Properties

Label 650.2.g.f
Level 650650
Weight 22
Character orbit 650.g
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(57,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.g (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2β1q3+q4+β1q6+β2q7q8+(β3β2+β11)q9+(2β3+β21)q11β1q12+(2β3β2+2β1)q13++(8β26β1+8)q99+O(q100) q - q^{2} - \beta_1 q^{3} + q^{4} + \beta_1 q^{6} + \beta_{2} q^{7} - q^{8} + ( - \beta_{3} - \beta_{2} + \beta_1 - 1) q^{9} + (2 \beta_{3} + \beta_{2} - 1) q^{11} - \beta_1 q^{12} + (2 \beta_{3} - \beta_{2} + 2 \beta_1) q^{13}+ \cdots + (8 \beta_{2} - 6 \beta_1 + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q22q3+4q4+2q64q88q112q12+4q16+10q17+2q21+8q22+8q23+2q242q2720q314q324q3310q3410q39++20q99+O(q100) 4 q - 4 q^{2} - 2 q^{3} + 4 q^{4} + 2 q^{6} - 4 q^{8} - 8 q^{11} - 2 q^{12} + 4 q^{16} + 10 q^{17} + 2 q^{21} + 8 q^{22} + 8 q^{23} + 2 q^{24} - 2 q^{27} - 20 q^{31} - 4 q^{32} - 4 q^{33} - 10 q^{34} - 10 q^{39}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122+ζ12 \zeta_{12}^{2} + \zeta_{12} Copy content Toggle raw display
β2\beta_{2}== ζ123 \zeta_{12}^{3} Copy content Toggle raw display
β3\beta_{3}== ζ122+ζ12 -\zeta_{12}^{2} + \zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β3+β1)/2 ( -\beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== β2 \beta_{2} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) β2-\beta_{2} β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
57.1
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
−1.00000 −1.36603 + 1.36603i 1.00000 0 1.36603 1.36603i 1.00000i −1.00000 0.732051i 0
57.2 −1.00000 0.366025 0.366025i 1.00000 0 −0.366025 + 0.366025i 1.00000i −1.00000 2.73205i 0
593.1 −1.00000 −1.36603 1.36603i 1.00000 0 1.36603 + 1.36603i 1.00000i −1.00000 0.732051i 0
593.2 −1.00000 0.366025 + 0.366025i 1.00000 0 −0.366025 0.366025i 1.00000i −1.00000 2.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.g.f 4
5.b even 2 1 130.2.g.e 4
5.c odd 4 1 130.2.j.e yes 4
5.c odd 4 1 650.2.j.g 4
13.d odd 4 1 650.2.j.g 4
15.d odd 2 1 1170.2.m.d 4
15.e even 4 1 1170.2.w.d 4
20.d odd 2 1 1040.2.bg.i 4
20.e even 4 1 1040.2.cd.k 4
65.f even 4 1 130.2.g.e 4
65.g odd 4 1 130.2.j.e yes 4
65.k even 4 1 inner 650.2.g.f 4
195.n even 4 1 1170.2.w.d 4
195.u odd 4 1 1170.2.m.d 4
260.l odd 4 1 1040.2.bg.i 4
260.u even 4 1 1040.2.cd.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.g.e 4 5.b even 2 1
130.2.g.e 4 65.f even 4 1
130.2.j.e yes 4 5.c odd 4 1
130.2.j.e yes 4 65.g odd 4 1
650.2.g.f 4 1.a even 1 1 trivial
650.2.g.f 4 65.k even 4 1 inner
650.2.j.g 4 5.c odd 4 1
650.2.j.g 4 13.d odd 4 1
1040.2.bg.i 4 20.d odd 2 1
1040.2.bg.i 4 260.l odd 4 1
1040.2.cd.k 4 20.e even 4 1
1040.2.cd.k 4 260.u even 4 1
1170.2.m.d 4 15.d odd 2 1
1170.2.m.d 4 195.u odd 4 1
1170.2.w.d 4 15.e even 4 1
1170.2.w.d 4 195.n even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T34+2T33+2T322T3+1 T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} - 2T_{3} + 1 Copy content Toggle raw display
T17410T173+50T172+10T17+1 T_{17}^{4} - 10T_{17}^{3} + 50T_{17}^{2} + 10T_{17} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
33 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1111 T4+8T3++4 T^{4} + 8 T^{3} + \cdots + 4 Copy content Toggle raw display
1313 T422T2+169 T^{4} - 22T^{2} + 169 Copy content Toggle raw display
1717 T410T3++1 T^{4} - 10 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 T4+576 T^{4} + 576 Copy content Toggle raw display
2323 T48T3++4 T^{4} - 8 T^{3} + \cdots + 4 Copy content Toggle raw display
2929 T4+56T2+484 T^{4} + 56T^{2} + 484 Copy content Toggle raw display
3131 (T2+10T+50)2 (T^{2} + 10 T + 50)^{2} Copy content Toggle raw display
3737 T4+26T2+121 T^{4} + 26T^{2} + 121 Copy content Toggle raw display
4141 T44T3++2704 T^{4} - 4 T^{3} + \cdots + 2704 Copy content Toggle raw display
4343 T4+2T3++14641 T^{4} + 2 T^{3} + \cdots + 14641 Copy content Toggle raw display
4747 T4+14T2+1 T^{4} + 14T^{2} + 1 Copy content Toggle raw display
5353 T4+20T3++676 T^{4} + 20 T^{3} + \cdots + 676 Copy content Toggle raw display
5959 T4+12T3++144 T^{4} + 12 T^{3} + \cdots + 144 Copy content Toggle raw display
6161 (T24T44)2 (T^{2} - 4 T - 44)^{2} Copy content Toggle raw display
6767 (T2+18T+78)2 (T^{2} + 18 T + 78)^{2} Copy content Toggle raw display
7171 T410T3++3721 T^{4} - 10 T^{3} + \cdots + 3721 Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4+104T2+4 T^{4} + 104T^{2} + 4 Copy content Toggle raw display
8383 T4+72T2+324 T^{4} + 72T^{2} + 324 Copy content Toggle raw display
8989 T420T3++16 T^{4} - 20 T^{3} + \cdots + 16 Copy content Toggle raw display
9797 (T210T2)2 (T^{2} - 10 T - 2)^{2} Copy content Toggle raw display
show more
show less