Properties

Label 650.2.t.g.643.4
Level $650$
Weight $2$
Character 650.643
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(7,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{13} - 48 x^{12} + 16 x^{11} + 8 x^{10} + 80 x^{9} + 2208 x^{8} + 760 x^{7} + 192 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.4
Root \(2.63533 - 0.706135i\) of defining polynomial
Character \(\chi\) \(=\) 650.643
Dual form 650.2.t.g.557.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(2.63533 - 0.706135i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.63533 + 0.706135i) q^{6} +(-1.79804 - 3.11430i) q^{7} +1.00000i q^{8} +(3.84827 - 2.22180i) q^{9} +(4.64166 - 1.24373i) q^{11} +(1.92920 + 1.92920i) q^{12} +(-3.33348 + 1.37401i) q^{13} -3.59608i q^{14} +(-0.500000 + 0.866025i) q^{16} +(0.819442 - 3.05820i) q^{17} +4.44360 q^{18} +(-0.782374 + 2.91986i) q^{19} +(-6.93755 - 6.93755i) q^{21} +(4.64166 + 1.24373i) q^{22} +(1.00673 + 3.75715i) q^{23} +(0.706135 + 2.63533i) q^{24} +(-3.57388 - 0.476810i) q^{26} +(2.78499 - 2.78499i) q^{27} +(1.79804 - 3.11430i) q^{28} +(4.52655 + 2.61340i) q^{29} +(-4.00252 + 4.00252i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(11.3541 - 6.55528i) q^{33} +(2.23876 - 2.23876i) q^{34} +(3.84827 + 2.22180i) q^{36} +(-2.55430 + 4.42418i) q^{37} +(-2.13749 + 2.13749i) q^{38} +(-7.81459 + 5.97487i) q^{39} +(-0.124135 - 0.463279i) q^{41} +(-2.53932 - 9.47687i) q^{42} +(-2.77485 - 0.743519i) q^{43} +(3.39793 + 3.39793i) q^{44} +(-1.00673 + 3.75715i) q^{46} -7.17950 q^{47} +(-0.706135 + 2.63533i) q^{48} +(-2.96590 + 5.13709i) q^{49} -8.63801i q^{51} +(-2.85667 - 2.19987i) q^{52} +(2.20166 + 2.20166i) q^{53} +(3.80437 - 1.01938i) q^{54} +(3.11430 - 1.79804i) q^{56} +8.24727i q^{57} +(2.61340 + 4.52655i) q^{58} +(-10.0282 - 2.68705i) q^{59} +(0.826168 + 1.43097i) q^{61} +(-5.46754 + 1.46502i) q^{62} +(-13.8387 - 7.98978i) q^{63} -1.00000 q^{64} +13.1106 q^{66} +(3.02310 + 1.74539i) q^{67} +(3.05820 - 0.819442i) q^{68} +(5.30612 + 9.19046i) q^{69} +(-9.32721 - 2.49922i) q^{71} +(2.22180 + 3.84827i) q^{72} -11.2159i q^{73} +(-4.42418 + 2.55430i) q^{74} +(-2.91986 + 0.782374i) q^{76} +(-12.2192 - 12.2192i) q^{77} +(-9.75507 + 1.26709i) q^{78} -1.21846i q^{79} +(-1.29260 + 2.23886i) q^{81} +(0.124135 - 0.463279i) q^{82} +10.8721 q^{83} +(2.53932 - 9.47687i) q^{84} +(-2.03133 - 2.03133i) q^{86} +(13.7744 + 3.69083i) q^{87} +(1.24373 + 4.64166i) q^{88} +(-2.64966 - 9.88867i) q^{89} +(10.2728 + 7.91092i) q^{91} +(-2.75043 + 2.75043i) q^{92} +(-7.72165 + 13.3743i) q^{93} +(-6.21763 - 3.58975i) q^{94} +(-1.92920 + 1.92920i) q^{96} +(9.00422 - 5.19859i) q^{97} +(-5.13709 + 2.96590i) q^{98} +(15.0991 - 15.0991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{11} - 2 q^{13} - 8 q^{16} + 16 q^{17} + 16 q^{18} + 6 q^{22} + 6 q^{23} - 6 q^{26} + 12 q^{27} - 6 q^{29} + 6 q^{33} - 14 q^{34} + 20 q^{37} - 6 q^{38} - 6 q^{39} - 44 q^{41} - 6 q^{42}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 2.63533 0.706135i 1.52151 0.407687i 0.601271 0.799045i \(-0.294661\pi\)
0.920239 + 0.391358i \(0.127995\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 2.63533 + 0.706135i 1.07587 + 0.288278i
\(7\) −1.79804 3.11430i −0.679595 1.17709i −0.975103 0.221753i \(-0.928822\pi\)
0.295507 0.955340i \(-0.404511\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 3.84827 2.22180i 1.28276 0.740600i
\(10\) 0 0
\(11\) 4.64166 1.24373i 1.39951 0.374999i 0.521344 0.853347i \(-0.325431\pi\)
0.878170 + 0.478348i \(0.158764\pi\)
\(12\) 1.92920 + 1.92920i 0.556911 + 0.556911i
\(13\) −3.33348 + 1.37401i −0.924541 + 0.381082i
\(14\) 3.59608i 0.961093i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.819442 3.05820i 0.198744 0.741722i −0.792522 0.609843i \(-0.791232\pi\)
0.991266 0.131879i \(-0.0421010\pi\)
\(18\) 4.44360 1.04737
\(19\) −0.782374 + 2.91986i −0.179489 + 0.669862i 0.816254 + 0.577693i \(0.196047\pi\)
−0.995743 + 0.0921694i \(0.970620\pi\)
\(20\) 0 0
\(21\) −6.93755 6.93755i −1.51390 1.51390i
\(22\) 4.64166 + 1.24373i 0.989606 + 0.265164i
\(23\) 1.00673 + 3.75715i 0.209917 + 0.783421i 0.987894 + 0.155128i \(0.0495791\pi\)
−0.777977 + 0.628292i \(0.783754\pi\)
\(24\) 0.706135 + 2.63533i 0.144139 + 0.537935i
\(25\) 0 0
\(26\) −3.57388 0.476810i −0.700896 0.0935102i
\(27\) 2.78499 2.78499i 0.535972 0.535972i
\(28\) 1.79804 3.11430i 0.339798 0.588547i
\(29\) 4.52655 + 2.61340i 0.840559 + 0.485297i 0.857454 0.514560i \(-0.172045\pi\)
−0.0168954 + 0.999857i \(0.505378\pi\)
\(30\) 0 0
\(31\) −4.00252 + 4.00252i −0.718874 + 0.718874i −0.968375 0.249501i \(-0.919733\pi\)
0.249501 + 0.968375i \(0.419733\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 11.3541 6.55528i 1.97649 1.14113i
\(34\) 2.23876 2.23876i 0.383944 0.383944i
\(35\) 0 0
\(36\) 3.84827 + 2.22180i 0.641379 + 0.370300i
\(37\) −2.55430 + 4.42418i −0.419924 + 0.727330i −0.995931 0.0901146i \(-0.971277\pi\)
0.576007 + 0.817445i \(0.304610\pi\)
\(38\) −2.13749 + 2.13749i −0.346746 + 0.346746i
\(39\) −7.81459 + 5.97487i −1.25134 + 0.956744i
\(40\) 0 0
\(41\) −0.124135 0.463279i −0.0193867 0.0723521i 0.955555 0.294814i \(-0.0952575\pi\)
−0.974941 + 0.222461i \(0.928591\pi\)
\(42\) −2.53932 9.47687i −0.391825 1.46231i
\(43\) −2.77485 0.743519i −0.423161 0.113386i 0.0409532 0.999161i \(-0.486961\pi\)
−0.464114 + 0.885775i \(0.653627\pi\)
\(44\) 3.39793 + 3.39793i 0.512258 + 0.512258i
\(45\) 0 0
\(46\) −1.00673 + 3.75715i −0.148434 + 0.553962i
\(47\) −7.17950 −1.04724 −0.523619 0.851953i \(-0.675418\pi\)
−0.523619 + 0.851953i \(0.675418\pi\)
\(48\) −0.706135 + 2.63533i −0.101922 + 0.380377i
\(49\) −2.96590 + 5.13709i −0.423700 + 0.733869i
\(50\) 0 0
\(51\) 8.63801i 1.20956i
\(52\) −2.85667 2.19987i −0.396149 0.305067i
\(53\) 2.20166 + 2.20166i 0.302421 + 0.302421i 0.841960 0.539539i \(-0.181402\pi\)
−0.539539 + 0.841960i \(0.681402\pi\)
\(54\) 3.80437 1.01938i 0.517709 0.138720i
\(55\) 0 0
\(56\) 3.11430 1.79804i 0.416165 0.240273i
\(57\) 8.24727i 1.09238i
\(58\) 2.61340 + 4.52655i 0.343157 + 0.594365i
\(59\) −10.0282 2.68705i −1.30556 0.349825i −0.462012 0.886874i \(-0.652872\pi\)
−0.843551 + 0.537049i \(0.819539\pi\)
\(60\) 0 0
\(61\) 0.826168 + 1.43097i 0.105780 + 0.183216i 0.914057 0.405587i \(-0.132933\pi\)
−0.808277 + 0.588803i \(0.799599\pi\)
\(62\) −5.46754 + 1.46502i −0.694379 + 0.186058i
\(63\) −13.8387 7.98978i −1.74351 1.00662i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 13.1106 1.61380
\(67\) 3.02310 + 1.74539i 0.369330 + 0.213233i 0.673166 0.739492i \(-0.264934\pi\)
−0.303836 + 0.952724i \(0.598267\pi\)
\(68\) 3.05820 0.819442i 0.370861 0.0993719i
\(69\) 5.30612 + 9.19046i 0.638781 + 1.10640i
\(70\) 0 0
\(71\) −9.32721 2.49922i −1.10694 0.296603i −0.341350 0.939936i \(-0.610884\pi\)
−0.765586 + 0.643334i \(0.777551\pi\)
\(72\) 2.22180 + 3.84827i 0.261842 + 0.453523i
\(73\) 11.2159i 1.31272i −0.754446 0.656362i \(-0.772095\pi\)
0.754446 0.656362i \(-0.227905\pi\)
\(74\) −4.42418 + 2.55430i −0.514300 + 0.296931i
\(75\) 0 0
\(76\) −2.91986 + 0.782374i −0.334931 + 0.0897445i
\(77\) −12.2192 12.2192i −1.39251 1.39251i
\(78\) −9.75507 + 1.26709i −1.10454 + 0.143470i
\(79\) 1.21846i 0.137087i −0.997648 0.0685435i \(-0.978165\pi\)
0.997648 0.0685435i \(-0.0218352\pi\)
\(80\) 0 0
\(81\) −1.29260 + 2.23886i −0.143623 + 0.248762i
\(82\) 0.124135 0.463279i 0.0137085 0.0511606i
\(83\) 10.8721 1.19337 0.596685 0.802475i \(-0.296484\pi\)
0.596685 + 0.802475i \(0.296484\pi\)
\(84\) 2.53932 9.47687i 0.277062 1.03401i
\(85\) 0 0
\(86\) −2.03133 2.03133i −0.219044 0.219044i
\(87\) 13.7744 + 3.69083i 1.47677 + 0.395699i
\(88\) 1.24373 + 4.64166i 0.132582 + 0.494803i
\(89\) −2.64966 9.88867i −0.280863 1.04820i −0.951809 0.306690i \(-0.900778\pi\)
0.670946 0.741506i \(-0.265888\pi\)
\(90\) 0 0
\(91\) 10.2728 + 7.91092i 1.07688 + 0.829290i
\(92\) −2.75043 + 2.75043i −0.286752 + 0.286752i
\(93\) −7.72165 + 13.3743i −0.800697 + 1.38685i
\(94\) −6.21763 3.58975i −0.641300 0.370254i
\(95\) 0 0
\(96\) −1.92920 + 1.92920i −0.196898 + 0.196898i
\(97\) 9.00422 5.19859i 0.914240 0.527837i 0.0324473 0.999473i \(-0.489670\pi\)
0.881793 + 0.471637i \(0.156337\pi\)
\(98\) −5.13709 + 2.96590i −0.518924 + 0.299601i
\(99\) 15.0991 15.0991i 1.51751 1.51751i
\(100\) 0 0
\(101\) 8.55490 + 4.93918i 0.851245 + 0.491466i 0.861071 0.508485i \(-0.169794\pi\)
−0.00982597 + 0.999952i \(0.503128\pi\)
\(102\) 4.31900 7.48073i 0.427645 0.740703i
\(103\) 0.742128 0.742128i 0.0731241 0.0731241i −0.669599 0.742723i \(-0.733534\pi\)
0.742723 + 0.669599i \(0.233534\pi\)
\(104\) −1.37401 3.33348i −0.134733 0.326875i
\(105\) 0 0
\(106\) 0.805862 + 3.00752i 0.0782723 + 0.292116i
\(107\) 1.88954 + 7.05186i 0.182669 + 0.681729i 0.995118 + 0.0986963i \(0.0314672\pi\)
−0.812449 + 0.583032i \(0.801866\pi\)
\(108\) 3.80437 + 1.01938i 0.366076 + 0.0980897i
\(109\) −0.0493096 0.0493096i −0.00472300 0.00472300i 0.704741 0.709464i \(-0.251063\pi\)
−0.709464 + 0.704741i \(0.751063\pi\)
\(110\) 0 0
\(111\) −3.60736 + 13.4629i −0.342395 + 1.27784i
\(112\) 3.59608 0.339798
\(113\) −1.24405 + 4.64287i −0.117031 + 0.436764i −0.999431 0.0337354i \(-0.989260\pi\)
0.882400 + 0.470500i \(0.155926\pi\)
\(114\) −4.12363 + 7.14234i −0.386214 + 0.668942i
\(115\) 0 0
\(116\) 5.22681i 0.485297i
\(117\) −9.77536 + 12.6939i −0.903732 + 1.17355i
\(118\) −7.34117 7.34117i −0.675809 0.675809i
\(119\) −10.9975 + 2.94678i −1.00814 + 0.270131i
\(120\) 0 0
\(121\) 10.4719 6.04595i 0.951989 0.549631i
\(122\) 1.65234i 0.149595i
\(123\) −0.654276 1.13324i −0.0589940 0.102181i
\(124\) −5.46754 1.46502i −0.491000 0.131563i
\(125\) 0 0
\(126\) −7.98978 13.8387i −0.711786 1.23285i
\(127\) 10.5899 2.83754i 0.939698 0.251791i 0.243713 0.969847i \(-0.421635\pi\)
0.695985 + 0.718056i \(0.254968\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −7.83768 −0.690069
\(130\) 0 0
\(131\) −15.6797 −1.36994 −0.684970 0.728571i \(-0.740185\pi\)
−0.684970 + 0.728571i \(0.740185\pi\)
\(132\) 11.3541 + 6.55528i 0.988246 + 0.570564i
\(133\) 10.5001 2.81348i 0.910470 0.243960i
\(134\) 1.74539 + 3.02310i 0.150778 + 0.261156i
\(135\) 0 0
\(136\) 3.05820 + 0.819442i 0.262238 + 0.0702666i
\(137\) −1.42075 2.46082i −0.121383 0.210242i 0.798930 0.601424i \(-0.205400\pi\)
−0.920313 + 0.391182i \(0.872066\pi\)
\(138\) 10.6122i 0.903373i
\(139\) 13.8773 8.01209i 1.17706 0.679577i 0.221728 0.975108i \(-0.428830\pi\)
0.955333 + 0.295532i \(0.0954968\pi\)
\(140\) 0 0
\(141\) −18.9204 + 5.06970i −1.59338 + 0.426946i
\(142\) −6.82799 6.82799i −0.572992 0.572992i
\(143\) −13.7640 + 10.5236i −1.15100 + 0.880032i
\(144\) 4.44360i 0.370300i
\(145\) 0 0
\(146\) 5.60796 9.71326i 0.464118 0.803875i
\(147\) −4.18865 + 15.6323i −0.345474 + 1.28933i
\(148\) −5.10860 −0.419924
\(149\) −2.86654 + 10.6981i −0.234836 + 0.876420i 0.743387 + 0.668862i \(0.233218\pi\)
−0.978223 + 0.207558i \(0.933448\pi\)
\(150\) 0 0
\(151\) −0.609536 0.609536i −0.0496034 0.0496034i 0.681870 0.731473i \(-0.261167\pi\)
−0.731473 + 0.681870i \(0.761167\pi\)
\(152\) −2.91986 0.782374i −0.236832 0.0634589i
\(153\) −3.64127 13.5894i −0.294380 1.09864i
\(154\) −4.47255 16.6918i −0.360409 1.34506i
\(155\) 0 0
\(156\) −9.08168 3.78020i −0.727116 0.302658i
\(157\) −9.16772 + 9.16772i −0.731664 + 0.731664i −0.970949 0.239285i \(-0.923087\pi\)
0.239285 + 0.970949i \(0.423087\pi\)
\(158\) 0.609228 1.05521i 0.0484676 0.0839483i
\(159\) 7.35677 + 4.24743i 0.583429 + 0.336843i
\(160\) 0 0
\(161\) 9.89076 9.89076i 0.779501 0.779501i
\(162\) −2.23886 + 1.29260i −0.175901 + 0.101557i
\(163\) −15.5425 + 8.97349i −1.21739 + 0.702858i −0.964358 0.264602i \(-0.914760\pi\)
−0.253027 + 0.967459i \(0.581426\pi\)
\(164\) 0.339144 0.339144i 0.0264827 0.0264827i
\(165\) 0 0
\(166\) 9.41554 + 5.43606i 0.730787 + 0.421920i
\(167\) 9.77996 16.9394i 0.756796 1.31081i −0.187680 0.982230i \(-0.560097\pi\)
0.944476 0.328579i \(-0.106570\pi\)
\(168\) 6.93755 6.93755i 0.535243 0.535243i
\(169\) 9.22418 9.16049i 0.709552 0.704653i
\(170\) 0 0
\(171\) 3.47656 + 12.9747i 0.265859 + 0.992200i
\(172\) −0.743519 2.77485i −0.0566928 0.211580i
\(173\) 14.4420 + 3.86971i 1.09800 + 0.294209i 0.761951 0.647635i \(-0.224242\pi\)
0.336051 + 0.941844i \(0.390908\pi\)
\(174\) 10.0835 + 10.0835i 0.764431 + 0.764431i
\(175\) 0 0
\(176\) −1.24373 + 4.64166i −0.0937496 + 0.349878i
\(177\) −28.3251 −2.12905
\(178\) 2.64966 9.88867i 0.198600 0.741187i
\(179\) 0.973054 1.68538i 0.0727295 0.125971i −0.827367 0.561661i \(-0.810162\pi\)
0.900097 + 0.435690i \(0.143496\pi\)
\(180\) 0 0
\(181\) 23.5819i 1.75283i −0.481556 0.876415i \(-0.659928\pi\)
0.481556 0.876415i \(-0.340072\pi\)
\(182\) 4.94106 + 11.9875i 0.366256 + 0.888570i
\(183\) 3.18768 + 3.18768i 0.235640 + 0.235640i
\(184\) −3.75715 + 1.00673i −0.276981 + 0.0742168i
\(185\) 0 0
\(186\) −13.3743 + 7.72165i −0.980650 + 0.566179i
\(187\) 15.2143i 1.11258i
\(188\) −3.58975 6.21763i −0.261809 0.453467i
\(189\) −13.6808 3.66577i −0.995133 0.266645i
\(190\) 0 0
\(191\) 0.306187 + 0.530332i 0.0221549 + 0.0383734i 0.876890 0.480691i \(-0.159614\pi\)
−0.854735 + 0.519064i \(0.826281\pi\)
\(192\) −2.63533 + 0.706135i −0.190189 + 0.0509609i
\(193\) −19.5230 11.2716i −1.40529 0.811347i −0.410365 0.911921i \(-0.634599\pi\)
−0.994930 + 0.100574i \(0.967932\pi\)
\(194\) 10.3972 0.746474
\(195\) 0 0
\(196\) −5.93180 −0.423700
\(197\) 10.7381 + 6.19964i 0.765057 + 0.441706i 0.831109 0.556110i \(-0.187707\pi\)
−0.0660512 + 0.997816i \(0.521040\pi\)
\(198\) 20.6257 5.52664i 1.46580 0.392761i
\(199\) −2.59326 4.49166i −0.183831 0.318405i 0.759351 0.650681i \(-0.225517\pi\)
−0.943182 + 0.332276i \(0.892183\pi\)
\(200\) 0 0
\(201\) 9.19935 + 2.46496i 0.648872 + 0.173865i
\(202\) 4.93918 + 8.55490i 0.347519 + 0.601921i
\(203\) 18.7960i 1.31922i
\(204\) 7.48073 4.31900i 0.523756 0.302391i
\(205\) 0 0
\(206\) 1.01377 0.271638i 0.0706324 0.0189259i
\(207\) 12.2218 + 12.2218i 0.849474 + 0.849474i
\(208\) 0.476810 3.57388i 0.0330609 0.247804i
\(209\) 14.5261i 1.00479i
\(210\) 0 0
\(211\) 0.875261 1.51600i 0.0602555 0.104366i −0.834324 0.551274i \(-0.814142\pi\)
0.894580 + 0.446909i \(0.147475\pi\)
\(212\) −0.805862 + 3.00752i −0.0553469 + 0.206557i
\(213\) −26.3451 −1.80513
\(214\) −1.88954 + 7.05186i −0.129166 + 0.482055i
\(215\) 0 0
\(216\) 2.78499 + 2.78499i 0.189495 + 0.189495i
\(217\) 19.6617 + 5.26834i 1.33472 + 0.357638i
\(218\) −0.0180486 0.0673581i −0.00122240 0.00456207i
\(219\) −7.91995 29.5577i −0.535181 1.99732i
\(220\) 0 0
\(221\) 1.47041 + 11.3204i 0.0989105 + 0.761490i
\(222\) −9.85549 + 9.85549i −0.661457 + 0.661457i
\(223\) 8.93366 15.4736i 0.598242 1.03619i −0.394838 0.918751i \(-0.629199\pi\)
0.993081 0.117435i \(-0.0374672\pi\)
\(224\) 3.11430 + 1.79804i 0.208083 + 0.120137i
\(225\) 0 0
\(226\) −3.39882 + 3.39882i −0.226086 + 0.226086i
\(227\) −14.2956 + 8.25357i −0.948833 + 0.547809i −0.892718 0.450615i \(-0.851205\pi\)
−0.0561147 + 0.998424i \(0.517871\pi\)
\(228\) −7.14234 + 4.12363i −0.473013 + 0.273094i
\(229\) −20.6370 + 20.6370i −1.36373 + 1.36373i −0.494626 + 0.869106i \(0.664695\pi\)
−0.869106 + 0.494626i \(0.835305\pi\)
\(230\) 0 0
\(231\) −40.8302 23.5733i −2.68643 1.55101i
\(232\) −2.61340 + 4.52655i −0.171578 + 0.297182i
\(233\) −5.24071 + 5.24071i −0.343330 + 0.343330i −0.857618 0.514288i \(-0.828056\pi\)
0.514288 + 0.857618i \(0.328056\pi\)
\(234\) −14.8127 + 6.10556i −0.968334 + 0.399133i
\(235\) 0 0
\(236\) −2.68705 10.0282i −0.174912 0.652782i
\(237\) −0.860395 3.21104i −0.0558886 0.208579i
\(238\) −10.9975 2.94678i −0.712864 0.191011i
\(239\) −12.8912 12.8912i −0.833859 0.833859i 0.154183 0.988042i \(-0.450725\pi\)
−0.988042 + 0.154183i \(0.950725\pi\)
\(240\) 0 0
\(241\) −3.59785 + 13.4274i −0.231758 + 0.864933i 0.747826 + 0.663895i \(0.231098\pi\)
−0.979584 + 0.201037i \(0.935569\pi\)
\(242\) 12.0919 0.777296
\(243\) −4.88364 + 18.2260i −0.313286 + 1.16920i
\(244\) −0.826168 + 1.43097i −0.0528900 + 0.0916081i
\(245\) 0 0
\(246\) 1.30855i 0.0834302i
\(247\) −1.40390 10.8083i −0.0893278 0.687715i
\(248\) −4.00252 4.00252i −0.254160 0.254160i
\(249\) 28.6517 7.67719i 1.81573 0.486522i
\(250\) 0 0
\(251\) 4.88932 2.82285i 0.308611 0.178177i −0.337694 0.941256i \(-0.609647\pi\)
0.646305 + 0.763079i \(0.276313\pi\)
\(252\) 15.9796i 1.00662i
\(253\) 9.34576 + 16.1873i 0.587563 + 1.01769i
\(254\) 10.5899 + 2.83754i 0.664467 + 0.178043i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.522706 0.140059i 0.0326055 0.00873661i −0.242479 0.970157i \(-0.577961\pi\)
0.275085 + 0.961420i \(0.411294\pi\)
\(258\) −6.78763 3.91884i −0.422579 0.243976i
\(259\) 18.3709 1.14151
\(260\) 0 0
\(261\) 23.2258 1.43764
\(262\) −13.5790 7.83984i −0.838914 0.484347i
\(263\) −0.812458 + 0.217697i −0.0500983 + 0.0134238i −0.283781 0.958889i \(-0.591589\pi\)
0.233683 + 0.972313i \(0.424922\pi\)
\(264\) 6.55528 + 11.3541i 0.403450 + 0.698795i
\(265\) 0 0
\(266\) 10.5001 + 2.81348i 0.643800 + 0.172506i
\(267\) −13.9655 24.1889i −0.854673 1.48034i
\(268\) 3.49077i 0.213233i
\(269\) −16.9355 + 9.77771i −1.03258 + 0.596158i −0.917721 0.397225i \(-0.869973\pi\)
−0.114854 + 0.993382i \(0.536640\pi\)
\(270\) 0 0
\(271\) 15.9289 4.26814i 0.967613 0.259271i 0.259793 0.965664i \(-0.416346\pi\)
0.707820 + 0.706393i \(0.249679\pi\)
\(272\) 2.23876 + 2.23876i 0.135745 + 0.135745i
\(273\) 32.6585 + 13.5939i 1.97658 + 0.822740i
\(274\) 2.84151i 0.171662i
\(275\) 0 0
\(276\) −5.30612 + 9.19046i −0.319391 + 0.553201i
\(277\) 4.14104 15.4546i 0.248811 0.928575i −0.722619 0.691247i \(-0.757062\pi\)
0.971430 0.237328i \(-0.0762716\pi\)
\(278\) 16.0242 0.961067
\(279\) −6.50998 + 24.2956i −0.389742 + 1.45454i
\(280\) 0 0
\(281\) 11.8817 + 11.8817i 0.708805 + 0.708805i 0.966284 0.257479i \(-0.0828917\pi\)
−0.257479 + 0.966284i \(0.582892\pi\)
\(282\) −18.9204 5.06970i −1.12669 0.301896i
\(283\) 6.19613 + 23.1243i 0.368322 + 1.37460i 0.862862 + 0.505440i \(0.168670\pi\)
−0.494540 + 0.869155i \(0.664663\pi\)
\(284\) −2.49922 9.32721i −0.148301 0.553468i
\(285\) 0 0
\(286\) −17.1818 + 2.23175i −1.01598 + 0.131966i
\(287\) −1.21959 + 1.21959i −0.0719901 + 0.0719901i
\(288\) −2.22180 + 3.84827i −0.130921 + 0.226762i
\(289\) 6.04134 + 3.48797i 0.355373 + 0.205175i
\(290\) 0 0
\(291\) 20.0582 20.0582i 1.17583 1.17583i
\(292\) 9.71326 5.60796i 0.568426 0.328181i
\(293\) 15.1081 8.72268i 0.882626 0.509584i 0.0111027 0.999938i \(-0.496466\pi\)
0.871523 + 0.490354i \(0.163133\pi\)
\(294\) −11.4436 + 11.4436i −0.667404 + 0.667404i
\(295\) 0 0
\(296\) −4.42418 2.55430i −0.257150 0.148466i
\(297\) 9.46322 16.3908i 0.549111 0.951089i
\(298\) −7.83153 + 7.83153i −0.453668 + 0.453668i
\(299\) −8.51828 11.1411i −0.492625 0.644309i
\(300\) 0 0
\(301\) 2.67375 + 9.97859i 0.154113 + 0.575156i
\(302\) −0.223106 0.832642i −0.0128383 0.0479132i
\(303\) 26.0327 + 6.97545i 1.49554 + 0.400729i
\(304\) −2.13749 2.13749i −0.122593 0.122593i
\(305\) 0 0
\(306\) 3.64127 13.5894i 0.208158 0.776855i
\(307\) 17.4109 0.993691 0.496845 0.867839i \(-0.334492\pi\)
0.496845 + 0.867839i \(0.334492\pi\)
\(308\) 4.47255 16.6918i 0.254847 0.951103i
\(309\) 1.43171 2.47980i 0.0814472 0.141071i
\(310\) 0 0
\(311\) 7.12206i 0.403855i −0.979400 0.201928i \(-0.935279\pi\)
0.979400 0.201928i \(-0.0647206\pi\)
\(312\) −5.97487 7.81459i −0.338260 0.442414i
\(313\) 4.01387 + 4.01387i 0.226878 + 0.226878i 0.811387 0.584509i \(-0.198713\pi\)
−0.584509 + 0.811387i \(0.698713\pi\)
\(314\) −12.5233 + 3.35562i −0.706733 + 0.189369i
\(315\) 0 0
\(316\) 1.05521 0.609228i 0.0593604 0.0342718i
\(317\) 3.84438i 0.215922i −0.994155 0.107961i \(-0.965568\pi\)
0.994155 0.107961i \(-0.0344322\pi\)
\(318\) 4.24743 + 7.35677i 0.238184 + 0.412547i
\(319\) 24.2611 + 6.50073i 1.35836 + 0.363971i
\(320\) 0 0
\(321\) 9.95913 + 17.2497i 0.555864 + 0.962785i
\(322\) 13.5110 3.62027i 0.752940 0.201750i
\(323\) 8.28841 + 4.78531i 0.461179 + 0.266262i
\(324\) −2.58521 −0.143623
\(325\) 0 0
\(326\) −17.9470 −0.993991
\(327\) −0.164766 0.0951279i −0.00911160 0.00526058i
\(328\) 0.463279 0.124135i 0.0255803 0.00685423i
\(329\) 12.9090 + 22.3591i 0.711698 + 1.23270i
\(330\) 0 0
\(331\) 13.5816 + 3.63918i 0.746513 + 0.200028i 0.611971 0.790880i \(-0.290377\pi\)
0.134542 + 0.990908i \(0.457044\pi\)
\(332\) 5.43606 + 9.41554i 0.298343 + 0.516745i
\(333\) 22.7006i 1.24398i
\(334\) 16.9394 9.77996i 0.926882 0.535136i
\(335\) 0 0
\(336\) 9.47687 2.53932i 0.517005 0.138531i
\(337\) 21.2997 + 21.2997i 1.16027 + 1.16027i 0.984417 + 0.175850i \(0.0562673\pi\)
0.175850 + 0.984417i \(0.443733\pi\)
\(338\) 12.5686 3.32112i 0.683643 0.180645i
\(339\) 13.1140i 0.712253i
\(340\) 0 0
\(341\) −13.6003 + 23.5564i −0.736497 + 1.27565i
\(342\) −3.47656 + 12.9747i −0.187991 + 0.701591i
\(343\) −3.84135 −0.207413
\(344\) 0.743519 2.77485i 0.0400879 0.149610i
\(345\) 0 0
\(346\) 10.5723 + 10.5723i 0.568368 + 0.568368i
\(347\) 4.59560 + 1.23139i 0.246705 + 0.0661043i 0.380052 0.924965i \(-0.375906\pi\)
−0.133348 + 0.991069i \(0.542573\pi\)
\(348\) 3.69083 + 13.7744i 0.197849 + 0.738384i
\(349\) −4.94358 18.4497i −0.264624 0.987589i −0.962480 0.271351i \(-0.912529\pi\)
0.697857 0.716237i \(-0.254137\pi\)
\(350\) 0 0
\(351\) −5.45710 + 13.1103i −0.291279 + 0.699778i
\(352\) −3.39793 + 3.39793i −0.181110 + 0.181110i
\(353\) 2.01134 3.48374i 0.107053 0.185421i −0.807522 0.589837i \(-0.799192\pi\)
0.914575 + 0.404416i \(0.132525\pi\)
\(354\) −24.5303 14.1626i −1.30377 0.752731i
\(355\) 0 0
\(356\) 7.23901 7.23901i 0.383667 0.383667i
\(357\) −26.9013 + 15.5315i −1.42377 + 0.822013i
\(358\) 1.68538 0.973054i 0.0890751 0.0514275i
\(359\) 13.3497 13.3497i 0.704572 0.704572i −0.260816 0.965388i \(-0.583992\pi\)
0.965388 + 0.260816i \(0.0839918\pi\)
\(360\) 0 0
\(361\) 8.54100 + 4.93115i 0.449526 + 0.259534i
\(362\) 11.7910 20.4225i 0.619719 1.07338i
\(363\) 23.3276 23.3276i 1.22438 1.22438i
\(364\) −1.71465 + 12.8520i −0.0898720 + 0.673627i
\(365\) 0 0
\(366\) 1.16677 + 4.35445i 0.0609882 + 0.227611i
\(367\) −9.44083 35.2337i −0.492807 1.83918i −0.541979 0.840392i \(-0.682325\pi\)
0.0491716 0.998790i \(-0.484342\pi\)
\(368\) −3.75715 1.00673i −0.195855 0.0524792i
\(369\) −1.50702 1.50702i −0.0784524 0.0784524i
\(370\) 0 0
\(371\) 2.89795 10.8153i 0.150454 0.561502i
\(372\) −15.4433 −0.800697
\(373\) 4.67650 17.4530i 0.242140 0.903680i −0.732659 0.680596i \(-0.761721\pi\)
0.974799 0.223084i \(-0.0716123\pi\)
\(374\) 7.60715 13.1760i 0.393356 0.681313i
\(375\) 0 0
\(376\) 7.17950i 0.370254i
\(377\) −18.6800 2.49220i −0.962069 0.128355i
\(378\) −10.0151 10.0151i −0.515119 0.515119i
\(379\) 13.1989 3.53663i 0.677982 0.181665i 0.0966343 0.995320i \(-0.469192\pi\)
0.581348 + 0.813655i \(0.302526\pi\)
\(380\) 0 0
\(381\) 25.9041 14.9557i 1.32711 0.766206i
\(382\) 0.612374i 0.0313318i
\(383\) −18.7783 32.5250i −0.959527 1.66195i −0.723650 0.690168i \(-0.757537\pi\)
−0.235878 0.971783i \(-0.575797\pi\)
\(384\) −2.63533 0.706135i −0.134484 0.0360348i
\(385\) 0 0
\(386\) −11.2716 19.5230i −0.573709 0.993693i
\(387\) −12.3303 + 3.30390i −0.626786 + 0.167947i
\(388\) 9.00422 + 5.19859i 0.457120 + 0.263918i
\(389\) 18.5691 0.941492 0.470746 0.882269i \(-0.343985\pi\)
0.470746 + 0.882269i \(0.343985\pi\)
\(390\) 0 0
\(391\) 12.3151 0.622800
\(392\) −5.13709 2.96590i −0.259462 0.149800i
\(393\) −41.3212 + 11.0720i −2.08438 + 0.558507i
\(394\) 6.19964 + 10.7381i 0.312333 + 0.540977i
\(395\) 0 0
\(396\) 20.6257 + 5.52664i 1.03648 + 0.277724i
\(397\) 15.9502 + 27.6266i 0.800517 + 1.38654i 0.919276 + 0.393614i \(0.128775\pi\)
−0.118759 + 0.992923i \(0.537891\pi\)
\(398\) 5.18652i 0.259977i
\(399\) 25.6844 14.8289i 1.28583 0.742374i
\(400\) 0 0
\(401\) −23.9250 + 6.41067i −1.19476 + 0.320134i −0.800764 0.598980i \(-0.795573\pi\)
−0.393992 + 0.919114i \(0.628906\pi\)
\(402\) 6.73439 + 6.73439i 0.335881 + 0.335881i
\(403\) 7.84281 18.8418i 0.390678 0.938578i
\(404\) 9.87835i 0.491466i
\(405\) 0 0
\(406\) 9.39801 16.2778i 0.466415 0.807855i
\(407\) −6.35371 + 23.7124i −0.314942 + 1.17538i
\(408\) 8.63801 0.427645
\(409\) −0.0418829 + 0.156309i −0.00207098 + 0.00772899i −0.966954 0.254952i \(-0.917940\pi\)
0.964883 + 0.262681i \(0.0846068\pi\)
\(410\) 0 0
\(411\) −5.48183 5.48183i −0.270399 0.270399i
\(412\) 1.01377 + 0.271638i 0.0499447 + 0.0133826i
\(413\) 9.66286 + 36.0623i 0.475478 + 1.77451i
\(414\) 4.47349 + 16.6953i 0.219860 + 0.820529i
\(415\) 0 0
\(416\) 2.19987 2.85667i 0.107858 0.140060i
\(417\) 30.9138 30.9138i 1.51386 1.51386i
\(418\) −7.26304 + 12.5799i −0.355247 + 0.615305i
\(419\) −30.7441 17.7501i −1.50195 0.867150i −0.999997 0.00225390i \(-0.999283\pi\)
−0.501951 0.864896i \(-0.667384\pi\)
\(420\) 0 0
\(421\) −9.73738 + 9.73738i −0.474571 + 0.474571i −0.903390 0.428819i \(-0.858930\pi\)
0.428819 + 0.903390i \(0.358930\pi\)
\(422\) 1.51600 0.875261i 0.0737976 0.0426070i
\(423\) −27.6287 + 15.9514i −1.34335 + 0.775585i
\(424\) −2.20166 + 2.20166i −0.106922 + 0.106922i
\(425\) 0 0
\(426\) −22.8155 13.1725i −1.10541 0.638211i
\(427\) 2.97097 5.14587i 0.143775 0.249026i
\(428\) −5.16232 + 5.16232i −0.249530 + 0.249530i
\(429\) −28.8416 + 37.4525i −1.39248 + 1.80823i
\(430\) 0 0
\(431\) −5.14321 19.1947i −0.247740 0.924577i −0.971987 0.235036i \(-0.924479\pi\)
0.724247 0.689541i \(-0.242188\pi\)
\(432\) 1.01938 + 3.80437i 0.0490448 + 0.183038i
\(433\) 13.0872 + 3.50671i 0.628931 + 0.168522i 0.559185 0.829043i \(-0.311114\pi\)
0.0697465 + 0.997565i \(0.477781\pi\)
\(434\) 14.3934 + 14.3934i 0.690904 + 0.690904i
\(435\) 0 0
\(436\) 0.0180486 0.0673581i 0.000864369 0.00322587i
\(437\) −11.7580 −0.562462
\(438\) 7.91995 29.5577i 0.378430 1.41232i
\(439\) 6.26431 10.8501i 0.298979 0.517848i −0.676923 0.736054i \(-0.736687\pi\)
0.975903 + 0.218206i \(0.0700205\pi\)
\(440\) 0 0
\(441\) 26.3585i 1.25517i
\(442\) −4.38677 + 10.5389i −0.208657 + 0.501286i
\(443\) 18.7098 + 18.7098i 0.888931 + 0.888931i 0.994420 0.105489i \(-0.0336408\pi\)
−0.105489 + 0.994420i \(0.533641\pi\)
\(444\) −13.4629 + 3.60736i −0.638919 + 0.171198i
\(445\) 0 0
\(446\) 15.4736 8.93366i 0.732694 0.423021i
\(447\) 30.2171i 1.42922i
\(448\) 1.79804 + 3.11430i 0.0849494 + 0.147137i
\(449\) −8.84055 2.36882i −0.417212 0.111791i 0.0441055 0.999027i \(-0.485956\pi\)
−0.461317 + 0.887235i \(0.652623\pi\)
\(450\) 0 0
\(451\) −1.15239 1.99600i −0.0542639 0.0939878i
\(452\) −4.64287 + 1.24405i −0.218382 + 0.0585153i
\(453\) −2.03675 1.17592i −0.0956946 0.0552493i
\(454\) −16.5071 −0.774719
\(455\) 0 0
\(456\) −8.24727 −0.386214
\(457\) 13.6510 + 7.88142i 0.638568 + 0.368677i 0.784063 0.620682i \(-0.213144\pi\)
−0.145495 + 0.989359i \(0.546477\pi\)
\(458\) −28.1907 + 7.55367i −1.31726 + 0.352960i
\(459\) −6.23492 10.7992i −0.291021 0.504064i
\(460\) 0 0
\(461\) −20.0961 5.38473i −0.935968 0.250792i −0.241570 0.970383i \(-0.577662\pi\)
−0.694398 + 0.719592i \(0.744329\pi\)
\(462\) −23.5733 40.8302i −1.09673 1.89959i
\(463\) 27.9249i 1.29778i −0.760883 0.648889i \(-0.775234\pi\)
0.760883 0.648889i \(-0.224766\pi\)
\(464\) −4.52655 + 2.61340i −0.210140 + 0.121324i
\(465\) 0 0
\(466\) −7.15894 + 1.91823i −0.331632 + 0.0888604i
\(467\) −23.6492 23.6492i −1.09435 1.09435i −0.995058 0.0992957i \(-0.968341\pi\)
−0.0992957 0.995058i \(-0.531659\pi\)
\(468\) −15.8809 2.11876i −0.734096 0.0979395i
\(469\) 12.5531i 0.579648i
\(470\) 0 0
\(471\) −17.6863 + 30.6336i −0.814944 + 1.41152i
\(472\) 2.68705 10.0282i 0.123682 0.461586i
\(473\) −13.8047 −0.634739
\(474\) 0.860395 3.21104i 0.0395192 0.147488i
\(475\) 0 0
\(476\) −8.05075 8.05075i −0.369006 0.369006i
\(477\) 13.3642 + 3.58093i 0.611906 + 0.163960i
\(478\) −4.71849 17.6096i −0.215819 0.805446i
\(479\) 6.87884 + 25.6722i 0.314302 + 1.17299i 0.924638 + 0.380848i \(0.124368\pi\)
−0.610335 + 0.792143i \(0.708965\pi\)
\(480\) 0 0
\(481\) 2.43583 18.2575i 0.111064 0.832472i
\(482\) −9.82951 + 9.82951i −0.447722 + 0.447722i
\(483\) 19.0812 33.0496i 0.868225 1.50381i
\(484\) 10.4719 + 6.04595i 0.475995 + 0.274816i
\(485\) 0 0
\(486\) −13.3424 + 13.3424i −0.605221 + 0.605221i
\(487\) 14.9953 8.65752i 0.679500 0.392310i −0.120166 0.992754i \(-0.538343\pi\)
0.799667 + 0.600444i \(0.205009\pi\)
\(488\) −1.43097 + 0.826168i −0.0647767 + 0.0373989i
\(489\) −34.6232 + 34.6232i −1.56572 + 1.56572i
\(490\) 0 0
\(491\) 3.48033 + 2.00937i 0.157065 + 0.0906815i 0.576472 0.817117i \(-0.304429\pi\)
−0.419407 + 0.907798i \(0.637762\pi\)
\(492\) 0.654276 1.13324i 0.0294970 0.0510903i
\(493\) 11.7016 11.7016i 0.527011 0.527011i
\(494\) 4.18834 10.0622i 0.188442 0.452720i
\(495\) 0 0
\(496\) −1.46502 5.46754i −0.0657815 0.245500i
\(497\) 8.98739 + 33.5414i 0.403139 + 1.50454i
\(498\) 28.6517 + 7.67719i 1.28391 + 0.344023i
\(499\) −7.93374 7.93374i −0.355163 0.355163i 0.506864 0.862026i \(-0.330805\pi\)
−0.862026 + 0.506864i \(0.830805\pi\)
\(500\) 0 0
\(501\) 13.8119 51.5469i 0.617072 2.30295i
\(502\) 5.64570 0.251980
\(503\) −0.784369 + 2.92730i −0.0349733 + 0.130522i −0.981205 0.192967i \(-0.938189\pi\)
0.946232 + 0.323489i \(0.104856\pi\)
\(504\) 7.98978 13.8387i 0.355893 0.616425i
\(505\) 0 0
\(506\) 18.6915i 0.830940i
\(507\) 17.8402 30.6544i 0.792313 1.36141i
\(508\) 7.75232 + 7.75232i 0.343953 + 0.343953i
\(509\) 39.0675 10.4681i 1.73164 0.463991i 0.751078 0.660214i \(-0.229534\pi\)
0.980559 + 0.196223i \(0.0628676\pi\)
\(510\) 0 0
\(511\) −34.9297 + 20.1667i −1.54520 + 0.892121i
\(512\) 1.00000i 0.0441942i
\(513\) 5.95288 + 10.3107i 0.262826 + 0.455228i
\(514\) 0.522706 + 0.140059i 0.0230556 + 0.00617772i
\(515\) 0 0
\(516\) −3.91884 6.78763i −0.172517 0.298809i
\(517\) −33.3248 + 8.92936i −1.46562 + 0.392713i
\(518\) 15.9097 + 9.18547i 0.699032 + 0.403586i
\(519\) 40.7919 1.79057
\(520\) 0 0
\(521\) 17.0630 0.747546 0.373773 0.927520i \(-0.378064\pi\)
0.373773 + 0.927520i \(0.378064\pi\)
\(522\) 20.1142 + 11.6129i 0.880374 + 0.508284i
\(523\) −31.0973 + 8.33249i −1.35979 + 0.364354i −0.863739 0.503939i \(-0.831884\pi\)
−0.496050 + 0.868294i \(0.665217\pi\)
\(524\) −7.83984 13.5790i −0.342485 0.593202i
\(525\) 0 0
\(526\) −0.812458 0.217697i −0.0354249 0.00949206i
\(527\) 8.96067 + 15.5203i 0.390333 + 0.676076i
\(528\) 13.1106i 0.570564i
\(529\) 6.81588 3.93515i 0.296343 0.171094i
\(530\) 0 0
\(531\) −44.5614 + 11.9402i −1.93380 + 0.518160i
\(532\) 7.68657 + 7.68657i 0.333255 + 0.333255i
\(533\) 1.05035 + 1.37377i 0.0454959 + 0.0595045i
\(534\) 27.9309i 1.20869i
\(535\) 0 0
\(536\) −1.74539 + 3.02310i −0.0753892 + 0.130578i
\(537\) 1.37422 5.12864i 0.0593018 0.221317i
\(538\) −19.5554 −0.843094
\(539\) −7.37755 + 27.5334i −0.317774 + 1.18595i
\(540\) 0 0
\(541\) −6.85528 6.85528i −0.294732 0.294732i 0.544215 0.838946i \(-0.316828\pi\)
−0.838946 + 0.544215i \(0.816828\pi\)
\(542\) 15.9289 + 4.26814i 0.684206 + 0.183332i
\(543\) −16.6520 62.1462i −0.714607 2.66695i
\(544\) 0.819442 + 3.05820i 0.0351333 + 0.131119i
\(545\) 0 0
\(546\) 21.4861 + 28.1019i 0.919520 + 1.20265i
\(547\) −2.06001 + 2.06001i −0.0880795 + 0.0880795i −0.749774 0.661694i \(-0.769838\pi\)
0.661694 + 0.749774i \(0.269838\pi\)
\(548\) 1.42075 2.46082i 0.0606916 0.105121i
\(549\) 6.35864 + 3.67116i 0.271380 + 0.156681i
\(550\) 0 0
\(551\) −11.1722 + 11.1722i −0.475953 + 0.475953i
\(552\) −9.19046 + 5.30612i −0.391172 + 0.225843i
\(553\) −3.79463 + 2.19083i −0.161364 + 0.0931637i
\(554\) 11.3135 11.3135i 0.480666 0.480666i
\(555\) 0 0
\(556\) 13.8773 + 8.01209i 0.588531 + 0.339788i
\(557\) 13.4218 23.2473i 0.568701 0.985019i −0.427994 0.903782i \(-0.640779\pi\)
0.996695 0.0812375i \(-0.0258872\pi\)
\(558\) −17.7856 + 17.7856i −0.752924 + 0.752924i
\(559\) 10.2715 1.33417i 0.434439 0.0564295i
\(560\) 0 0
\(561\) −10.7433 40.0947i −0.453584 1.69280i
\(562\) 4.34902 + 16.2308i 0.183452 + 0.684653i
\(563\) −29.0211 7.77619i −1.22309 0.327727i −0.411208 0.911542i \(-0.634893\pi\)
−0.811887 + 0.583815i \(0.801560\pi\)
\(564\) −13.8507 13.8507i −0.583218 0.583218i
\(565\) 0 0
\(566\) −6.19613 + 23.1243i −0.260443 + 0.971986i
\(567\) 9.29662 0.390421
\(568\) 2.49922 9.32721i 0.104865 0.391361i
\(569\) 10.0733 17.4475i 0.422296 0.731438i −0.573868 0.818948i \(-0.694558\pi\)
0.996164 + 0.0875099i \(0.0278909\pi\)
\(570\) 0 0
\(571\) 13.4281i 0.561947i −0.959716 0.280973i \(-0.909343\pi\)
0.959716 0.280973i \(-0.0906573\pi\)
\(572\) −15.9957 6.65814i −0.668816 0.278391i
\(573\) 1.18139 + 1.18139i 0.0493533 + 0.0493533i
\(574\) −1.66599 + 0.446401i −0.0695371 + 0.0186324i
\(575\) 0 0
\(576\) −3.84827 + 2.22180i −0.160345 + 0.0925750i
\(577\) 42.6338i 1.77487i 0.460935 + 0.887434i \(0.347514\pi\)
−0.460935 + 0.887434i \(0.652486\pi\)
\(578\) 3.48797 + 6.04134i 0.145080 + 0.251286i
\(579\) −59.4088 15.9185i −2.46895 0.661552i
\(580\) 0 0
\(581\) −19.5485 33.8590i −0.811009 1.40471i
\(582\) 27.4000 7.34181i 1.13577 0.304328i
\(583\) 12.9576 + 7.48108i 0.536650 + 0.309835i
\(584\) 11.2159 0.464118
\(585\) 0 0
\(586\) 17.4454 0.720661
\(587\) −9.58635 5.53468i −0.395671 0.228441i 0.288943 0.957346i \(-0.406696\pi\)
−0.684614 + 0.728905i \(0.740029\pi\)
\(588\) −15.6323 + 4.18865i −0.644663 + 0.172737i
\(589\) −8.55533 14.8183i −0.352516 0.610576i
\(590\) 0 0
\(591\) 32.6762 + 8.75557i 1.34412 + 0.360156i
\(592\) −2.55430 4.42418i −0.104981 0.181833i
\(593\) 14.9703i 0.614758i 0.951587 + 0.307379i \(0.0994519\pi\)
−0.951587 + 0.307379i \(0.900548\pi\)
\(594\) 16.3908 9.46322i 0.672521 0.388280i
\(595\) 0 0
\(596\) −10.6981 + 2.86654i −0.438210 + 0.117418i
\(597\) −10.0058 10.0058i −0.409511 0.409511i
\(598\) −1.80647 13.9076i −0.0738722 0.568726i
\(599\) 31.8600i 1.30176i 0.759179 + 0.650882i \(0.225601\pi\)
−0.759179 + 0.650882i \(0.774399\pi\)
\(600\) 0 0
\(601\) 12.5762 21.7825i 0.512992 0.888528i −0.486895 0.873461i \(-0.661870\pi\)
0.999886 0.0150673i \(-0.00479624\pi\)
\(602\) −2.67375 + 9.97859i −0.108974 + 0.406697i
\(603\) 15.5116 0.631681
\(604\) 0.223106 0.832642i 0.00907804 0.0338797i
\(605\) 0 0
\(606\) 19.0573 + 19.0573i 0.774149 + 0.774149i
\(607\) −13.0370 3.49326i −0.529156 0.141787i −0.0156574 0.999877i \(-0.504984\pi\)
−0.513498 + 0.858091i \(0.671651\pi\)
\(608\) −0.782374 2.91986i −0.0317295 0.118416i
\(609\) −13.2725 49.5337i −0.537830 2.00721i
\(610\) 0 0
\(611\) 23.9327 9.86472i 0.968214 0.399084i
\(612\) 9.94814 9.94814i 0.402130 0.402130i
\(613\) −0.774696 + 1.34181i −0.0312897 + 0.0541953i −0.881246 0.472658i \(-0.843295\pi\)
0.849957 + 0.526853i \(0.176628\pi\)
\(614\) 15.0783 + 8.70544i 0.608509 + 0.351323i
\(615\) 0 0
\(616\) 12.2192 12.2192i 0.492327 0.492327i
\(617\) −0.323594 + 0.186827i −0.0130274 + 0.00752138i −0.506500 0.862240i \(-0.669061\pi\)
0.493472 + 0.869762i \(0.335727\pi\)
\(618\) 2.47980 1.43171i 0.0997521 0.0575919i
\(619\) −10.9674 + 10.9674i −0.440817 + 0.440817i −0.892287 0.451469i \(-0.850900\pi\)
0.451469 + 0.892287i \(0.350900\pi\)
\(620\) 0 0
\(621\) 13.2674 + 7.65992i 0.532401 + 0.307382i
\(622\) 3.56103 6.16789i 0.142784 0.247310i
\(623\) −26.0321 + 26.0321i −1.04295 + 1.04295i
\(624\) −1.26709 9.75507i −0.0507243 0.390515i
\(625\) 0 0
\(626\) 1.46918 + 5.48305i 0.0587202 + 0.219147i
\(627\) 10.2574 + 38.2810i 0.409640 + 1.52880i
\(628\) −12.5233 3.35562i −0.499736 0.133904i
\(629\) 11.4369 + 11.4369i 0.456019 + 0.456019i
\(630\) 0 0
\(631\) −5.85911 + 21.8665i −0.233247 + 0.870491i 0.745684 + 0.666300i \(0.232123\pi\)
−0.978931 + 0.204191i \(0.934544\pi\)
\(632\) 1.21846 0.0484676
\(633\) 1.23611 4.61321i 0.0491308 0.183359i
\(634\) 1.92219 3.32933i 0.0763400 0.132225i
\(635\) 0 0
\(636\) 8.49486i 0.336843i
\(637\) 2.82834 21.1996i 0.112063 0.839957i
\(638\) 17.7603 + 17.7603i 0.703138 + 0.703138i
\(639\) −41.4464 + 11.1055i −1.63959 + 0.439328i
\(640\) 0 0
\(641\) −7.24531 + 4.18308i −0.286173 + 0.165222i −0.636215 0.771512i \(-0.719501\pi\)
0.350042 + 0.936734i \(0.386167\pi\)
\(642\) 19.9183i 0.786111i
\(643\) 12.3583 + 21.4051i 0.487362 + 0.844136i 0.999894 0.0145319i \(-0.00462582\pi\)
−0.512532 + 0.858668i \(0.671292\pi\)
\(644\) 13.5110 + 3.62027i 0.532409 + 0.142659i
\(645\) 0 0
\(646\) 4.78531 + 8.28841i 0.188276 + 0.326103i
\(647\) −32.3337 + 8.66380i −1.27117 + 0.340609i −0.830479 0.557049i \(-0.811933\pi\)
−0.440691 + 0.897659i \(0.645267\pi\)
\(648\) −2.23886 1.29260i −0.0879506 0.0507783i
\(649\) −49.8896 −1.95834
\(650\) 0 0
\(651\) 55.5353 2.17660
\(652\) −15.5425 8.97349i −0.608693 0.351429i
\(653\) −16.2850 + 4.36355i −0.637281 + 0.170759i −0.562972 0.826476i \(-0.690342\pi\)
−0.0743095 + 0.997235i \(0.523675\pi\)
\(654\) −0.0951279 0.164766i −0.00371979 0.00644287i
\(655\) 0 0
\(656\) 0.463279 + 0.124135i 0.0180880 + 0.00484667i
\(657\) −24.9195 43.1619i −0.972203 1.68391i
\(658\) 25.8181i 1.00649i
\(659\) 15.3740 8.87621i 0.598888 0.345768i −0.169716 0.985493i \(-0.554285\pi\)
0.768604 + 0.639725i \(0.220952\pi\)
\(660\) 0 0
\(661\) −3.40284 + 0.911788i −0.132355 + 0.0354645i −0.324388 0.945924i \(-0.605158\pi\)
0.192033 + 0.981388i \(0.438492\pi\)
\(662\) 9.94243 + 9.94243i 0.386423 + 0.386423i
\(663\) 11.8687 + 28.7946i 0.460943 + 1.11829i
\(664\) 10.8721i 0.421920i
\(665\) 0 0
\(666\) −11.3503 + 19.6593i −0.439815 + 0.761781i
\(667\) −5.26196 + 19.6379i −0.203744 + 0.760383i
\(668\) 19.5599 0.756796
\(669\) 12.6167 47.0863i 0.487791 1.82046i
\(670\) 0 0
\(671\) 5.61453 + 5.61453i 0.216746 + 0.216746i
\(672\) 9.47687 + 2.53932i 0.365578 + 0.0979563i
\(673\) −6.12305 22.8515i −0.236026 0.880861i −0.977684 0.210083i \(-0.932627\pi\)
0.741657 0.670779i \(-0.234040\pi\)
\(674\) 7.79622 + 29.0959i 0.300299 + 1.12073i
\(675\) 0 0
\(676\) 12.5453 + 3.40813i 0.482512 + 0.131082i
\(677\) −12.1351 + 12.1351i −0.466389 + 0.466389i −0.900742 0.434354i \(-0.856977\pi\)
0.434354 + 0.900742i \(0.356977\pi\)
\(678\) −6.55699 + 11.3570i −0.251819 + 0.436164i
\(679\) −32.3799 18.6946i −1.24263 0.717431i
\(680\) 0 0
\(681\) −31.8455 + 31.8455i −1.22032 + 1.22032i
\(682\) −23.5564 + 13.6003i −0.902021 + 0.520782i
\(683\) −14.7605 + 8.52200i −0.564796 + 0.326085i −0.755068 0.655646i \(-0.772396\pi\)
0.190272 + 0.981731i \(0.439063\pi\)
\(684\) −9.49814 + 9.49814i −0.363170 + 0.363170i
\(685\) 0 0
\(686\) −3.32671 1.92067i −0.127014 0.0733317i
\(687\) −39.8128 + 68.9579i −1.51895 + 2.63091i
\(688\) 2.03133 2.03133i 0.0774438 0.0774438i
\(689\) −10.3643 4.31408i −0.394848 0.164353i
\(690\) 0 0
\(691\) 3.39371 + 12.6655i 0.129103 + 0.481818i 0.999953 0.00973090i \(-0.00309749\pi\)
−0.870850 + 0.491549i \(0.836431\pi\)
\(692\) 3.86971 + 14.4420i 0.147104 + 0.549001i
\(693\) −74.1717 19.8742i −2.81755 0.754960i
\(694\) 3.36421 + 3.36421i 0.127704 + 0.127704i
\(695\) 0 0
\(696\) −3.69083 + 13.7744i −0.139901 + 0.522116i
\(697\) −1.51852 −0.0575181
\(698\) 4.94358 18.4497i 0.187117 0.698331i
\(699\) −10.1104 + 17.5117i −0.382409 + 0.662352i
\(700\) 0 0
\(701\) 46.8894i 1.77099i 0.464649 + 0.885495i \(0.346180\pi\)
−0.464649 + 0.885495i \(0.653820\pi\)
\(702\) −11.2812 + 8.62533i −0.425780 + 0.325542i
\(703\) −10.9196 10.9196i −0.411839 0.411839i
\(704\) −4.64166 + 1.24373i −0.174939 + 0.0468748i
\(705\) 0 0
\(706\) 3.48374 2.01134i 0.131112 0.0756978i
\(707\) 35.5233i 1.33599i
\(708\) −14.1626 24.5303i −0.532262 0.921904i
\(709\) 5.34513 + 1.43222i 0.200741 + 0.0537883i 0.357788 0.933803i \(-0.383531\pi\)
−0.157048 + 0.987591i \(0.550198\pi\)
\(710\) 0 0
\(711\) −2.70717 4.68895i −0.101527 0.175849i
\(712\) 9.88867 2.64966i 0.370594 0.0993002i
\(713\) −19.0675 11.0086i −0.714084 0.412277i
\(714\) −31.0630 −1.16250
\(715\) 0 0
\(716\) 1.94611 0.0727295
\(717\) −43.0754 24.8696i −1.60868 0.928771i
\(718\) 18.2361 4.88634i 0.680564 0.182357i
\(719\) −16.6164 28.7804i −0.619686 1.07333i −0.989543 0.144239i \(-0.953927\pi\)
0.369857 0.929089i \(-0.379407\pi\)
\(720\) 0 0
\(721\) −3.64558 0.976831i −0.135769 0.0363791i
\(722\) 4.93115 + 8.54100i 0.183518 + 0.317863i
\(723\) 37.9261i 1.41049i
\(724\) 20.4225 11.7910i 0.758998 0.438208i
\(725\) 0 0
\(726\) 31.8661 8.53851i 1.18266 0.316894i
\(727\) 16.7584 + 16.7584i 0.621535 + 0.621535i 0.945924 0.324389i \(-0.105159\pi\)
−0.324389 + 0.945924i \(0.605159\pi\)
\(728\) −7.91092 + 10.2728i −0.293198 + 0.380736i
\(729\) 43.7244i 1.61942i
\(730\) 0 0
\(731\) −4.54766 + 7.87677i −0.168201 + 0.291333i
\(732\) −1.16677 + 4.35445i −0.0431252 + 0.160945i
\(733\) 17.6137 0.650578 0.325289 0.945615i \(-0.394538\pi\)
0.325289 + 0.945615i \(0.394538\pi\)
\(734\) 9.44083 35.2337i 0.348467 1.30050i
\(735\) 0 0
\(736\) −2.75043 2.75043i −0.101382 0.101382i
\(737\) 16.2030 + 4.34158i 0.596845 + 0.159924i
\(738\) −0.551608 2.05863i −0.0203050 0.0757792i
\(739\) 8.08488 + 30.1732i 0.297407 + 1.10994i 0.939287 + 0.343133i \(0.111488\pi\)
−0.641879 + 0.766806i \(0.721845\pi\)
\(740\) 0 0
\(741\) −11.3318 27.4921i −0.416286 1.00995i
\(742\) 7.91734 7.91734i 0.290655 0.290655i
\(743\) −7.20098 + 12.4725i −0.264178 + 0.457570i −0.967348 0.253452i \(-0.918434\pi\)
0.703170 + 0.711022i \(0.251767\pi\)
\(744\) −13.3743 7.72165i −0.490325 0.283089i
\(745\) 0 0
\(746\) 12.7764 12.7764i 0.467779 0.467779i
\(747\) 41.8389 24.1557i 1.53081 0.883811i
\(748\) 13.1760 7.60715i 0.481761 0.278145i
\(749\) 18.5641 18.5641i 0.678318 0.678318i
\(750\) 0 0
\(751\) −22.8244 13.1777i −0.832875 0.480861i 0.0219611 0.999759i \(-0.493009\pi\)
−0.854836 + 0.518898i \(0.826342\pi\)
\(752\) 3.58975 6.21763i 0.130905 0.226734i
\(753\) 10.8917 10.8917i 0.396915 0.396915i
\(754\) −14.9313 11.4983i −0.543764 0.418744i
\(755\) 0 0
\(756\) −3.66577 13.6808i −0.133323 0.497567i
\(757\) −12.8291 47.8787i −0.466280 1.74018i −0.652610 0.757694i \(-0.726326\pi\)
0.186330 0.982487i \(-0.440341\pi\)
\(758\) 13.1989 + 3.53663i 0.479406 + 0.128456i
\(759\) 36.0596 + 36.0596i 1.30888 + 1.30888i
\(760\) 0 0
\(761\) −9.10073 + 33.9644i −0.329901 + 1.23121i 0.579391 + 0.815050i \(0.303290\pi\)
−0.909292 + 0.416158i \(0.863376\pi\)
\(762\) 29.9115 1.08358
\(763\) −0.0649040 + 0.242225i −0.00234968 + 0.00876914i
\(764\) −0.306187 + 0.530332i −0.0110775 + 0.0191867i
\(765\) 0 0
\(766\) 37.5566i 1.35698i
\(767\) 37.1209 4.82166i 1.34036 0.174100i
\(768\) −1.92920 1.92920i −0.0696139 0.0696139i
\(769\) 36.6444 9.81885i 1.32143 0.354077i 0.471918 0.881642i \(-0.343562\pi\)
0.849514 + 0.527566i \(0.176895\pi\)
\(770\) 0 0
\(771\) 1.27860 0.738202i 0.0460478 0.0265857i
\(772\) 22.5432i 0.811347i
\(773\) −0.546174 0.946002i −0.0196445 0.0340253i 0.856036 0.516916i \(-0.172920\pi\)
−0.875681 + 0.482891i \(0.839587\pi\)
\(774\) −12.3303 3.30390i −0.443205 0.118756i
\(775\) 0 0
\(776\) 5.19859 + 9.00422i 0.186619 + 0.323233i
\(777\) 48.4135 12.9724i 1.73682 0.465381i
\(778\) 16.0813 + 9.28456i 0.576544 + 0.332868i
\(779\) 1.44983 0.0519456
\(780\) 0 0
\(781\) −46.4021 −1.66040
\(782\) 10.6652 + 6.15754i 0.381386 + 0.220193i
\(783\) 19.8847 5.32809i 0.710622 0.190410i
\(784\) −2.96590 5.13709i −0.105925 0.183467i
\(785\) 0 0
\(786\) −41.3212 11.0720i −1.47388 0.394924i
\(787\) −8.13003 14.0816i −0.289804 0.501956i 0.683958 0.729521i \(-0.260257\pi\)
−0.973763 + 0.227565i \(0.926924\pi\)
\(788\) 12.3993i 0.441706i
\(789\) −1.98737 + 1.14741i −0.0707524 + 0.0408489i
\(790\) 0 0
\(791\) 16.6961 4.47371i 0.593646 0.159067i
\(792\) 15.0991 + 15.0991i 0.536522 + 0.536522i
\(793\) −4.72018 3.63493i −0.167618 0.129080i
\(794\) 31.9004i 1.13210i
\(795\) 0 0
\(796\) 2.59326 4.49166i 0.0919156 0.159203i
\(797\) −1.64815 + 6.15098i −0.0583805 + 0.217879i −0.988953 0.148228i \(-0.952643\pi\)
0.930573 + 0.366107i \(0.119310\pi\)
\(798\) 29.6578 1.04988
\(799\) −5.88318 + 21.9563i −0.208132 + 0.776760i
\(800\) 0 0
\(801\) −32.1673 32.1673i −1.13657 1.13657i
\(802\) −23.9250 6.41067i −0.844820 0.226369i
\(803\) −13.9496 52.0605i −0.492269 1.83717i
\(804\) 2.46496 + 9.19935i 0.0869323 + 0.324436i
\(805\) 0 0
\(806\) 16.2130 12.3961i 0.571078 0.436634i
\(807\) −37.7263 + 37.7263i −1.32803 + 1.32803i
\(808\) −4.93918 + 8.55490i −0.173760 + 0.300960i
\(809\) −42.1143 24.3147i −1.48066 0.854859i −0.480900 0.876776i \(-0.659690\pi\)
−0.999760 + 0.0219163i \(0.993023\pi\)
\(810\) 0 0
\(811\) 30.3677 30.3677i 1.06635 1.06635i 0.0687168 0.997636i \(-0.478110\pi\)
0.997636 0.0687168i \(-0.0218905\pi\)
\(812\) 16.2778 9.39801i 0.571240 0.329805i
\(813\) 38.9641 22.4959i 1.36653 0.788967i
\(814\) −17.3587 + 17.3587i −0.608421 + 0.608421i
\(815\) 0 0
\(816\) 7.48073 + 4.31900i 0.261878 + 0.151195i
\(817\) 4.34194 7.52047i 0.151905 0.263108i
\(818\) −0.114426 + 0.114426i −0.00400082 + 0.00400082i
\(819\) 57.1091 + 7.61922i 1.99555 + 0.266237i
\(820\) 0 0
\(821\) 2.22871 + 8.31766i 0.0777826 + 0.290288i 0.993850 0.110736i \(-0.0353209\pi\)
−0.916067 + 0.401025i \(0.868654\pi\)
\(822\) −2.00649 7.48832i −0.0699844 0.261185i
\(823\) 19.5380 + 5.23518i 0.681050 + 0.182487i 0.582727 0.812668i \(-0.301986\pi\)
0.0983229 + 0.995155i \(0.468652\pi\)
\(824\) 0.742128 + 0.742128i 0.0258533 + 0.0258533i
\(825\) 0 0
\(826\) −9.66286 + 36.0623i −0.336214 + 1.25477i
\(827\) 27.1385 0.943698 0.471849 0.881679i \(-0.343587\pi\)
0.471849 + 0.881679i \(0.343587\pi\)
\(828\) −4.47349 + 16.6953i −0.155465 + 0.580202i
\(829\) −6.63461 + 11.4915i −0.230430 + 0.399116i −0.957935 0.286987i \(-0.907346\pi\)
0.727505 + 0.686102i \(0.240680\pi\)
\(830\) 0 0
\(831\) 43.6520i 1.51427i
\(832\) 3.33348 1.37401i 0.115568 0.0476353i
\(833\) 13.2798 + 13.2798i 0.460119 + 0.460119i
\(834\) 42.2290 11.3152i 1.46227 0.391815i
\(835\) 0 0
\(836\) −12.5799 + 7.26304i −0.435087 + 0.251197i
\(837\) 22.2940i 0.770592i
\(838\) −17.7501 30.7441i −0.613168 1.06204i
\(839\) −20.8525 5.58740i −0.719907 0.192899i −0.119777 0.992801i \(-0.538218\pi\)
−0.600130 + 0.799902i \(0.704885\pi\)
\(840\) 0 0
\(841\) −0.840245 1.45535i −0.0289740 0.0501844i
\(842\) −13.3015 + 3.56413i −0.458400 + 0.122828i
\(843\) 39.7024 + 22.9222i 1.36742 + 0.789483i
\(844\) 1.75052 0.0602555
\(845\) 0 0
\(846\) −31.9028 −1.09684
\(847\) −37.6577 21.7417i −1.29394 0.747054i
\(848\) −3.00752 + 0.805862i −0.103279 + 0.0276734i
\(849\) 32.6577 + 56.5648i 1.12081 + 1.94130i
\(850\) 0 0
\(851\) −19.1938 5.14296i −0.657954 0.176298i
\(852\) −13.1725 22.8155i −0.451284 0.781646i
\(853\) 8.54409i 0.292544i 0.989244 + 0.146272i \(0.0467275\pi\)
−0.989244 + 0.146272i \(0.953273\pi\)
\(854\) 5.14587 2.97097i 0.176088 0.101664i
\(855\) 0 0
\(856\) −7.05186 + 1.88954i −0.241027 + 0.0645831i
\(857\) −25.0597 25.0597i −0.856023 0.856023i 0.134844 0.990867i \(-0.456947\pi\)
−0.990867 + 0.134844i \(0.956947\pi\)
\(858\) −43.7038 + 18.0141i −1.49202 + 0.614990i
\(859\) 20.1553i 0.687691i 0.939026 + 0.343845i \(0.111730\pi\)
−0.939026 + 0.343845i \(0.888270\pi\)
\(860\) 0 0
\(861\) −2.35283 + 4.07522i −0.0801842 + 0.138883i
\(862\) 5.14321 19.1947i 0.175178 0.653775i
\(863\) −50.9511 −1.73440 −0.867198 0.497964i \(-0.834081\pi\)
−0.867198 + 0.497964i \(0.834081\pi\)
\(864\) −1.01938 + 3.80437i −0.0346799 + 0.129427i
\(865\) 0 0
\(866\) 9.58050 + 9.58050i 0.325559 + 0.325559i
\(867\) 18.3839 + 4.92595i 0.624350 + 0.167294i
\(868\) 5.26834 + 19.6617i 0.178819 + 0.667362i
\(869\) −1.51543 5.65566i −0.0514074 0.191855i
\(870\) 0 0
\(871\) −12.4756 1.66444i −0.422720 0.0563973i
\(872\) 0.0493096 0.0493096i 0.00166983 0.00166983i
\(873\) 23.1005 40.0112i 0.781832 1.35417i
\(874\) −10.1827 5.87900i −0.344436 0.198860i
\(875\) 0 0
\(876\) 21.6377 21.6377i 0.731070 0.731070i
\(877\) −36.5646 + 21.1106i −1.23470 + 0.712854i −0.968006 0.250928i \(-0.919264\pi\)
−0.266693 + 0.963781i \(0.585931\pi\)
\(878\) 10.8501 6.26431i 0.366174 0.211410i
\(879\) 33.6555 33.6555i 1.13517 1.13517i
\(880\) 0 0
\(881\) 4.93061 + 2.84669i 0.166116 + 0.0959074i 0.580753 0.814080i \(-0.302758\pi\)
−0.414637 + 0.909987i \(0.636091\pi\)
\(882\) −13.1793 + 22.8272i −0.443769 + 0.768631i
\(883\) 6.32029 6.32029i 0.212695 0.212695i −0.592717 0.805411i \(-0.701945\pi\)
0.805411 + 0.592717i \(0.201945\pi\)
\(884\) −9.06852 + 6.93360i −0.305007 + 0.233202i
\(885\) 0 0
\(886\) 6.84828 + 25.5581i 0.230072 + 0.858642i
\(887\) −12.3916 46.2462i −0.416070 1.55279i −0.782683 0.622421i \(-0.786149\pi\)
0.366613 0.930374i \(-0.380517\pi\)
\(888\) −13.4629 3.60736i −0.451784 0.121055i
\(889\) −27.8780 27.8780i −0.934996 0.934996i
\(890\) 0 0
\(891\) −3.21530 + 11.9997i −0.107717 + 0.402004i
\(892\) 17.8673 0.598242
\(893\) 5.61706 20.9631i 0.187968 0.701505i
\(894\) −15.1086 + 26.1688i −0.505306 + 0.875215i
\(895\) 0 0
\(896\) 3.59608i 0.120137i
\(897\) −30.3156 23.3456i −1.01221 0.779485i
\(898\) −6.47173 6.47173i −0.215965 0.215965i
\(899\) −28.5778 + 7.65739i −0.953122 + 0.255388i
\(900\) 0 0
\(901\) 8.53724 4.92898i 0.284417 0.164208i
\(902\) 2.30478i 0.0767407i
\(903\) 14.0925 + 24.4089i 0.468968 + 0.812276i
\(904\) −4.64287 1.24405i −0.154420 0.0413766i
\(905\) 0 0
\(906\) −1.17592 2.03675i −0.0390672 0.0676663i
\(907\) 20.9354 5.60963i 0.695149 0.186265i 0.106092 0.994356i \(-0.466166\pi\)
0.589057 + 0.808092i \(0.299499\pi\)
\(908\) −14.2956 8.25357i −0.474416 0.273904i
\(909\) 43.8955 1.45592
\(910\) 0 0
\(911\) −10.5156 −0.348398 −0.174199 0.984710i \(-0.555734\pi\)
−0.174199 + 0.984710i \(0.555734\pi\)
\(912\) −7.14234 4.12363i −0.236507 0.136547i
\(913\) 50.4647 13.5220i 1.67014 0.447512i
\(914\) 7.88142 + 13.6510i 0.260694 + 0.451536i
\(915\) 0 0
\(916\) −28.1907 7.55367i −0.931446 0.249580i
\(917\) 28.1927 + 48.8312i 0.931005 + 1.61255i
\(918\) 12.4698i 0.411566i
\(919\) −30.4569 + 17.5843i −1.00468 + 0.580052i −0.909630 0.415420i \(-0.863635\pi\)
−0.0950505 + 0.995472i \(0.530301\pi\)
\(920\) 0 0
\(921\) 45.8834 12.2944i 1.51191 0.405115i
\(922\) −14.7114 14.7114i −0.484493 0.484493i
\(923\) 34.5260 4.48461i 1.13644 0.147613i
\(924\) 47.1466i 1.55101i
\(925\) 0 0
\(926\) 13.9624 24.1836i 0.458834 0.794723i
\(927\) 1.20705 4.50477i 0.0396447 0.147956i
\(928\) −5.22681 −0.171578
\(929\) −2.03384 + 7.59039i −0.0667281 + 0.249033i −0.991231 0.132143i \(-0.957814\pi\)
0.924503 + 0.381176i \(0.124481\pi\)
\(930\) 0 0
\(931\) −12.6791 12.6791i −0.415542 0.415542i
\(932\) −7.15894 1.91823i −0.234499 0.0628338i
\(933\) −5.02914 18.7690i −0.164647 0.614469i
\(934\) −8.65620 32.3054i −0.283240 1.05706i
\(935\) 0 0
\(936\) −12.6939 9.77536i −0.414913 0.319518i
\(937\) −30.8186 + 30.8186i −1.00680 + 1.00680i −0.00682291 + 0.999977i \(0.502172\pi\)
−0.999977 + 0.00682291i \(0.997828\pi\)
\(938\) 6.27655 10.8713i 0.204937 0.354961i
\(939\) 13.4122 + 7.74355i 0.437691 + 0.252701i
\(940\) 0 0
\(941\) −18.5705 + 18.5705i −0.605382 + 0.605382i −0.941736 0.336354i \(-0.890806\pi\)
0.336354 + 0.941736i \(0.390806\pi\)
\(942\) −30.6336 + 17.6863i −0.998098 + 0.576252i
\(943\) 1.61564 0.932791i 0.0526125 0.0303758i
\(944\) 7.34117 7.34117i 0.238935 0.238935i
\(945\) 0 0
\(946\) −11.9552 6.90233i −0.388697 0.224414i
\(947\) −4.48242 + 7.76379i −0.145659 + 0.252289i −0.929619 0.368523i \(-0.879864\pi\)
0.783959 + 0.620812i \(0.213197\pi\)
\(948\) 2.35064 2.35064i 0.0763453 0.0763453i
\(949\) 15.4108 + 37.3880i 0.500256 + 1.21367i
\(950\) 0 0
\(951\) −2.71465 10.1312i −0.0880287 0.328528i
\(952\) −2.94678 10.9975i −0.0955057 0.356432i
\(953\) −36.7363 9.84347i −1.19001 0.318861i −0.391118 0.920341i \(-0.627912\pi\)
−0.798888 + 0.601479i \(0.794578\pi\)
\(954\) 9.78329 + 9.78329i 0.316746 + 0.316746i
\(955\) 0 0
\(956\) 4.71849 17.6096i 0.152607 0.569536i
\(957\) 68.5264 2.21514
\(958\) −6.87884 + 25.6722i −0.222245 + 0.829430i
\(959\) −5.10915 + 8.84931i −0.164983 + 0.285759i
\(960\) 0 0
\(961\) 1.04031i 0.0335583i
\(962\) 11.2383 14.5936i 0.362336 0.470516i
\(963\) 22.9393 + 22.9393i 0.739208 + 0.739208i
\(964\) −13.4274 + 3.59785i −0.432466 + 0.115879i
\(965\) 0 0
\(966\) 33.0496 19.0812i 1.06335 0.613928i
\(967\) 33.0128i 1.06162i 0.847491 + 0.530810i \(0.178112\pi\)
−0.847491 + 0.530810i \(0.821888\pi\)
\(968\) 6.04595 + 10.4719i 0.194324 + 0.336579i
\(969\) 25.2218 + 6.75816i 0.810240 + 0.217103i
\(970\) 0 0
\(971\) 17.4084 + 30.1522i 0.558662 + 0.967631i 0.997608 + 0.0691180i \(0.0220185\pi\)
−0.438946 + 0.898513i \(0.644648\pi\)
\(972\) −18.2260 + 4.88364i −0.584599 + 0.156643i
\(973\) −49.9041 28.8121i −1.59985 0.923674i
\(974\) 17.3150 0.554810
\(975\) 0 0
\(976\) −1.65234 −0.0528900
\(977\) 19.7509 + 11.4032i 0.631888 + 0.364821i 0.781483 0.623927i \(-0.214464\pi\)
−0.149595 + 0.988747i \(0.547797\pi\)
\(978\) −47.2962 + 12.6730i −1.51237 + 0.405237i
\(979\) −24.5977 42.6044i −0.786145 1.36164i
\(980\) 0 0
\(981\) −0.299313 0.0802006i −0.00955632 0.00256061i
\(982\) 2.00937 + 3.48033i 0.0641215 + 0.111062i
\(983\) 5.82429i 0.185766i −0.995677 0.0928831i \(-0.970392\pi\)
0.995677 0.0928831i \(-0.0296083\pi\)
\(984\) 1.13324 0.654276i 0.0361263 0.0208575i
\(985\) 0 0
\(986\) 15.9846 4.28306i 0.509054 0.136401i
\(987\) 49.8081 + 49.8081i 1.58541 + 1.58541i
\(988\) 8.65831 6.61996i 0.275457 0.210609i
\(989\) 11.1741i 0.355314i
\(990\) 0 0
\(991\) 8.25583 14.2995i 0.262255 0.454239i −0.704586 0.709619i \(-0.748867\pi\)
0.966841 + 0.255380i \(0.0822005\pi\)
\(992\) 1.46502 5.46754i 0.0465145 0.173595i
\(993\) 38.3618 1.21738
\(994\) −8.98739 + 33.5414i −0.285063 + 1.06387i
\(995\) 0 0
\(996\) 20.9745 + 20.9745i 0.664601 + 0.664601i
\(997\) 30.2008 + 8.09228i 0.956469 + 0.256285i 0.703105 0.711086i \(-0.251796\pi\)
0.253364 + 0.967371i \(0.418463\pi\)
\(998\) −2.90395 10.8377i −0.0919229 0.343061i
\(999\) 5.20759 + 19.4350i 0.164761 + 0.614896i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.g.643.4 16
5.2 odd 4 650.2.w.g.357.1 16
5.3 odd 4 130.2.s.b.97.4 yes 16
5.4 even 2 130.2.p.b.123.1 yes 16
13.11 odd 12 650.2.w.g.193.1 16
65.24 odd 12 130.2.s.b.63.4 yes 16
65.37 even 12 inner 650.2.t.g.557.4 16
65.63 even 12 130.2.p.b.37.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.b.37.1 16 65.63 even 12
130.2.p.b.123.1 yes 16 5.4 even 2
130.2.s.b.63.4 yes 16 65.24 odd 12
130.2.s.b.97.4 yes 16 5.3 odd 4
650.2.t.g.557.4 16 65.37 even 12 inner
650.2.t.g.643.4 16 1.1 even 1 trivial
650.2.w.g.193.1 16 13.11 odd 12
650.2.w.g.357.1 16 5.2 odd 4