Properties

Label 650.2.t.g.557.3
Level $650$
Weight $2$
Character 650.557
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(7,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{13} - 48 x^{12} + 16 x^{11} + 8 x^{10} + 80 x^{9} + 2208 x^{8} + 760 x^{7} + 192 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.3
Root \(0.935952 + 0.250788i\) of defining polynomial
Character \(\chi\) \(=\) 650.557
Dual form 650.2.t.g.643.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.935952 + 0.250788i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.935952 - 0.250788i) q^{6} +(1.88470 - 3.26439i) q^{7} -1.00000i q^{8} +(-1.78496 - 1.03055i) q^{9} +(-1.91630 - 0.513470i) q^{11} +(0.685164 - 0.685164i) q^{12} +(0.930617 - 3.48338i) q^{13} -3.76940i q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.33261 + 4.97337i) q^{17} -2.06110 q^{18} +(0.103361 + 0.385747i) q^{19} +(2.58266 - 2.58266i) q^{21} +(-1.91630 + 0.513470i) q^{22} +(0.652430 - 2.43490i) q^{23} +(0.250788 - 0.935952i) q^{24} +(-0.935753 - 3.48201i) q^{26} +(-3.46769 - 3.46769i) q^{27} +(-1.88470 - 3.26439i) q^{28} +(-1.00654 + 0.581127i) q^{29} +(7.10352 + 7.10352i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-1.66479 - 0.961167i) q^{33} +(3.64076 + 3.64076i) q^{34} +(-1.78496 + 1.03055i) q^{36} +(5.39776 + 9.34919i) q^{37} +(0.282386 + 0.282386i) q^{38} +(1.74460 - 3.02689i) q^{39} +(-0.0903706 + 0.337268i) q^{41} +(0.945318 - 3.52797i) q^{42} +(4.86670 - 1.30403i) q^{43} +(-1.40283 + 1.40283i) q^{44} +(-0.652430 - 2.43490i) q^{46} -2.16571 q^{47} +(-0.250788 - 0.935952i) q^{48} +(-3.60417 - 6.24261i) q^{49} +4.98903i q^{51} +(-2.55139 - 2.54763i) q^{52} +(4.52928 - 4.52928i) q^{53} +(-4.73695 - 1.26926i) q^{54} +(-3.26439 - 1.88470i) q^{56} +0.386962i q^{57} +(-0.581127 + 1.00654i) q^{58} +(-12.2618 + 3.28554i) q^{59} +(0.985039 - 1.70614i) q^{61} +(9.70358 + 2.60007i) q^{62} +(-6.72824 + 3.88455i) q^{63} -1.00000 q^{64} -1.92233 q^{66} +(12.0484 - 6.95614i) q^{67} +(4.97337 + 1.33261i) q^{68} +(1.22129 - 2.11533i) q^{69} +(-0.875664 + 0.234633i) q^{71} +(-1.03055 + 1.78496i) q^{72} +8.38511i q^{73} +(9.34919 + 5.39776i) q^{74} +(0.385747 + 0.103361i) q^{76} +(-5.28781 + 5.28781i) q^{77} +(-0.00257603 - 3.49367i) q^{78} +3.10557i q^{79} +(0.715714 + 1.23965i) q^{81} +(0.0903706 + 0.337268i) q^{82} -4.98388 q^{83} +(-0.945318 - 3.52797i) q^{84} +(3.56267 - 3.56267i) q^{86} +(-1.08781 + 0.291479i) q^{87} +(-0.513470 + 1.91630i) q^{88} +(-4.22759 + 15.7776i) q^{89} +(-9.61719 - 9.60302i) q^{91} +(-1.78247 - 1.78247i) q^{92} +(4.86708 + 8.43002i) q^{93} +(-1.87556 + 1.08285i) q^{94} +(-0.685164 - 0.685164i) q^{96} +(-14.9854 - 8.65185i) q^{97} +(-6.24261 - 3.60417i) q^{98} +(2.89136 + 2.89136i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{11} - 2 q^{13} - 8 q^{16} + 16 q^{17} + 16 q^{18} + 6 q^{22} + 6 q^{23} - 6 q^{26} + 12 q^{27} - 6 q^{29} + 6 q^{33} - 14 q^{34} + 20 q^{37} - 6 q^{38} - 6 q^{39} - 44 q^{41} - 6 q^{42}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.935952 + 0.250788i 0.540372 + 0.144792i 0.518674 0.854972i \(-0.326426\pi\)
0.0216985 + 0.999765i \(0.493093\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 0.935952 0.250788i 0.382101 0.102384i
\(7\) 1.88470 3.26439i 0.712349 1.23382i −0.251624 0.967825i \(-0.580965\pi\)
0.963973 0.265999i \(-0.0857019\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.78496 1.03055i −0.594988 0.343517i
\(10\) 0 0
\(11\) −1.91630 0.513470i −0.577785 0.154817i −0.0419205 0.999121i \(-0.513348\pi\)
−0.535865 + 0.844304i \(0.680014\pi\)
\(12\) 0.685164 0.685164i 0.197790 0.197790i
\(13\) 0.930617 3.48338i 0.258107 0.966116i
\(14\) 3.76940i 1.00741i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.33261 + 4.97337i 0.323205 + 1.20622i 0.916104 + 0.400941i \(0.131317\pi\)
−0.592899 + 0.805277i \(0.702017\pi\)
\(18\) −2.06110 −0.485806
\(19\) 0.103361 + 0.385747i 0.0237125 + 0.0884964i 0.976768 0.214299i \(-0.0687467\pi\)
−0.953056 + 0.302796i \(0.902080\pi\)
\(20\) 0 0
\(21\) 2.58266 2.58266i 0.563582 0.563582i
\(22\) −1.91630 + 0.513470i −0.408556 + 0.109472i
\(23\) 0.652430 2.43490i 0.136041 0.507712i −0.863950 0.503577i \(-0.832017\pi\)
0.999991 0.00413534i \(-0.00131632\pi\)
\(24\) 0.250788 0.935952i 0.0511918 0.191050i
\(25\) 0 0
\(26\) −0.935753 3.48201i −0.183516 0.682878i
\(27\) −3.46769 3.46769i −0.667356 0.667356i
\(28\) −1.88470 3.26439i −0.356174 0.616912i
\(29\) −1.00654 + 0.581127i −0.186910 + 0.107913i −0.590535 0.807012i \(-0.701083\pi\)
0.403625 + 0.914924i \(0.367750\pi\)
\(30\) 0 0
\(31\) 7.10352 + 7.10352i 1.27583 + 1.27583i 0.942980 + 0.332849i \(0.108010\pi\)
0.332849 + 0.942980i \(0.391990\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −1.66479 0.961167i −0.289803 0.167318i
\(34\) 3.64076 + 3.64076i 0.624384 + 0.624384i
\(35\) 0 0
\(36\) −1.78496 + 1.03055i −0.297494 + 0.171758i
\(37\) 5.39776 + 9.34919i 0.887386 + 1.53700i 0.842954 + 0.537985i \(0.180814\pi\)
0.0444319 + 0.999012i \(0.485852\pi\)
\(38\) 0.282386 + 0.282386i 0.0458091 + 0.0458091i
\(39\) 1.74460 3.02689i 0.279360 0.484691i
\(40\) 0 0
\(41\) −0.0903706 + 0.337268i −0.0141135 + 0.0526724i −0.972623 0.232387i \(-0.925347\pi\)
0.958510 + 0.285059i \(0.0920132\pi\)
\(42\) 0.945318 3.52797i 0.145866 0.544378i
\(43\) 4.86670 1.30403i 0.742165 0.198863i 0.132125 0.991233i \(-0.457820\pi\)
0.610040 + 0.792370i \(0.291153\pi\)
\(44\) −1.40283 + 1.40283i −0.211484 + 0.211484i
\(45\) 0 0
\(46\) −0.652430 2.43490i −0.0961956 0.359007i
\(47\) −2.16571 −0.315901 −0.157950 0.987447i \(-0.550489\pi\)
−0.157950 + 0.987447i \(0.550489\pi\)
\(48\) −0.250788 0.935952i −0.0361981 0.135093i
\(49\) −3.60417 6.24261i −0.514882 0.891801i
\(50\) 0 0
\(51\) 4.98903i 0.698604i
\(52\) −2.55139 2.54763i −0.353814 0.353293i
\(53\) 4.52928 4.52928i 0.622145 0.622145i −0.323935 0.946079i \(-0.605006\pi\)
0.946079 + 0.323935i \(0.105006\pi\)
\(54\) −4.73695 1.26926i −0.644617 0.172725i
\(55\) 0 0
\(56\) −3.26439 1.88470i −0.436223 0.251853i
\(57\) 0.386962i 0.0512544i
\(58\) −0.581127 + 1.00654i −0.0763058 + 0.132165i
\(59\) −12.2618 + 3.28554i −1.59635 + 0.427740i −0.943937 0.330124i \(-0.892909\pi\)
−0.652412 + 0.757865i \(0.726243\pi\)
\(60\) 0 0
\(61\) 0.985039 1.70614i 0.126121 0.218449i −0.796049 0.605232i \(-0.793080\pi\)
0.922171 + 0.386783i \(0.126414\pi\)
\(62\) 9.70358 + 2.60007i 1.23236 + 0.330209i
\(63\) −6.72824 + 3.88455i −0.847678 + 0.489407i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.92233 −0.236623
\(67\) 12.0484 6.95614i 1.47194 0.849827i 0.472441 0.881362i \(-0.343373\pi\)
0.999503 + 0.0315350i \(0.0100396\pi\)
\(68\) 4.97337 + 1.33261i 0.603109 + 0.161603i
\(69\) 1.22129 2.11533i 0.147026 0.254656i
\(70\) 0 0
\(71\) −0.875664 + 0.234633i −0.103922 + 0.0278459i −0.310405 0.950604i \(-0.600465\pi\)
0.206483 + 0.978450i \(0.433798\pi\)
\(72\) −1.03055 + 1.78496i −0.121451 + 0.210360i
\(73\) 8.38511i 0.981403i 0.871328 + 0.490701i \(0.163259\pi\)
−0.871328 + 0.490701i \(0.836741\pi\)
\(74\) 9.34919 + 5.39776i 1.08682 + 0.627477i
\(75\) 0 0
\(76\) 0.385747 + 0.103361i 0.0442482 + 0.0118563i
\(77\) −5.28781 + 5.28781i −0.602602 + 0.602602i
\(78\) −0.00257603 3.49367i −0.000291677 0.395580i
\(79\) 3.10557i 0.349403i 0.984621 + 0.174702i \(0.0558961\pi\)
−0.984621 + 0.174702i \(0.944104\pi\)
\(80\) 0 0
\(81\) 0.715714 + 1.23965i 0.0795238 + 0.137739i
\(82\) 0.0903706 + 0.337268i 0.00997976 + 0.0372450i
\(83\) −4.98388 −0.547052 −0.273526 0.961865i \(-0.588190\pi\)
−0.273526 + 0.961865i \(0.588190\pi\)
\(84\) −0.945318 3.52797i −0.103143 0.384933i
\(85\) 0 0
\(86\) 3.56267 3.56267i 0.384173 0.384173i
\(87\) −1.08781 + 0.291479i −0.116626 + 0.0312498i
\(88\) −0.513470 + 1.91630i −0.0547361 + 0.204278i
\(89\) −4.22759 + 15.7776i −0.448124 + 1.67242i 0.259431 + 0.965762i \(0.416465\pi\)
−0.707554 + 0.706659i \(0.750202\pi\)
\(90\) 0 0
\(91\) −9.61719 9.60302i −1.00816 1.00667i
\(92\) −1.78247 1.78247i −0.185836 0.185836i
\(93\) 4.86708 + 8.43002i 0.504692 + 0.874153i
\(94\) −1.87556 + 1.08285i −0.193449 + 0.111688i
\(95\) 0 0
\(96\) −0.685164 0.685164i −0.0699293 0.0699293i
\(97\) −14.9854 8.65185i −1.52154 0.878462i −0.999677 0.0254339i \(-0.991903\pi\)
−0.521865 0.853028i \(-0.674763\pi\)
\(98\) −6.24261 3.60417i −0.630599 0.364076i
\(99\) 2.89136 + 2.89136i 0.290593 + 0.290593i
\(100\) 0 0
\(101\) −4.50466 + 2.60077i −0.448230 + 0.258786i −0.707083 0.707131i \(-0.749989\pi\)
0.258852 + 0.965917i \(0.416656\pi\)
\(102\) 2.49452 + 4.32063i 0.246994 + 0.427806i
\(103\) 3.96952 + 3.96952i 0.391129 + 0.391129i 0.875090 0.483961i \(-0.160802\pi\)
−0.483961 + 0.875090i \(0.660802\pi\)
\(104\) −3.48338 0.930617i −0.341574 0.0912545i
\(105\) 0 0
\(106\) 1.65783 6.18712i 0.161023 0.600946i
\(107\) −2.39861 + 8.95175i −0.231883 + 0.865398i 0.747647 + 0.664097i \(0.231184\pi\)
−0.979529 + 0.201301i \(0.935483\pi\)
\(108\) −4.73695 + 1.26926i −0.455813 + 0.122135i
\(109\) 3.96733 3.96733i 0.380001 0.380001i −0.491101 0.871102i \(-0.663406\pi\)
0.871102 + 0.491101i \(0.163406\pi\)
\(110\) 0 0
\(111\) 2.70738 + 10.1041i 0.256973 + 0.959037i
\(112\) −3.76940 −0.356174
\(113\) −1.43269 5.34686i −0.134776 0.502990i −0.999999 0.00160293i \(-0.999490\pi\)
0.865223 0.501388i \(-0.167177\pi\)
\(114\) 0.193481 + 0.335119i 0.0181212 + 0.0313868i
\(115\) 0 0
\(116\) 1.16225i 0.107913i
\(117\) −5.25092 + 5.25867i −0.485447 + 0.486164i
\(118\) −8.97625 + 8.97625i −0.826331 + 0.826331i
\(119\) 18.7466 + 5.02313i 1.71850 + 0.460470i
\(120\) 0 0
\(121\) −6.11774 3.53208i −0.556158 0.321098i
\(122\) 1.97008i 0.178363i
\(123\) −0.169165 + 0.293003i −0.0152531 + 0.0264191i
\(124\) 9.70358 2.60007i 0.871407 0.233493i
\(125\) 0 0
\(126\) −3.88455 + 6.72824i −0.346063 + 0.599399i
\(127\) −0.432529 0.115896i −0.0383808 0.0102841i 0.239578 0.970877i \(-0.422991\pi\)
−0.277958 + 0.960593i \(0.589658\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 4.88204 0.429839
\(130\) 0 0
\(131\) 14.7831 1.29161 0.645805 0.763503i \(-0.276522\pi\)
0.645805 + 0.763503i \(0.276522\pi\)
\(132\) −1.66479 + 0.961167i −0.144901 + 0.0836588i
\(133\) 1.45403 + 0.389607i 0.126081 + 0.0337832i
\(134\) 6.95614 12.0484i 0.600919 1.04082i
\(135\) 0 0
\(136\) 4.97337 1.33261i 0.426463 0.114270i
\(137\) 5.06901 8.77979i 0.433075 0.750108i −0.564061 0.825733i \(-0.690762\pi\)
0.997136 + 0.0756251i \(0.0240952\pi\)
\(138\) 2.44257i 0.207926i
\(139\) 5.47729 + 3.16232i 0.464578 + 0.268224i 0.713967 0.700179i \(-0.246897\pi\)
−0.249389 + 0.968403i \(0.580230\pi\)
\(140\) 0 0
\(141\) −2.02700 0.543132i −0.170704 0.0457400i
\(142\) −0.641030 + 0.641030i −0.0537941 + 0.0537941i
\(143\) −3.57195 + 6.19735i −0.298702 + 0.518248i
\(144\) 2.06110i 0.171758i
\(145\) 0 0
\(146\) 4.19255 + 7.26172i 0.346978 + 0.600984i
\(147\) −1.80776 6.74666i −0.149102 0.556455i
\(148\) 10.7955 0.887386
\(149\) −1.45148 5.41700i −0.118910 0.443778i 0.880640 0.473787i \(-0.157113\pi\)
−0.999550 + 0.0300087i \(0.990446\pi\)
\(150\) 0 0
\(151\) −8.56883 + 8.56883i −0.697322 + 0.697322i −0.963832 0.266510i \(-0.914129\pi\)
0.266510 + 0.963832i \(0.414129\pi\)
\(152\) 0.385747 0.103361i 0.0312882 0.00838365i
\(153\) 2.74664 10.2506i 0.222053 0.828712i
\(154\) −1.93547 + 7.22328i −0.155965 + 0.582068i
\(155\) 0 0
\(156\) −1.74906 3.02432i −0.140037 0.242139i
\(157\) −2.39607 2.39607i −0.191227 0.191227i 0.604999 0.796226i \(-0.293173\pi\)
−0.796226 + 0.604999i \(0.793173\pi\)
\(158\) 1.55278 + 2.68950i 0.123533 + 0.213965i
\(159\) 5.37508 3.10330i 0.426272 0.246108i
\(160\) 0 0
\(161\) −6.71884 6.71884i −0.529519 0.529519i
\(162\) 1.23965 + 0.715714i 0.0973964 + 0.0562318i
\(163\) 15.2707 + 8.81652i 1.19609 + 0.690563i 0.959681 0.281091i \(-0.0906961\pi\)
0.236409 + 0.971654i \(0.424029\pi\)
\(164\) 0.246897 + 0.246897i 0.0192794 + 0.0192794i
\(165\) 0 0
\(166\) −4.31617 + 2.49194i −0.335000 + 0.193412i
\(167\) 2.57973 + 4.46822i 0.199625 + 0.345761i 0.948407 0.317056i \(-0.102694\pi\)
−0.748782 + 0.662817i \(0.769361\pi\)
\(168\) −2.58266 2.58266i −0.199256 0.199256i
\(169\) −11.2679 6.48339i −0.866762 0.498722i
\(170\) 0 0
\(171\) 0.213036 0.795063i 0.0162913 0.0608000i
\(172\) 1.30403 4.86670i 0.0994313 0.371083i
\(173\) 1.09651 0.293810i 0.0833664 0.0223380i −0.216895 0.976195i \(-0.569593\pi\)
0.300261 + 0.953857i \(0.402926\pi\)
\(174\) −0.796336 + 0.796336i −0.0603701 + 0.0603701i
\(175\) 0 0
\(176\) 0.513470 + 1.91630i 0.0387043 + 0.144446i
\(177\) −12.3004 −0.924556
\(178\) 4.22759 + 15.7776i 0.316871 + 1.18258i
\(179\) 2.71932 + 4.71001i 0.203252 + 0.352042i 0.949574 0.313542i \(-0.101516\pi\)
−0.746323 + 0.665584i \(0.768182\pi\)
\(180\) 0 0
\(181\) 16.7849i 1.24761i 0.781580 + 0.623805i \(0.214414\pi\)
−0.781580 + 0.623805i \(0.785586\pi\)
\(182\) −13.1302 3.50786i −0.973279 0.260020i
\(183\) 1.34983 1.34983i 0.0997822 0.0997822i
\(184\) −2.43490 0.652430i −0.179503 0.0480978i
\(185\) 0 0
\(186\) 8.43002 + 4.86708i 0.618119 + 0.356871i
\(187\) 10.2147i 0.746973i
\(188\) −1.08285 + 1.87556i −0.0789752 + 0.136789i
\(189\) −17.8554 + 4.78435i −1.29879 + 0.348010i
\(190\) 0 0
\(191\) −0.957583 + 1.65858i −0.0692883 + 0.120011i −0.898588 0.438793i \(-0.855406\pi\)
0.829300 + 0.558804i \(0.188739\pi\)
\(192\) −0.935952 0.250788i −0.0675465 0.0180990i
\(193\) −17.0820 + 9.86232i −1.22959 + 0.709905i −0.966945 0.254987i \(-0.917929\pi\)
−0.262647 + 0.964892i \(0.584596\pi\)
\(194\) −17.3037 −1.24233
\(195\) 0 0
\(196\) −7.20834 −0.514882
\(197\) −9.48728 + 5.47748i −0.675940 + 0.390254i −0.798324 0.602228i \(-0.794280\pi\)
0.122383 + 0.992483i \(0.460946\pi\)
\(198\) 3.94968 + 1.05831i 0.280691 + 0.0752110i
\(199\) 5.90974 10.2360i 0.418930 0.725608i −0.576902 0.816813i \(-0.695739\pi\)
0.995832 + 0.0912052i \(0.0290719\pi\)
\(200\) 0 0
\(201\) 13.0212 3.48902i 0.918446 0.246097i
\(202\) −2.60077 + 4.50466i −0.182989 + 0.316947i
\(203\) 4.38100i 0.307486i
\(204\) 4.32063 + 2.49452i 0.302505 + 0.174651i
\(205\) 0 0
\(206\) 5.42247 + 1.45295i 0.377801 + 0.101232i
\(207\) −3.67385 + 3.67385i −0.255350 + 0.255350i
\(208\) −3.48201 + 0.935753i −0.241434 + 0.0648828i
\(209\) 0.792278i 0.0548030i
\(210\) 0 0
\(211\) −8.93348 15.4732i −0.615006 1.06522i −0.990383 0.138350i \(-0.955820\pi\)
0.375377 0.926872i \(-0.377513\pi\)
\(212\) −1.65783 6.18712i −0.113860 0.424933i
\(213\) −0.878423 −0.0601885
\(214\) 2.39861 + 8.95175i 0.163966 + 0.611929i
\(215\) 0 0
\(216\) −3.46769 + 3.46769i −0.235946 + 0.235946i
\(217\) 36.5766 9.80068i 2.48298 0.665314i
\(218\) 1.45214 5.41947i 0.0983515 0.367053i
\(219\) −2.10288 + 7.84806i −0.142100 + 0.530323i
\(220\) 0 0
\(221\) 18.5643 0.0136882i 1.24877 0.000920769i
\(222\) 7.39671 + 7.39671i 0.496434 + 0.496434i
\(223\) −4.42725 7.66822i −0.296471 0.513502i 0.678855 0.734272i \(-0.262476\pi\)
−0.975326 + 0.220770i \(0.929143\pi\)
\(224\) −3.26439 + 1.88470i −0.218111 + 0.125927i
\(225\) 0 0
\(226\) −3.91417 3.91417i −0.260367 0.260367i
\(227\) 18.8658 + 10.8922i 1.25217 + 0.722941i 0.971540 0.236875i \(-0.0761232\pi\)
0.280630 + 0.959816i \(0.409457\pi\)
\(228\) 0.335119 + 0.193481i 0.0221938 + 0.0128136i
\(229\) −7.92975 7.92975i −0.524013 0.524013i 0.394768 0.918781i \(-0.370825\pi\)
−0.918781 + 0.394768i \(0.870825\pi\)
\(230\) 0 0
\(231\) −6.27525 + 3.62302i −0.412881 + 0.238377i
\(232\) 0.581127 + 1.00654i 0.0381529 + 0.0660827i
\(233\) −1.89587 1.89587i −0.124203 0.124203i 0.642273 0.766476i \(-0.277991\pi\)
−0.766476 + 0.642273i \(0.777991\pi\)
\(234\) −1.91809 + 7.17960i −0.125390 + 0.469345i
\(235\) 0 0
\(236\) −3.28554 + 12.2618i −0.213870 + 0.798175i
\(237\) −0.778837 + 2.90666i −0.0505909 + 0.188808i
\(238\) 18.7466 5.02313i 1.21516 0.325601i
\(239\) 2.43675 2.43675i 0.157620 0.157620i −0.623891 0.781511i \(-0.714449\pi\)
0.781511 + 0.623891i \(0.214449\pi\)
\(240\) 0 0
\(241\) −7.65372 28.5641i −0.493019 1.83997i −0.540852 0.841118i \(-0.681898\pi\)
0.0478326 0.998855i \(-0.484769\pi\)
\(242\) −7.06416 −0.454101
\(243\) 4.16677 + 15.5506i 0.267298 + 0.997571i
\(244\) −0.985039 1.70614i −0.0630607 0.109224i
\(245\) 0 0
\(246\) 0.338330i 0.0215711i
\(247\) 1.43989 0.00106169i 0.0916182 6.75539e-5i
\(248\) 7.10352 7.10352i 0.451074 0.451074i
\(249\) −4.66467 1.24990i −0.295612 0.0792089i
\(250\) 0 0
\(251\) 22.7052 + 13.1089i 1.43314 + 0.827425i 0.997359 0.0726275i \(-0.0231384\pi\)
0.435782 + 0.900052i \(0.356472\pi\)
\(252\) 7.76910i 0.489407i
\(253\) −2.50050 + 4.33099i −0.157205 + 0.272287i
\(254\) −0.432529 + 0.115896i −0.0271393 + 0.00727196i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −16.0997 4.31389i −1.00427 0.269093i −0.281037 0.959697i \(-0.590678\pi\)
−0.723233 + 0.690604i \(0.757345\pi\)
\(258\) 4.22797 2.44102i 0.263222 0.151971i
\(259\) 40.6926 2.52851
\(260\) 0 0
\(261\) 2.39552 0.148279
\(262\) 12.8026 7.39157i 0.790946 0.456653i
\(263\) −14.6464 3.92449i −0.903136 0.241994i −0.222773 0.974870i \(-0.571511\pi\)
−0.680362 + 0.732876i \(0.738178\pi\)
\(264\) −0.961167 + 1.66479i −0.0591557 + 0.102461i
\(265\) 0 0
\(266\) 1.45403 0.389607i 0.0891524 0.0238883i
\(267\) −7.91365 + 13.7068i −0.484307 + 0.838845i
\(268\) 13.9123i 0.849827i
\(269\) 13.9653 + 8.06288i 0.851480 + 0.491602i 0.861150 0.508351i \(-0.169745\pi\)
−0.00966987 + 0.999953i \(0.503078\pi\)
\(270\) 0 0
\(271\) −15.1445 4.05795i −0.919961 0.246503i −0.232392 0.972622i \(-0.574655\pi\)
−0.687569 + 0.726119i \(0.741322\pi\)
\(272\) 3.64076 3.64076i 0.220753 0.220753i
\(273\) −6.59291 11.3998i −0.399021 0.689950i
\(274\) 10.1380i 0.612460i
\(275\) 0 0
\(276\) −1.22129 2.11533i −0.0735128 0.127328i
\(277\) −5.48331 20.4640i −0.329460 1.22956i −0.909751 0.415154i \(-0.863728\pi\)
0.580291 0.814409i \(-0.302939\pi\)
\(278\) 6.32463 0.379326
\(279\) −5.35900 20.0000i −0.320835 1.19737i
\(280\) 0 0
\(281\) −8.41983 + 8.41983i −0.502285 + 0.502285i −0.912147 0.409863i \(-0.865577\pi\)
0.409863 + 0.912147i \(0.365577\pi\)
\(282\) −2.02700 + 0.543132i −0.120706 + 0.0323431i
\(283\) 3.07011 11.4578i 0.182499 0.681095i −0.812653 0.582748i \(-0.801978\pi\)
0.995152 0.0983477i \(-0.0313557\pi\)
\(284\) −0.234633 + 0.875664i −0.0139229 + 0.0519611i
\(285\) 0 0
\(286\) 0.00527423 + 7.15304i 0.000311872 + 0.422968i
\(287\) 0.930653 + 0.930653i 0.0549347 + 0.0549347i
\(288\) 1.03055 + 1.78496i 0.0607257 + 0.105180i
\(289\) −8.23608 + 4.75510i −0.484475 + 0.279712i
\(290\) 0 0
\(291\) −11.8559 11.8559i −0.695004 0.695004i
\(292\) 7.26172 + 4.19255i 0.424960 + 0.245351i
\(293\) −23.1746 13.3799i −1.35388 0.781661i −0.365086 0.930974i \(-0.618960\pi\)
−0.988790 + 0.149313i \(0.952294\pi\)
\(294\) −4.93890 4.93890i −0.288043 0.288043i
\(295\) 0 0
\(296\) 9.34919 5.39776i 0.543411 0.313738i
\(297\) 4.86456 + 8.42567i 0.282270 + 0.488907i
\(298\) −3.96552 3.96552i −0.229716 0.229716i
\(299\) −7.87454 4.53863i −0.455396 0.262476i
\(300\) 0 0
\(301\) 4.91540 18.3445i 0.283319 1.05736i
\(302\) −3.13641 + 11.7052i −0.180480 + 0.673561i
\(303\) −4.86839 + 1.30448i −0.279681 + 0.0749404i
\(304\) 0.282386 0.282386i 0.0161960 0.0161960i
\(305\) 0 0
\(306\) −2.74664 10.2506i −0.157015 0.585988i
\(307\) −0.284972 −0.0162642 −0.00813210 0.999967i \(-0.502589\pi\)
−0.00813210 + 0.999967i \(0.502589\pi\)
\(308\) 1.93547 + 7.22328i 0.110284 + 0.411585i
\(309\) 2.71977 + 4.71079i 0.154723 + 0.267987i
\(310\) 0 0
\(311\) 1.02509i 0.0581274i −0.999578 0.0290637i \(-0.990747\pi\)
0.999578 0.0290637i \(-0.00925257\pi\)
\(312\) −3.02689 1.74460i −0.171364 0.0987686i
\(313\) 3.88598 3.88598i 0.219649 0.219649i −0.588702 0.808350i \(-0.700361\pi\)
0.808350 + 0.588702i \(0.200361\pi\)
\(314\) −3.27309 0.877022i −0.184711 0.0494932i
\(315\) 0 0
\(316\) 2.68950 + 1.55278i 0.151296 + 0.0873509i
\(317\) 2.45686i 0.137991i 0.997617 + 0.0689956i \(0.0219794\pi\)
−0.997617 + 0.0689956i \(0.978021\pi\)
\(318\) 3.10330 5.37508i 0.174025 0.301420i
\(319\) 2.22723 0.596783i 0.124701 0.0334134i
\(320\) 0 0
\(321\) −4.48997 + 7.77686i −0.250606 + 0.434062i
\(322\) −9.17811 2.45927i −0.511476 0.137050i
\(323\) −1.78072 + 1.02810i −0.0990819 + 0.0572050i
\(324\) 1.43143 0.0795238
\(325\) 0 0
\(326\) 17.6330 0.976604
\(327\) 4.70818 2.71827i 0.260363 0.150321i
\(328\) 0.337268 + 0.0903706i 0.0186225 + 0.00498988i
\(329\) −4.08170 + 7.06971i −0.225031 + 0.389766i
\(330\) 0 0
\(331\) 6.49468 1.74025i 0.356980 0.0956525i −0.0758718 0.997118i \(-0.524174\pi\)
0.432852 + 0.901465i \(0.357507\pi\)
\(332\) −2.49194 + 4.31617i −0.136763 + 0.236880i
\(333\) 22.2506i 1.21933i
\(334\) 4.46822 + 2.57973i 0.244490 + 0.141156i
\(335\) 0 0
\(336\) −3.52797 0.945318i −0.192467 0.0515713i
\(337\) −5.43489 + 5.43489i −0.296057 + 0.296057i −0.839467 0.543410i \(-0.817133\pi\)
0.543410 + 0.839467i \(0.317133\pi\)
\(338\) −13.0000 + 0.0191709i −0.707106 + 0.00104276i
\(339\) 5.36371i 0.291317i
\(340\) 0 0
\(341\) −9.96500 17.2599i −0.539635 0.934675i
\(342\) −0.213036 0.795063i −0.0115197 0.0429921i
\(343\) −0.785328 −0.0424037
\(344\) −1.30403 4.86670i −0.0703086 0.262395i
\(345\) 0 0
\(346\) 0.802704 0.802704i 0.0431536 0.0431536i
\(347\) 34.5616 9.26076i 1.85537 0.497144i 0.855576 0.517677i \(-0.173203\pi\)
0.999789 + 0.0205336i \(0.00653652\pi\)
\(348\) −0.291479 + 1.08781i −0.0156249 + 0.0583130i
\(349\) −5.42298 + 20.2388i −0.290285 + 1.08336i 0.654604 + 0.755972i \(0.272835\pi\)
−0.944890 + 0.327388i \(0.893831\pi\)
\(350\) 0 0
\(351\) −15.3064 + 8.85219i −0.816993 + 0.472495i
\(352\) 1.40283 + 1.40283i 0.0747709 + 0.0747709i
\(353\) 3.65558 + 6.33165i 0.194567 + 0.336999i 0.946758 0.321945i \(-0.104337\pi\)
−0.752192 + 0.658944i \(0.771003\pi\)
\(354\) −10.6525 + 6.15021i −0.566173 + 0.326880i
\(355\) 0 0
\(356\) 11.5500 + 11.5500i 0.612148 + 0.612148i
\(357\) 16.2862 + 9.40282i 0.861955 + 0.497650i
\(358\) 4.71001 + 2.71932i 0.248932 + 0.143721i
\(359\) −18.6180 18.6180i −0.982620 0.982620i 0.0172312 0.999852i \(-0.494515\pi\)
−0.999852 + 0.0172312i \(0.994515\pi\)
\(360\) 0 0
\(361\) 16.3164 9.42026i 0.858756 0.495803i
\(362\) 8.39244 + 14.5361i 0.441097 + 0.764002i
\(363\) −4.84011 4.84011i −0.254040 0.254040i
\(364\) −13.1251 + 3.52722i −0.687940 + 0.184877i
\(365\) 0 0
\(366\) 0.494071 1.84390i 0.0258255 0.0963822i
\(367\) 2.28221 8.51733i 0.119130 0.444601i −0.880432 0.474172i \(-0.842747\pi\)
0.999563 + 0.0295711i \(0.00941416\pi\)
\(368\) −2.43490 + 0.652430i −0.126928 + 0.0340103i
\(369\) 0.508879 0.508879i 0.0264912 0.0264912i
\(370\) 0 0
\(371\) −6.24903 23.3217i −0.324433 1.21080i
\(372\) 9.73415 0.504692
\(373\) −6.64469 24.7983i −0.344049 1.28401i −0.893719 0.448627i \(-0.851913\pi\)
0.549670 0.835382i \(-0.314753\pi\)
\(374\) −5.10735 8.84619i −0.264095 0.457425i
\(375\) 0 0
\(376\) 2.16571i 0.111688i
\(377\) 1.08758 + 4.04698i 0.0560134 + 0.208430i
\(378\) −13.0711 + 13.0711i −0.672304 + 0.672304i
\(379\) −11.5676 3.09953i −0.594188 0.159212i −0.0508216 0.998708i \(-0.516184\pi\)
−0.543367 + 0.839495i \(0.682851\pi\)
\(380\) 0 0
\(381\) −0.375762 0.216946i −0.0192508 0.0111145i
\(382\) 1.91517i 0.0979884i
\(383\) 17.1646 29.7300i 0.877073 1.51913i 0.0225340 0.999746i \(-0.492827\pi\)
0.854538 0.519388i \(-0.173840\pi\)
\(384\) −0.935952 + 0.250788i −0.0477626 + 0.0127980i
\(385\) 0 0
\(386\) −9.86232 + 17.0820i −0.501979 + 0.869453i
\(387\) −10.0308 2.68773i −0.509892 0.136625i
\(388\) −14.9854 + 8.65185i −0.760771 + 0.439231i
\(389\) −33.2497 −1.68582 −0.842912 0.538051i \(-0.819161\pi\)
−0.842912 + 0.538051i \(0.819161\pi\)
\(390\) 0 0
\(391\) 12.9791 0.656381
\(392\) −6.24261 + 3.60417i −0.315299 + 0.182038i
\(393\) 13.8363 + 3.70743i 0.697950 + 0.187015i
\(394\) −5.47748 + 9.48728i −0.275952 + 0.477962i
\(395\) 0 0
\(396\) 3.94968 1.05831i 0.198479 0.0531822i
\(397\) −3.18246 + 5.51217i −0.159723 + 0.276648i −0.934769 0.355257i \(-0.884393\pi\)
0.775046 + 0.631905i \(0.217727\pi\)
\(398\) 11.8195i 0.592457i
\(399\) 1.26320 + 0.729307i 0.0632389 + 0.0365110i
\(400\) 0 0
\(401\) −12.2984 3.29534i −0.614151 0.164561i −0.0616838 0.998096i \(-0.519647\pi\)
−0.552468 + 0.833534i \(0.686314\pi\)
\(402\) 9.53219 9.53219i 0.475423 0.475423i
\(403\) 31.3549 18.1336i 1.56190 0.903299i
\(404\) 5.20153i 0.258786i
\(405\) 0 0
\(406\) 2.19050 + 3.79406i 0.108713 + 0.188296i
\(407\) −5.54318 20.6874i −0.274765 1.02544i
\(408\) 4.98903 0.246994
\(409\) −5.36650 20.0280i −0.265356 0.990323i −0.962032 0.272937i \(-0.912005\pi\)
0.696676 0.717386i \(-0.254662\pi\)
\(410\) 0 0
\(411\) 6.94621 6.94621i 0.342631 0.342631i
\(412\) 5.42247 1.45295i 0.267146 0.0715815i
\(413\) −12.3845 + 46.2195i −0.609401 + 2.27431i
\(414\) −1.34472 + 5.01858i −0.0660896 + 0.246650i
\(415\) 0 0
\(416\) −2.54763 + 2.55139i −0.124908 + 0.125092i
\(417\) 4.33341 + 4.33341i 0.212208 + 0.212208i
\(418\) −0.396139 0.686133i −0.0193758 0.0335599i
\(419\) 12.0178 6.93846i 0.587106 0.338966i −0.176846 0.984238i \(-0.556590\pi\)
0.763952 + 0.645273i \(0.223256\pi\)
\(420\) 0 0
\(421\) 7.42389 + 7.42389i 0.361818 + 0.361818i 0.864482 0.502664i \(-0.167647\pi\)
−0.502664 + 0.864482i \(0.667647\pi\)
\(422\) −15.4732 8.93348i −0.753226 0.434875i
\(423\) 3.86571 + 2.23187i 0.187957 + 0.108517i
\(424\) −4.52928 4.52928i −0.219961 0.219961i
\(425\) 0 0
\(426\) −0.760736 + 0.439211i −0.0368578 + 0.0212799i
\(427\) −3.71300 6.43111i −0.179685 0.311223i
\(428\) 6.55313 + 6.55313i 0.316758 + 0.316758i
\(429\) −4.89739 + 4.90462i −0.236448 + 0.236797i
\(430\) 0 0
\(431\) −10.0156 + 37.3789i −0.482436 + 1.80048i 0.108901 + 0.994053i \(0.465267\pi\)
−0.591337 + 0.806424i \(0.701400\pi\)
\(432\) −1.26926 + 4.73695i −0.0610673 + 0.227906i
\(433\) 17.3395 4.64610i 0.833282 0.223277i 0.183137 0.983087i \(-0.441375\pi\)
0.650145 + 0.759810i \(0.274708\pi\)
\(434\) 26.7760 26.7760i 1.28529 1.28529i
\(435\) 0 0
\(436\) −1.45214 5.41947i −0.0695450 0.259545i
\(437\) 1.00669 0.0481566
\(438\) 2.10288 + 7.84806i 0.100480 + 0.374995i
\(439\) 15.6117 + 27.0402i 0.745104 + 1.29056i 0.950146 + 0.311804i \(0.100933\pi\)
−0.205043 + 0.978753i \(0.565733\pi\)
\(440\) 0 0
\(441\) 14.8571i 0.707481i
\(442\) 16.0703 9.29399i 0.764386 0.442070i
\(443\) 14.2963 14.2963i 0.679238 0.679238i −0.280589 0.959828i \(-0.590530\pi\)
0.959828 + 0.280589i \(0.0905299\pi\)
\(444\) 10.1041 + 2.70738i 0.479519 + 0.128487i
\(445\) 0 0
\(446\) −7.66822 4.42725i −0.363101 0.209636i
\(447\) 5.43406i 0.257022i
\(448\) −1.88470 + 3.26439i −0.0890436 + 0.154228i
\(449\) 20.6314 5.52817i 0.973657 0.260891i 0.263286 0.964718i \(-0.415194\pi\)
0.710371 + 0.703827i \(0.248527\pi\)
\(450\) 0 0
\(451\) 0.346354 0.599902i 0.0163092 0.0282483i
\(452\) −5.34686 1.43269i −0.251495 0.0673879i
\(453\) −10.1690 + 5.87106i −0.477780 + 0.275846i
\(454\) 21.7844 1.02239
\(455\) 0 0
\(456\) 0.386962 0.0181212
\(457\) −10.2320 + 5.90744i −0.478632 + 0.276338i −0.719846 0.694134i \(-0.755788\pi\)
0.241214 + 0.970472i \(0.422454\pi\)
\(458\) −10.8322 2.90249i −0.506157 0.135624i
\(459\) 12.6250 21.8671i 0.589284 1.02067i
\(460\) 0 0
\(461\) −6.93599 + 1.85849i −0.323041 + 0.0865586i −0.416695 0.909046i \(-0.636812\pi\)
0.0936542 + 0.995605i \(0.470145\pi\)
\(462\) −3.62302 + 6.27525i −0.168558 + 0.291951i
\(463\) 29.7640i 1.38325i 0.722257 + 0.691625i \(0.243105\pi\)
−0.722257 + 0.691625i \(0.756895\pi\)
\(464\) 1.00654 + 0.581127i 0.0467276 + 0.0269782i
\(465\) 0 0
\(466\) −2.58981 0.693937i −0.119971 0.0321460i
\(467\) 16.9753 16.9753i 0.785525 0.785525i −0.195232 0.980757i \(-0.562546\pi\)
0.980757 + 0.195232i \(0.0625461\pi\)
\(468\) 1.92868 + 7.17676i 0.0891533 + 0.331746i
\(469\) 52.4409i 2.42149i
\(470\) 0 0
\(471\) −1.64170 2.84351i −0.0756456 0.131022i
\(472\) 3.28554 + 12.2618i 0.151229 + 0.564395i
\(473\) −9.99563 −0.459599
\(474\) 0.778837 + 2.90666i 0.0357732 + 0.133507i
\(475\) 0 0
\(476\) 13.7234 13.7234i 0.629013 0.629013i
\(477\) −12.7523 + 3.41696i −0.583886 + 0.156452i
\(478\) 0.891913 3.32867i 0.0407952 0.152250i
\(479\) −8.07862 + 30.1498i −0.369121 + 1.37758i 0.492625 + 0.870242i \(0.336037\pi\)
−0.861747 + 0.507339i \(0.830629\pi\)
\(480\) 0 0
\(481\) 37.5901 10.1019i 1.71396 0.460609i
\(482\) −20.9103 20.9103i −0.952440 0.952440i
\(483\) −4.60351 7.97352i −0.209467 0.362808i
\(484\) −6.11774 + 3.53208i −0.278079 + 0.160549i
\(485\) 0 0
\(486\) 11.3838 + 11.3838i 0.516381 + 0.516381i
\(487\) −21.4064 12.3590i −0.970015 0.560038i −0.0707743 0.997492i \(-0.522547\pi\)
−0.899241 + 0.437454i \(0.855880\pi\)
\(488\) −1.70614 0.985039i −0.0772333 0.0445906i
\(489\) 12.0815 + 12.0815i 0.546346 + 0.546346i
\(490\) 0 0
\(491\) −3.52957 + 2.03780i −0.159287 + 0.0919645i −0.577525 0.816373i \(-0.695981\pi\)
0.418238 + 0.908338i \(0.362648\pi\)
\(492\) 0.169165 + 0.293003i 0.00762655 + 0.0132096i
\(493\) −4.23149 4.23149i −0.190577 0.190577i
\(494\) 1.24645 0.720866i 0.0560806 0.0324333i
\(495\) 0 0
\(496\) 2.60007 9.70358i 0.116746 0.435704i
\(497\) −0.884426 + 3.30072i −0.0396719 + 0.148058i
\(498\) −4.66467 + 1.24990i −0.209029 + 0.0560092i
\(499\) −14.5534 + 14.5534i −0.651500 + 0.651500i −0.953354 0.301854i \(-0.902394\pi\)
0.301854 + 0.953354i \(0.402394\pi\)
\(500\) 0 0
\(501\) 1.29393 + 4.82900i 0.0578084 + 0.215744i
\(502\) 26.2177 1.17016
\(503\) 5.26719 + 19.6574i 0.234852 + 0.876481i 0.978215 + 0.207593i \(0.0665628\pi\)
−0.743363 + 0.668888i \(0.766771\pi\)
\(504\) 3.88455 + 6.72824i 0.173032 + 0.299699i
\(505\) 0 0
\(506\) 5.00100i 0.222322i
\(507\) −8.92026 8.89399i −0.396163 0.394996i
\(508\) −0.316633 + 0.316633i −0.0140483 + 0.0140483i
\(509\) 31.5138 + 8.44410i 1.39682 + 0.374278i 0.877203 0.480119i \(-0.159407\pi\)
0.519621 + 0.854397i \(0.326073\pi\)
\(510\) 0 0
\(511\) 27.3723 + 15.8034i 1.21088 + 0.699101i
\(512\) 1.00000i 0.0441942i
\(513\) 0.979227 1.69607i 0.0432339 0.0748833i
\(514\) −16.0997 + 4.31389i −0.710126 + 0.190278i
\(515\) 0 0
\(516\) 2.44102 4.22797i 0.107460 0.186126i
\(517\) 4.15013 + 1.11203i 0.182523 + 0.0489068i
\(518\) 35.2408 20.3463i 1.54839 0.893965i
\(519\) 1.09997 0.0482832
\(520\) 0 0
\(521\) −44.2788 −1.93989 −0.969945 0.243325i \(-0.921762\pi\)
−0.969945 + 0.243325i \(0.921762\pi\)
\(522\) 2.07458 1.19776i 0.0908021 0.0524246i
\(523\) −14.3107 3.83454i −0.625764 0.167673i −0.0680170 0.997684i \(-0.521667\pi\)
−0.557747 + 0.830011i \(0.688334\pi\)
\(524\) 7.39157 12.8026i 0.322902 0.559283i
\(525\) 0 0
\(526\) −14.6464 + 3.92449i −0.638613 + 0.171116i
\(527\) −25.8622 + 44.7946i −1.12657 + 1.95128i
\(528\) 1.92233i 0.0836588i
\(529\) 14.4155 + 8.32279i 0.626761 + 0.361860i
\(530\) 0 0
\(531\) 25.2728 + 6.77182i 1.09674 + 0.293872i
\(532\) 1.06443 1.06443i 0.0461487 0.0461487i
\(533\) 1.09073 + 0.628662i 0.0472448 + 0.0272304i
\(534\) 15.8273i 0.684914i
\(535\) 0 0
\(536\) −6.95614 12.0484i −0.300459 0.520411i
\(537\) 1.36395 + 5.09031i 0.0588586 + 0.219663i
\(538\) 16.1258 0.695231
\(539\) 3.70127 + 13.8133i 0.159425 + 0.594982i
\(540\) 0 0
\(541\) −5.82293 + 5.82293i −0.250347 + 0.250347i −0.821113 0.570766i \(-0.806646\pi\)
0.570766 + 0.821113i \(0.306646\pi\)
\(542\) −15.1445 + 4.05795i −0.650511 + 0.174304i
\(543\) −4.20944 + 15.7098i −0.180644 + 0.674174i
\(544\) 1.33261 4.97337i 0.0571351 0.213231i
\(545\) 0 0
\(546\) −11.4096 6.57610i −0.488284 0.281431i
\(547\) −4.24613 4.24613i −0.181551 0.181551i 0.610480 0.792032i \(-0.290976\pi\)
−0.792032 + 0.610480i \(0.790976\pi\)
\(548\) −5.06901 8.77979i −0.216537 0.375054i
\(549\) −3.51652 + 2.03026i −0.150081 + 0.0866496i
\(550\) 0 0
\(551\) −0.328205 0.328205i −0.0139820 0.0139820i
\(552\) −2.11533 1.22129i −0.0900345 0.0519814i
\(553\) 10.1378 + 5.85305i 0.431102 + 0.248897i
\(554\) −14.9807 14.9807i −0.636469 0.636469i
\(555\) 0 0
\(556\) 5.47729 3.16232i 0.232289 0.134112i
\(557\) 11.4969 + 19.9132i 0.487140 + 0.843751i 0.999891 0.0147865i \(-0.00470686\pi\)
−0.512751 + 0.858537i \(0.671374\pi\)
\(558\) −14.6411 14.6411i −0.619805 0.619805i
\(559\) −0.0133947 18.1661i −0.000566533 0.768346i
\(560\) 0 0
\(561\) 2.56172 9.56047i 0.108156 0.403643i
\(562\) −3.08187 + 11.5017i −0.130001 + 0.485170i
\(563\) −15.8729 + 4.25312i −0.668962 + 0.179248i −0.577287 0.816541i \(-0.695889\pi\)
−0.0916745 + 0.995789i \(0.529222\pi\)
\(564\) −1.48386 + 1.48386i −0.0624820 + 0.0624820i
\(565\) 0 0
\(566\) −3.07011 11.4578i −0.129046 0.481607i
\(567\) 5.39562 0.226595
\(568\) 0.234633 + 0.875664i 0.00984500 + 0.0367420i
\(569\) −6.91493 11.9770i −0.289889 0.502102i 0.683894 0.729581i \(-0.260285\pi\)
−0.973783 + 0.227479i \(0.926952\pi\)
\(570\) 0 0
\(571\) 7.17030i 0.300068i −0.988681 0.150034i \(-0.952062\pi\)
0.988681 0.150034i \(-0.0479383\pi\)
\(572\) 3.58109 + 6.19207i 0.149733 + 0.258904i
\(573\) −1.31220 + 1.31220i −0.0548181 + 0.0548181i
\(574\) 1.27130 + 0.340643i 0.0530628 + 0.0142181i
\(575\) 0 0
\(576\) 1.78496 + 1.03055i 0.0743735 + 0.0429396i
\(577\) 1.60982i 0.0670175i 0.999438 + 0.0335088i \(0.0106682\pi\)
−0.999438 + 0.0335088i \(0.989332\pi\)
\(578\) −4.75510 + 8.23608i −0.197786 + 0.342576i
\(579\) −18.4613 + 4.94670i −0.767226 + 0.205578i
\(580\) 0 0
\(581\) −9.39311 + 16.2693i −0.389692 + 0.674966i
\(582\) −16.1954 4.33955i −0.671322 0.179880i
\(583\) −11.0051 + 6.35380i −0.455785 + 0.263147i
\(584\) 8.38511 0.346978
\(585\) 0 0
\(586\) −26.7598 −1.10544
\(587\) −2.17897 + 1.25803i −0.0899355 + 0.0519243i −0.544293 0.838895i \(-0.683202\pi\)
0.454358 + 0.890819i \(0.349869\pi\)
\(588\) −6.74666 1.80776i −0.278228 0.0745509i
\(589\) −2.00594 + 3.47438i −0.0826531 + 0.143159i
\(590\) 0 0
\(591\) −10.2533 + 2.74737i −0.421765 + 0.113012i
\(592\) 5.39776 9.34919i 0.221847 0.384249i
\(593\) 17.2633i 0.708920i 0.935071 + 0.354460i \(0.115335\pi\)
−0.935071 + 0.354460i \(0.884665\pi\)
\(594\) 8.42567 + 4.86456i 0.345709 + 0.199595i
\(595\) 0 0
\(596\) −5.41700 1.45148i −0.221889 0.0594550i
\(597\) 8.09828 8.09828i 0.331441 0.331441i
\(598\) −9.08886 + 0.00670159i −0.371671 + 0.000274049i
\(599\) 22.8903i 0.935274i −0.883921 0.467637i \(-0.845106\pi\)
0.883921 0.467637i \(-0.154894\pi\)
\(600\) 0 0
\(601\) 7.63567 + 13.2254i 0.311466 + 0.539474i 0.978680 0.205392i \(-0.0658468\pi\)
−0.667214 + 0.744866i \(0.732513\pi\)
\(602\) −4.91540 18.3445i −0.200337 0.747667i
\(603\) −28.6746 −1.16772
\(604\) 3.13641 + 11.7052i 0.127619 + 0.476280i
\(605\) 0 0
\(606\) −3.56391 + 3.56391i −0.144774 + 0.144774i
\(607\) 4.67819 1.25352i 0.189882 0.0508787i −0.162625 0.986688i \(-0.551996\pi\)
0.352507 + 0.935809i \(0.385329\pi\)
\(608\) 0.103361 0.385747i 0.00419182 0.0156441i
\(609\) −1.09870 + 4.10040i −0.0445216 + 0.166157i
\(610\) 0 0
\(611\) −2.01544 + 7.54398i −0.0815361 + 0.305197i
\(612\) −7.50396 7.50396i −0.303330 0.303330i
\(613\) 19.0730 + 33.0354i 0.770352 + 1.33429i 0.937370 + 0.348335i \(0.113253\pi\)
−0.167018 + 0.985954i \(0.553414\pi\)
\(614\) −0.246793 + 0.142486i −0.00995974 + 0.00575026i
\(615\) 0 0
\(616\) 5.28781 + 5.28781i 0.213052 + 0.213052i
\(617\) −18.1479 10.4777i −0.730606 0.421816i 0.0880377 0.996117i \(-0.471940\pi\)
−0.818644 + 0.574301i \(0.805274\pi\)
\(618\) 4.71079 + 2.71977i 0.189496 + 0.109405i
\(619\) 28.5318 + 28.5318i 1.14679 + 1.14679i 0.987180 + 0.159612i \(0.0510242\pi\)
0.159612 + 0.987180i \(0.448976\pi\)
\(620\) 0 0
\(621\) −10.7059 + 6.18105i −0.429613 + 0.248037i
\(622\) −0.512544 0.887753i −0.0205512 0.0355956i
\(623\) 43.5365 + 43.5365i 1.74425 + 1.74425i
\(624\) −3.49367 + 0.00257603i −0.139859 + 0.000103124i
\(625\) 0 0
\(626\) 1.42237 5.30835i 0.0568492 0.212164i
\(627\) 0.198693 0.741534i 0.00793505 0.0296140i
\(628\) −3.27309 + 0.877022i −0.130610 + 0.0349970i
\(629\) −39.3038 + 39.3038i −1.56715 + 1.56715i
\(630\) 0 0
\(631\) 4.56935 + 17.0530i 0.181903 + 0.678870i 0.995272 + 0.0971231i \(0.0309641\pi\)
−0.813370 + 0.581747i \(0.802369\pi\)
\(632\) 3.10557 0.123533
\(633\) −4.48081 16.7226i −0.178096 0.664665i
\(634\) 1.22843 + 2.12771i 0.0487872 + 0.0845020i
\(635\) 0 0
\(636\) 6.20661i 0.246108i
\(637\) −25.0995 + 6.74523i −0.994478 + 0.267256i
\(638\) 1.63044 1.63044i 0.0645498 0.0645498i
\(639\) 1.80483 + 0.483603i 0.0713980 + 0.0191310i
\(640\) 0 0
\(641\) −25.9381 14.9753i −1.02449 0.591490i −0.109090 0.994032i \(-0.534794\pi\)
−0.915402 + 0.402542i \(0.868127\pi\)
\(642\) 8.97995i 0.354410i
\(643\) −7.61631 + 13.1918i −0.300358 + 0.520235i −0.976217 0.216796i \(-0.930439\pi\)
0.675859 + 0.737031i \(0.263773\pi\)
\(644\) −9.17811 + 2.45927i −0.361668 + 0.0969087i
\(645\) 0 0
\(646\) −1.02810 + 1.78072i −0.0404500 + 0.0700615i
\(647\) 20.4529 + 5.48034i 0.804086 + 0.215454i 0.637377 0.770552i \(-0.280019\pi\)
0.166709 + 0.986006i \(0.446686\pi\)
\(648\) 1.23965 0.715714i 0.0486982 0.0281159i
\(649\) 25.1842 0.988568
\(650\) 0 0
\(651\) 36.6919 1.43807
\(652\) 15.2707 8.81652i 0.598045 0.345282i
\(653\) −5.78458 1.54997i −0.226368 0.0606551i 0.143852 0.989599i \(-0.454051\pi\)
−0.370220 + 0.928944i \(0.620718\pi\)
\(654\) 2.71827 4.70818i 0.106293 0.184105i
\(655\) 0 0
\(656\) 0.337268 0.0903706i 0.0131681 0.00352838i
\(657\) 8.64127 14.9671i 0.337128 0.583923i
\(658\) 8.16340i 0.318243i
\(659\) 11.1058 + 6.41196i 0.432622 + 0.249774i 0.700463 0.713689i \(-0.252977\pi\)
−0.267841 + 0.963463i \(0.586310\pi\)
\(660\) 0 0
\(661\) −16.0707 4.30613i −0.625077 0.167489i −0.0676424 0.997710i \(-0.521548\pi\)
−0.557435 + 0.830221i \(0.688214\pi\)
\(662\) 4.75444 4.75444i 0.184787 0.184787i
\(663\) 17.3787 + 4.64288i 0.674933 + 0.180315i
\(664\) 4.98388i 0.193412i
\(665\) 0 0
\(666\) −11.1253 19.2696i −0.431097 0.746682i
\(667\) 0.758290 + 2.82998i 0.0293611 + 0.109577i
\(668\) 5.15946 0.199625
\(669\) −2.22060 8.28739i −0.0858533 0.320409i
\(670\) 0 0
\(671\) −2.76368 + 2.76368i −0.106691 + 0.106691i
\(672\) −3.52797 + 0.945318i −0.136095 + 0.0364664i
\(673\) −2.55148 + 9.52225i −0.0983523 + 0.367056i −0.997506 0.0705765i \(-0.977516\pi\)
0.899154 + 0.437632i \(0.144183\pi\)
\(674\) −1.98931 + 7.42420i −0.0766253 + 0.285970i
\(675\) 0 0
\(676\) −11.2487 + 6.51660i −0.432644 + 0.250638i
\(677\) −7.43673 7.43673i −0.285817 0.285817i 0.549607 0.835423i \(-0.314778\pi\)
−0.835423 + 0.549607i \(0.814778\pi\)
\(678\) −2.68185 4.64511i −0.102996 0.178394i
\(679\) −56.4861 + 32.6122i −2.16774 + 1.25154i
\(680\) 0 0
\(681\) 14.9259 + 14.9259i 0.571962 + 0.571962i
\(682\) −17.2599 9.96500i −0.660915 0.381580i
\(683\) −33.2418 19.1922i −1.27196 0.734368i −0.296606 0.955000i \(-0.595855\pi\)
−0.975357 + 0.220632i \(0.929188\pi\)
\(684\) −0.582026 0.582026i −0.0222543 0.0222543i
\(685\) 0 0
\(686\) −0.680114 + 0.392664i −0.0259669 + 0.0149920i
\(687\) −5.43318 9.41055i −0.207289 0.359035i
\(688\) −3.56267 3.56267i −0.135826 0.135826i
\(689\) −11.5622 19.9923i −0.440485 0.761644i
\(690\) 0 0
\(691\) 0.195281 0.728798i 0.00742883 0.0277248i −0.962112 0.272655i \(-0.912098\pi\)
0.969541 + 0.244930i \(0.0787650\pi\)
\(692\) 0.293810 1.09651i 0.0111690 0.0416832i
\(693\) 14.8879 3.98920i 0.565544 0.151537i
\(694\) 25.3009 25.3009i 0.960408 0.960408i
\(695\) 0 0
\(696\) 0.291479 + 1.08781i 0.0110485 + 0.0412335i
\(697\) −1.79778 −0.0680959
\(698\) 5.42298 + 20.2388i 0.205263 + 0.766051i
\(699\) −1.29898 2.24991i −0.0491321 0.0850993i
\(700\) 0 0
\(701\) 28.2770i 1.06801i −0.845482 0.534003i \(-0.820687\pi\)
0.845482 0.534003i \(-0.179313\pi\)
\(702\) −8.82960 + 15.3194i −0.333252 + 0.578193i
\(703\) −3.04851 + 3.04851i −0.114977 + 0.114977i
\(704\) 1.91630 + 0.513470i 0.0722231 + 0.0193521i
\(705\) 0 0
\(706\) 6.33165 + 3.65558i 0.238295 + 0.137579i
\(707\) 19.6066i 0.737384i
\(708\) −6.15021 + 10.6525i −0.231139 + 0.400345i
\(709\) 13.9738 3.74427i 0.524797 0.140619i 0.0133124 0.999911i \(-0.495762\pi\)
0.511485 + 0.859292i \(0.329096\pi\)
\(710\) 0 0
\(711\) 3.20044 5.54332i 0.120026 0.207891i
\(712\) 15.7776 + 4.22759i 0.591290 + 0.158436i
\(713\) 21.9309 12.6618i 0.821319 0.474189i
\(714\) 18.8056 0.703783
\(715\) 0 0
\(716\) 5.43865 0.203252
\(717\) 2.89179 1.66958i 0.107996 0.0623515i
\(718\) −25.4327 6.81466i −0.949138 0.254321i
\(719\) −13.9121 + 24.0965i −0.518835 + 0.898649i 0.480925 + 0.876762i \(0.340301\pi\)
−0.999760 + 0.0218872i \(0.993033\pi\)
\(720\) 0 0
\(721\) 20.4394 5.47673i 0.761204 0.203964i
\(722\) 9.42026 16.3164i 0.350586 0.607232i
\(723\) 28.6541i 1.06566i
\(724\) 14.5361 + 8.39244i 0.540231 + 0.311903i
\(725\) 0 0
\(726\) −6.61171 1.77160i −0.245384 0.0657503i
\(727\) −1.02036 + 1.02036i −0.0378431 + 0.0378431i −0.725775 0.687932i \(-0.758519\pi\)
0.687932 + 0.725775i \(0.258519\pi\)
\(728\) −9.60302 + 9.61719i −0.355912 + 0.356437i
\(729\) 11.3053i 0.418715i
\(730\) 0 0
\(731\) 12.9708 + 22.4661i 0.479743 + 0.830940i
\(732\) −0.494071 1.84390i −0.0182614 0.0681525i
\(733\) 6.01412 0.222137 0.111068 0.993813i \(-0.464573\pi\)
0.111068 + 0.993813i \(0.464573\pi\)
\(734\) −2.28221 8.51733i −0.0842379 0.314380i
\(735\) 0 0
\(736\) −1.78247 + 1.78247i −0.0657028 + 0.0657028i
\(737\) −26.6600 + 7.14353i −0.982035 + 0.263135i
\(738\) 0.186263 0.695142i 0.00685643 0.0255885i
\(739\) 8.51002 31.7598i 0.313046 1.16830i −0.612749 0.790278i \(-0.709936\pi\)
0.925795 0.378026i \(-0.123397\pi\)
\(740\) 0 0
\(741\) 1.34794 + 0.360114i 0.0495177 + 0.0132291i
\(742\) −17.0727 17.0727i −0.626757 0.626757i
\(743\) 9.20450 + 15.9427i 0.337680 + 0.584879i 0.983996 0.178191i \(-0.0570244\pi\)
−0.646316 + 0.763070i \(0.723691\pi\)
\(744\) 8.43002 4.86708i 0.309060 0.178436i
\(745\) 0 0
\(746\) −18.1536 18.1536i −0.664652 0.664652i
\(747\) 8.89605 + 5.13614i 0.325489 + 0.187921i
\(748\) −8.84619 5.10735i −0.323449 0.186743i
\(749\) 24.7014 + 24.7014i 0.902568 + 0.902568i
\(750\) 0 0
\(751\) −35.4015 + 20.4390i −1.29182 + 0.745831i −0.978976 0.203974i \(-0.934614\pi\)
−0.312841 + 0.949805i \(0.601281\pi\)
\(752\) 1.08285 + 1.87556i 0.0394876 + 0.0683945i
\(753\) 17.9635 + 17.9635i 0.654625 + 0.654625i
\(754\) 2.96536 + 2.96099i 0.107992 + 0.107833i
\(755\) 0 0
\(756\) −4.78435 + 17.8554i −0.174005 + 0.649396i
\(757\) 0.768799 2.86920i 0.0279425 0.104283i −0.950546 0.310583i \(-0.899476\pi\)
0.978489 + 0.206300i \(0.0661424\pi\)
\(758\) −11.5676 + 3.09953i −0.420155 + 0.112580i
\(759\) −3.42651 + 3.42651i −0.124374 + 0.124374i
\(760\) 0 0
\(761\) 8.00523 + 29.8759i 0.290189 + 1.08300i 0.944963 + 0.327177i \(0.106097\pi\)
−0.654774 + 0.755825i \(0.727236\pi\)
\(762\) −0.433892 −0.0157183
\(763\) −5.47370 20.4281i −0.198161 0.739548i
\(764\) 0.957583 + 1.65858i 0.0346441 + 0.0600054i
\(765\) 0 0
\(766\) 34.3293i 1.24037i
\(767\) 0.0337482 + 45.7701i 0.00121858 + 1.65266i
\(768\) −0.685164 + 0.685164i −0.0247237 + 0.0247237i
\(769\) −5.34027 1.43092i −0.192575 0.0516003i 0.161242 0.986915i \(-0.448450\pi\)
−0.353817 + 0.935315i \(0.615117\pi\)
\(770\) 0 0
\(771\) −13.9866 8.07520i −0.503717 0.290821i
\(772\) 19.7246i 0.709905i
\(773\) 6.45097 11.1734i 0.232025 0.401880i −0.726379 0.687295i \(-0.758798\pi\)
0.958404 + 0.285415i \(0.0921314\pi\)
\(774\) −10.0308 + 2.68773i −0.360548 + 0.0966086i
\(775\) 0 0
\(776\) −8.65185 + 14.9854i −0.310583 + 0.537946i
\(777\) 38.0863 + 10.2052i 1.36634 + 0.366109i
\(778\) −28.7950 + 16.6248i −1.03235 + 0.596029i
\(779\) −0.139441 −0.00499598
\(780\) 0 0
\(781\) 1.79851 0.0643557
\(782\) 11.2402 6.48955i 0.401950 0.232066i
\(783\) 5.50554 + 1.47520i 0.196752 + 0.0527195i
\(784\) −3.60417 + 6.24261i −0.128720 + 0.222950i
\(785\) 0 0
\(786\) 13.8363 3.70743i 0.493525 0.132240i
\(787\) −5.57437 + 9.65508i −0.198705 + 0.344167i −0.948109 0.317946i \(-0.897007\pi\)
0.749404 + 0.662113i \(0.230340\pi\)
\(788\) 10.9550i 0.390254i
\(789\) −12.7241 7.34627i −0.452990 0.261534i
\(790\) 0 0
\(791\) −20.1544 5.40037i −0.716609 0.192015i
\(792\) 2.89136 2.89136i 0.102740 0.102740i
\(793\) −5.02644 5.01903i −0.178494 0.178231i
\(794\) 6.36491i 0.225882i
\(795\) 0 0
\(796\) −5.90974 10.2360i −0.209465 0.362804i
\(797\) 7.31743 + 27.3090i 0.259197 + 0.967336i 0.965707 + 0.259633i \(0.0836016\pi\)
−0.706511 + 0.707703i \(0.749732\pi\)
\(798\) 1.45861 0.0516343
\(799\) −2.88604 10.7708i −0.102101 0.381045i
\(800\) 0 0
\(801\) 23.8057 23.8057i 0.841133 0.841133i
\(802\) −12.2984 + 3.29534i −0.434271 + 0.116362i
\(803\) 4.30550 16.0684i 0.151938 0.567040i
\(804\) 3.48902 13.0212i 0.123048 0.459223i
\(805\) 0 0
\(806\) 18.0873 31.3816i 0.637100 1.10537i
\(807\) 11.0488 + 11.0488i 0.388936 + 0.388936i
\(808\) 2.60077 + 4.50466i 0.0914947 + 0.158473i
\(809\) 18.5277 10.6970i 0.651399 0.376086i −0.137593 0.990489i \(-0.543937\pi\)
0.788992 + 0.614403i \(0.210603\pi\)
\(810\) 0 0
\(811\) −13.3183 13.3183i −0.467667 0.467667i 0.433491 0.901158i \(-0.357282\pi\)
−0.901158 + 0.433491i \(0.857282\pi\)
\(812\) 3.79406 + 2.19050i 0.133145 + 0.0768715i
\(813\) −13.1568 7.59609i −0.461430 0.266407i
\(814\) −15.1442 15.1442i −0.530805 0.530805i
\(815\) 0 0
\(816\) 4.32063 2.49452i 0.151252 0.0873255i
\(817\) 1.00605 + 1.74253i 0.0351972 + 0.0609634i
\(818\) −14.6615 14.6615i −0.512629 0.512629i
\(819\) 7.26996 + 27.0520i 0.254033 + 0.945275i
\(820\) 0 0
\(821\) −6.97890 + 26.0456i −0.243565 + 0.908998i 0.730534 + 0.682876i \(0.239271\pi\)
−0.974099 + 0.226121i \(0.927395\pi\)
\(822\) 2.54249 9.48870i 0.0886795 0.330957i
\(823\) −4.12123 + 1.10428i −0.143657 + 0.0384928i −0.329931 0.944005i \(-0.607025\pi\)
0.186274 + 0.982498i \(0.440359\pi\)
\(824\) 3.96952 3.96952i 0.138285 0.138285i
\(825\) 0 0
\(826\) 12.3845 + 46.2195i 0.430911 + 1.60818i
\(827\) −19.9242 −0.692831 −0.346415 0.938081i \(-0.612601\pi\)
−0.346415 + 0.938081i \(0.612601\pi\)
\(828\) 1.34472 + 5.01858i 0.0467324 + 0.174408i
\(829\) 6.80567 + 11.7878i 0.236371 + 0.409406i 0.959670 0.281129i \(-0.0907087\pi\)
−0.723300 + 0.690534i \(0.757375\pi\)
\(830\) 0 0
\(831\) 20.5285i 0.712125i
\(832\) −0.930617 + 3.48338i −0.0322633 + 0.120765i
\(833\) 26.2438 26.2438i 0.909294 0.909294i
\(834\) 5.91955 + 1.58614i 0.204977 + 0.0549235i
\(835\) 0 0
\(836\) −0.686133 0.396139i −0.0237304 0.0137008i
\(837\) 49.2655i 1.70287i
\(838\) 6.93846 12.0178i 0.239685 0.415147i
\(839\) −39.2586 + 10.5193i −1.35536 + 0.363167i −0.862109 0.506722i \(-0.830857\pi\)
−0.493248 + 0.869889i \(0.664190\pi\)
\(840\) 0 0
\(841\) −13.8246 + 23.9449i −0.476710 + 0.825685i
\(842\) 10.1412 + 2.71733i 0.349489 + 0.0936454i
\(843\) −9.99214 + 5.76897i −0.344148 + 0.198694i
\(844\) −17.8670 −0.615006
\(845\) 0 0
\(846\) 4.46373 0.153466
\(847\) −23.0602 + 13.3138i −0.792357 + 0.457468i
\(848\) −6.18712 1.65783i −0.212466 0.0569302i
\(849\) 5.74695 9.95401i 0.197235 0.341621i
\(850\) 0 0
\(851\) 26.2860 7.04332i 0.901074 0.241442i
\(852\) −0.439211 + 0.760736i −0.0150471 + 0.0260624i
\(853\) 16.8623i 0.577354i −0.957426 0.288677i \(-0.906785\pi\)
0.957426 0.288677i \(-0.0932155\pi\)
\(854\) −6.43111 3.71300i −0.220068 0.127056i
\(855\) 0 0
\(856\) 8.95175 + 2.39861i 0.305964 + 0.0819829i
\(857\) 13.5795 13.5795i 0.463866 0.463866i −0.436055 0.899920i \(-0.643625\pi\)
0.899920 + 0.436055i \(0.143625\pi\)
\(858\) −1.78896 + 6.69622i −0.0610740 + 0.228605i
\(859\) 2.04239i 0.0696855i −0.999393 0.0348427i \(-0.988907\pi\)
0.999393 0.0348427i \(-0.0110930\pi\)
\(860\) 0 0
\(861\) 0.637650 + 1.10444i 0.0217311 + 0.0376393i
\(862\) 10.0156 + 37.3789i 0.341134 + 1.27313i
\(863\) −8.34696 −0.284134 −0.142067 0.989857i \(-0.545375\pi\)
−0.142067 + 0.989857i \(0.545375\pi\)
\(864\) 1.26926 + 4.73695i 0.0431811 + 0.161154i
\(865\) 0 0
\(866\) 12.6934 12.6934i 0.431338 0.431338i
\(867\) −8.90110 + 2.38504i −0.302297 + 0.0810003i
\(868\) 9.80068 36.5766i 0.332657 1.24149i
\(869\) 1.59461 5.95118i 0.0540936 0.201880i
\(870\) 0 0
\(871\) −13.0184 48.4426i −0.441113 1.64142i
\(872\) −3.96733 3.96733i −0.134351 0.134351i
\(873\) 17.8323 + 30.8865i 0.603533 + 1.04535i
\(874\) 0.871821 0.503346i 0.0294898 0.0170259i
\(875\) 0 0
\(876\) 5.74518 + 5.74518i 0.194112 + 0.194112i
\(877\) −18.4158 10.6324i −0.621857 0.359029i 0.155735 0.987799i \(-0.450225\pi\)
−0.777591 + 0.628770i \(0.783559\pi\)
\(878\) 27.0402 + 15.6117i 0.912562 + 0.526868i
\(879\) −18.3348 18.3348i −0.618419 0.618419i
\(880\) 0 0
\(881\) 8.65763 4.99848i 0.291683 0.168403i −0.347018 0.937859i \(-0.612806\pi\)
0.638701 + 0.769455i \(0.279472\pi\)
\(882\) 7.42856 + 12.8666i 0.250132 + 0.433242i
\(883\) 0.0156717 + 0.0156717i 0.000527393 + 0.000527393i 0.707370 0.706843i \(-0.249881\pi\)
−0.706843 + 0.707370i \(0.749881\pi\)
\(884\) 9.27029 16.0840i 0.311793 0.540963i
\(885\) 0 0
\(886\) 5.23281 19.5291i 0.175800 0.656094i
\(887\) 6.43853 24.0289i 0.216185 0.806812i −0.769562 0.638573i \(-0.779525\pi\)
0.985746 0.168239i \(-0.0538081\pi\)
\(888\) 10.1041 2.70738i 0.339071 0.0908538i
\(889\) −1.19352 + 1.19352i −0.0400293 + 0.0400293i
\(890\) 0 0
\(891\) −0.734996 2.74304i −0.0246233 0.0918953i
\(892\) −8.85450 −0.296471
\(893\) −0.223849 0.835414i −0.00749081 0.0279561i
\(894\) −2.71703 4.70604i −0.0908711 0.157393i
\(895\) 0 0
\(896\) 3.76940i 0.125927i
\(897\) −6.23196 6.22277i −0.208079 0.207772i
\(898\) 15.1032 15.1032i 0.504002 0.504002i
\(899\) −11.2780 3.02194i −0.376144 0.100787i
\(900\) 0 0
\(901\) 28.5615 + 16.4900i 0.951523 + 0.549362i
\(902\) 0.692707i 0.0230646i
\(903\) 9.20116 15.9369i 0.306196 0.530346i
\(904\) −5.34686 + 1.43269i −0.177834 + 0.0476505i
\(905\) 0 0
\(906\) −5.87106 + 10.1690i −0.195053 + 0.337842i
\(907\) 24.4574 + 6.55335i 0.812096 + 0.217600i 0.640888 0.767635i \(-0.278566\pi\)
0.171208 + 0.985235i \(0.445233\pi\)
\(908\) 18.8658 10.8922i 0.626085 0.361470i
\(909\) 10.7209 0.355589
\(910\) 0 0
\(911\) 9.21903 0.305440 0.152720 0.988269i \(-0.451197\pi\)
0.152720 + 0.988269i \(0.451197\pi\)
\(912\) 0.335119 0.193481i 0.0110969 0.00640680i
\(913\) 9.55059 + 2.55907i 0.316079 + 0.0846930i
\(914\) −5.90744 + 10.2320i −0.195401 + 0.338444i
\(915\) 0 0
\(916\) −10.8322 + 2.90249i −0.357907 + 0.0959010i
\(917\) 27.8618 48.2580i 0.920077 1.59362i
\(918\) 25.2500i 0.833374i
\(919\) −12.7906 7.38468i −0.421924 0.243598i 0.273976 0.961737i \(-0.411661\pi\)
−0.695900 + 0.718138i \(0.744994\pi\)
\(920\) 0 0
\(921\) −0.266720 0.0714674i −0.00878872 0.00235493i
\(922\) −5.07750 + 5.07750i −0.167218 + 0.167218i
\(923\) 0.00241009 + 3.26863i 7.93292e−5 + 0.107588i
\(924\) 7.24604i 0.238377i
\(925\) 0 0
\(926\) 14.8820 + 25.7764i 0.489053 + 0.847064i
\(927\) −2.99467 11.1762i −0.0983577 0.367076i
\(928\) 1.16225 0.0381529
\(929\) −0.864359 3.22583i −0.0283587 0.105836i 0.950296 0.311348i \(-0.100781\pi\)
−0.978655 + 0.205512i \(0.934114\pi\)
\(930\) 0 0
\(931\) 2.03554 2.03554i 0.0667120 0.0667120i
\(932\) −2.58981 + 0.693937i −0.0848320 + 0.0227307i
\(933\) 0.257080 0.959434i 0.00841641 0.0314105i
\(934\) 6.21340 23.1887i 0.203309 0.758758i
\(935\) 0 0
\(936\) 5.25867 + 5.25092i 0.171885 + 0.171632i
\(937\) 27.1529 + 27.1529i 0.887045 + 0.887045i 0.994238 0.107193i \(-0.0341863\pi\)
−0.107193 + 0.994238i \(0.534186\pi\)
\(938\) −26.2204 45.4151i −0.856127 1.48286i
\(939\) 4.61165 2.66253i 0.150495 0.0868885i
\(940\) 0 0
\(941\) 1.14387 + 1.14387i 0.0372890 + 0.0372890i 0.725505 0.688216i \(-0.241606\pi\)
−0.688216 + 0.725505i \(0.741606\pi\)
\(942\) −2.84351 1.64170i −0.0926465 0.0534895i
\(943\) 0.762254 + 0.440087i 0.0248224 + 0.0143312i
\(944\) 8.97625 + 8.97625i 0.292152 + 0.292152i
\(945\) 0 0
\(946\) −8.65647 + 4.99781i −0.281446 + 0.162493i
\(947\) −23.0002 39.8374i −0.747405 1.29454i −0.949063 0.315087i \(-0.897966\pi\)
0.201658 0.979456i \(-0.435367\pi\)
\(948\) 2.12782 + 2.12782i 0.0691085 + 0.0691085i
\(949\) 29.2085 + 7.80333i 0.948149 + 0.253307i
\(950\) 0 0
\(951\) −0.616151 + 2.29951i −0.0199801 + 0.0745666i
\(952\) 5.02313 18.7466i 0.162801 0.607580i
\(953\) −50.7459 + 13.5973i −1.64382 + 0.440460i −0.957873 0.287191i \(-0.907279\pi\)
−0.685947 + 0.727651i \(0.740612\pi\)
\(954\) −9.33530 + 9.33530i −0.302242 + 0.302242i
\(955\) 0 0
\(956\) −0.891913 3.32867i −0.0288465 0.107657i
\(957\) 2.23424 0.0722228
\(958\) 8.07862 + 30.1498i 0.261008 + 0.974096i
\(959\) −19.1071 33.0945i −0.617001 1.06868i
\(960\) 0 0
\(961\) 69.9199i 2.25548i
\(962\) 27.5030 27.5436i 0.886732 0.888040i
\(963\) 13.5067 13.5067i 0.435246 0.435246i
\(964\) −28.5641 7.65372i −0.919987 0.246510i
\(965\) 0 0
\(966\) −7.97352 4.60351i −0.256544 0.148116i
\(967\) 27.9143i 0.897662i −0.893617 0.448831i \(-0.851840\pi\)
0.893617 0.448831i \(-0.148160\pi\)
\(968\) −3.53208 + 6.11774i −0.113525 + 0.196632i
\(969\) −1.92450 + 0.515669i −0.0618240 + 0.0165657i
\(970\) 0 0
\(971\) 22.1987 38.4493i 0.712390 1.23390i −0.251568 0.967840i \(-0.580946\pi\)
0.963958 0.266056i \(-0.0857205\pi\)
\(972\) 15.5506 + 4.16677i 0.498785 + 0.133649i
\(973\) 20.6461 11.9200i 0.661883 0.382138i
\(974\) −24.7179 −0.792014
\(975\) 0 0
\(976\) −1.97008 −0.0630607
\(977\) 1.14585 0.661557i 0.0366590 0.0211651i −0.481559 0.876414i \(-0.659929\pi\)
0.518217 + 0.855249i \(0.326596\pi\)
\(978\) 16.5037 + 4.42215i 0.527729 + 0.141405i
\(979\) 16.2026 28.0638i 0.517839 0.896923i
\(980\) 0 0
\(981\) −11.1701 + 2.99301i −0.356633 + 0.0955594i
\(982\) −2.03780 + 3.52957i −0.0650287 + 0.112633i
\(983\) 55.4069i 1.76721i 0.468237 + 0.883603i \(0.344889\pi\)
−0.468237 + 0.883603i \(0.655111\pi\)
\(984\) 0.293003 + 0.169165i 0.00934058 + 0.00539279i
\(985\) 0 0
\(986\) −5.78032 1.54883i −0.184083 0.0493248i
\(987\) −5.59327 + 5.59327i −0.178036 + 0.178036i
\(988\) 0.719027 1.24751i 0.0228753 0.0396887i
\(989\) 12.7007i 0.403860i
\(990\) 0 0
\(991\) 10.3910 + 17.9977i 0.330081 + 0.571716i 0.982527 0.186118i \(-0.0595907\pi\)
−0.652447 + 0.757835i \(0.726257\pi\)
\(992\) −2.60007 9.70358i −0.0825522 0.308089i
\(993\) 6.51515 0.206752
\(994\) 0.884426 + 3.30072i 0.0280523 + 0.104693i
\(995\) 0 0
\(996\) −3.41478 + 3.41478i −0.108201 + 0.108201i
\(997\) 19.6648 5.26916i 0.622790 0.166876i 0.0663940 0.997793i \(-0.478851\pi\)
0.556396 + 0.830917i \(0.312184\pi\)
\(998\) −5.32692 + 19.8803i −0.168621 + 0.629301i
\(999\) 13.7023 51.1378i 0.433522 1.61793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.g.557.3 16
5.2 odd 4 130.2.s.b.63.3 yes 16
5.3 odd 4 650.2.w.g.193.2 16
5.4 even 2 130.2.p.b.37.2 16
13.6 odd 12 650.2.w.g.357.2 16
65.19 odd 12 130.2.s.b.97.3 yes 16
65.32 even 12 130.2.p.b.123.2 yes 16
65.58 even 12 inner 650.2.t.g.643.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.p.b.37.2 16 5.4 even 2
130.2.p.b.123.2 yes 16 65.32 even 12
130.2.s.b.63.3 yes 16 5.2 odd 4
130.2.s.b.97.3 yes 16 65.19 odd 12
650.2.t.g.557.3 16 1.1 even 1 trivial
650.2.t.g.643.3 16 65.58 even 12 inner
650.2.w.g.193.2 16 5.3 odd 4
650.2.w.g.357.2 16 13.6 odd 12