
\(867\) −6.88269 + 25.6865i −0.233748 + 0.872360i
\(868\) −15.2942 + 4.09808i −0.519120 + 0.139098i
\(869\) 5.56218 + 20.7583i 0.188684 + 0.704178i
\(870\) 0 0
\(871\) 0.928203 3.21539i 0.0314510 0.108949i
\(872\) −14.1962 14.1962i −0.480742 0.480742i
\(873\) −42.0788 24.2942i −1.42415 0.822235i
\(874\) 15.5096 + 8.95448i 0.524621 + 0.302890i
\(875\) 0 0
\(876\) 8.19615 8.19615i 0.276922 0.276922i
\(877\) 17.1962 + 29.7846i 0.580673 + 1.00575i 0.995400 + 0.0958089i \(0.0305438\pi\)
−0.414727 + 0.909946i \(0.636123\pi\)
\(878\) −6.02628 10.4378i −0.203377 0.352259i
\(879\) −48.3731 + 48.3731i −1.63158 + 1.63158i
\(880\) 0 0
\(881\) −32.2583 18.6244i −1.08681 0.627470i −0.154085 0.988058i \(-0.549243\pi\)
−0.932726 + 0.360587i \(0.882576\pi\)
\(882\) −18.0000 10.3923i −0.606092 0.349927i
\(883\) 19.5885 + 19.5885i 0.659204 + 0.659204i 0.955192 0.295988i \(-0.0956487\pi\)
−0.295988 + 0.955192i \(0.595649\pi\)
\(884\) −9.19615 16.6603i −0.309300 0.560345i
\(885\) 0 0
\(886\) 0.660254 + 2.46410i 0.0221817 + 0.0827831i
\(887\) 26.1865 7.01666i 0.879258 0.235596i 0.209171 0.977879i \(-0.432924\pi\)
0.670087 + 0.742283i \(0.266257\pi\)
\(888\) 2.36603 8.83013i 0.0793986 0.296320i
\(889\) −26.2224 26.2224i −0.879472 0.879472i
\(890\) 0 0
\(891\) −4.50000 + 16.7942i −0.150756 + 0.562628i
\(892\) 3.92820i 0.131526i
\(893\) −34.7487 9.31089i −1.16282 0.311577i
\(894\) −10.7321 + 18.5885i −0.358933 + 0.621691i
\(895\) 0 0
\(896\) 3.73205i 0.124679i
\(897\) −21.3397 22.1769i −0.712513 0.740466i
\(898\) 3.49038 3.49038i 0.116476 0.116476i
\(899\) −38.7846 + 10.3923i −1.29354 + 0.346603i
\(900\) 0 0
\(901\) −41.1506 + 23.7583i −1.37093 + 0.791505i
\(902\) 0.732051 0.0243746
\(903\) 67.1769 38.7846i 2.23551 1.29067i
\(904\) 2.73205 + 0.732051i 0.0908667 + 0.0243476i
\(905\) 0 0
\(906\) −2.66025 4.60770i −0.0883810 0.153080i
\(907\) 12.8109 + 47.8109i 0.425379 + 1.58753i 0.763095 + 0.646287i \(0.223679\pi\)
−0.337716 + 0.941248i \(0.609654\pi\)
\(908\) 0.928203 1.60770i 0.0308035 0.0533532i
\(909\) 18.5885 0.616540
\(910\) 0 0
\(911\) 27.1769 0.900411 0.450206 0.892925i \(-0.351351\pi\)
0.450206 + 0.892925i \(0.351351\pi\)
\(912\) 6.29423 10.9019i 0.208423 0.360999i
\(913\) 1.36603 + 5.09808i 0.0452088 + 0.168722i
\(914\) −3.56218 6.16987i −0.117826 0.204081i
\(915\) 0 0
\(916\) 18.5622 + 4.97372i 0.613312 + 0.164336i
\(917\) 4.50000 2.59808i 0.148603 0.0857960i
\(918\) 0 0
\(919\) −1.51666 + 0.875644i −0.0500300 + 0.0288848i −0.524806 0.851222i \(-0.675862\pi\)
0.474776 + 0.880106i \(0.342529\pi\)
\(920\) 0 0
\(921\) −4.73205 + 1.26795i −0.155926 + 0.0417803i
\(922\) −6.66025 + 6.66025i −0.219344 + 0.219344i
\(923\) −39.0526 0.751289i −1.28543 0.0247290i
\(924\) 17.6603i 0.580980i
\(925\) 0 0
\(926\) −16.5885 + 28.7321i −0.545131 + 0.944194i
\(927\) −8.89230 2.38269i −0.292062 0.0782577i
\(928\) 9.46410i 0.310674i
\(929\) −2.75833 + 10.2942i −0.0904979 + 0.337743i −0.996298 0.0859616i \(-0.972604\pi\)
0.905801 + 0.423704i \(0.139270\pi\)
\(930\) 0 0
\(931\) 25.1769 + 25.1769i 0.825140 + 0.825140i
\(932\) −3.24167 + 12.0981i −0.106184 + 0.396286i
\(933\) −13.3923 + 3.58846i −0.438444 + 0.117481i
\(934\) −2.39230 8.92820i −0.0782786 0.292140i
\(935\) 0 0
\(936\) −7.79423 + 7.50000i −0.254762 + 0.245145i
\(937\) −11.6077 11.6077i −0.379207 0.379207i 0.491609 0.870816i \(-0.336409\pi\)
−0.870816 + 0.491609i \(0.836409\pi\)
\(938\) 3.00000 + 1.73205i 0.0979535 + 0.0565535i
\(939\) 25.6077 + 14.7846i 0.835676 + 0.482478i
\(940\) 0 0
\(941\) 1.41154 1.41154i 0.0460150 0.0460150i −0.683725 0.729740i \(-0.739641\pi\)
0.729740 + 0.683725i \(0.239641\pi\)
\(942\) −19.6865 34.0981i −0.641422 1.11098i
\(943\) 0.660254 + 1.14359i 0.0215008 + 0.0372405i
\(944\) −0.464102 + 0.464102i −0.0151052 + 0.0151052i
\(945\) 0 0
\(946\) 14.1962 + 8.19615i 0.461557 + 0.266480i
\(947\) 21.7583 + 12.5622i 0.707051 + 0.408216i 0.809968 0.586474i \(-0.199484\pi\)
−0.102917 + 0.994690i \(0.532818\pi\)
\(948\) 19.2679 + 19.2679i 0.625794 + 0.625794i
\(949\) 16.5622 4.09808i 0.537631 0.133029i
\(950\) 0 0
\(951\) −0.882686 3.29423i −0.0286231 0.106823i
\(952\) 19.0263 5.09808i 0.616645 0.165230i
\(953\) 8.09808 30.2224i 0.262322 0.979001i −0.701547 0.712624i \(-0.747507\pi\)
0.963869 0.266377i \(-0.0858266\pi\)
\(954\) 19.0981 + 19.0981i 0.618323 + 0.618323i
\(955\) 0 0
\(956\) 2.09808 7.83013i 0.0678566 0.253244i
\(957\) 44.7846i 1.44768i
\(958\) 25.7583 + 6.90192i 0.832214 + 0.222991i
\(959\) −38.4186 + 66.5429i −1.24060 + 2.14878i
\(960\) 0 0
\(961\) 13.0000i 0.419355i
\(962\) 9.69615 9.33013i 0.312617 0.300815i
\(963\) −27.5885 + 27.5885i −0.889026 + 0.889026i
\(964\) −6.23205 + 1.66987i −0.200721 + 0.0537830i
\(965\) 0 0
\(966\) 27.5885 15.9282i 0.887644 0.512482i
\(967\) −2.66025 −0.0855480 −0.0427740 0.999085i \(-0.513620\pi\)
−0.0427740 + 0.999085i \(0.513620\pi\)
\(968\) −6.29423 + 3.63397i −0.202304 + 0.116800i
\(969\) −64.1769 17.1962i −2.06166 0.552420i
\(970\) 0 0
\(971\) 0.473721 + 0.820508i 0.0152024 + 0.0263314i 0.873527 0.486777i \(-0.161827\pi\)
−0.858324 + 0.513108i \(0.828494\pi\)
\(972\) 5.70577 + 21.2942i 0.183013 + 0.683013i
\(973\) 25.9904 45.0167i 0.833213 1.44317i
\(974\) −12.3205 −0.394775
\(975\) 0 0
\(976\) 12.7321 0.407543
\(977\) −1.46410 + 2.53590i −0.0468408 + 0.0811306i −0.888495 0.458886i \(-0.848249\pi\)
0.841654 + 0.540016i \(0.181582\pi\)
\(978\) 12.1244 + 45.2487i 0.387694 + 1.44689i
\(979\) 14.5263 + 25.1603i 0.464262 + 0.804125i
\(980\) 0 0
\(981\) 58.1769 + 15.5885i 1.85745 + 0.497701i
\(982\) −0.741670 + 0.428203i −0.0236676 + 0.0136645i
\(983\) 3.33975 0.106521 0.0532607 0.998581i \(-0.483039\pi\)
0.0532607 + 0.998581i \(0.483039\pi\)
\(984\) 0.803848 0.464102i 0.0256257 0.0147950i
\(985\) 0 0
\(986\) 48.2487 12.9282i 1.53655 0.411718i
\(987\) −45.2487 + 45.2487i −1.44028 + 1.44028i
\(988\) 16.2224 8.95448i 0.516104 0.284880i
\(989\) 29.5692i 0.940246i
\(990\) 0 0
\(991\) −16.0000 + 27.7128i −0.508257 + 0.880327i 0.491698 + 0.870766i \(0.336377\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) −4.09808 1.09808i −0.130114 0.0348640i
\(993\) 46.3923i 1.47222i
\(994\) 10.4641 39.0526i 0.331901 1.23867i
\(995\) 0 0
\(996\) 4.73205 + 4.73205i 0.149941 + 0.149941i
\(997\) −1.17949 + 4.40192i −0.0373549 + 0.139410i −0.982085 0.188439i \(-0.939657\pi\)
0.944730 + 0.327849i \(0.106324\pi\)
\(998\) 27.4904 7.36603i 0.870193 0.233167i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.a.357.1 yes 4
5.2 odd 4 650.2.t.b.643.1 yes 4
5.3 odd 4 650.2.t.a.643.1 yes 4
5.4 even 2 650.2.w.b.357.1 yes 4
13.11 odd 12 650.2.t.a.557.1 4
65.24 odd 12 650.2.t.b.557.1 yes 4
65.37 even 12 650.2.w.b.193.1 yes 4
65.63 even 12 inner 650.2.w.a.193.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.a.557.1 4 13.11 odd 12
650.2.t.a.643.1 yes 4 5.3 odd 4
650.2.t.b.557.1 yes 4 65.24 odd 12
650.2.t.b.643.1 yes 4 5.2 odd 4
650.2.w.a.193.1 yes 4 65.63 even 12 inner
650.2.w.a.357.1 yes 4 1.1 even 1 trivial
650.2.w.b.193.1 yes 4 65.37 even 12
650.2.w.b.357.1 yes 4 5.4 even 2