Properties

Label 650.2.t.g.643.1
Level $650$
Weight $2$
Character 650.643
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(7,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{13} - 48 x^{12} + 16 x^{11} + 8 x^{10} + 80 x^{9} + 2208 x^{8} + 760 x^{7} + 192 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.1
Root \(-2.38987 + 0.640364i\) of defining polynomial
Character \(\chi\) \(=\) 650.643
Dual form 650.2.t.g.557.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-2.38987 + 0.640364i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.38987 - 0.640364i) q^{6} +(-0.551051 - 0.954448i) q^{7} +1.00000i q^{8} +(2.70334 - 1.56078i) q^{9} +(-3.23142 + 0.865856i) q^{11} +(-1.74951 - 1.74951i) q^{12} +(-1.57779 - 3.24200i) q^{13} -1.10210i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.749677 + 2.79783i) q^{17} +3.12155 q^{18} +(1.15009 - 4.29219i) q^{19} +(1.92813 + 1.92813i) q^{21} +(-3.23142 - 0.865856i) q^{22} +(-1.93811 - 7.23312i) q^{23} +(-0.640364 - 2.38987i) q^{24} +(0.254593 - 3.59655i) q^{26} +(-0.212657 + 0.212657i) q^{27} +(0.551051 - 0.954448i) q^{28} +(-1.66838 - 0.963240i) q^{29} +(-3.17717 + 3.17717i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(7.16821 - 4.13857i) q^{33} +(-2.04816 + 2.04816i) q^{34} +(2.70334 + 1.56078i) q^{36} +(5.46855 - 9.47181i) q^{37} +(3.14210 - 3.14210i) q^{38} +(5.84678 + 6.73761i) q^{39} +(-0.348623 - 1.30108i) q^{41} +(0.705746 + 2.63388i) q^{42} +(-4.64760 - 1.24532i) q^{43} +(-2.36556 - 2.36556i) q^{44} +(1.93811 - 7.23312i) q^{46} -7.88729 q^{47} +(0.640364 - 2.38987i) q^{48} +(2.89269 - 5.01028i) q^{49} -7.16653i q^{51} +(2.01876 - 2.98741i) q^{52} +(8.09456 + 8.09456i) q^{53} +(-0.290495 + 0.0778379i) q^{54} +(0.954448 - 0.551051i) q^{56} +10.9943i q^{57} +(-0.963240 - 1.66838i) q^{58} +(-9.63111 - 2.58065i) q^{59} +(-3.68778 - 6.38743i) q^{61} +(-4.34009 + 1.16292i) q^{62} +(-2.97936 - 1.72013i) q^{63} -1.00000 q^{64} +8.27714 q^{66} +(-3.69332 - 2.13234i) q^{67} +(-2.79783 + 0.749677i) q^{68} +(9.26366 + 16.0451i) q^{69} +(4.81110 + 1.28913i) q^{71} +(1.56078 + 2.70334i) q^{72} +16.4413i q^{73} +(9.47181 - 5.46855i) q^{74} +(4.29219 - 1.15009i) q^{76} +(2.60709 + 2.60709i) q^{77} +(1.69466 + 8.75833i) q^{78} +0.747852i q^{79} +(-4.31028 + 7.46563i) q^{81} +(0.348623 - 1.30108i) q^{82} -10.5558 q^{83} +(-0.705746 + 2.63388i) q^{84} +(-3.40228 - 3.40228i) q^{86} +(4.60404 + 1.23365i) q^{87} +(-0.865856 - 3.23142i) q^{88} +(0.953984 + 3.56032i) q^{89} +(-2.22488 + 3.29243i) q^{91} +(5.29501 - 5.29501i) q^{92} +(5.55848 - 9.62757i) q^{93} +(-6.83060 - 3.94365i) q^{94} +(1.74951 - 1.74951i) q^{96} +(-4.98325 + 2.87708i) q^{97} +(5.01028 - 2.89269i) q^{98} +(-7.38422 + 7.38422i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{11} - 2 q^{13} - 8 q^{16} + 16 q^{17} + 16 q^{18} + 6 q^{22} + 6 q^{23} - 6 q^{26} + 12 q^{27} - 6 q^{29} + 6 q^{33} - 14 q^{34} + 20 q^{37} - 6 q^{38} - 6 q^{39} - 44 q^{41} - 6 q^{42}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −2.38987 + 0.640364i −1.37979 + 0.369714i −0.871046 0.491202i \(-0.836558\pi\)
−0.508747 + 0.860916i \(0.669891\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −2.38987 0.640364i −0.975661 0.261428i
\(7\) −0.551051 0.954448i −0.208278 0.360747i 0.742894 0.669409i \(-0.233452\pi\)
−0.951172 + 0.308661i \(0.900119\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.70334 1.56078i 0.901115 0.520259i
\(10\) 0 0
\(11\) −3.23142 + 0.865856i −0.974309 + 0.261065i −0.710646 0.703550i \(-0.751597\pi\)
−0.263663 + 0.964615i \(0.584931\pi\)
\(12\) −1.74951 1.74951i −0.505039 0.505039i
\(13\) −1.57779 3.24200i −0.437601 0.899169i
\(14\) 1.10210i 0.294549i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.749677 + 2.79783i −0.181823 + 0.678574i 0.813465 + 0.581614i \(0.197579\pi\)
−0.995288 + 0.0969602i \(0.969088\pi\)
\(18\) 3.12155 0.735757
\(19\) 1.15009 4.29219i 0.263849 0.984697i −0.699103 0.715021i \(-0.746417\pi\)
0.962951 0.269675i \(-0.0869164\pi\)
\(20\) 0 0
\(21\) 1.92813 + 1.92813i 0.420753 + 0.420753i
\(22\) −3.23142 0.865856i −0.688940 0.184601i
\(23\) −1.93811 7.23312i −0.404123 1.50821i −0.805667 0.592369i \(-0.798193\pi\)
0.401543 0.915840i \(-0.368474\pi\)
\(24\) −0.640364 2.38987i −0.130714 0.487830i
\(25\) 0 0
\(26\) 0.254593 3.59655i 0.0499299 0.705342i
\(27\) −0.212657 + 0.212657i −0.0409259 + 0.0409259i
\(28\) 0.551051 0.954448i 0.104139 0.180374i
\(29\) −1.66838 0.963240i −0.309810 0.178869i 0.337031 0.941493i \(-0.390577\pi\)
−0.646842 + 0.762624i \(0.723911\pi\)
\(30\) 0 0
\(31\) −3.17717 + 3.17717i −0.570636 + 0.570636i −0.932306 0.361670i \(-0.882207\pi\)
0.361670 + 0.932306i \(0.382207\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 7.16821 4.13857i 1.24783 0.720432i
\(34\) −2.04816 + 2.04816i −0.351256 + 0.351256i
\(35\) 0 0
\(36\) 2.70334 + 1.56078i 0.450557 + 0.260129i
\(37\) 5.46855 9.47181i 0.899025 1.55716i 0.0702817 0.997527i \(-0.477610\pi\)
0.828743 0.559629i \(-0.189056\pi\)
\(38\) 3.14210 3.14210i 0.509717 0.509717i
\(39\) 5.84678 + 6.73761i 0.936234 + 1.07888i
\(40\) 0 0
\(41\) −0.348623 1.30108i −0.0544458 0.203194i 0.933345 0.358981i \(-0.116876\pi\)
−0.987791 + 0.155786i \(0.950209\pi\)
\(42\) 0.705746 + 2.63388i 0.108899 + 0.406417i
\(43\) −4.64760 1.24532i −0.708753 0.189910i −0.113605 0.993526i \(-0.536240\pi\)
−0.595148 + 0.803616i \(0.702906\pi\)
\(44\) −2.36556 2.36556i −0.356622 0.356622i
\(45\) 0 0
\(46\) 1.93811 7.23312i 0.285758 1.06646i
\(47\) −7.88729 −1.15048 −0.575240 0.817985i \(-0.695091\pi\)
−0.575240 + 0.817985i \(0.695091\pi\)
\(48\) 0.640364 2.38987i 0.0924286 0.344948i
\(49\) 2.89269 5.01028i 0.413241 0.715754i
\(50\) 0 0
\(51\) 7.16653i 1.00351i
\(52\) 2.01876 2.98741i 0.279952 0.414279i
\(53\) 8.09456 + 8.09456i 1.11187 + 1.11187i 0.992897 + 0.118976i \(0.0379612\pi\)
0.118976 + 0.992897i \(0.462039\pi\)
\(54\) −0.290495 + 0.0778379i −0.0395314 + 0.0105924i
\(55\) 0 0
\(56\) 0.954448 0.551051i 0.127543 0.0736372i
\(57\) 10.9943i 1.45623i
\(58\) −0.963240 1.66838i −0.126480 0.219069i
\(59\) −9.63111 2.58065i −1.25386 0.335972i −0.430036 0.902812i \(-0.641499\pi\)
−0.823828 + 0.566840i \(0.808166\pi\)
\(60\) 0 0
\(61\) −3.68778 6.38743i −0.472172 0.817827i 0.527321 0.849666i \(-0.323197\pi\)
−0.999493 + 0.0318398i \(0.989863\pi\)
\(62\) −4.34009 + 1.16292i −0.551192 + 0.147692i
\(63\) −2.97936 1.72013i −0.375364 0.216716i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 8.27714 1.01884
\(67\) −3.69332 2.13234i −0.451210 0.260506i 0.257131 0.966377i \(-0.417223\pi\)
−0.708341 + 0.705870i \(0.750556\pi\)
\(68\) −2.79783 + 0.749677i −0.339287 + 0.0909117i
\(69\) 9.26366 + 16.0451i 1.11521 + 1.93161i
\(70\) 0 0
\(71\) 4.81110 + 1.28913i 0.570972 + 0.152991i 0.532742 0.846278i \(-0.321161\pi\)
0.0382296 + 0.999269i \(0.487828\pi\)
\(72\) 1.56078 + 2.70334i 0.183939 + 0.318592i
\(73\) 16.4413i 1.92431i 0.272499 + 0.962156i \(0.412150\pi\)
−0.272499 + 0.962156i \(0.587850\pi\)
\(74\) 9.47181 5.46855i 1.10108 0.635706i
\(75\) 0 0
\(76\) 4.29219 1.15009i 0.492348 0.131924i
\(77\) 2.60709 + 2.60709i 0.297105 + 0.297105i
\(78\) 1.69466 + 8.75833i 0.191882 + 0.991685i
\(79\) 0.747852i 0.0841400i 0.999115 + 0.0420700i \(0.0133952\pi\)
−0.999115 + 0.0420700i \(0.986605\pi\)
\(80\) 0 0
\(81\) −4.31028 + 7.46563i −0.478920 + 0.829514i
\(82\) 0.348623 1.30108i 0.0384990 0.143680i
\(83\) −10.5558 −1.15865 −0.579327 0.815095i \(-0.696685\pi\)
−0.579327 + 0.815095i \(0.696685\pi\)
\(84\) −0.705746 + 2.63388i −0.0770032 + 0.287380i
\(85\) 0 0
\(86\) −3.40228 3.40228i −0.366877 0.366877i
\(87\) 4.60404 + 1.23365i 0.493605 + 0.132261i
\(88\) −0.865856 3.23142i −0.0923005 0.344470i
\(89\) 0.953984 + 3.56032i 0.101122 + 0.377393i 0.997876 0.0651360i \(-0.0207481\pi\)
−0.896754 + 0.442529i \(0.854081\pi\)
\(90\) 0 0
\(91\) −2.22488 + 3.29243i −0.233231 + 0.345140i
\(92\) 5.29501 5.29501i 0.552043 0.552043i
\(93\) 5.55848 9.62757i 0.576387 0.998332i
\(94\) −6.83060 3.94365i −0.704522 0.406756i
\(95\) 0 0
\(96\) 1.74951 1.74951i 0.178558 0.178558i
\(97\) −4.98325 + 2.87708i −0.505972 + 0.292123i −0.731176 0.682189i \(-0.761028\pi\)
0.225204 + 0.974312i \(0.427695\pi\)
\(98\) 5.01028 2.89269i 0.506115 0.292205i
\(99\) −7.38422 + 7.38422i −0.742143 + 0.742143i
\(100\) 0 0
\(101\) −5.29048 3.05446i −0.526423 0.303930i 0.213136 0.977023i \(-0.431632\pi\)
−0.739559 + 0.673092i \(0.764966\pi\)
\(102\) 3.58326 6.20640i 0.354796 0.614525i
\(103\) −11.3174 + 11.3174i −1.11514 + 1.11514i −0.122693 + 0.992445i \(0.539153\pi\)
−0.992445 + 0.122693i \(0.960847\pi\)
\(104\) 3.24200 1.57779i 0.317904 0.154715i
\(105\) 0 0
\(106\) 2.96281 + 11.0574i 0.287774 + 1.07399i
\(107\) 2.82498 + 10.5430i 0.273101 + 1.01923i 0.957103 + 0.289747i \(0.0935713\pi\)
−0.684002 + 0.729480i \(0.739762\pi\)
\(108\) −0.290495 0.0778379i −0.0279529 0.00748995i
\(109\) −6.08467 6.08467i −0.582806 0.582806i 0.352868 0.935673i \(-0.385207\pi\)
−0.935673 + 0.352868i \(0.885207\pi\)
\(110\) 0 0
\(111\) −7.00373 + 26.1383i −0.664765 + 2.48094i
\(112\) 1.10210 0.104139
\(113\) 2.29579 8.56802i 0.215970 0.806012i −0.769853 0.638222i \(-0.779670\pi\)
0.985823 0.167790i \(-0.0536630\pi\)
\(114\) −5.49713 + 9.52131i −0.514854 + 0.891753i
\(115\) 0 0
\(116\) 1.92648i 0.178869i
\(117\) −9.32535 6.30167i −0.862129 0.582589i
\(118\) −7.05046 7.05046i −0.649047 0.649047i
\(119\) 3.08350 0.826220i 0.282664 0.0757395i
\(120\) 0 0
\(121\) 0.166072 0.0958815i 0.0150974 0.00871650i
\(122\) 7.37557i 0.667753i
\(123\) 1.66633 + 2.88617i 0.150248 + 0.260237i
\(124\) −4.34009 1.16292i −0.389752 0.104434i
\(125\) 0 0
\(126\) −1.72013 2.97936i −0.153242 0.265422i
\(127\) 3.20926 0.859919i 0.284776 0.0763055i −0.113604 0.993526i \(-0.536239\pi\)
0.398380 + 0.917221i \(0.369573\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 11.9046 1.04814
\(130\) 0 0
\(131\) −0.395776 −0.0345791 −0.0172895 0.999851i \(-0.505504\pi\)
−0.0172895 + 0.999851i \(0.505504\pi\)
\(132\) 7.16821 + 4.13857i 0.623913 + 0.360216i
\(133\) −4.73043 + 1.26752i −0.410180 + 0.109908i
\(134\) −2.13234 3.69332i −0.184206 0.319054i
\(135\) 0 0
\(136\) −2.79783 0.749677i −0.239912 0.0642843i
\(137\) 4.37451 + 7.57687i 0.373739 + 0.647335i 0.990137 0.140099i \(-0.0447421\pi\)
−0.616398 + 0.787435i \(0.711409\pi\)
\(138\) 18.5273i 1.57715i
\(139\) 7.23857 4.17919i 0.613968 0.354474i −0.160549 0.987028i \(-0.551326\pi\)
0.774517 + 0.632553i \(0.217993\pi\)
\(140\) 0 0
\(141\) 18.8496 5.05074i 1.58742 0.425349i
\(142\) 3.52197 + 3.52197i 0.295557 + 0.295557i
\(143\) 7.90561 + 9.11012i 0.661100 + 0.761827i
\(144\) 3.12155i 0.260129i
\(145\) 0 0
\(146\) −8.22067 + 14.2386i −0.680347 + 1.17840i
\(147\) −3.70475 + 13.8263i −0.305562 + 1.14037i
\(148\) 10.9371 0.899025
\(149\) −0.757636 + 2.82754i −0.0620680 + 0.231641i −0.989991 0.141131i \(-0.954926\pi\)
0.927923 + 0.372772i \(0.121593\pi\)
\(150\) 0 0
\(151\) 10.2911 + 10.2911i 0.837480 + 0.837480i 0.988527 0.151047i \(-0.0482645\pi\)
−0.151047 + 0.988527i \(0.548264\pi\)
\(152\) 4.29219 + 1.15009i 0.348143 + 0.0932846i
\(153\) 2.34016 + 8.73358i 0.189190 + 0.706068i
\(154\) 0.954261 + 3.56135i 0.0768965 + 0.286982i
\(155\) 0 0
\(156\) −2.91155 + 8.43226i −0.233110 + 0.675121i
\(157\) 6.72089 6.72089i 0.536386 0.536386i −0.386080 0.922465i \(-0.626171\pi\)
0.922465 + 0.386080i \(0.126171\pi\)
\(158\) −0.373926 + 0.647659i −0.0297480 + 0.0515250i
\(159\) −24.5284 14.1615i −1.94523 1.12308i
\(160\) 0 0
\(161\) −5.83564 + 5.83564i −0.459913 + 0.459913i
\(162\) −7.46563 + 4.31028i −0.586555 + 0.338648i
\(163\) −1.92752 + 1.11286i −0.150975 + 0.0871656i −0.573585 0.819146i \(-0.694448\pi\)
0.422609 + 0.906312i \(0.361114\pi\)
\(164\) 0.952456 0.952456i 0.0743743 0.0743743i
\(165\) 0 0
\(166\) −9.14163 5.27792i −0.709528 0.409646i
\(167\) 8.96406 15.5262i 0.693660 1.20145i −0.276971 0.960878i \(-0.589330\pi\)
0.970630 0.240576i \(-0.0773362\pi\)
\(168\) −1.92813 + 1.92813i −0.148759 + 0.148759i
\(169\) −8.02115 + 10.2304i −0.617011 + 0.786954i
\(170\) 0 0
\(171\) −3.59007 13.3983i −0.274539 1.02459i
\(172\) −1.24532 4.64760i −0.0949549 0.354376i
\(173\) −8.29818 2.22349i −0.630899 0.169049i −0.0708214 0.997489i \(-0.522562\pi\)
−0.560078 + 0.828440i \(0.689229\pi\)
\(174\) 3.37039 + 3.37039i 0.255509 + 0.255509i
\(175\) 0 0
\(176\) 0.865856 3.23142i 0.0652663 0.243577i
\(177\) 24.6697 1.85429
\(178\) −0.953984 + 3.56032i −0.0715041 + 0.266857i
\(179\) −5.60277 + 9.70428i −0.418771 + 0.725332i −0.995816 0.0913799i \(-0.970872\pi\)
0.577045 + 0.816712i \(0.304206\pi\)
\(180\) 0 0
\(181\) 22.8415i 1.69780i −0.528555 0.848899i \(-0.677266\pi\)
0.528555 0.848899i \(-0.322734\pi\)
\(182\) −3.57301 + 1.73889i −0.264849 + 0.128895i
\(183\) 12.9036 + 12.9036i 0.953863 + 0.953863i
\(184\) 7.23312 1.93811i 0.533232 0.142879i
\(185\) 0 0
\(186\) 9.62757 5.55848i 0.705928 0.407567i
\(187\) 9.69008i 0.708609i
\(188\) −3.94365 6.83060i −0.287620 0.498172i
\(189\) 0.320155 + 0.0857852i 0.0232878 + 0.00623996i
\(190\) 0 0
\(191\) 0.887123 + 1.53654i 0.0641900 + 0.111180i 0.896334 0.443379i \(-0.146220\pi\)
−0.832144 + 0.554559i \(0.812887\pi\)
\(192\) 2.38987 0.640364i 0.172474 0.0462143i
\(193\) −10.2448 5.91481i −0.737434 0.425758i 0.0837018 0.996491i \(-0.473326\pi\)
−0.821135 + 0.570733i \(0.806659\pi\)
\(194\) −5.75416 −0.413124
\(195\) 0 0
\(196\) 5.78537 0.413241
\(197\) −1.62089 0.935821i −0.115484 0.0666745i 0.441146 0.897436i \(-0.354572\pi\)
−0.556629 + 0.830761i \(0.687906\pi\)
\(198\) −10.0870 + 2.70281i −0.716855 + 0.192081i
\(199\) −9.52263 16.4937i −0.675042 1.16921i −0.976457 0.215713i \(-0.930792\pi\)
0.301415 0.953493i \(-0.402541\pi\)
\(200\) 0 0
\(201\) 10.1920 + 2.73094i 0.718890 + 0.192626i
\(202\) −3.05446 5.29048i −0.214911 0.372237i
\(203\) 2.12318i 0.149018i
\(204\) 6.20640 3.58326i 0.434535 0.250879i
\(205\) 0 0
\(206\) −15.4599 + 4.14246i −1.07714 + 0.288619i
\(207\) −16.5286 16.5286i −1.14882 1.14882i
\(208\) 3.59655 + 0.254593i 0.249376 + 0.0176529i
\(209\) 14.8657i 1.02828i
\(210\) 0 0
\(211\) 10.2796 17.8049i 0.707680 1.22574i −0.258036 0.966135i \(-0.583075\pi\)
0.965716 0.259602i \(-0.0835915\pi\)
\(212\) −2.96281 + 11.0574i −0.203487 + 0.759424i
\(213\) −12.3234 −0.844386
\(214\) −2.82498 + 10.5430i −0.193112 + 0.720703i
\(215\) 0 0
\(216\) −0.212657 0.212657i −0.0144695 0.0144695i
\(217\) 4.78322 + 1.28166i 0.324706 + 0.0870048i
\(218\) −2.22714 8.31181i −0.150841 0.562947i
\(219\) −10.5284 39.2927i −0.711446 2.65515i
\(220\) 0 0
\(221\) 10.2534 1.98394i 0.689719 0.133454i
\(222\) −19.1346 + 19.1346i −1.28423 + 1.28423i
\(223\) 6.78661 11.7547i 0.454465 0.787156i −0.544193 0.838960i \(-0.683164\pi\)
0.998657 + 0.0518044i \(0.0164972\pi\)
\(224\) 0.954448 + 0.551051i 0.0637717 + 0.0368186i
\(225\) 0 0
\(226\) 6.27223 6.27223i 0.417222 0.417222i
\(227\) 16.3644 9.44797i 1.08614 0.627084i 0.153594 0.988134i \(-0.450915\pi\)
0.932546 + 0.361050i \(0.117582\pi\)
\(228\) −9.52131 + 5.49713i −0.630564 + 0.364057i
\(229\) 1.04861 1.04861i 0.0692941 0.0692941i −0.671610 0.740904i \(-0.734397\pi\)
0.740904 + 0.671610i \(0.234397\pi\)
\(230\) 0 0
\(231\) −7.90009 4.56112i −0.519788 0.300100i
\(232\) 0.963240 1.66838i 0.0632398 0.109535i
\(233\) 16.4473 16.4473i 1.07750 1.07750i 0.0807620 0.996733i \(-0.474265\pi\)
0.996733 0.0807620i \(-0.0257354\pi\)
\(234\) −4.92516 10.1201i −0.321968 0.661570i
\(235\) 0 0
\(236\) −2.58065 9.63111i −0.167986 0.626932i
\(237\) −0.478898 1.78727i −0.0311078 0.116096i
\(238\) 3.08350 + 0.826220i 0.199873 + 0.0535559i
\(239\) 14.5791 + 14.5791i 0.943047 + 0.943047i 0.998463 0.0554167i \(-0.0176487\pi\)
−0.0554167 + 0.998463i \(0.517649\pi\)
\(240\) 0 0
\(241\) −0.0783697 + 0.292480i −0.00504823 + 0.0188403i −0.968404 0.249387i \(-0.919771\pi\)
0.963356 + 0.268227i \(0.0864377\pi\)
\(242\) 0.191763 0.0123270
\(243\) 5.75382 21.4735i 0.369107 1.37753i
\(244\) 3.68778 6.38743i 0.236086 0.408913i
\(245\) 0 0
\(246\) 3.33266i 0.212483i
\(247\) −15.7299 + 3.04359i −1.00087 + 0.193659i
\(248\) −3.17717 3.17717i −0.201750 0.201750i
\(249\) 25.2271 6.75958i 1.59870 0.428371i
\(250\) 0 0
\(251\) −9.76282 + 5.63657i −0.616224 + 0.355777i −0.775397 0.631474i \(-0.782450\pi\)
0.159174 + 0.987251i \(0.449117\pi\)
\(252\) 3.44027i 0.216716i
\(253\) 12.5257 + 21.6951i 0.787482 + 1.36396i
\(254\) 3.20926 + 0.859919i 0.201367 + 0.0539561i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −16.0275 + 4.29455i −0.999767 + 0.267887i −0.721348 0.692573i \(-0.756477\pi\)
−0.278419 + 0.960460i \(0.589810\pi\)
\(258\) 10.3097 + 5.95232i 0.641855 + 0.370575i
\(259\) −12.0538 −0.748987
\(260\) 0 0
\(261\) −6.01361 −0.372233
\(262\) −0.342752 0.197888i −0.0211753 0.0122256i
\(263\) 4.57715 1.22644i 0.282239 0.0756257i −0.114922 0.993374i \(-0.536662\pi\)
0.397162 + 0.917749i \(0.369995\pi\)
\(264\) 4.13857 + 7.16821i 0.254711 + 0.441173i
\(265\) 0 0
\(266\) −4.73043 1.26752i −0.290041 0.0777164i
\(267\) −4.55980 7.89780i −0.279055 0.483338i
\(268\) 4.26467i 0.260506i
\(269\) 3.69062 2.13078i 0.225021 0.129916i −0.383252 0.923644i \(-0.625196\pi\)
0.608273 + 0.793728i \(0.291863\pi\)
\(270\) 0 0
\(271\) −9.10585 + 2.43990i −0.553141 + 0.148214i −0.524553 0.851378i \(-0.675768\pi\)
−0.0285876 + 0.999591i \(0.509101\pi\)
\(272\) −2.04816 2.04816i −0.124188 0.124188i
\(273\) 3.20882 9.29321i 0.194207 0.562451i
\(274\) 8.74901i 0.528547i
\(275\) 0 0
\(276\) −9.26366 + 16.0451i −0.557607 + 0.965803i
\(277\) 1.52395 5.68746i 0.0915652 0.341726i −0.904911 0.425601i \(-0.860063\pi\)
0.996476 + 0.0838746i \(0.0267295\pi\)
\(278\) 8.35839 0.501303
\(279\) −3.63013 + 13.5478i −0.217330 + 0.811087i
\(280\) 0 0
\(281\) 3.04681 + 3.04681i 0.181757 + 0.181757i 0.792121 0.610364i \(-0.208977\pi\)
−0.610364 + 0.792121i \(0.708977\pi\)
\(282\) 18.8496 + 5.05074i 1.12248 + 0.300767i
\(283\) −1.29094 4.81786i −0.0767385 0.286392i 0.916883 0.399155i \(-0.130697\pi\)
−0.993622 + 0.112763i \(0.964030\pi\)
\(284\) 1.28913 + 4.81110i 0.0764957 + 0.285486i
\(285\) 0 0
\(286\) 2.29140 + 11.8424i 0.135493 + 0.700256i
\(287\) −1.04970 + 1.04970i −0.0619620 + 0.0619620i
\(288\) −1.56078 + 2.70334i −0.0919696 + 0.159296i
\(289\) 7.45658 + 4.30506i 0.438622 + 0.253239i
\(290\) 0 0
\(291\) 10.0669 10.0669i 0.590134 0.590134i
\(292\) −14.2386 + 8.22067i −0.833252 + 0.481078i
\(293\) −12.5246 + 7.23110i −0.731697 + 0.422445i −0.819043 0.573733i \(-0.805495\pi\)
0.0873459 + 0.996178i \(0.472161\pi\)
\(294\) −10.1216 + 10.1216i −0.590301 + 0.590301i
\(295\) 0 0
\(296\) 9.47181 + 5.46855i 0.550538 + 0.317853i
\(297\) 0.503053 0.871314i 0.0291901 0.0505588i
\(298\) −2.06990 + 2.06990i −0.119906 + 0.119906i
\(299\) −20.3918 + 17.6957i −1.17929 + 1.02337i
\(300\) 0 0
\(301\) 1.37247 + 5.12213i 0.0791079 + 0.295235i
\(302\) 3.76681 + 14.0579i 0.216756 + 0.808943i
\(303\) 14.5995 + 3.91194i 0.838722 + 0.224735i
\(304\) 3.14210 + 3.14210i 0.180212 + 0.180212i
\(305\) 0 0
\(306\) −2.34016 + 8.73358i −0.133778 + 0.499266i
\(307\) −17.0463 −0.972881 −0.486441 0.873714i \(-0.661705\pi\)
−0.486441 + 0.873714i \(0.661705\pi\)
\(308\) −0.954261 + 3.56135i −0.0543740 + 0.202927i
\(309\) 19.7999 34.2944i 1.12638 1.95094i
\(310\) 0 0
\(311\) 27.4086i 1.55420i 0.629376 + 0.777101i \(0.283310\pi\)
−0.629376 + 0.777101i \(0.716690\pi\)
\(312\) −6.73761 + 5.84678i −0.381442 + 0.331009i
\(313\) −7.09857 7.09857i −0.401235 0.401235i 0.477433 0.878668i \(-0.341567\pi\)
−0.878668 + 0.477433i \(0.841567\pi\)
\(314\) 9.18091 2.46002i 0.518109 0.138827i
\(315\) 0 0
\(316\) −0.647659 + 0.373926i −0.0364337 + 0.0210350i
\(317\) 20.9604i 1.17725i 0.808406 + 0.588626i \(0.200331\pi\)
−0.808406 + 0.588626i \(0.799669\pi\)
\(318\) −14.1615 24.5284i −0.794137 1.37549i
\(319\) 6.22526 + 1.66805i 0.348548 + 0.0933930i
\(320\) 0 0
\(321\) −13.5027 23.3873i −0.753646 1.30535i
\(322\) −7.97163 + 2.13599i −0.444241 + 0.119034i
\(323\) 11.1466 + 6.43552i 0.620216 + 0.358082i
\(324\) −8.62057 −0.478920
\(325\) 0 0
\(326\) −2.22571 −0.123271
\(327\) 18.4380 + 10.6452i 1.01962 + 0.588679i
\(328\) 1.30108 0.348623i 0.0718401 0.0192495i
\(329\) 4.34630 + 7.52801i 0.239619 + 0.415033i
\(330\) 0 0
\(331\) 16.1510 + 4.32765i 0.887741 + 0.237869i 0.673744 0.738965i \(-0.264685\pi\)
0.213997 + 0.976834i \(0.431352\pi\)
\(332\) −5.27792 9.14163i −0.289664 0.501712i
\(333\) 34.1408i 1.87090i
\(334\) 15.5262 8.96406i 0.849556 0.490492i
\(335\) 0 0
\(336\) −2.63388 + 0.705746i −0.143690 + 0.0385016i
\(337\) 13.3768 + 13.3768i 0.728683 + 0.728683i 0.970357 0.241674i \(-0.0776965\pi\)
−0.241674 + 0.970357i \(0.577697\pi\)
\(338\) −12.0617 + 4.84921i −0.656071 + 0.263763i
\(339\) 21.9466i 1.19198i
\(340\) 0 0
\(341\) 7.51579 13.0177i 0.407003 0.704949i
\(342\) 3.59007 13.3983i 0.194129 0.724497i
\(343\) −14.0908 −0.760830
\(344\) 1.24532 4.64760i 0.0671432 0.250582i
\(345\) 0 0
\(346\) −6.07469 6.07469i −0.326577 0.326577i
\(347\) 4.30720 + 1.15411i 0.231222 + 0.0619559i 0.372570 0.928004i \(-0.378477\pi\)
−0.141347 + 0.989960i \(0.545143\pi\)
\(348\) 1.23365 + 4.60404i 0.0661305 + 0.246802i
\(349\) −3.59895 13.4314i −0.192647 0.718969i −0.992863 0.119257i \(-0.961949\pi\)
0.800216 0.599712i \(-0.204718\pi\)
\(350\) 0 0
\(351\) 1.02496 + 0.353906i 0.0547085 + 0.0188901i
\(352\) 2.36556 2.36556i 0.126085 0.126085i
\(353\) 0.495300 0.857885i 0.0263622 0.0456606i −0.852543 0.522657i \(-0.824941\pi\)
0.878906 + 0.476996i \(0.158274\pi\)
\(354\) 21.3646 + 12.3348i 1.13551 + 0.655589i
\(355\) 0 0
\(356\) −2.60633 + 2.60633i −0.138135 + 0.138135i
\(357\) −6.84008 + 3.94912i −0.362015 + 0.209010i
\(358\) −9.70428 + 5.60277i −0.512887 + 0.296116i
\(359\) 11.8127 11.8127i 0.623450 0.623450i −0.322962 0.946412i \(-0.604679\pi\)
0.946412 + 0.322962i \(0.104679\pi\)
\(360\) 0 0
\(361\) −0.645736 0.372816i −0.0339861 0.0196219i
\(362\) 11.4208 19.7814i 0.600262 1.03969i
\(363\) −0.335491 + 0.335491i −0.0176087 + 0.0176087i
\(364\) −3.96376 0.280588i −0.207758 0.0147068i
\(365\) 0 0
\(366\) 4.72305 + 17.6267i 0.246878 + 0.921360i
\(367\) −8.34106 31.1292i −0.435400 1.62493i −0.740108 0.672488i \(-0.765226\pi\)
0.304708 0.952446i \(-0.401441\pi\)
\(368\) 7.23312 + 1.93811i 0.377052 + 0.101031i
\(369\) −2.97314 2.97314i −0.154776 0.154776i
\(370\) 0 0
\(371\) 3.26532 12.1863i 0.169527 0.632684i
\(372\) 11.1170 0.576387
\(373\) 0.652008 2.43333i 0.0337597 0.125993i −0.946990 0.321264i \(-0.895892\pi\)
0.980749 + 0.195272i \(0.0625588\pi\)
\(374\) 4.84504 8.39185i 0.250531 0.433932i
\(375\) 0 0
\(376\) 7.88729i 0.406756i
\(377\) −0.490469 + 6.92868i −0.0252604 + 0.356845i
\(378\) 0.234370 + 0.234370i 0.0120547 + 0.0120547i
\(379\) −2.94373 + 0.788769i −0.151209 + 0.0405163i −0.333630 0.942704i \(-0.608273\pi\)
0.182420 + 0.983221i \(0.441607\pi\)
\(380\) 0 0
\(381\) −7.11906 + 4.11019i −0.364721 + 0.210572i
\(382\) 1.77425i 0.0907783i
\(383\) 0.0173775 + 0.0300987i 0.000887948 + 0.00153797i 0.866469 0.499231i \(-0.166384\pi\)
−0.865581 + 0.500769i \(0.833051\pi\)
\(384\) 2.38987 + 0.640364i 0.121958 + 0.0326784i
\(385\) 0 0
\(386\) −5.91481 10.2448i −0.301056 0.521444i
\(387\) −14.5077 + 3.88734i −0.737470 + 0.197604i
\(388\) −4.98325 2.87708i −0.252986 0.146062i
\(389\) 21.2396 1.07689 0.538444 0.842661i \(-0.319012\pi\)
0.538444 + 0.842661i \(0.319012\pi\)
\(390\) 0 0
\(391\) 21.6900 1.09691
\(392\) 5.01028 + 2.89269i 0.253057 + 0.146103i
\(393\) 0.945853 0.253441i 0.0477120 0.0127844i
\(394\) −0.935821 1.62089i −0.0471460 0.0816592i
\(395\) 0 0
\(396\) −10.0870 2.70281i −0.506893 0.135822i
\(397\) −13.1279 22.7382i −0.658870 1.14120i −0.980909 0.194469i \(-0.937702\pi\)
0.322039 0.946726i \(-0.395632\pi\)
\(398\) 19.0453i 0.954653i
\(399\) 10.4935 6.05840i 0.525330 0.303299i
\(400\) 0 0
\(401\) −24.9456 + 6.68414i −1.24572 + 0.333790i −0.820682 0.571385i \(-0.806406\pi\)
−0.425039 + 0.905175i \(0.639740\pi\)
\(402\) 7.46108 + 7.46108i 0.372125 + 0.372125i
\(403\) 15.3133 + 5.28748i 0.762809 + 0.263388i
\(404\) 6.10893i 0.303930i
\(405\) 0 0
\(406\) −1.06159 + 1.83872i −0.0526857 + 0.0912543i
\(407\) −9.46996 + 35.3424i −0.469408 + 1.75186i
\(408\) 7.16653 0.354796
\(409\) −0.0367688 + 0.137223i −0.00181810 + 0.00678525i −0.966829 0.255425i \(-0.917785\pi\)
0.965011 + 0.262210i \(0.0844513\pi\)
\(410\) 0 0
\(411\) −15.3065 15.3065i −0.755012 0.755012i
\(412\) −15.4599 4.14246i −0.761653 0.204084i
\(413\) 2.84413 + 10.6145i 0.139951 + 0.522303i
\(414\) −6.04990 22.5786i −0.297337 1.10968i
\(415\) 0 0
\(416\) 2.98741 + 2.01876i 0.146470 + 0.0989779i
\(417\) −14.6231 + 14.6231i −0.716094 + 0.716094i
\(418\) −7.43284 + 12.8741i −0.363552 + 0.629691i
\(419\) 14.9181 + 8.61299i 0.728799 + 0.420772i 0.817982 0.575243i \(-0.195093\pi\)
−0.0891839 + 0.996015i \(0.528426\pi\)
\(420\) 0 0
\(421\) 10.5705 10.5705i 0.515175 0.515175i −0.400932 0.916108i \(-0.631314\pi\)
0.916108 + 0.400932i \(0.131314\pi\)
\(422\) 17.8049 10.2796i 0.866727 0.500405i
\(423\) −21.3221 + 12.3103i −1.03671 + 0.598547i
\(424\) −8.09456 + 8.09456i −0.393107 + 0.393107i
\(425\) 0 0
\(426\) −10.6724 6.16171i −0.517079 0.298536i
\(427\) −4.06431 + 7.03960i −0.196686 + 0.340670i
\(428\) −7.71799 + 7.71799i −0.373063 + 0.373063i
\(429\) −24.7272 16.7096i −1.19384 0.806745i
\(430\) 0 0
\(431\) −4.93983 18.4357i −0.237943 0.888015i −0.976800 0.214153i \(-0.931301\pi\)
0.738857 0.673862i \(-0.235366\pi\)
\(432\) −0.0778379 0.290495i −0.00374498 0.0139764i
\(433\) 14.6659 + 3.92970i 0.704796 + 0.188849i 0.593378 0.804924i \(-0.297794\pi\)
0.111418 + 0.993774i \(0.464461\pi\)
\(434\) 3.50156 + 3.50156i 0.168080 + 0.168080i
\(435\) 0 0
\(436\) 2.22714 8.31181i 0.106661 0.398064i
\(437\) −33.2749 −1.59176
\(438\) 10.5284 39.2927i 0.503068 1.87748i
\(439\) −7.91150 + 13.7031i −0.377595 + 0.654014i −0.990712 0.135978i \(-0.956582\pi\)
0.613117 + 0.789992i \(0.289916\pi\)
\(440\) 0 0
\(441\) 18.0593i 0.859969i
\(442\) 9.87169 + 3.40856i 0.469548 + 0.162129i
\(443\) 5.30191 + 5.30191i 0.251901 + 0.251901i 0.821750 0.569848i \(-0.192998\pi\)
−0.569848 + 0.821750i \(0.692998\pi\)
\(444\) −26.1383 + 7.00373i −1.24047 + 0.332382i
\(445\) 0 0
\(446\) 11.7547 6.78661i 0.556603 0.321355i
\(447\) 7.24261i 0.342564i
\(448\) 0.551051 + 0.954448i 0.0260347 + 0.0450934i
\(449\) −29.1112 7.80033i −1.37384 0.368120i −0.504962 0.863141i \(-0.668494\pi\)
−0.868881 + 0.495021i \(0.835160\pi\)
\(450\) 0 0
\(451\) 2.25309 + 3.90247i 0.106094 + 0.183760i
\(452\) 8.56802 2.29579i 0.403006 0.107985i
\(453\) −31.1845 18.0044i −1.46518 0.845920i
\(454\) 18.8959 0.886830
\(455\) 0 0
\(456\) −10.9943 −0.514854
\(457\) −9.06439 5.23333i −0.424014 0.244805i 0.272779 0.962077i \(-0.412057\pi\)
−0.696793 + 0.717272i \(0.745391\pi\)
\(458\) 1.43243 0.383818i 0.0669329 0.0179346i
\(459\) −0.435555 0.754403i −0.0203300 0.0352125i
\(460\) 0 0
\(461\) 28.9862 + 7.76684i 1.35002 + 0.361738i 0.860143 0.510052i \(-0.170374\pi\)
0.489880 + 0.871790i \(0.337041\pi\)
\(462\) −4.56112 7.90009i −0.212203 0.367546i
\(463\) 17.5146i 0.813971i −0.913435 0.406986i \(-0.866580\pi\)
0.913435 0.406986i \(-0.133420\pi\)
\(464\) 1.66838 0.963240i 0.0774526 0.0447173i
\(465\) 0 0
\(466\) 22.4674 6.02011i 1.04078 0.278876i
\(467\) −7.96893 7.96893i −0.368758 0.368758i 0.498266 0.867024i \(-0.333970\pi\)
−0.867024 + 0.498266i \(0.833970\pi\)
\(468\) 0.794727 11.2268i 0.0367363 0.518960i
\(469\) 4.70010i 0.217031i
\(470\) 0 0
\(471\) −11.7583 + 20.3659i −0.541792 + 0.938411i
\(472\) 2.58065 9.63111i 0.118784 0.443308i
\(473\) 16.0966 0.740123
\(474\) 0.478898 1.78727i 0.0219965 0.0820921i
\(475\) 0 0
\(476\) 2.25728 + 2.25728i 0.103462 + 0.103462i
\(477\) 34.5162 + 9.24858i 1.58039 + 0.423463i
\(478\) 5.33634 + 19.9155i 0.244078 + 0.910913i
\(479\) −3.94104 14.7082i −0.180071 0.672033i −0.995632 0.0933628i \(-0.970238\pi\)
0.815561 0.578671i \(-0.196428\pi\)
\(480\) 0 0
\(481\) −39.3359 2.78452i −1.79356 0.126963i
\(482\) −0.214110 + 0.214110i −0.00975244 + 0.00975244i
\(483\) 10.2095 17.6834i 0.464548 0.804620i
\(484\) 0.166072 + 0.0958815i 0.00754871 + 0.00435825i
\(485\) 0 0
\(486\) 15.7197 15.7197i 0.713061 0.713061i
\(487\) 28.2464 16.3081i 1.27997 0.738990i 0.303126 0.952950i \(-0.401970\pi\)
0.976842 + 0.213960i \(0.0686363\pi\)
\(488\) 6.38743 3.68778i 0.289145 0.166938i
\(489\) 3.89390 3.89390i 0.176088 0.176088i
\(490\) 0 0
\(491\) 4.33762 + 2.50433i 0.195754 + 0.113019i 0.594674 0.803967i \(-0.297281\pi\)
−0.398919 + 0.916986i \(0.630615\pi\)
\(492\) −1.66633 + 2.88617i −0.0751239 + 0.130118i
\(493\) 3.94573 3.94573i 0.177707 0.177707i
\(494\) −15.1443 5.22912i −0.681374 0.235269i
\(495\) 0 0
\(496\) −1.16292 4.34009i −0.0522168 0.194876i
\(497\) −1.42075 5.30231i −0.0637294 0.237841i
\(498\) 25.2271 + 6.75958i 1.13045 + 0.302904i
\(499\) −9.65310 9.65310i −0.432132 0.432132i 0.457221 0.889353i \(-0.348845\pi\)
−0.889353 + 0.457221i \(0.848845\pi\)
\(500\) 0 0
\(501\) −11.4805 + 42.8459i −0.512912 + 1.91421i
\(502\) −11.2731 −0.503145
\(503\) −6.80685 + 25.4035i −0.303502 + 1.13269i 0.630724 + 0.776007i \(0.282758\pi\)
−0.934227 + 0.356680i \(0.883909\pi\)
\(504\) 1.72013 2.97936i 0.0766208 0.132711i
\(505\) 0 0
\(506\) 25.0513i 1.11367i
\(507\) 12.6183 29.5858i 0.560400 1.31395i
\(508\) 2.34934 + 2.34934i 0.104235 + 0.104235i
\(509\) −27.3286 + 7.32267i −1.21132 + 0.324572i −0.807279 0.590170i \(-0.799061\pi\)
−0.404039 + 0.914742i \(0.632394\pi\)
\(510\) 0 0
\(511\) 15.6924 9.06001i 0.694191 0.400791i
\(512\) 1.00000i 0.0441942i
\(513\) 0.668191 + 1.15734i 0.0295013 + 0.0510978i
\(514\) −16.0275 4.29455i −0.706942 0.189425i
\(515\) 0 0
\(516\) 5.95232 + 10.3097i 0.262036 + 0.453860i
\(517\) 25.4871 6.82926i 1.12092 0.300350i
\(518\) −10.4389 6.02690i −0.458659 0.264807i
\(519\) 21.2554 0.933010
\(520\) 0 0
\(521\) 37.1583 1.62793 0.813967 0.580911i \(-0.197303\pi\)
0.813967 + 0.580911i \(0.197303\pi\)
\(522\) −5.20794 3.00680i −0.227945 0.131604i
\(523\) 19.3707 5.19038i 0.847024 0.226959i 0.190897 0.981610i \(-0.438860\pi\)
0.656127 + 0.754651i \(0.272194\pi\)
\(524\) −0.197888 0.342752i −0.00864477 0.0149732i
\(525\) 0 0
\(526\) 4.57715 + 1.22644i 0.199573 + 0.0534755i
\(527\) −6.50734 11.2710i −0.283464 0.490974i
\(528\) 8.27714i 0.360216i
\(529\) −28.6431 + 16.5371i −1.24535 + 0.719005i
\(530\) 0 0
\(531\) −30.0640 + 8.05563i −1.30467 + 0.349584i
\(532\) −3.46292 3.46292i −0.150136 0.150136i
\(533\) −3.66805 + 3.18307i −0.158881 + 0.137874i
\(534\) 9.11960i 0.394644i
\(535\) 0 0
\(536\) 2.13234 3.69332i 0.0921029 0.159527i
\(537\) 7.17563 26.7798i 0.309651 1.15563i
\(538\) 4.26156 0.183729
\(539\) −5.00930 + 18.6950i −0.215766 + 0.805249i
\(540\) 0 0
\(541\) −26.3804 26.3804i −1.13418 1.13418i −0.989474 0.144710i \(-0.953775\pi\)
−0.144710 0.989474i \(-0.546225\pi\)
\(542\) −9.10585 2.43990i −0.391130 0.104803i
\(543\) 14.6269 + 54.5884i 0.627701 + 2.34261i
\(544\) −0.749677 2.79783i −0.0321421 0.119956i
\(545\) 0 0
\(546\) 7.42553 6.44374i 0.317783 0.275767i
\(547\) −9.57195 + 9.57195i −0.409267 + 0.409267i −0.881483 0.472216i \(-0.843454\pi\)
0.472216 + 0.881483i \(0.343454\pi\)
\(548\) −4.37451 + 7.57687i −0.186870 + 0.323668i
\(549\) −19.9387 11.5116i −0.850963 0.491304i
\(550\) 0 0
\(551\) −6.05320 + 6.05320i −0.257875 + 0.257875i
\(552\) −16.0451 + 9.26366i −0.682926 + 0.394287i
\(553\) 0.713786 0.412105i 0.0303533 0.0175245i
\(554\) 4.16351 4.16351i 0.176890 0.176890i
\(555\) 0 0
\(556\) 7.23857 + 4.17919i 0.306984 + 0.177237i
\(557\) 0.204041 0.353409i 0.00864550 0.0149744i −0.861670 0.507469i \(-0.830581\pi\)
0.870316 + 0.492494i \(0.163915\pi\)
\(558\) −9.91770 + 9.91770i −0.419850 + 0.419850i
\(559\) 3.29561 + 17.0324i 0.139390 + 0.720393i
\(560\) 0 0
\(561\) 6.20518 + 23.1580i 0.261983 + 0.977733i
\(562\) 1.11521 + 4.16201i 0.0470422 + 0.175564i
\(563\) −12.7913 3.42741i −0.539088 0.144448i −0.0210061 0.999779i \(-0.506687\pi\)
−0.518081 + 0.855331i \(0.673354\pi\)
\(564\) 13.7989 + 13.7989i 0.581038 + 0.581038i
\(565\) 0 0
\(566\) 1.29094 4.81786i 0.0542623 0.202510i
\(567\) 9.50074 0.398994
\(568\) −1.28913 + 4.81110i −0.0540907 + 0.201869i
\(569\) 10.9407 18.9499i 0.458659 0.794421i −0.540231 0.841516i \(-0.681663\pi\)
0.998890 + 0.0470959i \(0.0149966\pi\)
\(570\) 0 0
\(571\) 13.4763i 0.563964i −0.959420 0.281982i \(-0.909008\pi\)
0.959420 0.281982i \(-0.0909919\pi\)
\(572\) −3.93679 + 11.4015i −0.164606 + 0.476721i
\(573\) −3.10406 3.10406i −0.129674 0.129674i
\(574\) −1.43392 + 0.384218i −0.0598507 + 0.0160370i
\(575\) 0 0
\(576\) −2.70334 + 1.56078i −0.112639 + 0.0650323i
\(577\) 16.5356i 0.688388i 0.938899 + 0.344194i \(0.111848\pi\)
−0.938899 + 0.344194i \(0.888152\pi\)
\(578\) 4.30506 + 7.45658i 0.179067 + 0.310153i
\(579\) 28.2713 + 7.57527i 1.17491 + 0.314817i
\(580\) 0 0
\(581\) 5.81680 + 10.0750i 0.241322 + 0.417981i
\(582\) 13.7517 3.68476i 0.570026 0.152738i
\(583\) −33.1656 19.1482i −1.37358 0.793037i
\(584\) −16.4413 −0.680347
\(585\) 0 0
\(586\) −14.4622 −0.597428
\(587\) 29.5013 + 17.0326i 1.21765 + 0.703010i 0.964414 0.264395i \(-0.0851724\pi\)
0.253234 + 0.967405i \(0.418506\pi\)
\(588\) −13.8263 + 3.70475i −0.570187 + 0.152781i
\(589\) 9.98299 + 17.2910i 0.411342 + 0.712465i
\(590\) 0 0
\(591\) 4.47298 + 1.19853i 0.183994 + 0.0493010i
\(592\) 5.46855 + 9.47181i 0.224756 + 0.389289i
\(593\) 1.35571i 0.0556721i 0.999613 + 0.0278361i \(0.00886164\pi\)
−0.999613 + 0.0278361i \(0.991138\pi\)
\(594\) 0.871314 0.503053i 0.0357504 0.0206405i
\(595\) 0 0
\(596\) −2.82754 + 0.757636i −0.115820 + 0.0310340i
\(597\) 33.3198 + 33.3198i 1.36369 + 1.36369i
\(598\) −26.5077 + 5.12900i −1.08398 + 0.209740i
\(599\) 11.5295i 0.471081i −0.971864 0.235541i \(-0.924314\pi\)
0.971864 0.235541i \(-0.0756861\pi\)
\(600\) 0 0
\(601\) −14.3330 + 24.8254i −0.584654 + 1.01265i 0.410264 + 0.911967i \(0.365436\pi\)
−0.994918 + 0.100684i \(0.967897\pi\)
\(602\) −1.37247 + 5.12213i −0.0559377 + 0.208762i
\(603\) −13.3124 −0.542123
\(604\) −3.76681 + 14.0579i −0.153269 + 0.572009i
\(605\) 0 0
\(606\) 10.6876 + 10.6876i 0.434154 + 0.434154i
\(607\) 40.9211 + 10.9648i 1.66094 + 0.445046i 0.962645 0.270768i \(-0.0872776\pi\)
0.698291 + 0.715814i \(0.253944\pi\)
\(608\) 1.15009 + 4.29219i 0.0466423 + 0.174071i
\(609\) −1.35961 5.07412i −0.0550940 0.205614i
\(610\) 0 0
\(611\) 12.4445 + 25.5706i 0.503451 + 1.03448i
\(612\) −6.39343 + 6.39343i −0.258439 + 0.258439i
\(613\) −21.6229 + 37.4520i −0.873342 + 1.51267i −0.0148245 + 0.999890i \(0.504719\pi\)
−0.858518 + 0.512783i \(0.828614\pi\)
\(614\) −14.7625 8.52313i −0.595766 0.343965i
\(615\) 0 0
\(616\) −2.60709 + 2.60709i −0.105043 + 0.105043i
\(617\) −35.5212 + 20.5082i −1.43003 + 0.825628i −0.997122 0.0758097i \(-0.975846\pi\)
−0.432908 + 0.901438i \(0.642513\pi\)
\(618\) 34.2944 19.7999i 1.37952 0.796469i
\(619\) −0.641455 + 0.641455i −0.0257823 + 0.0257823i −0.719880 0.694098i \(-0.755803\pi\)
0.694098 + 0.719880i \(0.255803\pi\)
\(620\) 0 0
\(621\) 1.95033 + 1.12602i 0.0782639 + 0.0451857i
\(622\) −13.7043 + 23.7366i −0.549493 + 0.951750i
\(623\) 2.87244 2.87244i 0.115082 0.115082i
\(624\) −8.75833 + 1.69466i −0.350614 + 0.0678406i
\(625\) 0 0
\(626\) −2.59826 9.69683i −0.103847 0.387563i
\(627\) −9.51945 35.5271i −0.380170 1.41881i
\(628\) 9.18091 + 2.46002i 0.366358 + 0.0981654i
\(629\) 22.4009 + 22.4009i 0.893183 + 0.893183i
\(630\) 0 0
\(631\) 2.01738 7.52898i 0.0803108 0.299724i −0.914074 0.405547i \(-0.867081\pi\)
0.994385 + 0.105823i \(0.0337477\pi\)
\(632\) −0.747852 −0.0297480
\(633\) −13.1654 + 49.1341i −0.523279 + 1.95290i
\(634\) −10.4802 + 18.1522i −0.416221 + 0.720917i
\(635\) 0 0
\(636\) 28.3230i 1.12308i
\(637\) −20.8074 1.47292i −0.824419 0.0583591i
\(638\) 4.55721 + 4.55721i 0.180422 + 0.180422i
\(639\) 15.0181 4.02408i 0.594106 0.159190i
\(640\) 0 0
\(641\) 27.2442 15.7295i 1.07608 0.621276i 0.146245 0.989248i \(-0.453281\pi\)
0.929837 + 0.367972i \(0.119948\pi\)
\(642\) 27.0054i 1.06582i
\(643\) 4.06494 + 7.04068i 0.160305 + 0.277657i 0.934978 0.354705i \(-0.115419\pi\)
−0.774673 + 0.632362i \(0.782085\pi\)
\(644\) −7.97163 2.13599i −0.314126 0.0841698i
\(645\) 0 0
\(646\) 6.43552 + 11.1466i 0.253202 + 0.438559i
\(647\) 2.72310 0.729652i 0.107056 0.0286856i −0.204893 0.978784i \(-0.565685\pi\)
0.311949 + 0.950099i \(0.399018\pi\)
\(648\) −7.46563 4.31028i −0.293278 0.169324i
\(649\) 33.3566 1.30936
\(650\) 0 0
\(651\) −12.2520 −0.480194
\(652\) −1.92752 1.11286i −0.0754876 0.0435828i
\(653\) 5.60977 1.50313i 0.219527 0.0588222i −0.147379 0.989080i \(-0.547084\pi\)
0.366906 + 0.930258i \(0.380417\pi\)
\(654\) 10.6452 + 18.4380i 0.416259 + 0.720982i
\(655\) 0 0
\(656\) 1.30108 + 0.348623i 0.0507986 + 0.0136114i
\(657\) 25.6612 + 44.4466i 1.00114 + 1.73403i
\(658\) 8.69260i 0.338873i
\(659\) 1.91821 1.10748i 0.0747228 0.0431413i −0.462173 0.886790i \(-0.652930\pi\)
0.536896 + 0.843648i \(0.319597\pi\)
\(660\) 0 0
\(661\) −27.4462 + 7.35419i −1.06753 + 0.286045i −0.749479 0.662028i \(-0.769696\pi\)
−0.318054 + 0.948073i \(0.603029\pi\)
\(662\) 11.8234 + 11.8234i 0.459528 + 0.459528i
\(663\) −23.2339 + 11.3073i −0.902330 + 0.439139i
\(664\) 10.5558i 0.409646i
\(665\) 0 0
\(666\) 17.0704 29.5668i 0.661464 1.14569i
\(667\) −3.73372 + 13.9344i −0.144570 + 0.539544i
\(668\) 17.9281 0.693660
\(669\) −8.69180 + 32.4382i −0.336044 + 1.25413i
\(670\) 0 0
\(671\) 17.4474 + 17.4474i 0.673548 + 0.673548i
\(672\) −2.63388 0.705746i −0.101604 0.0272248i
\(673\) −11.6518 43.4850i −0.449142 1.67622i −0.704762 0.709444i \(-0.748946\pi\)
0.255619 0.966778i \(-0.417721\pi\)
\(674\) 4.89627 + 18.2731i 0.188597 + 0.703854i
\(675\) 0 0
\(676\) −12.8704 1.83132i −0.495014 0.0704353i
\(677\) 22.4488 22.4488i 0.862778 0.862778i −0.128882 0.991660i \(-0.541139\pi\)
0.991660 + 0.128882i \(0.0411389\pi\)
\(678\) −10.9733 + 19.0063i −0.421427 + 0.729934i
\(679\) 5.49204 + 3.17083i 0.210765 + 0.121685i
\(680\) 0 0
\(681\) −33.0586 + 33.0586i −1.26681 + 1.26681i
\(682\) 13.0177 7.51579i 0.498474 0.287794i
\(683\) −25.5934 + 14.7764i −0.979305 + 0.565402i −0.902060 0.431610i \(-0.857946\pi\)
−0.0772447 + 0.997012i \(0.524612\pi\)
\(684\) 9.80824 9.80824i 0.375027 0.375027i
\(685\) 0 0
\(686\) −12.2030 7.04539i −0.465912 0.268994i
\(687\) −1.83455 + 3.17753i −0.0699925 + 0.121231i
\(688\) 3.40228 3.40228i 0.129711 0.129711i
\(689\) 13.4711 39.0141i 0.513206 1.48632i
\(690\) 0 0
\(691\) 3.05516 + 11.4020i 0.116224 + 0.433753i 0.999376 0.0353343i \(-0.0112496\pi\)
−0.883152 + 0.469087i \(0.844583\pi\)
\(692\) −2.22349 8.29818i −0.0845244 0.315450i
\(693\) 11.1169 + 2.97877i 0.422298 + 0.113154i
\(694\) 3.15309 + 3.15309i 0.119690 + 0.119690i
\(695\) 0 0
\(696\) −1.23365 + 4.60404i −0.0467613 + 0.174516i
\(697\) 3.90156 0.147782
\(698\) 3.59895 13.4314i 0.136222 0.508388i
\(699\) −28.7746 + 49.8391i −1.08836 + 1.88509i
\(700\) 0 0
\(701\) 17.5090i 0.661306i 0.943752 + 0.330653i \(0.107269\pi\)
−0.943752 + 0.330653i \(0.892731\pi\)
\(702\) 0.710691 + 0.818973i 0.0268233 + 0.0309101i
\(703\) −34.3655 34.3655i −1.29612 1.29612i
\(704\) 3.23142 0.865856i 0.121789 0.0326332i
\(705\) 0 0
\(706\) 0.857885 0.495300i 0.0322869 0.0186409i
\(707\) 6.73265i 0.253208i
\(708\) 12.3348 + 21.3646i 0.463571 + 0.802929i
\(709\) −14.1418 3.78927i −0.531105 0.142309i −0.0167065 0.999860i \(-0.505318\pi\)
−0.514398 + 0.857551i \(0.671985\pi\)
\(710\) 0 0
\(711\) 1.16723 + 2.02170i 0.0437746 + 0.0758198i
\(712\) −3.56032 + 0.953984i −0.133428 + 0.0357521i
\(713\) 29.1385 + 16.8231i 1.09125 + 0.630031i
\(714\) −7.89824 −0.295584
\(715\) 0 0
\(716\) −11.2055 −0.418771
\(717\) −44.1783 25.5063i −1.64987 0.952551i
\(718\) 16.1364 4.32374i 0.602206 0.161361i
\(719\) 20.1467 + 34.8952i 0.751346 + 1.30137i 0.947170 + 0.320731i \(0.103929\pi\)
−0.195824 + 0.980639i \(0.562738\pi\)
\(720\) 0 0
\(721\) 17.0383 + 4.56541i 0.634541 + 0.170025i
\(722\) −0.372816 0.645736i −0.0138748 0.0240318i
\(723\) 0.749174i 0.0278621i
\(724\) 19.7814 11.4208i 0.735168 0.424450i
\(725\) 0 0
\(726\) −0.458289 + 0.122798i −0.0170087 + 0.00455747i
\(727\) 9.49105 + 9.49105i 0.352004 + 0.352004i 0.860855 0.508851i \(-0.169930\pi\)
−0.508851 + 0.860855i \(0.669930\pi\)
\(728\) −3.29243 2.22488i −0.122025 0.0824595i
\(729\) 29.1418i 1.07933i
\(730\) 0 0
\(731\) 6.96840 12.0696i 0.257736 0.446411i
\(732\) −4.72305 + 17.6267i −0.174569 + 0.651500i
\(733\) −4.54882 −0.168015 −0.0840073 0.996465i \(-0.526772\pi\)
−0.0840073 + 0.996465i \(0.526772\pi\)
\(734\) 8.34106 31.1292i 0.307874 1.14900i
\(735\) 0 0
\(736\) 5.29501 + 5.29501i 0.195177 + 0.195177i
\(737\) 13.7809 + 3.69259i 0.507628 + 0.136018i
\(738\) −1.08825 4.06139i −0.0400589 0.149502i
\(739\) −5.30194 19.7871i −0.195035 0.727881i −0.992258 0.124196i \(-0.960365\pi\)
0.797223 0.603685i \(-0.206302\pi\)
\(740\) 0 0
\(741\) 35.6434 17.3467i 1.30939 0.637245i
\(742\) 8.92103 8.92103i 0.327501 0.327501i
\(743\) 4.09115 7.08607i 0.150090 0.259963i −0.781171 0.624318i \(-0.785377\pi\)
0.931260 + 0.364355i \(0.118710\pi\)
\(744\) 9.62757 + 5.55848i 0.352964 + 0.203784i
\(745\) 0 0
\(746\) 1.78132 1.78132i 0.0652187 0.0652187i
\(747\) −28.5361 + 16.4753i −1.04408 + 0.602800i
\(748\) 8.39185 4.84504i 0.306837 0.177152i
\(749\) 8.50601 8.50601i 0.310803 0.310803i
\(750\) 0 0
\(751\) 21.5801 + 12.4593i 0.787469 + 0.454645i 0.839071 0.544022i \(-0.183099\pi\)
−0.0516018 + 0.998668i \(0.516433\pi\)
\(752\) 3.94365 6.83060i 0.143810 0.249086i
\(753\) 19.7224 19.7224i 0.718725 0.718725i
\(754\) −3.88910 + 5.75518i −0.141633 + 0.209591i
\(755\) 0 0
\(756\) 0.0857852 + 0.320155i 0.00311998 + 0.0116439i
\(757\) −3.56508 13.3051i −0.129575 0.483581i 0.870386 0.492370i \(-0.163869\pi\)
−0.999961 + 0.00878853i \(0.997202\pi\)
\(758\) −2.94373 0.788769i −0.106921 0.0286494i
\(759\) −43.8275 43.8275i −1.59084 1.59084i
\(760\) 0 0
\(761\) 8.43875 31.4939i 0.305905 1.14165i −0.626259 0.779615i \(-0.715415\pi\)
0.932164 0.362036i \(-0.117918\pi\)
\(762\) −8.22039 −0.297793
\(763\) −2.45454 + 9.16046i −0.0888602 + 0.331631i
\(764\) −0.887123 + 1.53654i −0.0320950 + 0.0555901i
\(765\) 0 0
\(766\) 0.0347550i 0.00125575i
\(767\) 6.82941 + 35.2958i 0.246596 + 1.27446i
\(768\) 1.74951 + 1.74951i 0.0631299 + 0.0631299i
\(769\) −4.09555 + 1.09740i −0.147689 + 0.0395732i −0.331906 0.943312i \(-0.607692\pi\)
0.184217 + 0.982886i \(0.441025\pi\)
\(770\) 0 0
\(771\) 35.5535 20.5269i 1.28043 0.739256i
\(772\) 11.8296i 0.425758i
\(773\) 18.8879 + 32.7148i 0.679350 + 1.17667i 0.975177 + 0.221427i \(0.0710714\pi\)
−0.295827 + 0.955241i \(0.595595\pi\)
\(774\) −14.5077 3.88734i −0.521470 0.139727i
\(775\) 0 0
\(776\) −2.87708 4.98325i −0.103281 0.178888i
\(777\) 28.8070 7.71882i 1.03345 0.276911i
\(778\) 18.3940 + 10.6198i 0.659457 + 0.380737i
\(779\) −5.98543 −0.214450
\(780\) 0 0
\(781\) −16.6629 −0.596244
\(782\) 18.7841 + 10.8450i 0.671718 + 0.387817i
\(783\) 0.559633 0.149953i 0.0199996 0.00535889i
\(784\) 2.89269 + 5.01028i 0.103310 + 0.178939i
\(785\) 0 0
\(786\) 0.945853 + 0.253441i 0.0337375 + 0.00903993i
\(787\) −8.13472 14.0897i −0.289971 0.502245i 0.683831 0.729640i \(-0.260312\pi\)
−0.973803 + 0.227395i \(0.926979\pi\)
\(788\) 1.87164i 0.0666745i
\(789\) −10.1534 + 5.86208i −0.361472 + 0.208696i
\(790\) 0 0
\(791\) −9.44283 + 2.53020i −0.335748 + 0.0899635i
\(792\) −7.38422 7.38422i −0.262387 0.262387i
\(793\) −14.8895 + 22.0338i −0.528742 + 0.782444i
\(794\) 26.2558i 0.931782i
\(795\) 0 0
\(796\) 9.52263 16.4937i 0.337521 0.584603i
\(797\) 8.62476 32.1880i 0.305505 1.14016i −0.627005 0.779015i \(-0.715720\pi\)
0.932510 0.361144i \(-0.117614\pi\)
\(798\) 12.1168 0.428930
\(799\) 5.91292 22.0673i 0.209184 0.780686i
\(800\) 0 0
\(801\) 8.13580 + 8.13580i 0.287464 + 0.287464i
\(802\) −24.9456 6.68414i −0.880858 0.236025i
\(803\) −14.2358 53.1288i −0.502371 1.87487i
\(804\) 2.73094 + 10.1920i 0.0963130 + 0.359445i
\(805\) 0 0
\(806\) 10.6180 + 12.2357i 0.374002 + 0.430985i
\(807\) −7.45564 + 7.45564i −0.262451 + 0.262451i
\(808\) 3.05446 5.29048i 0.107456 0.186119i
\(809\) 0.775625 + 0.447807i 0.0272695 + 0.0157441i 0.513573 0.858046i \(-0.328322\pi\)
−0.486303 + 0.873790i \(0.661655\pi\)
\(810\) 0 0
\(811\) −16.2913 + 16.2913i −0.572063 + 0.572063i −0.932705 0.360641i \(-0.882558\pi\)
0.360641 + 0.932705i \(0.382558\pi\)
\(812\) −1.83872 + 1.06159i −0.0645266 + 0.0372544i
\(813\) 20.1994 11.6621i 0.708423 0.409008i
\(814\) −25.8724 + 25.8724i −0.906827 + 0.906827i
\(815\) 0 0
\(816\) 6.20640 + 3.58326i 0.217267 + 0.125439i
\(817\) −10.6903 + 18.5162i −0.374007 + 0.647799i
\(818\) −0.100454 + 0.100454i −0.00351230 + 0.00351230i
\(819\) −0.875870 + 12.3731i −0.0306054 + 0.432351i
\(820\) 0 0
\(821\) −7.23200 26.9902i −0.252399 0.941965i −0.969519 0.245016i \(-0.921207\pi\)
0.717120 0.696949i \(-0.245460\pi\)
\(822\) −5.60255 20.9090i −0.195412 0.729286i
\(823\) 20.8667 + 5.59121i 0.727366 + 0.194897i 0.603456 0.797396i \(-0.293790\pi\)
0.123910 + 0.992293i \(0.460457\pi\)
\(824\) −11.3174 11.3174i −0.394261 0.394261i
\(825\) 0 0
\(826\) −2.84413 + 10.6145i −0.0989601 + 0.369324i
\(827\) −35.4430 −1.23247 −0.616237 0.787561i \(-0.711344\pi\)
−0.616237 + 0.787561i \(0.711344\pi\)
\(828\) 6.04990 22.5786i 0.210249 0.784659i
\(829\) −16.7195 + 28.9590i −0.580693 + 1.00579i 0.414705 + 0.909956i \(0.363885\pi\)
−0.995397 + 0.0958333i \(0.969448\pi\)
\(830\) 0 0
\(831\) 14.5682i 0.505364i
\(832\) 1.57779 + 3.24200i 0.0547001 + 0.112396i
\(833\) 11.8493 + 11.8493i 0.410556 + 0.410556i
\(834\) −19.9755 + 5.35241i −0.691694 + 0.185339i
\(835\) 0 0
\(836\) −12.8741 + 7.43284i −0.445259 + 0.257070i
\(837\) 1.35129i 0.0467076i
\(838\) 8.61299 + 14.9181i 0.297531 + 0.515338i
\(839\) −13.5758 3.63763i −0.468690 0.125585i 0.0167414 0.999860i \(-0.494671\pi\)
−0.485431 + 0.874275i \(0.661337\pi\)
\(840\) 0 0
\(841\) −12.6443 21.9006i −0.436012 0.755194i
\(842\) 14.4396 3.86908i 0.497621 0.133337i
\(843\) −9.23254 5.33041i −0.317986 0.183589i
\(844\) 20.5593 0.707680
\(845\) 0 0
\(846\) −24.6206 −0.846474
\(847\) −0.183028 0.105671i −0.00628891 0.00363090i
\(848\) −11.0574 + 2.96281i −0.379712 + 0.101743i
\(849\) 6.17037 + 10.6874i 0.211766 + 0.366790i
\(850\) 0 0
\(851\) −79.1094 21.1973i −2.71183 0.726634i
\(852\) −6.16171 10.6724i −0.211097 0.365630i
\(853\) 17.8954i 0.612726i −0.951915 0.306363i \(-0.900888\pi\)
0.951915 0.306363i \(-0.0991122\pi\)
\(854\) −7.03960 + 4.06431i −0.240890 + 0.139078i
\(855\) 0 0
\(856\) −10.5430 + 2.82498i −0.360351 + 0.0965559i
\(857\) −40.3064 40.3064i −1.37684 1.37684i −0.849908 0.526931i \(-0.823343\pi\)
−0.526931 0.849908i \(-0.676657\pi\)
\(858\) −13.0596 26.8345i −0.445847 0.916114i
\(859\) 30.3863i 1.03677i −0.855148 0.518384i \(-0.826534\pi\)
0.855148 0.518384i \(-0.173466\pi\)
\(860\) 0 0
\(861\) 1.83646 3.18085i 0.0625865 0.108403i
\(862\) 4.93983 18.4357i 0.168251 0.627922i
\(863\) 33.0724 1.12580 0.562898 0.826526i \(-0.309686\pi\)
0.562898 + 0.826526i \(0.309686\pi\)
\(864\) 0.0778379 0.290495i 0.00264810 0.00988284i
\(865\) 0 0
\(866\) 10.7361 + 10.7361i 0.364829 + 0.364829i
\(867\) −20.5771 5.51361i −0.698834 0.187252i
\(868\) 1.28166 + 4.78322i 0.0435024 + 0.162353i
\(869\) −0.647532 2.41662i −0.0219660 0.0819783i
\(870\) 0 0
\(871\) −1.08576 + 15.3381i −0.0367895 + 0.519712i
\(872\) 6.08467 6.08467i 0.206053 0.206053i
\(873\) −8.98095 + 15.5555i −0.303959 + 0.526473i
\(874\) −28.8169 16.6375i −0.974747 0.562771i
\(875\) 0 0
\(876\) 28.7642 28.7642i 0.971853 0.971853i
\(877\) −12.8063 + 7.39372i −0.432438 + 0.249668i −0.700385 0.713766i \(-0.746988\pi\)
0.267947 + 0.963434i \(0.413655\pi\)
\(878\) −13.7031 + 7.91150i −0.462458 + 0.267000i
\(879\) 25.3017 25.3017i 0.853406 0.853406i
\(880\) 0 0
\(881\) 32.6512 + 18.8512i 1.10005 + 0.635112i 0.936233 0.351379i \(-0.114287\pi\)
0.163813 + 0.986491i \(0.447621\pi\)
\(882\) 9.02967 15.6399i 0.304045 0.526621i
\(883\) 37.7053 37.7053i 1.26888 1.26888i 0.322219 0.946665i \(-0.395571\pi\)
0.946665 0.322219i \(-0.104429\pi\)
\(884\) 6.84485 + 7.88775i 0.230217 + 0.265294i
\(885\) 0 0
\(886\) 1.94063 + 7.24255i 0.0651969 + 0.243318i
\(887\) 13.1490 + 49.0728i 0.441501 + 1.64770i 0.725013 + 0.688735i \(0.241834\pi\)
−0.283513 + 0.958968i \(0.591500\pi\)
\(888\) −26.1383 7.00373i −0.877143 0.235030i
\(889\) −2.58921 2.58921i −0.0868395 0.0868395i
\(890\) 0 0
\(891\) 7.46417 27.8566i 0.250059 0.933233i
\(892\) 13.5732 0.454465
\(893\) −9.07110 + 33.8538i −0.303553 + 1.13287i
\(894\) 3.62131 6.27229i 0.121115 0.209777i
\(895\) 0 0
\(896\) 1.10210i 0.0368186i
\(897\) 37.4022 55.3486i 1.24882 1.84804i
\(898\) −21.3109 21.3109i −0.711154 0.711154i
\(899\) 8.36110 2.24035i 0.278858 0.0747198i
\(900\) 0 0
\(901\) −28.7155 + 16.5789i −0.956653 + 0.552324i
\(902\) 4.50619i 0.150040i
\(903\) −6.56005 11.3623i −0.218305 0.378115i
\(904\) 8.56802 + 2.29579i 0.284968 + 0.0763570i
\(905\) 0 0
\(906\) −18.0044 31.1845i −0.598156 1.03604i
\(907\) 3.18585 0.853646i 0.105784 0.0283449i −0.205538 0.978649i \(-0.565895\pi\)
0.311323 + 0.950304i \(0.399228\pi\)
\(908\) 16.3644 + 9.44797i 0.543070 + 0.313542i
\(909\) −19.0693 −0.632490
\(910\) 0 0
\(911\) −2.10299 −0.0696750 −0.0348375 0.999393i \(-0.511091\pi\)
−0.0348375 + 0.999393i \(0.511091\pi\)
\(912\) −9.52131 5.49713i −0.315282 0.182028i
\(913\) 34.1103 9.13984i 1.12889 0.302484i
\(914\) −5.23333 9.06439i −0.173103 0.299823i
\(915\) 0 0
\(916\) 1.43243 + 0.383818i 0.0473287 + 0.0126817i
\(917\) 0.218092 + 0.377747i 0.00720205 + 0.0124743i
\(918\) 0.871110i 0.0287509i
\(919\) 51.1941 29.5569i 1.68874 0.974993i 0.733250 0.679959i \(-0.238002\pi\)
0.955487 0.295034i \(-0.0953309\pi\)
\(920\) 0 0
\(921\) 40.7384 10.9158i 1.34237 0.359688i
\(922\) 21.2194 + 21.2194i 0.698824 + 0.698824i
\(923\) −3.41155 17.6316i −0.112292 0.580350i
\(924\) 9.12224i 0.300100i
\(925\) 0 0
\(926\) 8.75729 15.1681i 0.287782 0.498453i
\(927\) −12.9309 + 48.2588i −0.424707 + 1.58503i
\(928\) 1.92648 0.0632398
\(929\) 1.02958 3.84243i 0.0337793 0.126066i −0.946977 0.321300i \(-0.895880\pi\)
0.980757 + 0.195234i \(0.0625467\pi\)
\(930\) 0 0
\(931\) −18.1782 18.1782i −0.595768 0.595768i
\(932\) 22.4674 + 6.02011i 0.735943 + 0.197195i
\(933\) −17.5515 65.5031i −0.574611 2.14448i
\(934\) −2.91683 10.8858i −0.0954416 0.356193i
\(935\) 0 0
\(936\) 6.30167 9.32535i 0.205976 0.304809i
\(937\) −17.6539 + 17.6539i −0.576729 + 0.576729i −0.934001 0.357272i \(-0.883707\pi\)
0.357272 + 0.934001i \(0.383707\pi\)
\(938\) −2.35005 + 4.07041i −0.0767319 + 0.132904i
\(939\) 21.5103 + 12.4190i 0.701963 + 0.405279i
\(940\) 0 0
\(941\) −0.784318 + 0.784318i −0.0255680 + 0.0255680i −0.719775 0.694207i \(-0.755755\pi\)
0.694207 + 0.719775i \(0.255755\pi\)
\(942\) −20.3659 + 11.7583i −0.663557 + 0.383105i
\(943\) −8.73519 + 5.04326i −0.284457 + 0.164231i
\(944\) 7.05046 7.05046i 0.229473 0.229473i
\(945\) 0 0
\(946\) 13.9401 + 8.04830i 0.453231 + 0.261673i
\(947\) 6.32607 10.9571i 0.205570 0.356057i −0.744744 0.667350i \(-0.767429\pi\)
0.950314 + 0.311293i \(0.100762\pi\)
\(948\) 1.30837 1.30837i 0.0424940 0.0424940i
\(949\) 53.3028 25.9410i 1.73028 0.842080i
\(950\) 0 0
\(951\) −13.4223 50.0926i −0.435247 1.62436i
\(952\) 0.826220 + 3.08350i 0.0267780 + 0.0999367i
\(953\) −49.9783 13.3916i −1.61895 0.433798i −0.668261 0.743927i \(-0.732961\pi\)
−0.950694 + 0.310130i \(0.899628\pi\)
\(954\) 25.2676 + 25.2676i 0.818069 + 0.818069i
\(955\) 0 0
\(956\) −5.33634 + 19.9155i −0.172590 + 0.644113i
\(957\) −15.9457 −0.515452
\(958\) 3.94104 14.7082i 0.127329 0.475199i
\(959\) 4.82115 8.35047i 0.155683 0.269651i
\(960\) 0 0
\(961\) 10.8112i 0.348749i
\(962\) −32.6736 22.0794i −1.05344 0.711868i
\(963\) 24.0921 + 24.0921i 0.776358 + 0.776358i
\(964\) −0.292480 + 0.0783697i −0.00942013 + 0.00252412i
\(965\) 0 0
\(966\) 17.6834 10.2095i 0.568953 0.328485i
\(967\) 22.2857i 0.716660i 0.933595 + 0.358330i \(0.116654\pi\)
−0.933595 + 0.358330i \(0.883346\pi\)
\(968\) 0.0958815 + 0.166072i 0.00308175 + 0.00533775i
\(969\) −30.7601 8.24215i −0.988158 0.264776i
\(970\) 0 0
\(971\) 4.17893 + 7.23812i 0.134108 + 0.232282i 0.925256 0.379342i \(-0.123850\pi\)
−0.791148 + 0.611624i \(0.790516\pi\)
\(972\) 21.4735 5.75382i 0.688764 0.184554i
\(973\) −7.97764 4.60589i −0.255751 0.147658i
\(974\) 32.6162 1.04509
\(975\) 0 0
\(976\) 7.37557 0.236086
\(977\) −34.1756 19.7313i −1.09338 0.631260i −0.158902 0.987294i \(-0.550795\pi\)
−0.934473 + 0.356034i \(0.884129\pi\)
\(978\) 5.31916 1.42527i 0.170088 0.0455750i
\(979\) −6.16544 10.6789i −0.197048 0.341298i
\(980\) 0 0
\(981\) −25.9458 6.95215i −0.828384 0.221965i
\(982\) 2.50433 + 4.33762i 0.0799163 + 0.138419i
\(983\) 6.44395i 0.205530i −0.994706 0.102765i \(-0.967231\pi\)
0.994706 0.102765i \(-0.0327690\pi\)
\(984\) −2.88617 + 1.66633i −0.0920076 + 0.0531206i
\(985\) 0 0
\(986\) 5.38997 1.44424i 0.171652 0.0459939i
\(987\) −15.2078 15.2078i −0.484068 0.484068i
\(988\) −10.5008 12.1007i −0.334074 0.384974i
\(989\) 36.0302i 1.14569i
\(990\) 0 0
\(991\) 14.7651 25.5740i 0.469030 0.812383i −0.530343 0.847783i \(-0.677937\pi\)
0.999373 + 0.0353995i \(0.0112704\pi\)
\(992\) 1.16292 4.34009i 0.0369229 0.137798i
\(993\) −41.3701 −1.31284
\(994\) 1.42075 5.30231i 0.0450635 0.168179i
\(995\) 0 0
\(996\) 18.4675 + 18.4675i 0.585166 + 0.585166i
\(997\) −14.9800 4.01387i −0.474421 0.127121i 0.0136828 0.999906i \(-0.495644\pi\)
−0.488104 + 0.872786i \(0.662311\pi\)
\(998\) −3.53328 13.1864i −0.111844 0.417408i
\(999\) 0.851321 + 3.17717i 0.0269346 + 0.100521i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.g.643.1 16
5.2 odd 4 650.2.w.g.357.4 16
5.3 odd 4 130.2.s.b.97.1 yes 16
5.4 even 2 130.2.p.b.123.4 yes 16
13.11 odd 12 650.2.w.g.193.4 16
65.24 odd 12 130.2.s.b.63.1 yes 16
65.37 even 12 inner 650.2.t.g.557.1 16
65.63 even 12 130.2.p.b.37.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.b.37.4 16 65.63 even 12
130.2.p.b.123.4 yes 16 5.4 even 2
130.2.s.b.63.1 yes 16 65.24 odd 12
130.2.s.b.97.1 yes 16 5.3 odd 4
650.2.t.g.557.1 16 65.37 even 12 inner
650.2.t.g.643.1 16 1.1 even 1 trivial
650.2.w.g.193.4 16 13.11 odd 12
650.2.w.g.357.4 16 5.2 odd 4