gp: [N,k,chi] = [650,2,Mod(57,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.57");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,-4,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 12 2 + ζ 12 \zeta_{12}^{2} + \zeta_{12} ζ 1 2 2 + ζ 1 2
v^2 + v
β 2 \beta_{2} β 2 = = =
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3
v^3
β 3 \beta_{3} β 3 = = =
− ζ 12 2 + ζ 12 -\zeta_{12}^{2} + \zeta_{12} − ζ 1 2 2 + ζ 1 2
-v^2 + v
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + β 1 ) / 2 ( \beta_{3} + \beta_1 ) / 2 ( β 3 + β 1 ) / 2
(b3 + b1) / 2
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
( − β 3 + β 1 ) / 2 ( -\beta_{3} + \beta_1 ) / 2 ( − β 3 + β 1 ) / 2
(-b3 + b1) / 2
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
β 2 \beta_{2} β 2
b2
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− β 2 -\beta_{2} − β 2
β 2 \beta_{2} β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 + 2 T 3 3 + 2 T 3 2 − 2 T 3 + 1 T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} - 2T_{3} + 1 T 3 4 + 2 T 3 3 + 2 T 3 2 − 2 T 3 + 1
T3^4 + 2*T3^3 + 2*T3^2 - 2*T3 + 1
T 17 4 − 10 T 17 3 + 50 T 17 2 + 10 T 17 + 1 T_{17}^{4} - 10T_{17}^{3} + 50T_{17}^{2} + 10T_{17} + 1 T 1 7 4 − 1 0 T 1 7 3 + 5 0 T 1 7 2 + 1 0 T 1 7 + 1
T17^4 - 10*T17^3 + 50*T17^2 + 10*T17 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T + 1 ) 4 (T + 1)^{4} ( T + 1 ) 4
(T + 1)^4
3 3 3
T 4 + 2 T 3 + ⋯ + 1 T^{4} + 2 T^{3} + \cdots + 1 T 4 + 2 T 3 + ⋯ + 1
T^4 + 2*T^3 + 2*T^2 - 2*T + 1
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
11 11 1 1
T 4 + 8 T 3 + ⋯ + 4 T^{4} + 8 T^{3} + \cdots + 4 T 4 + 8 T 3 + ⋯ + 4
T^4 + 8*T^3 + 32*T^2 + 16*T + 4
13 13 1 3
T 4 − 22 T 2 + 169 T^{4} - 22T^{2} + 169 T 4 − 2 2 T 2 + 1 6 9
T^4 - 22*T^2 + 169
17 17 1 7
T 4 − 10 T 3 + ⋯ + 1 T^{4} - 10 T^{3} + \cdots + 1 T 4 − 1 0 T 3 + ⋯ + 1
T^4 - 10*T^3 + 50*T^2 + 10*T + 1
19 19 1 9
T 4 + 576 T^{4} + 576 T 4 + 5 7 6
T^4 + 576
23 23 2 3
T 4 − 8 T 3 + ⋯ + 4 T^{4} - 8 T^{3} + \cdots + 4 T 4 − 8 T 3 + ⋯ + 4
T^4 - 8*T^3 + 32*T^2 - 16*T + 4
29 29 2 9
T 4 + 56 T 2 + 484 T^{4} + 56T^{2} + 484 T 4 + 5 6 T 2 + 4 8 4
T^4 + 56*T^2 + 484
31 31 3 1
( T 2 + 10 T + 50 ) 2 (T^{2} + 10 T + 50)^{2} ( T 2 + 1 0 T + 5 0 ) 2
(T^2 + 10*T + 50)^2
37 37 3 7
T 4 + 26 T 2 + 121 T^{4} + 26T^{2} + 121 T 4 + 2 6 T 2 + 1 2 1
T^4 + 26*T^2 + 121
41 41 4 1
T 4 − 4 T 3 + ⋯ + 2704 T^{4} - 4 T^{3} + \cdots + 2704 T 4 − 4 T 3 + ⋯ + 2 7 0 4
T^4 - 4*T^3 + 8*T^2 + 208*T + 2704
43 43 4 3
T 4 + 2 T 3 + ⋯ + 14641 T^{4} + 2 T^{3} + \cdots + 14641 T 4 + 2 T 3 + ⋯ + 1 4 6 4 1
T^4 + 2*T^3 + 2*T^2 - 242*T + 14641
47 47 4 7
T 4 + 14 T 2 + 1 T^{4} + 14T^{2} + 1 T 4 + 1 4 T 2 + 1
T^4 + 14*T^2 + 1
53 53 5 3
T 4 + 20 T 3 + ⋯ + 676 T^{4} + 20 T^{3} + \cdots + 676 T 4 + 2 0 T 3 + ⋯ + 6 7 6
T^4 + 20*T^3 + 200*T^2 + 520*T + 676
59 59 5 9
T 4 + 12 T 3 + ⋯ + 144 T^{4} + 12 T^{3} + \cdots + 144 T 4 + 1 2 T 3 + ⋯ + 1 4 4
T^4 + 12*T^3 + 72*T^2 + 144*T + 144
61 61 6 1
( T 2 − 4 T − 44 ) 2 (T^{2} - 4 T - 44)^{2} ( T 2 − 4 T − 4 4 ) 2
(T^2 - 4*T - 44)^2
67 67 6 7
( T 2 + 18 T + 78 ) 2 (T^{2} + 18 T + 78)^{2} ( T 2 + 1 8 T + 7 8 ) 2
(T^2 + 18*T + 78)^2
71 71 7 1
T 4 − 10 T 3 + ⋯ + 3721 T^{4} - 10 T^{3} + \cdots + 3721 T 4 − 1 0 T 3 + ⋯ + 3 7 2 1
T^4 - 10*T^3 + 50*T^2 + 610*T + 3721
73 73 7 3
T 4 T^{4} T 4
T^4
79 79 7 9
T 4 + 104 T 2 + 4 T^{4} + 104T^{2} + 4 T 4 + 1 0 4 T 2 + 4
T^4 + 104*T^2 + 4
83 83 8 3
T 4 + 72 T 2 + 324 T^{4} + 72T^{2} + 324 T 4 + 7 2 T 2 + 3 2 4
T^4 + 72*T^2 + 324
89 89 8 9
T 4 − 20 T 3 + ⋯ + 16 T^{4} - 20 T^{3} + \cdots + 16 T 4 − 2 0 T 3 + ⋯ + 1 6
T^4 - 20*T^3 + 200*T^2 + 80*T + 16
97 97 9 7
( T 2 − 10 T − 2 ) 2 (T^{2} - 10 T - 2)^{2} ( T 2 − 1 0 T − 2 ) 2
(T^2 - 10*T - 2)^2
show more
show less